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DECONVOLUTION WITH UNKNOWN ERROR DISTRIBUTION

BY JAN JOHANNES

Ruprecht–Karls–Universität Heidelberg

We consider the problem of estimating a density fX using a sample
Y1, . . . , Yn from fY = fX � fε , where fε is an unknown density. We assume
that an additional sample ε1, . . . , εm from fε is observed. Estimators of fX

and its derivatives are constructed by using nonparametric estimators of fY

and fε and by applying a spectral cut-off in the Fourier domain. We derive
the rate of convergence of the estimators in case of a known and unknown
error density fε , where it is assumed that fX satisfies a polynomial, logarith-
mic or general source condition. It is shown that the proposed estimators are
asymptotically optimal in a minimax sense in the models with known or un-
known error density, if the density fX belongs to a Sobolev space Hp and fε

is ordinary smooth or supersmooth.

1. Introduction. Let X and ε be independent random variables with unknown
density functions fX and fε , respectively. The objective is to nonparametrically
estimate the density function fX and its derivatives based on a sample of Y =
X + ε. In this setting, the density fY of Y is the convolution of the density of
interest, fX , and the density fε of the additive noise, that is,

fY (y) = fX � fε(y) :=
∫ ∞
−∞

fX(x)fε(y − x)dx.(1.1)

Suppose we observe Y1, . . . , Yn from fY and the error density fε is known.
Then, the estimation of the deconvolution density fX is a classical problem in
statistics. The most popular approach is to estimate fY by a kernel estimator and
then solve (1.1) using a Fourier transform (see Carroll and Hall [4], Devroye [7],
Efromovich [9], Fan [11, 12], Stefanski [36], Zhang [41], Goldenshluger [14, 15]
and Kim and Koo [21]). Spline-based methods are considered, for example, in
Mendelsohn and Rice [28] and Koo and Park [22]. The estimation of the de-
convolution density using a wavelet decomposition is studied in Pensky and Vi-
dakovic [34], Fan and Koo [13] and Bigot and Van Bellegem [1], while Hall and
Qiu [16] have proposed a discrete Fourier series expansion. A penalization and
projection approach is proposed in Carrasco and Florens [3] and Comte, Rozen-
holc and Taupin [6].

The underlying idea behind all approaches is to replace in (1.1) the unknown
density fY by its estimator and then solve (1.1). However, solving (1.1) leads to
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an ill-posed inverse problem and, hence, the inversion of (1.1) has to be “regular-
ized” in some way. We now describe three examples of regularization. The first
example is kernel estimators, where the kernel has a limited bandwidth, that is, the
Fourier transform of the kernel has a bounded support. In this case, asymptotic op-
timality, both pointwise and global, over a class of functions whose derivatives are
Lipschitz continuous, is proven in Carroll and Hall [4] and Fan [11, 12]. The sec-
ond example is estimators based on a wavelet decomposition, where the wavelets
have limited bandwidths. For the wavelet estimator, Pensky and Vidakovic [34]
show asymptotic optimality of the mean integrated squared error (MISE) over the
Sobolev space Hp , which describes the level of smoothness of a function f in
terms of its Fourier transform F f . In the third example, the risk in the Sobolev
norm of Hs (Hs -risk) and asymptotic optimality over Hp , p ≥ s, of an estima-
tor using a spectral cut-off (thresholding of the Fourier transform F fε of fε) is
derived in Mair and Ruymgaart [26].

However, in the above examples, fX and fε are assumed to be ordinary smooth
or supersmooth, that is, their Fourier transforms have polynomial or exponential
descent. All these cases can be characterized by a “source condition” (defined
below), which allows for more general tail behavior.

In several applications, for example, in optics and medicine (cf. Tessier [38]
and Levitt [23]), the noise density fε may be unknown. In this case, without any
additional information, the density fX cannot be recovered from the density of fY

through (1.1), that is, the density fX is not identified if only a sample Y1, . . . , Yn

from fY is observed. It is worth noting that in some special cases the deconvo-
lution density fX can be identified (cf. Butucea and Matias [2] or Meister [27]).
Deconvolution without prior knowledge of the error distribution is also possible
in the case of panel data (cf. Horowitz and Markatou [19], Hall and Yao [17] or
Neumann [32]).

In this paper, we deal with the estimation of a deconvolution density fX when
only an approximation of the error density fε is given. More precisely, following
Diggle and Hall [8] we suppose, that in addition to a sample Y1, . . . , Yn from fY ,
we observe a sample ε1, . . . , εm from fε . An interesting example in bio-informatics
can be found in the analysis of cDNA microarrays, where Y is the intensity mea-
sure, X is the expressed gene intensity and ε is the background intensity (for details
see Havilio [18]). In a situation where an estimator of fε is used, rather than the
true density, Neumann [31] shows asymptotic optimality of the MISE over the
Bessel-potential space when the error density is ordinary smooth. In case of a cir-
cular convolution problem, Cavalier and Hengartner [5] present oracle inequalities
and adaptive estimation. However, they also assume the error density to be ordi-
nary smooth. By constraining the error density to be ordinary smooth, a rich class
of distributions, such as the normal distribution, are excluded. The purpose of this
paper is to propose and study a deconvolution scheme which has enough flexibility
to allow a wide range of tail behaviors of F fX and F fε .
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The estimators of the deconvolution density considered in this paper are based
on a regularized inversion of (1.1) using a spectral cut-off, where we replace the
unknown density fY by a nonparametric estimator and the Fourier transform of fε

by its empirical counterpart. We derive the Hs -risk of the proposed estimator for a
wide class of density functions, which unifies and generalizes many of the previous
results for known and unknown error density. Roughly speaking, we show in case
of known fε that the Hs -risk can be decomposed into a function of the MISE of
the nonparametric estimator of fY plus an additional bias term which is a function
of the threshold (the parameter which determines the spectral cut-off point). The
relationship between F fX and F fε is then essentially determining the functional
form of the bias term. For example, the bias is a logarithm of the threshold when
the error distribution is supersmooth (e.g., normal) and fX is ordinary smooth
(e.g., double exponential). On the other hand, if both the error distribution and fX

are ordinary smooth or supersmooth, the bias is a polynomial of the threshold. We
show that the theory behind these rates can be unified using an index function κ

(cf. Nair, Pereverzev and Tautenhahn [29]), which “links” the tail behavior of F fX

and F fε by supposing that |F fX|2/κ(|F fε|2) is integrable.
Under certain conditions on the index function, we prove that the Hs -risk in the

model with unknown fε can be decomposed into a part with the same bound as
the Hs -risk for known fε and a second term which is only a function of the sample
size m (of errors ε). The functional form of the second term is then again deter-
mined by the relationship between F fX and F fε . We show that the second term
provides a lower bound for the Hs -risk on its own and, hence, cannot be avoided.
It follows that the estimator is minimax in the model with unknown fε when the
bound of the Hs -risk for known fε is of minimax optimal order. Furthermore, it
is of interest to compare the rates of convergence of the Hs -risk when the density
of fε is estimated with the rates, where fε is known. We show that under certain
conditions on the index function, a sample size m which increases at least as fast as
the inverse of the MISE of the nonparametric estimator of fY , ensures an asymp-
totically negligible estimation error of fε . However, in special cases even slower
rates of m are enough.

In this paper, we use the classical Rosenblatt–Parzen kernel estimator (cf.
Parzen [33]) without a limited bandwidth to estimate the density fY . However,
since the Hs -risk of the proposed estimator can be decomposed using the MISE
of the density estimator of fY , any other nonparametric estimation method (e.g.,
based on splines or wavelets) can be used and the theory still holds.

The paper is organized in the following way. In Section 2, we give a brief de-
scription of the background of the methodology and we define the estimator of fX

when the density fε is known as well as when fε is unknown. We investigate the
asymptotic behavior of the estimator of fX in case of a known and an unknown
density fε in Sections 3 and 4, respectively. All proofs can be found in the Appen-
dix.
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2. Methodology.

