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CONSISTENT ESTIMATES OF DEFORMED ISOTROPIC
GAUSSIAN RANDOM FIELDS ON THE PLANE

BY ETHAN ANDERES1 AND SOURAV CHATTERJEE2

University of California at Davis and University of California at Berkeley

This paper proves fixed domain asymptotic results for estimating
a smooth invertible transformation f : R2 → R2 when observing the de-
formed random field Z ◦ f on a dense grid in a bounded, simply connected
domain �, where Z is assumed to be an isotropic Gaussian random field on
R2. The estimate f̂ is constructed on a simply connected domain U , such that
U ⊂ � and is defined using kernel smoothed quadratic variations, Bergman
projections and results from quasiconformal theory. We show, under mild as-
sumptions on the random field Z and the deformation f , that f̂ → Rθf + c

uniformly on compact subsets of U with probability one as the grid spacing
goes to zero, where Rθ is an unidentifiable rotation and c is an unidentifiable
translation.

1. Introduction. The use of deformations to model nonstationary processes
was first introduced to the spatial statistics literature by Sampson and Guttorp [37].
Their work, as well as that of subsequent authors (see, e.g., [13, 23, 34] and [38])
consider estimating the deformation f when observing a deformed random field
Z ◦ f at sparse observation locations with independent replicates of the random
field.

Two recent papers, [10] and [5], study the different problem of estimating a de-
formation f from dense observations of a single realization of a deformed isotropic
random field Z ◦ f in two dimensions. These deformed isotropic random fields
provide a flexible semi-parametric model of nonstationarity for random fields. In
addition, this observation scenario is becoming increasingly important with the
abundance of high resolution digital imagery and remote sensing. One of the more
recent motivations for the deformation model under the one-realization observa-
tion scenario is gravitational lensing of the cosmic microwave background (CMB).
The gravitational effect from intervening matter distort the CMB images to pro-
duce deformed random field observations. In the hope of improving estimates of
cosmological parameters and the mass distribution in the universe (including dark
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FIG. 1. Left: One realization of a deformed isotropic random field. Right: The recovered isotropic
random field using the estimated deformation from Figure 3.

matter) there is considerable interest in detecting and measuring the lensing of the
CMB (see, e.g., [22] and [40]).

In this paper, we establish a strong consistency result for the estimation of the
deformation f when observing Z ◦ f on a dense grid in a bounded, simply con-
nected domain in R2, as the grid spacing goes to zero. We first construct estimates
of the complex dilatation and log-scale of the map f (see Section 4), which con-
verge uniformly on compact subsets of the observation region with probability one.
Then, we construct a deformation estimate f̂ on a subset of the observation region
that converges uniformly on compact subsets with probability one. We show this
result under mild assumptions on the map f and the two dimensional isotropic
random field Z.

Most attempts at recovering the deformation f from a single realization of Z◦f

rely on estimating local properties of f , usually related to the Jacobian of f , from
the local behavior of the random field Z ◦ f . Intuitively, the random field Z ◦ f is
locally stretched and sheared by f , as determined by the Jacobian. One can clearly
see the visual consequences of this shear, as seen in the left plot from Figure 1.
When the random field Z is isotropic, the identification of all four parameters of
the Jacobian becomes difficult from the local behavior of Z ◦ f . In particular, by
decomposing the Jacobian matrix as U�V T (using singular value decomposition
so that U,V are orthogonal matrices, and � is diagonal) the rotation matrix U

becomes particularly hard, if not impossible, to estimate when observing Z ◦ f

in a small neighborhood. An important object for us is the complex dilatation and
log-scale of f , determined by the Jacobian (and defined in Section 4), which are
invariant under left multiplication of rotation matrices to the Jacobian. It is this in-
variance that allows us to estimate these parameters under the isotropy assumption
for Z.
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Guyon and Perrin [20] tackle the problem of developing consistent estimates of
deformations in two dimensions and succeed in proving consistency within a sub-
class of deformations when observing random fields that are stationary but not
isotropic. The subclass of deformations, however, is restrictive. In particular, it is
not closed under post composition with rotations, which removes, in some sense,
some complications for estimating the Jacobian generated by general deformations
that can locally twist as well as stretch. On the other hand, Anderes and Stein [5]
consider a large, nonparametric class of deformations. However, their results are
methodological in nature and do not provide proofs of consistency. This paper
contributes to bridging the gap between these two papers by considering the same
flexible class of nonparametric deformations as in [5] while proving consistency
for the estimated deformation as in [20]. For further references on densely ob-
served deformed random fields see [9, 17, 29, 32, 33] and [35].

In this paper, we use kernel smoothed directional quadratic variations to esti-
mate local properties of f , which are used to construct an estimate f̂ of f . We
establish sufficient conditions on the rate of bandwidth decay, in relation to the
grid spacing, for strong uniform convergence of the kernel smoothed quadratic
variations. There is a significant amount of literature studying the convergence of
quadratic variations (see, e.g., [1, 6–8, 11, 15, 18, 19, 24, 25, 30] and [41]). One of
the crucial inequalities used in many of the recent convergence results is the Han-
son and Wright bound for quadratic forms [21]. Indeed, we also depend heavily on
this bound, and we use it to establish Claim 2 in Section 3.2, which, in turn, gives
uniform convergence on compact subsets for the estimated complex dilatation and
log-scale and, ultimately, the convergence of the estimated deformation.

The kernel smoothed quadratic variations used in this paper are based on sec-
ond order increments of the deformed process. Second order increments, rather
than first order, are used in equation (4) to obtain sufficient spatial decorrelation
for uniform convergence. Using higher order increments for quadratic variations
is not new. They have been used in [24] and [7] for identification of a local frac-
tional index and in [12] to identify the singularity function of a fractional process.
The heuristic is that by increasing the order of increment, one can increase the rate
of decay of the variance of the quadratic variation. However, this rate improve-
ment holds only to a point, after which additional increments no longer improve
the situation. The interaction between the number of increments, the fractional in-
dex of the random field and the dimension of the domain of the random field is
investigated in Chapter 3 of [3].

One of the main theoretical tools we use in this paper is the theory of quasicon-
formal maps. We believe this paper demonstrates how quasiconformal theory can
provide a flexible theoretical framework for estimating smooth invertible trans-
formations, whereby making these objects available to statisticians for modelling
a diverse range of physical phenomena. In two dimensions, an important object in
the theory of quasiconformal maps is the complex dilatation μ :� → D (here �

is the observation region for Z ◦ f , and D is the unit disk in the complex plane).
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FIG. 2. The estimated dilatation μ̂ (left) and scale |̂∂f | (right) using kernel smoothed second order
directional increments and the results of Section 4.

A more detailed discussion of the complex dilatation is presented in Section 4. Be-
sides characterizing quasiconformal maps up to post composition with conformal
maps, the complex dilatation μ has two other useful properties. First, μ can be in-
terpreted as measuring the ellipticity and inclination of the local ellipse, which gets
mapped to a local circle under the quasiconformal map that it characterizes. This is
important to us for developing estimates of μ locally from Z ◦f . Second, the only
requirement on μ is measurability and ‖μ‖∞ < 1. In other words, it suffices to
measurably assign eccentricity and inclinations of local infinitesimal ellipses, and,
by keeping the eccentricity bounded, there is a quasiconformal map that sends
these infinitesimal ellipses to circles (unique up to post composition with confor-
mal maps). This property allows us to find a smooth invertible transformation that
corresponds to the estimated complex dilatation.

The other object we use for estimating f is the log-scale τ := log |∂f |. We will
discuss both μ and τ in detail later. However, it is worth while to notice that μ

and τ provide enough information to uniquely specify the map f up to an overall
rotation and translation. As we will see, one of the difficulties with τ , as compared
to μ, is that τ lies in a complicated subspace of functions mapping R2 to R. This
is where we employ the Bergman projection as a tool to overcome the restrictive
nature of the log-scale parameter τ .

Figure 2 illustrates the estimates μ̂ and |̂∂f | from the simulation shown in Fig-
ure 1. These are obtained by convolving the second order quadratic increments
with a Gaussian smoothing kernel and transforming these smoothed increments as
discussed in Section 4. An estimated deformation f̂ corresponding to μ̂ and |̂∂f | is
shown in Figure 3 (left) along with the true deformation (right). The image shown
in Figure 1 (right) shows Z ◦ f ◦ f̂ −1, which “unwinds” the deformed process
in an attempt at recovering the isotropic process Z. Note that the deformation f̂

in Figure 3 is constructed using methods from both this paper and from [5]. To
be explicit, all of the estimation methods from this paper are used for f̂ with the
exception of the Bergman projection, where the methods from [5] were used. The
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FIG. 3. Left: The estimated deformation recovered from the estimated dilatation and scale shown
in Figure 2. The deformation was constructed from the estimated dilatation and scale using methods
outlined in [5]. Right: The true deformation f .

reason for this is that the computational techniques are not yet developed, to the
authors’ knowledge, for accurate approximation of the Bergman projection used in
constructing f̂ . However, since the Bergman space is a reproducing kernel Hilbert
space, there is potential for accurate approximation using spline methodology.