2.1. Background to methodology. In this paper, we suppose that fX and fε

[hence also fY ] are contained in the set D of all densities in L2(R), which is
endowed with the usual norm ‖ · ‖. We use the notation [F g](t) for the Fourier
transform 1√

2π

∫ ∞
−∞ exp(−itx)g(x) dx of a function g ∈ L1(R) ∩ L2(R), which is

unitary. Since X and ε are assumed to be independent, the Fourier transform of fY

satisfies F fY = √
2π · F fX · F fε . Therefore, assuming |[F fε](t)|2 > 0, for all

t ∈ R, the density fX can be recovered from fY and fε by

F fX = F fY · F fε√
2π · |F fε |2

,(2.1)

where F fε denotes the complex conjugate of F fε . It is well known that replacing
in (2.1) the unknown density fY by a consistent estimator f̂Y does not in gen-
eral lead to a consistent estimator of fX . To be more precise, since |F fε |−1 is
not bounded, E‖f̂Y − fY ‖2 = o(1) does not generally imply E‖[F f̂Y − F fY ] ·
|F fε |−1‖2 = o(1), that is, the inverse operation of a convolution is not continuous.
Therefore, the deconvolution problem is ill posed in the sense of Hadamard. In the
literature, several approaches are proposed in order to circumvent this instability
issue. Essentially, all of them replace (2.1) with a regularized version that avoids
having the denominator becoming too small [e.g., nonparametric methods using a
kernel with limited bandwidth estimate F fY (t), and also F fX(t), for |t | larger
than a threshold by zero]. There are a large number of alternative regularization
schemes in the numerical analysis literature available, such as the Tikhonov reg-
ularization, Landweber iteration or the ν-methods, to name but a few (cf. Engl,
Hanke and Neubauer [10]). However, in this paper we regularize (2.1) by intro-
ducing a threshold α > 0 and a function 	s(t) := (1 + t2)s/2, s, t ∈ R, that is, for
s ≥ 0, we consider the regularized version f α

Xs
given by

F f α
Xs := F fY · F fε√

2π · |F fε |2
· 1{|F fε/	s |2 ≥ α}.(2.2)

Then, f α
Xs

belongs to the well-known Sobolev space Hs defined by

Hs :=
{
f ∈ L2(R) :‖f ‖2

s :=
∫ ∞
−∞

(1 + t2)s |[F f ](t)|2 dt < ∞
}
.(2.3)

Moreover, let H
ρ
s := {f ∈ Hs :‖f ‖2

s ≤ ρ}, for ρ > 0. Thresholding in the Fourier
domain has been used, for example, in Devroye [7], Liu and Taylor [24], Mair and
Ruymgaart [26] or Neumann [31] and coincides with an approach called spectral
cut-off in the numerical analysis literature (cf. Tautenhahn [37]).
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2.2. Estimation of fX when fε is known. Let Y1, . . . , Yn be an i.i.d. sample
of Y , which we use to construct an estimator f̂Y of fY . The estimator f̃Xs of fX

based on the regularized version (2.2) is then defined by

F f̃Xs := F f̂Y · F fε√
2π · |F fε |2

· 1{|F fε/	s |2 ≥ α},(2.4)

where the threshold α := α(n) has to tend to zero as the sample size n increases.
The truncation in the Fourier domain will lead as usual to a bias term which is
a function of the threshold. In Lemma A.1 in the Appendix, we show that by using
this specific structure for the truncation, the functional form of the bias term is
determined by the relationship between F fX and F fε . In this paper, we stick to
a nonparametric kernel estimation approach, but we would like to stress that any
other density estimation procedure could be used as well. The kernel estimator
of fY is defined by

f̂Y (y) := 1

nh

n∑
j=1

K

(
Yj − y

h

)
, y ∈ R,(2.5)

where h > 0 is a bandwidth and K a kernel function. As usual in the context
of nonparametric kernel estimation the bandwidth h has to tend to zero as the
sample size n increases. In order to derive a rate of convergence of f̂Y , we follow
Parzen [33] and consider, for each r ≥ 0, the class of kernel functions

Kr :=
{
K ∈ L1(R) ∩ L2(R) : lim

t→0

|1 − √
2π [F K](t)|
|t |r = κr < ∞

}
.(2.6)

If fY ∈ H
q
r , for q, r > 0, then the MISE of the estimator f̂Y given in (2.5), con-

structed by using a kernel K ∈ Kr and a bandwidth h = cn−1/(2r+1), c > 0, is of
order n−2r/(2r+1) (cf. Parzen [33]) and, hence, obtains the minimax optimal order
over the class H

q
r (cf. [40], Chapter 24).

2.3. Estimation of fX given an estimator of fε . Suppose Y1, . . . , Yn and
ε1, . . . , εm form i.i.d. samples of fY and fε , respectively. We consider again the
nonparametric kernel estimator f̂Y defined in (2.5). In addition, we estimate the
Fourier transform F fε using its empirical counterpart, that is,

[F̂ fε](t) := 1

m · √2π

m∑
j=1

e−itεj , t ∈ R.(2.7)

Then, the estimator f̂Xs based on the regularized version (2.2) is defined by

F f̂Xs := F f̂Y · F̂ fε√
2π · |F̂ fε |2

· 1{|F̂ fε/	s |2 ≥ α},(2.8)

where α := α(n,m) has to tend to zero as the sample sizes n and m increase.
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3. Theoretical properties of the estimator when fε is known. We shall
measure the performance of the estimator f̃Xs defined in (2.4) by the Hs -risk,
that is, E‖f̃Xs − fX‖2

s , provided fX ∈ Hp , for some p ≥ s ≥ 0. For an integer k,
the Sobolev norm ‖g‖k is equivalent to ‖g‖ + ‖g(k)‖, where the kth weak deriva-
tive g(k) of g satisfies [F g(k)](t) := (−it)k[F g](t). Therefore, the Hk-risk reflects
the performance of f̃Xk and f̃X

(k)

k as estimators of fX and f
(k)

X , respectively. How-
ever, in what follows a situation without an a priori assumption on the smoothness
of fX is also covered considering p = s = 0.

The Hs -risk is essentially determined by the MISE of the estimator of fY and
by the regularization bias. To be more precise, by using f α

Xs
given in (2.2) and

assuming fX ∈ Hp , for some p ≥ s ≥ 0, we bound the Hs -risk by

E‖f̃Xs − fX‖2
s ≤ π−1α−1

E‖f̂Y − fY ‖2 + 2‖f α
Xs − fX‖2

s ,(3.1)

where, due to Lebesgue’s dominated convergence theorem, the regularization bias
satisfies ‖f α

Xs
− fX‖2

s = o(1) as α tends to zero.

PROPOSITION 3.1. Suppose that fX ∈ Hp , p ≥ 0. Let f̂Y be a consistent
estimator of fY , that is, E‖f̂Y − fY ‖2 = o(1) as n → ∞. Consider, for 0 ≤
s ≤ p, the estimator f̃Xs given in (2.4) with threshold satisfying α = o(1) and
E‖f̂Y − fY ‖2/α = o(1) as n → ∞. Then, E‖f̃Xs − fX‖2

s = o(1) as n → ∞.

In order to obtain a rate of convergence of the regularization bias and, hence,
the Hs -risk of f̃Xs , we consider first a polynomial source condition

ρ := ‖	s · F fX · (|F fε/	s |2)−β/2‖ < ∞ for some β > 0, s ≥ 0.(3.2)

Note that (3.2) implies that fX ∈ Hs .

EXAMPLE 3.1. To illustrate this and also the following source conditions,
let us consider three different types of densities. These are, (i) the density g of
a symmetrized χ2 distribution with k degrees of freedom, that is, [F g](t) =
(2π)−1/2(1 + 4t2)−k/2, (ii) the density g of a centered Cauchy distribution with
scale parameter γ > 0, that is, [F g](t) = (2π)−1/2 exp(−γ |t |), and (iii) the den-
sity g of a centered normal distribution with variance σ 2 > 0, that is, [F g](t) =
(2π)−1/2 exp(−σ 2t2/2). Suppose fX and fε are symmetrized χ2 densities with
kX and kε degrees of freedom, respectively. Then, the polynomial source condi-
tion (3.2) is only satisfied for 0 ≤ s < kX − 1/2. If fX and fε are Cauchy densities
or fX and fε are Gaussian densities, then F fX and F fε descend exponentially
and (3.2) holds for all s ≥ 0.

THEOREM 3.2. Suppose that fX satisfies the polynomial source condi-
tion (3.2), for some s ≥ 0 and β > 0. Consider the estimator f̃Xs defined in (2.4)
by using a threshold α = c · (E‖f̂Y − fY ‖2)1/(β+1), c > 0. Then, there ex-
ists a constant C > 0 depending only on ρ given in (3.2), β and c such that
E‖f̃Xs − fX‖2

s ≤ C · (E‖f̂Y − fY ‖2)β/(β+1), as E‖f̂Y − fY ‖2 → 0.
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REMARK 3.1. In Lemma A.1 in the Appendix, we show by applying standard
techniques for regularization methods that the polynomial source condition (3.2)
implies ‖f α

Xs
− fX‖2

s ≤ αβρ2. Then, we obtain the result by balancing in (3.1)
the two terms on the right-hand side. On the other hand, from Theorem 4.11 in
Engl, Hanke and Neubauer [10] follows that ‖f α

Xs
− fX‖2

s = O(αη), for some
η > 0, implies (3.2) for all β < η, that is, the order O(αβ) is optimal over the class
{fX satisfies (3.2)}. Therefore, one would expect that an optimal estimation of fY

leads to an optimal estimation of fX . However, the polynomial source condition is
not sufficient to derive an optimal rate of convergence of the MISE of f̂Y over the
class {fY = fε � fX :fX satisfies (3.2)}. For example, if fε is a Gaussian density,
this class contains only analytic functions, while it equals H(β+1)(s+1) when fε is
a Laplace density.

Without further information about fε it is difficult to give for arbitrary β > 0
an interpretation of the polynomial source condition. However, if we suppose ad-
ditionally that fε is ordinary smooth, that is, there exists a > 1/2 and a constant
d > 0, such that

d ≤ (1 + t2)a|[F fε](t)|2 ≤ d−1 for all t ∈ R.(3.3)

Then, the smoothness condition fX ∈ Hp , for some p > 0, is equivalent to the
polynomial source condition (3.2) with 0 ≤ s < p and β = (p − s)/(s + a). More-
over, we have Hp+a = {fY = fε �fX :fX ∈ Hp}, for all p ≥ 0. Therefore, the con-
volution with fε is also called finitely smoothing (cf. Mair and Ruymgaart [26]).
From Theorem 3.2, we obtain the following corollary, which establishes the opti-
mal rate of convergence of f̃Xs over Hp .

COROLLARY 3.3. Suppose that fX ∈ Hp , p > 0 and fε satisfies (3.3) for a >

1/2. Let f̂Y defined in (2.5) be constructed using a kernel K ∈ Kp+a [see (2.6)]
and a bandwidth h = cn−1/(2(p+a)+1), c > 0. Consider for 0 ≤ s < p the estimator
f̃Xs defined in (2.4) with threshold α = cn−2(a+s)/(2(p+a)+1), c > 0. Then, we have
E‖f̃Xs − fX‖2

s = O(n−2(p−s)/(2(a+p)+1)) as n → ∞.

REMARK 3.2. The rate of convergence in the last result is known to be min-
imax optimal over the class H

ρ
p , provided that the density fε satisfies (3.3) (cf.

Mair and Ruymgaart [26]). Since under the assumptions of the corollary fX be-
longs to Hp if and only if fY lies in Hp+a , it follows that the kernel estimator
of fY is constructed such that its MISE has the minimax optimal order over the
class H

q
p+a . Moreover, using an estimator of fY which does not have an order

optimal MISE, the estimator of fX would not reach the minimax optimal rate of
convergence. Hence, in this situation the optimal estimation of fY is necessary to
obtain an optimal estimator of fX . We shall emphasize the role of the parame-
ter a, which specifies through the condition (3.3) the tail behavior of the Fourier
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transform F fε . As we see, if the value a increases, the obtainable optimal rate
of convergence decreases. Therefore, the parameter a is often called degree of ill
posedness (cf. Natterer [30]).

If, for example, fX is a Laplace and fε is a Cauchy or Gaussian density, then
not a polynomial but a logarithmic source condition holds true, that is,

ρ := ‖	s · F fX · | ln(|F fε/	s |2)|β/2‖ < ∞ for some β > 0, s ≥ 0.(3.4)

THEOREM 3.4. Let fX satisfy the logarithmic source condition (3.4), for
some s ≥ 0 and β > 0. Consider the estimator f̃Xs defined in (2.4) by using
a threshold α = c · (E‖f̂Y − fY ‖2)1/2, for some c > 0. Then, there exists a con-
stant C > 0 depending only on ρ given in (3.4), β and c such that we have
E‖f̃Xs − fX‖2

s ≤ C · | log(E‖f̂Y − fY ‖2)|−β , as E‖f̂Y − fY ‖2 → 0.

Additionally, if we assume that the density fε is supersmooth, that is, there
exists a > 0 and a constant d > 0, such that

d ≤ (1 + t2)a| ln(|[F fε](t)|2)|−1 ≤ d−1 for all t ∈ R,(3.5)

then the smoothness condition fX ∈ Hp , p > 0 is equivalent to the logarithmic
source condition (3.4), with 0 ≤ s < p and β = (p − s)/a. Moreover, fε , and
therefore fY , belong to Hr , for all r > 0, and given a ≥ 1, fε and hence fY , are
analytic functions (cf. Kawata [20]). Therefore, the convolution with fε is called
infinitely smoothing (cf. Mair and Ruymgaart [26]).

COROLLARY 3.5. Suppose that fX ∈ Hp , p > 0 and fε satisfies (3.5) for
some a > 0. Let f̂Y given in (2.5) be constructed by using a kernel K ∈ Kr

[see (2.6)] and a bandwidth h = cn−1/(2r+1), c, r > 0. Consider, for 0 ≤ s < p,
the estimator f̃Xs defined in (2.4) with threshold α = cn−r/(2r+1), c > 0. Then, we
have E‖f̃Xs − fX‖2

s = O((logn)−(p−s)/a), as n → ∞.

REMARK 3.3. The rate of convergence in Corollary 3.5 is again minimax op-
timal over the class H

ρ
p , given that the density fε satisfies (3.5) (cf. Mair and

Ruymgaart [26]). It seems rather surprising that in opposite to Corollary 3.3,
an increasing value r improves the order of the MISE of the estimator f̂Y uni-
form over the class {fY = fε � fX :fX ∈ H

ρ
p }, but does not change the order

of the Hs -risk of f̃Xs (compare Remark 3.2). This, however, is due to the fact
that the Hs -risk of f̃Xs is of order O(n−r/(2r+1)) + O((lognr/(2r+1))−(p−s)/a) =
O((logn)−(p−s)/a). So r does not appear formally, but is actually hidden in the
order symbol. Note that neither the bandwidth h nor the threshold α depends on
the level p of smoothness of fX , that is, the estimator is adaptive. Moreover, the
parameter a specifying in condition (3.5) the tail behavior of the Fourier transform
F fε , in this situation also describes the degree of ill posedness.
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Consider, for example, a Cauchy density fX and a Gaussian density fε , then
neither the polynomial source condition (3.2) nor the logarithmic source condi-
tion (3.4) is appropriate. However, both source conditions can be unified and ex-
tended using an index function κ : (0,1] → R

+, which we always assume here
to be a continuous and strictly increasing function with κ(0+) = 0 (cf. Nair,
Pereverzev and Tautenhahn [29]). Then, we consider a general source condition

ρ := ‖	s · F fX · |κ(|F fε/	s |2)|−1/2‖ < ∞ for some s ≥ 0.(3.6)

THEOREM 3.6. Let fX satisfy the general source condition (3.6) for some
concave index function κ and s ≥ 0. Denote by � and ω the inverse function of κ

and ω−1(t) := t�(t), respectively. Consider the estimator f̃Xs defined in (2.4) by
using α = c ·E‖f̂Y −fY ‖2/ω(c ·E‖f̂Y −fY ‖2), c > 0. Then, there exists a constant
C > 0 depending only on ρ given in (3.6) and c such that E‖f̃Xs − fX‖2

s ≤ C ·
ω(E‖f̂Y − fY ‖2), as E‖f̂Y − fY ‖2 → 0.

REMARK 3.4. (i) Let S
γ
fε

be the set of all densities fX satisfying the gen-
eral source condition (3.4) with ρ ≤ γ . We define the modulus of continuity
ω(δ,S

γ
fε

) := sup{‖g‖2
s :g ∈ S

γ
fε

,‖fε � g‖2 ≤ δ} of the inverse operation of a con-

volution with fε over the set S
γ
fε

⊂ Hs . Since the index function κ is assumed to be
concave, it follows that the inverse function of ω is convex. Then, by using Theo-
rem 2.2 in Nair, Pereverzev and Tautenhahn [29], we have ω(δ) = O(ω(δ,S

γ
fε

)), as

δ → 0. In the case of a deterministic approximation f δ
Y of fY with ‖f δ

Y −fY ‖ ≤ δ,
it is shown in Vainikko and Veretennikov [39] that ω(δ,S

γ
fε

) provides a lower

bound over the class S
γ
fε

of the approximation error for any deconvolution method

based only on f δ
Y . Therefore, we conjecture, that the bound in Theorem 3.6 is order

optimal over the class S
γ
fε

, given the MISE of fY is order optimal over the class

{fY = fX � fε, fX ∈ S
γ
fε

}.
(ii) Define κ(t) := | log(ct)|−β , c := exp(−1 − β). Then, κ is a concave index

function and ω(δ) = | log δ|−β(1+o(1)), as δ → 0 (see Mair [25]). Thus, the result
under a logarithmic source condition (Theorem 3.4) is covered by Theorem 3.6.
However, the index function κ(t) = tβ is concave only if β ≤ 1, and hence the
result in the case of a polynomial source condition (Theorem 3.2) is only partially
obtained by Theorem 3.6. Nevertheless, we can apply Theorem 3.6 in the situation
of a Cauchy density fX and a Gaussian density fε (compare Example 3.1), since in
this case, for all 0 < β < 2γ /σ and s ≥ 0, the general source condition is satisfied
with concave index function κ(t) = exp(−β

√| log(ct)|), c := exp(−(β2 ∨ 2)).
Moreover, if we denote h(t) := (t/β +β/2)2, then ω−1(t) = exp(−h(− log t))/c′,
with c′ = exp(β2/4 + (β2 ∨ 2)). Since ω(t) = exp(−h−1(− log t/c′)), with
h−1(y) = β

√
y − β2/2 for all y ≥ β2/4, we conclude that the Hs -risk in this case

is of order exp(−β| log E‖f̂Y − fY ‖2|1/2).
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4. Theoretical properties of the estimator when fε is unknown. Let f̂ α
Xs

be
defined by F f̂ α

Xs
:= 1{|F̂ fε/	s |2 ≥ α} · F fX . Then, assuming fX ∈ Hp , p ≥ s,

we bound the Hs -risk of f̂Xs given in (2.8) by

E‖f̂Xs − fX‖2
s ≤ 2E‖f̂Xs − f̂ α

Xs
‖2
s + 2E‖f̂ α

Xs
− fX‖2

s ,(4.1)

where we show in the proof of the next proposition that E‖f̂Xs − f̂ α
Xs

‖2
s is bounded

up to a constant by α−1(E‖f̂Y − fY ‖2 + m−1), and that the “regularization error”
satisfies E‖f̂ α

Xs
− fX‖2

s = o(1) as α → 0 and m → ∞.