There are three main parts to this paper. Section 2 discusses the assumptions
on Z and the smooth invertible map f . In Section 3, we show that kernel smoothed
directional quadratic variations converge uniformly on compact subsets with prob-
ability one. These directional quadratic variations are then used, in Section 4, to
get estimates μ̂ and τ̂ := log |̂∂f |. Finally, in Section 5, we show how to convert μ̂

and τ̂ to an estimated map f̂ on simply connected subsets U such that U ⊂ �, and
we show that f̂ converges to f uniformly on compact subsets of U with probabil-
ity one.

2. The random field Z and the map f . In this section, we list our assump-
tions on the isotropic random field Z and the smooth invertible transformation f .
This section starts with a brief discussion of our assumptions on the autocovari-
ance function of Z. Then, a detailed discussion follows on our assumptions for the
smooth invertible transformation f : R2 → R2.

We require the following three conditions on the isotropic random field Z:

R1. Z is a constant mean Gaussian process on R2 with autocovariance R(|t−s|) =
cov(Z(t),Z(s));

R2. R(|t |) = R(0) − |t |α + o(|t |α+γ ), as |t | → 0 for some 0 < α < 2, γ > 0;
R3. R is C4 away from the origin and there exists a c > 0 such that |R(4)(t)| ≤

ctα−4 for all sufficiently small t > 0.
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The assumption R2 establishes the local quadratic variation behavior of the
process Z to be similar to that of a fractional Brownian sheet with Hurst index α/2.
Informally, the assumption R3 ensures that the second order increments of Z have
spatial decorrelation like that of a fractional Brownian sheet.

REMARK 1. Most of the following results can be extended, with some ad-
ditional technical assumptions, to a larger class of autocovariance functions by
replacing the principle term |t |α in R2 with L(|t |)|t |α , where L is a slowly varying
function at 0. The main difference is that the quadratic variation process defined in
equation (4) below will need to be normalized by n−αL(1/n) instead of n−α .

REMARK 2. The class of autocovariances satisfying R2–R3 encompasses a
broad range of random fields that are continuous but not differentiable. Examples
include the Mátern autocovariance function with smoothness parameter 0 < ν < 1
(see [31, 39] and [42]) and the exponential family exp(−c|t |α), where α ∈ (0,2).
One way to extend our results to random fields with higher order differentiability
is to use quadratic variations of higher order increments of the deformed random
field to obtain sufficient spatial de-correlation. In the interest of space, we only
prove results for the non differentiable case.

Our basic assumption on the smooth invertible map f is that there exists a local
affine approximation. In particular,

f (t + h) = f (t) + J t
f h + o(|h|),(1)

where J t
f := (

∂fi

∂tj
(t))i,j is the Jacobian of the map f at t. This local linear be-

havior is important, since we do not have replicates of the deformed random field
Z ◦ f , and, therefore, most of the statistical information is contained in the local
variation of the process Z ◦ f . When f behaves locally like the Jacobian matrix
transformation, the distribution of the random field Z ◦ f (t + h), as h varies in
a small neighborhood of the origin for a fixed t, behaves similar to that of Z(J t

f h).
Therefore, one can hope to estimate parameters of the Jacobian J t

f using the lo-
cal quadratic variation of one realization of the process Z ◦ f near t. Of course,
higher order terms in a Taylor expansion may also be estimated; however, these
presumably require smaller neighborhoods for accurate estimation.

In addition to the local affine behavior of f , we will need extra smoothness
conditions. We discuss the following three notions of differentiability for a map
f :U → V between planer open subsets U,V : Fréchet, Gâteaux and C1(U). For
a point x0 ∈ U , f is said to be Gâteaux differentiable at x0 in the direction h if the
limit

lim
ε→0

f (x0 + εh) − f (x0)

ε
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exists. A stronger notion of differentiability is Fréchet differentiable. The map f

is said to be Fréchet differentiable at x0 if there exits a continuous linear map
T : R2 → R2 such that

f (x0 + h) − f (x0) = T (h) + o(|h|).
If such a T exists, and f has continuous partial derivatives, then T is the map
corresponding to left multiplication by the Jacobian matrix J

x0
f . Clearly, if a func-

tion f is Fréchet differentiable at x0, then it is Gâteaux differentiable at x0 and the
Gâteaux derivative in the direction h is equal to J

x0
f h.

The third notion of differentiability C1(U) is satisfied if the partials ∂fi

∂xj
exist

and are continuous on U . This notion of differentiability is different, in that it is
not defined pointwise. The reason for this is that there is not much one can say
about the local behavior near x0 of a function where the partials exist. In fact,
it may be neither Fréchet nor Gâteaux differentiable. If, however, we require the
partials ∂fi

∂xj
to exits and be continuous on U , then this is enough to imply Fréchet

differentiability at all points in U . Even more, it is true that f is C1(U), if and
only if x 	→ J x

f is continuous as a mapping from U into the space of continuous
linear functions on R2 (see Claim 8.9.1 from [14]).