PROPOSITION 4.1. Suppose that fX ∈ Hp , p ≥ 0. Let f̂Y be a consistent esti-
mator of fY , that is, E‖f̂Y − fY ‖2 = o(1) as n → ∞. Consider, for 0 ≤ s ≤ p, the
estimator f̂Xs given in (2.8) with threshold (1/m ∨ E‖f̂Y − fY ‖2)/α = o(1) and
α = o(1) as n,m → ∞. Then, E‖f̂Xs − fX‖2

s = o(1) as n,m → ∞.

REMARK 4.1. If we assume, in addition to the conditions of Proposition 4.1,
that m−1 = O(E‖f̂Y − fY ‖2) as n → ∞, then we recover the result of Proposi-
tion 3.1 when fε is a priori known. In fact, in all the results below the condition
m−1 = O(E‖f̂Y − fY ‖2) on the sample size m as n → ∞, ensures that the error
due to the estimation of fε is asymptotically negligible. However, in some special
cases an even slower rate of m is possible (see, e.g., Theorems 4.2 or 4.6).

THEOREM 4.2. Let fX satisfy the polynomial source condition (3.2) for some
s ≥ 0 and β > 0. Consider the estimator f̂Xs defined in (2.8) with α = c · {(E‖f̂Y −
fY ‖2)1/(β+1) + m−1}, c > 0. Then, for E‖f̂Y − fY ‖2 → 0 and m → ∞, we have
E‖f̂Xs −fX‖2

s ≤ C · {(E‖f̂Y −fY ‖2)β/(β+1) +m−(β∧1)}, for some C > 0 depend-
ing only on ρ given in (3.2), β and c.

REMARK 4.2. To illustrate the last result, suppose the sample size m satis-
fies m−1 = O((E‖f̂Y − fY ‖2)(β∨1)/(β+1)) as n → ∞, and hence m grows with
a slower rate than m−1 = O(E‖f̂Y − fY ‖2) (see Remark 4.1). Then, the Hs -risk
of f̂Xs is bounded up to a constant by (E‖f̂Y − fY ‖2)β/(β+1), as in the case of an
a priori known fε (see Theorem 3.2).

The next assertion shows that the second term given in the bound of Theo-
rem 4.2 cannot be avoided when the samples from fY and fε are independent. For
f ∈ L2(R), let us define the class of densities

D
γ
f := {g ∈ D :γ |F f |2 ≤ |F g|2 ≤ γ −1|F f |2}, γ > 0.(4.2)

PROPOSITION 4.3. Suppose the samples from fY and fε are independent.
Let f ∈ D , and define S

ρ
f := {g ∈ D :‖	s · F g · (|F f/	s |2)−β/2‖ ≤ ρ}, ρ > 0.

Then, we have inff̂X
supfε∈D

γ
f ,fX∈S

ρ
f

E‖f̂X −fX‖2
s ≥ C ·m−(β∧1), for some C > 0,

depending only on f , ρ and γ .
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If fε is ordinary smooth, that is, (3.3) holds for some a > 1/2, then fX ∈ Hp ,
p > 0 is equivalent to the polynomial source condition (3.2) with 0 ≤ s < p and
β = (p − s)/(s + a). Thus, Theorem 4.2 implies the next assertion.

COROLLARY 4.4. Suppose fε satisfies (3.3) for a > 1/2 and fX ∈ Hp , p > 0.
Let f̂Y given in (2.5) be constructed by using a kernel K ∈ Kp+a and a bandwidth
h = cn−1/(2(p+a)+1), c > 0. Consider, for 0 ≤ s < p, the estimator f̂Xs defined
in (2.8) with α = c{n−2(s+a)/(2(p+a)+1) + m−1}, c > 0. Then, E‖f̂Xs − fX‖2

s =
O(n−2(p−s)/(2(p+a)+1) + m−(1∧(p−s)/(a+s))) as n,m → ∞.

In case of an a priori known and ordinary smooth fε , the optimal order of the
Hs -risk over H

ρ
p is n−2(p−s)/(2(p+a)+1) (see Remark 3.2), which together with

Proposition 4.3 implies the next corollary.

COROLLARY 4.5. Suppose the samples from fY and fε are indepen-
dent. Denote by Da the set of all densities satisfying (3.3) with a > 1/2.
Then, inff̂X

supfX∈H
ρ
p ,fε∈Da

E‖f̂X − fX‖2
s ≥ C{n−2(p−s)/(2(p+a)+1) +

m−(1∧(p−s)/(a+s))}.
REMARK 4.3. If the samples from fY and fε are independent, then due to

Corollaries 4.4 and 4.5 the order of the smallest m for archiving the same con-
vergence rate as in the case of an a priori known fε (Corollary 3.3) is given by
m−1 = O(n−2[(p−s)∨(a+s)]/[2(p+a)+1]). We shall emphasize the interesting am-
biguous influences of the parameters p and a characterizing the smoothness of
fX and fε , respectively. If in case of (p − s) < (a + s) the value of a decreases or
the value of p increases, then the estimation of fε is still negligible given a relative
to n slower necessary rate of m. While in the case of (p− s) > (a+ s) a decreasing
value of a or an increasing value of p leads to a relative to n faster necessary rate
of m. However, in both cases a decreasing value of a or an increasing value of p

implies a faster optimal rate of convergence of the estimator f̂Xs.

THEOREM 4.6. Let fX satisfy the logarithmic source condition (3.4), for
some s ≥ 0 and β > 0. Consider the estimator f̂Xs defined in (2.8) by using a
threshold α = c{(E‖f̂Y − fY ‖2)1/2 + m−1/2}, c > 0. Then, for E‖f̂Y − fY ‖2 → 0
and m → ∞, we have E‖f̂Xs − fX‖2

s ≤ C{| log(E‖f̂Y − fY ‖2)|−β + (logm)−β},
for some C > 0 depending only on ρ given in (3.4), β and c.

REMARK 4.4. Assume that, for some ν > 0, the sample size m satisfies
m−1 = O((E‖f̂Y − fY ‖2)ν) as n → ∞, and hence m may grow with a fare slower
rate than implied by the condition m−1 = O(E‖f̂Y −fY ‖2) (compare Remark 4.1).
Then, as in the case of an a priori known fε (see Theorem 3.4), the Hs -risk of f̂Xs

is bounded by C| log(E‖f̂Y − fY ‖2)|−β , for some C > 0. Note that the influence
of the parameter ν is hidden in the constant C.
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The next assertion states that the second term given in the bound of Theorem 4.6
cannot be avoided.

PROPOSITION 4.7. Suppose the samples from fY and fε are independent.
Let f ∈ D , and define S

ρ
f := {g ∈ D :‖	s · F g · | log(|F f/	s |2)|β/2‖ ≤ ρ},

ρ > 0. Then, we have inff̂X
supfε∈D

γ
f ,fX∈S

ρ
f

E‖f̂X −fX‖2
s ≥ C(logm)−β , for some

C > 0, depending only on f , ρ and γ .

Assume that fε is supersmooth, that is, (3.5) holds for a > 0. Then, fX ∈ Hp ,
p > 0, is equivalent to the logarithmic source condition (3.4) with 0 ≤ s < p and
β = (p − s)/a. Thus, Theorem 4.6 implies the next assertion.

COROLLARY 4.8. Suppose fε satisfies (3.5), for a > 0 and fX ∈ Hp, p > 0.
Let f̂Y defined in (2.5) be constructed by using a kernel K ∈ Kr [see (2.6)] and a
bandwidth h = cn−1/(2r+1), c, r > 0. Consider, for 0 ≤ s < p, the estimator f̂Xs

defined in (2.8) with α = c{n−r/(2r+1) + m−1/2}, c > 0. Then, E‖f̂Xs − fX‖2
s =

O((logn)−(p−s)/a + (logm)−(p−s)/a) as n,m → ∞.

In case of an a priori known and supersmooth fε , the optimal order of the
Hs -risk over H

ρ
p is (logn)−(p−s)/a (see Remark 3.3), which together with Propo-

sition 4.7 leads to the next assertion.

COROLLARY 4.9. Suppose the samples from fY and fε are independent. De-
note by Da the set of all densities satisfying (3.5) with a > 0. Then,
inff̂X

supfX∈H
ρ
p ,fε∈Da

E‖f̂X − fX‖2
s ≥ C{(logn)−(p−s)/a + (logm)−(p−s)/a}.

REMARK 4.5. If we assume m−1 = O(n−ν), for some ν > 0, then the order
in the last result simplifies to (logn)−(p−s)/a and hence, equals the optimal order
for known fε (see Corollary 3.5). Therefore, if the samples from fY and fε are
independent, then from Corollary 4.8 and 4.9 it follows that the error due to the
estimation of fε is asymptotically negligible if and only if the sample size m grows
as some power of n. In contrast to the situation in Corollary 4.4 and 4.5, if fε is
supersmooth, that is, (3.5) holds for a > 0, and fX ∈ Hp, p > 0, then the influence
of the parameters p and a is not ambiguous. A decreasing value of a or an increas-
ing value of p implies a faster optimal rate of convergence of the estimator f̂Xs,
and the relative to n necessary rate of m is not affected. Note that the estimator is
adaptive as in a case of known supersmooth error density (see Remark 3.3). We
shall stress that the estimation of fε has no influence on the order of the Hs -risk
of f̂Xs, as long as the sample size m grows as fast as some power of n. However,
the influence is clearly hidden in the constant of the order symbol.

THEOREM 4.10. Let fX satisfy the general source condition (3.6) for some
concave index function κ and s ≥ 0. Denote by � and ω the inverse function
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of κ and ω−1(t) := t�(t), respectively. Consider f̂Xs defined in (2.8) with α =
c{E‖f̂Y −fY ‖2/ω(E‖f̂Y −fY ‖2)+ 1/m}, c > 0. Then, we have E‖f̂Xs −fX‖2

s ≤
C{ω(E‖f̂Y − fY ‖2) + κ(1/m)}, as E‖f̂Y − fY ‖2 → 0 and m → ∞, for some
C > 0, depending only on ρ given in (3.6) and c.

REMARK 4.6. Assume that m−1 = O(E‖f̂Y − fY ‖2) as n → ∞, then the
Hs -risk of f̂Xs is bounded up to a constant by ω(E‖f̂Y − fY ‖2) as in case of an
a priori known fε (see Theorem 3.6). Thus, the general source condition supposing
m−1 = O(E‖f̂Y − fY ‖2) is sufficient to ensure that the estimation of the noise
density is asymptotically negligible.

PROPOSITION 4.11. Let the samples from fY and fε be independent and
f ∈ D . Define S

ρ
f := {g ∈ D :‖	s · F g · κ(|F f/	s |2)|−1/2‖ ≤ ρ}, ρ > 0. Then,

we have inff̂X
supfε∈D

γ
f ,fX∈S

ρ
f

E‖f̂X − fX‖2
s ≥ C · κ(1/m), for some C > 0 de-

pending only on f , ρ and γ .

REMARK 4.7. Due to Proposition 4.11 in the case of independent samples
from fY and fε , the term κ(1/m) given in the bound of Theorem 4.10 cannot
be avoided. It follows that our estimator f̂Xs attains the minimax optimal order
over S

ρ
fε

when ω(E‖f̂Y − fY ‖2) is the optimal order for known fε (compare Re-
mark 3.4).

APPENDIX

PROOF OF PROPOSITION 3.1. The proof is based on the decomposition (3.1),
where α−1 ≥ supt∈R+ t−11{t ≥ α} is used to obtain the first term on the right-hand
side. If fX ∈ Hp , p ≥ s ≥ 0, then by making use of the relation ‖f α

Xs
− fX‖2

s =
‖1{|F fε/	s |2 < α} · 	s · F fX‖2 ≤ ‖	s · F fX‖2 ≤ ‖fX‖2

p < ∞, the second term
satisfies ‖f α

Xs
−fX‖2

s = o(1), as α → 0, due to Lebesgue’s dominated convergence
theorem. Therefore, the conditions on α ensure the convergence to zero of the two
terms on the right-hand side in (3.1) as n increases, which gives the result. �

Assuming fε is known, the next lemma summarizes the essential bounds of the
regularization bias depending on the polynomial, logarithmic or general source
condition.

LEMMA A.1. Let w : R → [1,∞) be an arbitrary weight function. Suppose
there exists β > 0 such that:

(i) ρ := ‖w · F fX · (|F fε |2/w2)−β/2‖ < ∞ is satisfied, then

‖w · F fX · 1{|F fε |2/w2 < α}‖2 ≤ αβ · ρ2;(A.1)

(ii) ρ := ‖w · F fX · | log(|F fε |2/w2)|β/2‖ < ∞ is satisfied, then

‖w · F fX · 1{|F fε |2/w2 < α}‖2 ≤ Cβ · (− logα)−β · ρ2;(A.2)
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(iii) ρ := ‖w · F fX · |κ(|F fε |2/w2)|−1/2‖ < ∞ is satisfied and assume that
the index function κ is concave, then

‖w · F fX · 1{|F fε |2/w2 < α}‖2 ≤ Cκ · κ(α) · ρ2;(A.3)

where Cβ , Cκ are positive constants depending only on β and κ , respectively.

PROOF. Denote ψα := F fX1{|F fε/w|2 < α}. Under the assumption (i) we
have ‖w · ψα‖2 ≤ supt∈R+ tβ1{t < α} · ρ2, which implies (A.1).

The proof of (A.2) is partially motivated by techniques used in Nair, Perever-
zev and Tautenhahn [29]. Let κβ(t) := | log(t)|−β , t ∈ (0,1) and φβ(t) :=
κ

1/2
β (|[F fε](t)/w(t)|2), t ∈ R, then for all t ∈ R we have φβ(0) ≥ φβ(t) > 0.

Under assumption (ii), which may be rewritten as ρ = ‖w · F fX/φβ‖ < ∞, we
obtain

‖w · ψα‖2 =
∫

R

w(t)ψα(t)φβ(t)
w(t)[F fX](t)

φβ(t)
dt ≤ ‖w · ψα · φβ‖ · ρ(A.4)

due to the Cauchy–Schwarz inequality. From (A.4) we conclude

‖F fε · ψα‖2 = ‖F fε · 1{|F fε/w|2 < α} · ψα‖2 ≤ α · ‖w · ψα · φβ‖ · ρ,(A.5)

since α ≥ supt∈R+ t ·1{t < α}. Let �β be the inverse function of κβ , then �β(s) =
e−s−1/β

, s > 0, which is convex on the interval (0, c2
β] with c2

β = (1+β)−β . Define

γ 2
β = c2

β/φ2
β(0) ∧ 1. Therefore, Jensen’s inequality implies

�β

(γ 2
β · ‖w · ψα · φβ‖2

‖w · ψα‖2

)
≤

∫
R

�β(γ 2
β · φ2

β(t)) · w2(t) · ψ2
α(t) dt∫

R
w2(t) · ψ2

α(t) dt
,

which together with �β(γ 2
β · φ2

β(t)) ≤ �β(φ2
β(t)) = |[F fε](t)|2/w2(t) gives

�β

(γ 2
β · ‖w · ψα · φβ‖2

‖w · ψα‖2

)
≤

∫
R

|[F fε](t)|2 · ψ2
α(t) dt

‖w · ψα‖2 = ‖F fε · ψα‖2

‖w · ψα‖2 .(A.6)

In order to combine the three estimates (A.4), (A.5) and (A.6), let us introduce
a new function �β by �β(t) := �β(t2)/t2. Since �β is convex, we conclude
that �β is monotonically increasing on the interval (0, cβ]. Hence, by (A.4), which
may be rewritten as ‖w · ψα · φβ‖1/2/ρ1/2 ≤ ‖w · ψα · φβ‖/‖w · ψα‖ (≤ φβ(0)),
the monotonicity of �β and (A.6),

�β

(
γβ · ‖w · ψα · φβ‖1/2

ρ1/2

)
≤ �β

(
γβ · ‖w · ψα · φβ‖

‖w · ψα‖
)

≤ ‖F fε · ψα‖2

γ 2
β · ‖w · ψα · φβ‖2

.

Multiplying by γ 2
β · ‖w · ψα · φβ‖/ρ and exploiting (A.5) yields

�β

(γ 2
β · ‖w · ψα · φβ‖

ρ

)
≤ ‖F fε · ψα‖2

ρ · ‖w · ψα · φβ‖ ≤ α.(A.7)
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Since �−1
β (s) = | ln(s)|−β , we obtain (A.2) by combining (A.4) and (A.7).

The proof of (A.3) follows line by line the proof of (A.2) using the concave
index function κ and its convex inverse function �, rather than κβ and �β . �

PROOF OF THEOREM 3.2. The proof is based on the decomposition (3.1).
The polynomial source condition (3.2) equals assumption (i) in Lemma A.1 with
w ≡ 	s , therefore from (A.1) we obtain ‖f α

Xs
−fX‖2

s ≤ αβ ·ρ2. Balancing the two
terms on the right-hand side in (3.1) then gives the result. �

PROOF OF COROLLARY 3.3. Under the conditions of the corollary, we have
fY ∈ Hp+a and, hence E‖f̂Y − fY ‖2 = O(n−2(p+a)/(2(p+a)+1)). Moreover, the
polynomial source condition (3.2) is satisfied with β = (p− s)/(a + s). Therefore,
the result follows from Theorem 3.2. �

PROOF OF THEOREM 3.4. The proof is similar to the proof of Theorem 3.2,
but uses (A.2) in Lemma A.1 with w ≡ 	s rather than (A.1). The conditions of
the theorem then provide E‖f̃Xs − fX‖2

s ≤ C(E‖f̂Y − fY ‖2)1/2 + C| log(E‖f̂Y −
fY ‖2)|−β , for some constant C > 0, depending only on ρ given in (3.4), β and c,
which implies the result. �

PROOF OF COROLLARY 3.5. Under the conditions of the corollary, we have
fY ∈ Hr and, hence E‖f̂Y − fY ‖2 = O(n−2r/(2r+1)). Moreover, the logarithmic
source condition (3.4) is satisfied with β = (p− s)/a. Therefore, the result follows
from Theorem 3.4. �

PROOF OF THEOREM 3.6. The proof is similar to the proof of Theorem 3.2,
but uses (A.3) in Lemma A.1 with w ≡ 	s rather than (A.1). The condition on α

which may be rewritten as c · E‖f̂Y − fY ‖2 = α · κ(α) then ensures the balance of
the two terms in (3.1). The result follows by making use of the relation ω(c · δ) ≤
(c ∨ 1) · ω(δ) (Mair and Ruymgaart [26], Remark 3.7). �

LEMMA A.2. Suppose w : R → [1,∞) is an arbitrary weight function, κ is
a concave index function and F̂ fε is the estimator defined in (2.7). Then, for all
γ ≥ 0 and t ∈ R, we have

E|[F̂ fε](t)/w(t) − [F fε](t)/w(t)|2γ

(A.8)
≤ C(γ ) · m−γ ,

E

[
1{|[F̂ fε](t)/w(t)|2 ≥ α} · |[F̂ fε](t) − [F fε](t)|2

|[F̂ fε](t)|2
]

(A.9)

≤ C(γ )

|[F fε](t)/w(t)|2γ
·
{

1

α · m1+γ
+ 1

(m · α)1−γ∧1 · mγ∧1

}
,
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E

[
1{|[F̂ fε](t)/w(t)|2 ≥ α} · |[F̂ fε](t) − [F fε](t)|2

|[F̂ fε](t)|2
]

(A.10)

≤ C(γ )

κ(|[F fε](t)/w(t)|2) ·
{
κ(1/m)

α · m + κ(1/m)

}
,

where C and C(γ ) depending only on γ are positive constants.

PROOF. Let γ ≥ 0 and t ∈ R. Define Zj := {(2π)−1/2e−itεj − [F fε](t)}/
w(t), j = 1, . . . ,m, then Z1, . . . ,Zm are i.i.d. random variables with mean zero,
and |Zj |2γ ≤ K for some positive constant K . Therefore, applying Theorem 2.10
in Petrov [35], we obtain (A.8) for γ ≥ 1, while for γ ∈ (0,1) the estimate follows
from Lyapunov’s inequality.

Proof of (A.9). Consider, for γ ≥ 0 and t ∈ R, the elementary inequality

1 ≤ 22γ ·
{ |[F̂ fε](t)/w(t) − [F fε](t)/w(t)|2γ

|[F fε](t)/w(t)|2γ
+ |[F̂ fε](t)/w(t)|2γ

|[F fε](t)/w(t)|2γ

}
,(A.11)

which together with |[F̂ fε](t)/w(t)| ≤ 1, for all t ∈ R, implies

E

[
1{|[F̂ fε](t)/w(t)|2 ≥ α} · |[F̂ fε](t) − [F fε](t)|2

|[F̂ fε](t)|2
]

≤ 22γ

|[F fε](t)/w(t)|2γ
·
{

E|[F̂ fε](t)/w(t) − [F fε](t)/w(t)|2(1+γ )

α

+ E|[F̂ fε](t)/w(t) − [F fε](t)/w(t)|2
α1−γ∧1

}

and by using (A.8) we obtain the estimate (A.9).
Proof of (A.9). If |[F fε](t)/w(t)|2 ≤ 1/m, then we obtain (A.10) by us-

ing (A.8) with γ = 1 together with κ(|[F fε](t)/w(t)|2) ≤ κ(1/m). Since κ

is concave, we conclude that g(t) = κ(t2)/t2 is monotonically decreasing.
Hence, if |[F fε](t)/w(t)|2 ≥ 1/m, then due to the monotonicity of g we have
κ(|[F fε](t)/w(t)|2)|[F fε](t)/w(t)|−2 ≤ mκ(m−1), which together with in-
equality (A.11), for γ = 1, yields

E

[
1{|[F̂ fε](t)/w(t)|2 ≥ α} · |[F̂ fε](t) − [F fε](t)|2

|[F̂ fε](t)|2
]

≤ 24mκ(m−1)

κ(|[F fε](t)/w(t)|2) ·
{

E|[F̂ fε](t)/w(t) − [F fε](t)/w(t)|4
α

+ E|[F̂ fε](t)/w(t) − [F fε](t)/w(t)|2
}

and by using (A.8) we obtain the estimate (A.10). �
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PROOF OF PROPOSITION 4.1. The proof is based on the decomposition (4.1).
Due to (A.9) in Lemma A.2, we show below the bound

E‖f̂Xs − f̂ α
Xs

‖2
s ≤ π−1α−1 · E‖f̂Y − fY ‖2

(A.12)
+ 2C(0) · ‖fX‖2

s · α−1 · m−1,

while from Lebesgue’s dominated convergence theorem and (A.8) in Lemma A.2,
we conclude

E‖f̂ α
Xs

− fX‖2
s = o(1) as α → 0 and m → ∞.(A.13)

Therefore, the conditions on α ensure the convergence to zero of the two terms on
the right-hand side in (4.1) as n and m tend to ∞, which gives the result.

Proof of (A.12). Using α−1 ≥ supt∈R+ t−11{t ≥ α}, we have

E‖f̂Xs − f̂ α
Xs

‖2
s

≤ π−1α−1 · E‖F f̂Y − F fY ‖2

(A.14)

+ 2
∥∥∥∥
{
E

[
1{|F̂ fε/	

s |2 ≥ α} · |F̂ fε/	s − F fε/	s |2
|F̂ fε/	s |2

]}1/2

× 	s · F fX

∥∥∥∥2

and hence ‖	s ·F fX‖ = ‖fX‖s ≤ ‖fX‖p < ∞, together with (A.9) in Lemma A.2
with w = 	s and γ = 0, implies (A.12).

Proof of (A.13). If fX ∈ Hp , p ≥ s ≥ 0, then by making use of the re-
lation E‖f̂ α

Xs
− fX‖2

s = ‖E1{|F̂ fε/	s |2 < α} · 	s · F fX‖2 ≤ ‖	s · F fX‖2 ≤
‖fX‖2

p < ∞ the result follows due to Lebesgue’s dominated convergence theo-
rem from E1{|[F̂ fε](t)/	s(t)|2 < α} → 0 as α → 0 and m → ∞, that can be
realized as follows. For all α ≤ α0, we have |[F fε](t)| ≥ 2α1/2	s(t) and, hence
E1{|[F̂ fε](t)/	s(t)|2 < α} ≤ P(|[F̂ fε](t) − [F fε](t)| > |[F fε](t)|/2). There-
fore, from Chebyshev’s inequality and (A.8) in Lemma A.2 with w ≡ 1 and γ = 1,
we obtain (A.13). �

The next lemma summarizes the essential bounds of the “regularization error”
depending on the polynomial, logarithmic or general source condition.

LEMMA A.3. Let w : R → [1,∞) be an arbitrary weight function, and let
F̂ fε be the estimator defined in (2.7). Suppose there exists β > 0 such that:

(i) ρ := ‖w · F fX · (|F fε |2/w2)−β/2‖ < ∞ is satisfied, then

E‖w · F fX · 1{|F̂ fε/w|2 < α}‖2 ≤ Cβ{αβ + m−β}ρ2;(A.15)
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(ii) ρ := ‖w · F fX · | log(|F fε/w|2)|β/2‖ < ∞ is satisfied, then

E‖w · F fX · 1{|F̂ fε/w|2 < α}‖2 ≤ Cβ | log(Cβ{α + m−1})|−βρ2;(A.16)

(iii) ρ := ‖w · F fX · |κ(|F fε/w|2)|−1/2‖ < ∞, and assume that the index
function κ is concave, then

E‖w · F fX · 1{|F̂ fε/w|2 < α}‖2 ≤ Cκ · κ(Cκ{α + m−1}) · ρ2;(A.17)

where Cβ , Cκ are positive constants depending only on β and κ , respectively.

PROOF. Denote ψ̂α := F fX · 1{|F̂ fε/w|2 < α}. Then, using the inequal-
ity (A.11) together with αγ ≥ supt∈R+ tγ 1{t < α}, for all γ > 0, we have

‖w · ψ̂α‖2 ≤ 22β{αβ · ρ2 + ‖w · F fX · |F fε/w|−β · |F̂ fε/w − F fε/w|β‖2}.
Therefore, using (A.8) in Lemma A.2, we obtain the bound (A.15).
The proof of (A.16) follows along the same lines as the proof of (A.2) in

Lemma A.1. Consider the functions κβ , φβ and �β defined in the proof of (A.2)
in Lemma A.1, then in analogy to (A.4), we bound

‖w · ψ̂α‖2 ≤ ‖w · ψ̂α · φβ‖ · ρ,(A.18)

which implies

E‖ψ̂α‖2 ≤ (E‖w · ψ̂α · φβ‖2)1/2 · ρ.(A.19)

Moreover, following the steps in (A.5) together with (A.18), we have

‖F̂ fε · ψ̂α‖2 ≤ α · ‖w · ψ̂α · φβ‖ · ρ.(A.20)

Therefore, applying the triangular inequality together with (A.20), we obtain

E‖F fε · ψ̂α‖2 ≤ 2E‖w · |F fε/w − F̂ fε/w| · ψ̂α‖2 + 2α(E‖w · ψ̂α · φβ‖2)1/2ρ.