Define the class of C1(U) diffeomorphisms to be the set of all continuous invert-
ible maps f :U → R2, such that f is C1(U) and f −1 is C1(V ), where V = f (U)

is the range of f . By the Inverse Function Theorem, necessary and sufficient con-
ditions are that f be invertible, C1(U) and detJf 
= 0. We write C1 as short for
C1(R2). Now, every C1 diffeomorphism is Fréchet differentiable, and so there is
a Jacobian matrix J t

f such that

f (t + h) = f (t) + J t
f h + o(|h|).

Moreover, the directional derivative in the direction θ , denoted ∂θf , is J t
f uθ , where

uθ = (cos θ, sin θ).
In the following paper, we will restrict the definition of C1 diffeomorphisms to

have detJf > 0 on R2, which characterizes the diffeomorphism to be orientation
preserving. In some sense, this is a trivial restriction, since, when f is a C1 dif-
feomorphism, either detJf > 0 everywhere or detJf < 0 everywhere. These are
referred to as orientation-preserving and orientation-reversing, respectively (see
page 10 of [28]). Finally, define Cr(U) diffeomorphisms to be the C1(U) diffeo-
morphisms with order r continuous mixed partials.

We now list some consequences of a C2 diffeomorphic assumption on f , which
we use in the following proofs:

D1. f is a quasiconformal map on bounded simply connected domains (see the
Appendix of [4] for a definition of quasiconformal maps);

D2. supt∈� |f (t+εh)−f (t)
ε

− J t
f h| → 0 as ε → 0 for every compact set �;
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D3. For any vector h 
= 0 and compact set �, there exists a constant c such that
|∂(2,2)

h R(|f (s)−f (t)|)| ≤ c|s− t|α−4 for all s, t ∈ � such that s 
= t (note that

R and α are defined in assumptions R1–R3, and ∂
(2,2)
h is defined in the next

section);
D4. For every compact subset �, there exists constants c1, c2 > 0 such that

c1|h| ≤ |J x
f h| ≤ c2|h| for all h and all x ∈ �;

D5. |J t
f h|α is Hölder continuous in t ∈ � for any h and compact set �.

Note that D3, D4 and D5 are the only statements that depend on the extra C2

assumption rather than the C1. The proofs of D1–D4 for C2 diffeomorphisms are
included in the Appendix of [4]. Notice that D5 follows from D4 and the fact
that J t

f has C1 components.

3. Kernel smoothed squared increments. In this section, we study the con-
vergence of the kernel smoothed squared increments of the deformed process
Y(x) := Z ◦ f (x) observed on some dense grid in a bounded, simply connected
open subset � ⊂ R2. The asymptotic regime we consider is as the grid spacing
goes to zero and the region � stays fixed, which is sometimes called infill asymp-
totics.

For a fixed nonzero vector h ∈ R2, let

�hY(t) := Y(t + h) − Y(t),

�m
h Y(t) := �h�m−1

h Y(t).

If t is near ∂�, computing �m
h may require observing Y outside of �. There-

fore, we will suppose that we observe Y on � plus some points within a small
distance from the boundary ∂�. Now, for a function of two variables F(s, t), let
�

(m,n)
h F(s, t) := �m

h �n
hF(s, t), where �m

h acts on the variable s and �n
h acts on

the variable t. Define ∂h := h · ∇ to be the directional derivative in the direction h
and ∂

(m,n)
h F(s, t) := ∂m

h ∂n
hF(s, t), where ∂m

h acts on the variable s and ∂n
h acts on t.

The following notation will be used throughout this paper:

g(t) := (8 − 2α+1)|J t
f h|α,(2)

�n := � ∩ {Z2/n}.(3)

That is, �n is the grid of spacing 1/n in �.
Here is a summary of the results of this section. First, we show Lemma 1,

which establishes that E(�2
h/nY (t))2 ≈ n−αg(t). Motivated by this lemma, we es-

timate g(t) by locally averaging the squared increments (�2
h/nY (w))2/n−α for the

points w near t then show that there is enough spatial decorrelation for conver-
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gence. To this end, define Bn,b(t) :� → R as

Bn,b(t) := 1

n2b2

∑
w∈�n

K

(
w − t

b

)(�2
h/nY (w))2

n−α
.(4)

Here, K is a convolution kernel satisfying certain conditions stated below. This
section then culminates with Theorems 1 and 2 concerning the uniform conver-
gence of Bn,b and ∂uBn,b for some u 
= 0. In particular, Theorem 1 shows that,
under appropriate conditions,

sup
t∈�

∣∣Bn,b(t) − g(t)
∣∣ −→ 0 w.p. 1

as n → ∞, b → 0 and n−1b−3 → 0 for all compact sets � ⊂ �. Theorem 2 shows
that, with some additional smoothness assumptions and n−1b−4 → 0, the direc-
tional derivatives ∂uBn,b converge uniformly on compact subsets w.p. 1 to ∂ug.