By applying the Cauchy–Schwarz inequality and then (A.8) in Lemma A.2, we
bound the first term by C(β) · m−1 · ∫

(E1{|[F̂ fε](t)/w(t)|2 < α})1/2 · w2(t) ·
|[F fX](t)|2 dt, and using once again the Cauchy–Schwarz inequality,

E‖F fε · ψ̂α‖2 ≤ 2
{
C(β)

m
+ α

}
· (E‖w · ψ̂α · φβ‖2)1/2 · ρ.(A.21)

In analogy to (A.6), by applying the convex function �β , we obtain

�β

(γ 2
β · E‖w · ψ̂α · φβ‖2

E‖w · ψ̂α‖2

)
≤ E‖F fε · ψ̂α‖2

E‖w · ψ̂α‖2
.(A.22)

Combining the three bounds (A.19), (A.21) and (A.22), as in (A.7), implies

�β

(γ 2
β · (E‖w · ψ̂α · φβ‖2)1/2

ρ

)
≤ 2

{
C(β)

m
+ α

}
.(A.23)
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We obtain the second bound (A.16) by combining (A.19) and (A.23).
The proof of (A.17) follows line by line the proof of (A.16) using the functions κ

and � rather than κβ and �β . �

The next lemma generalizes Theorem 3.1 given in Neumann [31] by providing
a lower bound for the MISE under a general source condition, which requires for
f ∈ L2(R) and index function κ the following definitions:

M
ρ
f := {g ∈ D :‖F g · |κ(|F f |2)|−1/2‖ ≤ ρ}, ρ > 0,

(A.24)
�m

f (t) := {
κ(|[F f ](t)|2) · {m−1|[F f ](t)|−2 ∧ 1}}, t ∈ R.

LEMMA A.4. Suppose the samples from fY and fε are independent. Let
f ∈ D , and consider D

γ
f defined in (4.2). Then, there exists C > 0, such that

inf
f̂X

sup
fX∈M

ρ
f ,fε∈D

γ
f

E‖f̂X − fX‖2 ≥ C · max
t∈R

�m
f (t).

PROOF. The proof is in analogy to the proof of Theorem 3.1 given in Neu-
mann [31] and we omit the details. �

PROOF OF THEOREM 4.2. The proof is based on the decomposition (4.1).
From the bound given in (A.14), the polynomial source conditions (3.2) and (A.9)
in Lemma A.2 with w = 	s and γ = β , we obtain E‖f̂Xs − f̂ α

Xs
‖2
s ≤ π−1α−1 ·

E‖f̂Y −fY ‖2 +2C(β) ·ρ2 · {α−1 ·m−1−β + (m ·α)−1+β∧1 ·m−β∧1}. While (A.15)
in Lemma A.3 with w = 	s and γ = β provides E‖f̂ α

Xs
−fX‖2

s ≤ Cβ ·{αβ +m−β}·
ρ2. Balancing these two terms then gives the result. �

PROOF OF PROPOSITION 4.3. Let gs be defined by F gs := 	s · F g, s ∈ R.
Now, by making use of the relation ‖f s

X‖ = ‖fX‖s , the Hs -risk of an estimator
f̂X of fX equals the MISE of f̂ s

X as estimator of f s
X . Moreover, fX belongs to S

ρ
f

if and only if f s
X satisfies ‖F f s

X · (|F f −s |2)−β/2‖ ≤ ρ. Consider the sets D
γ
f

and M
ρ
f defined in (4.2) and (A.24) with k(t) = tβ , respectively. Then, for any

f0 ∈ Dc
f −s , c > 0, Lemma A.4 implies

inf
f̂X

sup
fX∈S

ρ
f ,fε∈D

γ
f

E‖f̂X − fX‖2
s ≥ inf

f̂X

sup
fX∈M

cρ
f0

,fε∈D
cγ
f0

E‖f̂X − fX‖2

≥ C max
t∈R

{
|[F f ](t)|2β

{
1

m|[F f ](t)|2 ∧ 1
}}

,

where the lower bound is of order m−(1∧β), which proves the result. �
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PROOF OF COROLLARY 4.4. The proof is similar to the proof of Corol-
lary 3.3, but uses Theorem 4.2 rather than Theorem 3.2, and we omit the de-
tails. �

PROOF OF COROLLARY 4.5. Let f ∈ Da , and consider the sets D
γ
f and S

ρ
f

defined in (4.2) and Proposition 4.3 with β = (p − s)/(a + s), respectively. If
fε ∈ D

γ
f , then fX ∈ H

ρ
p is equivalent to fX ∈ S

dγρ
f . Therefore, Proposition 4.3

leads to the following lower bound:

inf
f̂X

sup
fX∈H

ρ
p ,fε∈Da

E‖f̂X − fX‖2
s ≥ Cm−(1∧(p−s)/(a+s)).

The result now follows by combination of the last lower bound with the lower
bound in the case of known fε ∈ Da (cf. Mair and Ruymgaart [26]), that is,
inff̂X

supfX∈H
ρ
p ,fε∈Da

E‖f̂X − fX‖2
s ≥ Cn−2(p−s)/(2(p+a)+1). �

PROOF OF THEOREM 4.6. Considering the decomposition (4.1), we bound
the first term as in (A.12), and from (A.16) in Lemma A.3 with w = 	s and
γ = β , the second term satisfies E‖f̂ α

Xs
− fX‖2

s ≤ Cβ | log(C′
β{α + m−1})|−βρ2.

The conditions of the theorem provide then E‖f̂Xs − fX‖2
s ≤ C · {E‖f̂Y − fY ‖2 ∨

m−1}1/2 + C · | log(C · {E‖f̂Y − fY ‖2 ∨ m−1})|−β , for some constant C > 0 de-
pending only on ρ given in (3.2), β and c, which implies the result. �

PROOF OF PROPOSITION 4.7. The proof follows along the same lines as the
proof of Proposition 4.3. Here, using the logarithmic rather than the polynomial
source condition, Lemma A.4 implies

inf
f̂X

sup
fX∈S

ρ
f ,fε∈D

γ
f

E‖f̂X − fX‖2
s

≥ C max
t∈R

{
1

| log(|[F f ](t)|2)|β
{

1

m|[F f ](t)|2 ∧ 1
}}

,

where the lower bound is of order (logm)−β , which gives the result. �

PROOF OF COROLLARY 4.8. The proof is similar to the proof of Corol-
lary 3.5, but uses Theorem 4.6 rather than Theorem 3.4, and we omit the de-
tails. �

PROOF OF COROLLARY 4.9. The proof follows along the same lines as the
proof of Corollary 4.5. Here, using Proposition 4.7 rather than Proposition 4.3
leads to the lower bound C(logm)−(p−s)/a . The result follows then from the lower
bound C(logn)−(p−s)/a in the case of known fε (cf. Mair and Ruymgaart [26]).

�
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PROOF OF THEOREM 4.10. The proof is based on the decomposition (4.1).
From the bound given in (A.14), the general source conditions (3.6) and (A.10) in
Lemma A.2 with w = 	s , we obtain E‖f̂Xs − f̂ α

Xs
‖2
s ≤ π−1α−1

E‖f̂Y − fY ‖2 +
2Cρ2{α−1m−1κ(m−1) + κ(m−1)}. While (A.17) in Lemma A.3 with w = 	s pro-
vides E‖f̂ α

Xs
− fX‖2

s ≤ Cκκ(Cκ{α + m−1})ρ2. The condition on α ensures then
the balance of these two terms. The result follows by making use of the relation
κ(c ·δ) ≤ (c∨1) ·κ(δ), which follows, for c < 1 and for c ≥ 1, from the monotonic-
ity and the concavity of κ , respectively. �

PROOF OF PROPOSITION 4.11. The proof follows along the same lines as the
proof of Proposition 4.3. Here, using the general rather than the polynomial source
condition, Lemma A.4 implies

inf
f̂X

sup
fX∈S

ρ
f ,fε∈D

γ
f

E‖f̂X − fX‖2
s ≥ C max

t∈R

{
κ(|[F f ](t)|2)

{
1

m|[F f ](t)|2 ∧ 1
}}

.

Since κ is increasing and κ(t2)/t2 is decreasing, it follows that the lower bound is
of order κ(1/m), which proves the result. �

Acknowledgments. I thank the referees for their careful reading of the paper
and for helpful comments and suggestions.

REFERENCES

[1] BIGOT, J. and VAN BELLEGEM, S. (2006). Log-density deconvolution by wavelet threshold-
ing. Technical report, Univ. catholique de Louvain.

[2] BUTUCEA, C. and MATIAS, C. (2005). Minimax estimation of the noise level and of the
deconvolution density in a semiparametric deconvolution model. Bernoulli 11 309–340.
MR2132729

[3] CARRASCO, M. and FLORENS, J.-P. (2002). Spectral method for deconvolving a density.
Working Paper No. 138, Univ. Toulouse I, IDEI.