3.1. Assumptions on K and �. The assumptions on K are as follows:

K1. K has bounded, continuous first and second order mixed partial derivatives;
K2.

∫ ∫
K(x) dx = 1 and

∫ ∫ |x|K(x) dx < ∞.

Notice that these assumptions imply that K is Riemann integrable, K and the first
partials of K are Hölder continuous. Finally, we assume:

O1. � is a bounded simply connected domain of R2.

Notice that this assumption ensures that the number of points in �n is of order n2.

3.2. Strong convergence of Bn,b and ∂uBn,b. For the remainder of this section,
let Y := Z ◦ f , Bn,b be defined as in (4), g be defined as in (2), �n be defined
as in (3) and set Xt := Bn,b(t) − EBn,b(t). In the following, ‘universal constant’
means any constant that does not depend on n, b, � or the process (Xt)t∈�.

LEMMA 1. Suppose R1–R2, O1 and f is a C2 diffeomorphism. Then,

sup
t∈�

∣∣∣∣E(�2
εhY(t))2

εα
− g(t)

∣∣∣∣ → 0

as ε ↓ ∞.

PROOF. By assumption R2 we can write R(|t |) = R(0) − |t |α + r(|t |), where
r(|t |) = o(|t |α+γ ) as |t | → 0. Write E(�2

εhY(t0))
2 for t0 ∈ � as a sum of two

terms

E(�2
εhY(t0))

2 = �
(2,2)
εh {cov(Y (s), Y (t))}|s,t=t0 = I1 + I2,
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where

I1 = �
(2,2)
εh {−|f (s) − f (t)|α}|s,t=t0,(5)

I2 = �
(2,2)
εh

{
r
(|f (s) − f (t)|)}∣∣s,t=t0

.(6)

Write the increment operator �2
εh as a linear filter, so that its action on a func-

tion Q : R2 → R can be expressed as �2
εhQ(t) = ∑2

j=0 djQ(t + εsj ), where

dj = (−1)2−j
(2
j

)
and sj = jh. Now, the first term can be computed as

I1/ε
α = −

2∑
i,j=0

didj |f (t0 + εsi ) − f (t0 + εsj )|α/εα(7)

= −
2∑

i,j=0

didj |J t0
f (si − sj )|α + o(1),(8)

where o(1) → 0 uniformly over t0 ∈ � as ε → 0 by D2 and D4.
Similarly, the second term can be computed as

I2/ε
α =

2∑
i,j=0

didj

r(|f (t0 + εsi ) − f (t0 + εsj )|)
εα

,(9)

where supt0∈� |r(|f (t0 + εsi ) − f (t0 + εsj )|)/εα| converges to zero by R2, D2
and D4. Combining terms I1 and I2, we get

E(�εhY(t0))
2/εα → −

2∑
i,j=0

didj |J t0
f (si − sj )|α

uniformly for t0 ∈ �. This completes the proof, since −∑2
i,j=0 didj |J t0

f (si −
sj )|α = g(t0). �

LEMMA 2. Suppose R1–R3, O1 and f is a C2 diffeomorphism. Then, there
exists a constant c > 0 such that

|E�2
h/nY (t)�2

h/nY (s)| ≤ cn−4|t − s|α−4

for all s, t ∈ � such that |s − t| > |3h/n|.

PROOF. The idea is that

|E�2
h/nY (t)�2

h/nY (s)| = ∣∣�(2,2)
h/n R

(|f (s) − f (t)|)∣∣
≈ ∣∣n−4 ∂

(2,2)
h R

(|f (s) − f (t)|)∣∣
≤ cn−4|s − t|α−4.



2334 E. ANDERES AND S. CHATTERJEE

To make this precise, let F(s, t) := cov(Y (s), Y (t)) = R(|f (s) − f (t)|) and H be
the 2 by 2 matrix with each column h/n. Then,

|E�2
h/nY (t)�2

h/nY (s)| = ∣∣�(2,2)
h/n F (s, t)

∣∣
= n−4

∣∣∣∣∫[0,1]2

∫
[0,1]2

∂
(2,2)
h F(s + H ξ , t + Hη) dξ dη

∣∣∣∣
≤ c1n

−4
∫
[0,1]2

∫
[0,1]2

|s − t + H(ξ − η)|α−4 dξ dη

≤ c2n
−4 sup

η,ξ∈[0,1]2
|s − t + h(ξ1 + ξ2 − η1 − η2)/n|α−4

= c2n
−4 sup

−1≤τ≤1
|s − t + 2hτ/n|α−4

≤ c3n
−4|s − t|α−4 when |s − t| > |3h/n|.

Notice that the above proof requires that |∂(2,2)
h F(s, t)| ≤ c1|s − t|α−4 which is

why we need D3. �

CLAIM 1. Suppose R1–R3, K1–K2, O1 and f is a C2 diffeomorphism. Then,

sup
t∈�

|E(Bn,b(t)) − g(t)| → 0

for all compact subsets � ⊂ � as n → ∞, b → 0 and n−1b−3 = o(1).

PROOF. First, let gn(w) := nαE(�2
h/nY (w))2 for w ∈ �. We show

E(Bn,b(t)) = 1

n2b2

∑
w∈�n

K

(
w − t

b

)
gn(w)

= 1

n2b2

∑
w∈�n

K

(
w − t

b

)
g(w) + eI

= 1

b2

∫ ∫
�

K

(
x − t

b

)
g(x) dx + eII + eI

= g(t) + eIII + eII + eI,

where eI = o(1), eII = O(n−1b−3) and eIII = o(1) uniformly on compact subsets
of � as n → ∞, b → 0 and n−1b−3 → 0.

To show the results about eI and eII, we need to control the error when ap-
proximating Riemann integrals of Hölder continuous functions on � by Riemann
sums on �n. This error is bounded by the difference between the upper and lower
Riemann sums, which is bounded by a�an−1, where a is the Hölder constant
of the function and a� is a constant only depending on the region �. To show
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eI = o(1) and eII = O(n−1b−3) uniformly for t ∈ �, we will use the fact that
b−2K((· − t)/b) is Hölder continuous with Hölder constant cb−3 for some con-
stant c.

To show eI = o(1), fix some compact subset � ⊂ � and notice that

|eI| ≤ 1

n2b2

∑
w∈�n

|K|
(

w − t
b

)
|gn(w) − g(w)|

≤
(

sup
w∈�

|gn(w) − g(w)|
)(

1

n2b2

∑
w∈�n

|K|
(

w − t
b

))
.

The term supw∈� |gn(w) − g(w)| → 0 by Lemma 1. Now, by the comments in
the previous paragraph, the Riemann sum 1

n2b2

∑
w∈�n

|K|(w−t
b

) is approximately

b−2 ∫ ∫ |K|((x − t)/b) dx (which is bounded) with error O(n−1b−3). Therefore,
eI → 0 as n → ∞, b → 0 and n−1b−3 → 0.

Similarly, to show eII = O(n−1b−3), we notice that the Hölder continuity of K

and g are sufficient for the Riemann sums of b−2K((· − t)/b)g(·) to converge to
the Riemann integral with an error eII = O(n−1b−3) uniformly in t ∈ �.

Finally, to show eIII = o(1), we need that

1

b2

∫ ∫
�

K

(
x − t

b

)
g(x) dx =

∫ ∫
(�−t)/b

K(w)g(bw + t) dw −→ g(t)

as b → 0 uniformly in t ∈ �. Here, we use the Hölder continuity of g and as-
sumption K2. Notice that the error term eIII does not converge to zero uniformly
in t ∈ �. This is why we can only show the result uniformly on compacts instead
of uniformly on �. �

In what follows we will not only show convergence results about Bn,b(t) but
also ∂uBn,b(t), and Bn,b(t) − Bn,b(s) all of which have the form

Qn = nα−2
∑
i∈�n

(�2
h/nY (i))2Ki,(10)

where Ki may depend on t, s ∈ � and the bandwidth parameter b.

CLAIM 2. Let Qn be defined as in (10). Suppose R1–R3, O1 and f is a C2

diffeomorphism. In addition, suppose that there exists a function G(t, s, b), such
that |Ki| ≤ G(t, s, b) for all s, t ∈ � and b in a neighborhood of the origin. Then,
for all ε > 0, b sufficiently small and n sufficiently large,

P[|Qn − EQn| ≥ ε] ≤ c1 exp
(
− c2εn

2

G(t, s, b)
∧ c3ε

2n2

G(t, s, b)2

)
,

where c1, c2, c3 are universal constants.
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PROOF. Writing Ki = K+
i −K−

i , we get the decomposition Qn = Q1
n −Q2

n,
where

Q1
n := nα−2

∑
i∈�n

(�2
h/nY (i))2K+

i ,

Q2
n := nα−2

∑
i∈�n

(�2
h/nY (i))2K−

i .

Therefore,

P(|Qn − EQn| ≥ ε) ≤ P
(
|Q1

n − EQ1
n| ≥

ε

2

)
+ P

(
|Q2

n − EQ2
n| ≥

ε

2

)
.