[4] CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a den-
sity. J. Amer. Statist. Assoc. 83 1184–1186. MR0997599

[5] CAVALIER, L. and HENGARTNER, N. (2005). Adaptive estimation for inverse problems with
noisy operators. Inverse Problems 21 1345–1361. MR2158113

[6] COMTE, F., ROZENHOLC, Y. and TAUPIN, M.-L. (2006). Penalized contrast estimator for
density deconvolution. Canad. J. Statist. 34 431–452. MR2328553

[7] DEVROYE, L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17
235–239. MR1033106

[8] DIGGLE, P. J. and HALL, P. (1993). A Fourier approach to nonparametric deconvolution of a
density estimate. J. Roy. Statist. Soc. Ser. B 55 523–531. MR1224414

[9] EFROMOVICH, S. (1997). Density estimation for the case of supersmooth measurement error.
J. Amer. Statist. Assoc. 92 526–535. MR1467846

[10] ENGL, H. W., HANKE, M. and NEUBAUER, A. (2000). Regularization of Inverse Problems.
Kluwer Academic, Dordrecht. MR1408680

[11] FAN, J. (1991). On the optimal rates of convergence for nonparametric deconvolution prob-
lems. Ann. Statist. 19 1257–1272. MR1126324

http://www.ams.org/mathscinet-getitem?mr=2132729
http://www.ams.org/mathscinet-getitem?mr=0997599
http://www.ams.org/mathscinet-getitem?mr=2158113
http://www.ams.org/mathscinet-getitem?mr=2328553
http://www.ams.org/mathscinet-getitem?mr=1033106
http://www.ams.org/mathscinet-getitem?mr=1224414
http://www.ams.org/mathscinet-getitem?mr=1467846
http://www.ams.org/mathscinet-getitem?mr=1408680
http://www.ams.org/mathscinet-getitem?mr=1126324


2322 J. JOHANNES

[12] FAN, J. (1992). Deconvolution with supersmooth distributions. Canad. J. Statist. 20 734–747.
MR1183078

[13] FAN, J. and KOO, J. Y. (2002). Wavelet deconvolution. IEEE Trans. Inform. Theory 48 734–
747. MR1889978

[14] GOLDENSHLUGER, A. (1999). On pointwise adaptive nonparametric deconvolution. Bernoulli
5 907–925. MR1715444

[15] GOLDENSHLUGER, A. (2000). Density deconvolution in the circular structural model. J. Mul-
tivariate Anal. 81 360–375. MR1906385

[16] HALL, P. and QIU, P. (2005). Discrete-transform approach to deconvolution problems. Bio-
metrika 92 135–148. MR2158615

[17] HALL, P. and YAO, Q. (2003). Inference in components of variance models with low replica-
tion. Ann. Statist. 31 414–441. MR1983536

[18] HAVILIO, M. (2006). Signal deconvolution based expression-detection and background adjust-
ment for microarray data. J. Comput. Biol. 13 63–80. MR2253541

[19] HOROWITZ, J. L. and MARKATOU, M. (1996). Semiparametric estimation of regression mod-
els for panel data. Rev. Econom. Stud. 63 145–168. MR1372250

[20] KAWATA, T. (1972). Fourier Analysis in Probability Theory. Academic Press, New York.
MR0464353

[21] KIM, P. T. and KOO, J. Y. (2002). Optimal spherical deconvolution. J. Multivariate Anal. 80
21–42. MR1889831

[22] KOO, J. Y. and PARK, B. U. (1996). B-spline deconvolution based on the EM algorithm.
J. Statist. Comput. Simulation 54 275–288. MR1701219

[23] LEVITT, D. G. (2003). The use of a physiologically based pharmacokinetic model to evaluate
deconvolution measurements of systemic absorption. In BMC Clinical Pharmacology 3.
BioMed Central. Available at http://www.biomedcentral.com/1472-6904/3/1.

[24] LIU, M. C. and TAYLOR, R. L. (1989). A consistent nonparametric density estimator for the
deconvolution problem. Canad. J. Statist. 17 427–438. MR1047309

[25] MAIR, B. A. (1994). Tikhonov regularization for finitely and infinitely smoothing operators.
SIAM J. Math. Anal. 25 135–147. MR1257145

[26] MAIR, B. A. and RUYMGAART, F. H. (1996). Statistical inverse estimation in Hilbert scales.
SIAM J. Math. Anal. 56 1424–1444. MR1409127

[27] MEISTER, A. (2006). Density estimation with normal measurement error with unknown vari-
ance. Statist. Sinica 16 195–211. MR2256087

[28] MENDELSOHN, J. and RICE, J. (1982). Deconvolution of micro-fluorometric histograms with
B-splines. J. Amer. Statist. Assoc. 77 748–753.

[29] NAIR, M., PEREVERZEV, S. V. and TAUTENHAHN, U. (2005). Regularization in Hilbert scales
under general smoothing conditions. Inverse Problems 21 1851–1869. MR2183654

[30] NATTERER, F. (1984). Error bounds for Tikhonov regularization in Hilbert scales. Applicable
Anal. 18 29–37. MR0762862

[31] NEUMANN, M. H. (1997). On the effect of estimating the error density in nonparametric de-
convolution. J. Nonparametr. Statist. 7 307–330. MR1460203

[32] NEUMANN, M. H. (2006). Deconvolution from panel data with unknown error distribution.
J. Multivariate Anal. 98 1955–1968. MR2396948

[33] PARZEN, E. (1962). On estimation of a probability density function and mode. Ann. Math.
Statist. 33 1065–1076. MR0143282

[34] PENSKY, M. and VIDAKOVIC, B. (1999). Adaptive wavelet estimator for nonparametric den-
sity deconvolution. Ann. Statist. 27 2033–2053. MR1765627

[35] PETROV, V. V. (1995). Limit Theorems of Probability Theory. Sequences of Independent Ran-
dom Variables, 4th ed. Clarendon Press, Oxford. MR1353441

[36] STEFANSKI, L. A. (1990). Rate of convergence of some estimators in a class of deconvolution
problems. Statist. Probab. Lett. 9 229–235. MR1045189

http://www.ams.org/mathscinet-getitem?mr=1183078
http://www.ams.org/mathscinet-getitem?mr=1889978
http://www.ams.org/mathscinet-getitem?mr=1715444
http://www.ams.org/mathscinet-getitem?mr=1906385
http://www.ams.org/mathscinet-getitem?mr=2158615
http://www.ams.org/mathscinet-getitem?mr=1983536
http://www.ams.org/mathscinet-getitem?mr=2253541
http://www.ams.org/mathscinet-getitem?mr=1372250
http://www.ams.org/mathscinet-getitem?mr=0464353
http://www.ams.org/mathscinet-getitem?mr=1889831
http://www.ams.org/mathscinet-getitem?mr=1701219
http://www.biomedcentral.com/1472-6904/3/1
http://www.ams.org/mathscinet-getitem?mr=1047309
http://www.ams.org/mathscinet-getitem?mr=1257145
http://www.ams.org/mathscinet-getitem?mr=1409127
http://www.ams.org/mathscinet-getitem?mr=2256087
http://www.ams.org/mathscinet-getitem?mr=2183654
http://www.ams.org/mathscinet-getitem?mr=0762862
http://www.ams.org/mathscinet-getitem?mr=1460203
http://www.ams.org/mathscinet-getitem?mr=2396948
http://www.ams.org/mathscinet-getitem?mr=0143282
http://www.ams.org/mathscinet-getitem?mr=1765627
http://www.ams.org/mathscinet-getitem?mr=1353441
http://www.ams.org/mathscinet-getitem?mr=1045189


DECONVOLUTION WITH UNKNOWN ERROR DISTRIBUTION 2323

[37] TAUTENHAHN, U. (1996). Error estimates for regularization methods in Hilbert scales. SIAM
J. Numer. Anal. 33 2120–2130. MR1427456

[38] TESSIER, E. (1995). Analysis and calibration of natural guide star adaptive optics data. In
Adaptive Optical Systems and Applications (R. K. Tyson and R. Q. Fugate, eds.) 178–
193. Proc. SPIE 2534. Available at arXiv:astro-ph/9601174v1.

[39] VAINIKKO, G. M. and VERETENNIKOV, A. Y. (1986). Iteration Procedures in Ill-Posed Prob-
lems. Nauka, Moscow (in Russian). MR0859375

[40] VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge Univ. Press. MR1652247
[41] ZHANG, C.-H. (1990). Fourier methods for estimating mixing densities and distributions. Ann.

Statist. 18 806–831. MR1056338

INSTITUTE OF APPLIED MATHEMATICS

RUPRECHT–KARLS–UNIVERSITÄT HEIDELBERG

IM NEUENHEIMER FELD 294
D-69120 HEIDELBERG

GERMANY

E-MAIL: johannes@statlab.uni-heidelberg.de

http://www.ams.org/mathscinet-getitem?mr=1427456
http://arxiv.org/abs/astro-ph/9601174v1
http://www.ams.org/mathscinet-getitem?mr=0859375
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=1056338
mailto:johannes@statlab.uni-heidelberg.de

	Introduction
	Methodology
	Background to methodology
	Estimation of fX when fepsilon is known
	Estimation of fX given an estimator of fepsilon

	Theoretical properties of the estimator when fepsilon is known
	Theoretical properties of the estimator when fepsilon is unknown
	Appendix
	Acknowledgments
	References
	Author's Addresses