First, we find a bound for P(|Q1
n − EQ1

n| ≥ ε
2). Let �Y be the column vector with

elements nα/2−1�2
h/nY (i)K+/2

i for i ∈ �n, where K
+/2
i := (K+

i )1/2. Let � =
E�Y�YT be the covariance matrix for �Y , so that Q1

n = �YT �Y
D= WT �W ,

where W is a vector of i.i.d. standard Gaussian random variables. Also, let �(i, j)
denote the matrix entries of � for i, j ∈ �n.

Using the bound on quadratic forms for Gaussian random variables found in
Hanson and Wright [21], we now get

P[|WT �W − EWT �W | ≥ ε] ≤ 2 exp
(
− c1ε

‖�abs‖2
∧ c2ε

2

‖�abs‖2
F

)
,

where ‖ · ‖2 and ‖ · ‖F are the spectral and Frobenius matrix norms, respectively,
and �abs is the matrix with elements |�(i, j)| for i, j ∈ �n. Now,

|�(i, j)| = K
+/2
i K

+/2
j

n2−α
|E�2

h/nY (i)�2
h/nY (j)|

≤ c3
K

+/2
i K

+/2
j

n2−α
n−4|i − j|α−4

for all |i − j| > |3h/n| by Lemma 2. By assumption, |K+/2
i K

+/2
j | ≤ G(t, s, b).

Therefore, for all i, j ∈ �n such that |i − j| > |3h/n|,
|�(i, j)| ≤ c3G(t, s, b)nα−6|i − j|α−4.(11)

To finish the proof, we show ‖�abs‖2
F = O(|G(t, s, b)|2n−2) and ‖�abs‖2 =

O(|G(t, s, b)|n−2) uniformly for all t, s ∈ �, b sufficiently small and n sufficiently
large.

To show the bound for ‖�abs‖2
F , notice that∑

i,j∈�n

�(i, j)2 ≤ ∑
|i−j|≤|3h/n|

�(i, j)2 + c2
3G

2n2α−8
∑

|i−j|>|3h/n|
n−4|i − j|2α−8

= ∗ ∑
|i−j|≤|3h/n|

�(i, j)2 + c2
3G

2n2α−8O(n−2α+6)

= O(n−2G2) + O(n−2G2),
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where the last equality is because |�(i, j)| ≤ maxi �(i, i) = O(n−2G(t, s, b)) by
Lemma 1. To get =∗, there are some technical difficulties, but the heuristic is,
when 0 < α < 2, ∑

|i−j|>|3h/n|
n−4|i − j|2α−8 � c4

∫
{1/n<|x|<1}

|x|2α−8 dx

= c5

∫ 1

1/n
r2α−7 dr

= O(n−2α+6).

For the full details, see [3], Lemma 3, page 41. Finally, to show the bound for
‖�abs‖2, notice that

‖�abs‖2 ≤ max
i∈�n

∑
j∈�n

|�(i, j)|

≤ max
i∈�n

∑
|i−j|≤|3h/n|

|�(i, j)| + c3Gmax
i∈�n

∑
|i−j|>|3h/n|

|i − j|α−4

n6−α
by (11)

= O(n−2G) + c3Gnα−4 max
i∈�n

∑
|i−j|>|3h/n|

n−2|i − j|α−4

= O(n−2G) + O(n−2G),

where the last equality uses the fact that 0 < α < 2.
This establishes the desired bound for P(|Q1

n − EQ1
n| ≥ ε

2). The result for
P(|Q2

n − EQ2
n| ≥ ε

2) is exactly similar. This completes the proof. �

COROLLARY 1. Fix a point t0 ∈ �, suppose R1–R3, O1 and let f be a C2

diffeomorphism. If K is bounded, then

|Bn,b(t0) − EBn,b(t0)| a.s.−→ 0

as n → ∞, b → 0 and n−1b−2 = O(n−β) for some β > 0.

PROOF. This follows by Claim 2 and Borel–Cantelli using Ki = 1
b2 K(

i−t0
b

)

and G(t, s, b) = b−2‖K‖∞. �

COROLLARY 2. Fix a point t0 ∈ �, suppose R1–R3, O1 and let f be a C2

diffeomorphism. If K has continuous partial derivatives and u 
= 0, then

|∂uBn,b(t0) − E∂uBn,b(t0)| a.s.−→ 0

as n → ∞, b → 0 and n−1b−3 = O(n−β) for some β > 0.
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PROOF. This follows by Claim 2 and Borel–Cantelli using Ki = 1
b3 ×

(∂uK)(
i−t0
b

) and G(t, s, b) = b−3‖∂uK‖∞. �

The following corollary will be used for the uniform convergence of B to g in
the next subsection. Remember that Xt is defined as Bn,b(t) − EBn,b(t).

COROLLARY 3. Fix a point t0 ∈ �, suppose R1–R3, O1 and let f be a C2

diffeomorphism. If K is Hölder continuous, then

P(|Xt − Xs| ≥ ε) ≤ c1 exp
(
−c2εn

2b3

|t − s| ∧ c3ε
2n2b6

|t − s|2
)
,(12)

where c1, c2, c3 are universal constants.

PROOF. First, write Xt − Xs in the form Qn − EQn, where Qn := Bn,b(t) −
Bn,b(s). Then, the corollary follows by Claim 2 using

Ki = 1

b2 K

(
t − i
b

)
− 1

b2 K

(
s − i
b

)
,

so that |Ki| ≤ cb−3|s − t| for some Hölder constant c > 0. �

3.3. Uniform convergence of Bn,b and ∂uBn,b. In this subsection, we use the
results from the previous section to establish the uniform convergence of Bn,b and
the directional derivative ∂uBn,b on compact subsets of the observation region �.
These results are then used to establish consistent estimators of the complex di-
latation μ and log-scale τ of the diffeomorphism f in Section 4.

LEMMA 3. For any b > 0 and a ≥ e, we have∫ ∞
0

(ae−bt2 ∧ 1) dt ≤ 2

√
loga

b
and

∫ ∞
0

(ae−bt ∧ 1) dt ≤ 2
loga

b
.

PROOF. Given b > 0 and a ≥ e, let γ =
√

b−1 loga. Then,∫ ∞
0

(ae−bt2 ∧ 1) dt = γ +
∫ ∞
γ

ae−bt2
dt

≤ γ +
∫ ∞
γ

t

γ
ae−bt2

dt

= γ + 1

2bγ

≤ 2γ (since a ≥ e ⇒ γ ≥ 1/2bγ ).
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Similarly, putting ν = b−1 loga,∫ ∞
0

(ae−bt ∧ 1) dt = ν +
∫ ∞
ν

ae−bt dt = ν + 1

b
≤ 2ν.

This completes the proof of the lemma. �

LEMMA 4. Let � be a compact subset of �. Suppose the assumptions in
Corollary 3. Let t1, . . . , tm and s1, . . . , sm be arbitrary points in �, where m ≥ 2.
Let M = max1≤i≤m |Xti − Xsi | and δ = max1≤i≤m |ti − si |. Then, for any r > 0,

P(M ≥ r) ≤ c1m exp
(
−c2rn

2b3

δ

)
+ c1m exp

(
−c3r

2n2b6

δ2

)
,

where c1, c2 and c3 are universal constants.

PROOF. By Corollary 3, for each r > 0 and t, s ∈ �,

P(|Xt − Xs| ≥ r) ≤ c1 exp
(
−c2rn

2b3

|t − s| ∧ c3r
2n2b6

|t − s|2
)

≤ c1 exp
(
−c2rn

2b3

|t − s|
)

+ c1 exp
(
−c3r

2n2b6

|t − s|2
)
.

From the above bound, we see that

P(M ≥ r) ≤ c1m exp
(
−c2rn

2b3

δ

)
+ c1m exp

(
−c3r

2n2b6

δ2

)
.

This completes the proof. �

CLAIM 3. Fix a compact set � ⊂ � and a point t0 ∈ �. Let M =
maxt∈� |Xt − Xt0 | and suppose the assumptions in Corollary 3. Then, there ex-
ists universal constants L1 and L2 such that, for all R > 0, we have

P
(
M ≥ R

nb3

)
≤ L1 exp(−L2 min{Rn,R2}).

PROOF. Suppose we have a sequence of finite sets A0,A1,A2, . . . ⊆ � and
constants c < 1 < B and D satisfying the following properties:

(i) A0 = {t0};
(ii) Ak ⊆ Ak+1 for all k;

(iii) |Ak| ≤ Bk for all k, where |Ak| denotes the cardinality of Ak ;
(iv) For each k ≥ 1 and each t ∈ Ak there exists a ‘parent’ tp ∈ Ak−1 such that

|t − tp| ≤ Dck (note that t = tp if x ∈ Ak−1);
(v) The sequence has a ‘limiting denseness property’ in the sense that, for

any nonnegative continuous function f on �, we have maxt∈� f (t) =
limk→∞ maxt∈Ak

f (t).
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It is easy to see how the constants c, B and D can be chosen, with D ∝ diam(�),
and the sets {Ak}k≥1 constructed by successive dyadic partitioning. For each k ≥ 1,
let

Mk = max
t∈Ak

|Xt − Xtp |.

Applying the ‘limiting denseness property,’ we see that M ≤ ∑∞
k=1 Mk. For each

k ≥ 1, let rk = kck∑∞
j=1 jcj . Then, rk > 0 and

∑
k rk = 1. Thus, for any R > 0,

P
(
M ≥ R

nb3

)
≤ P

(
Mk ≥ Rrk

nb3 for some k ≥ 1
)

(13)

≤
∞∑

k=1

P
(
Mk ≥ Rrk

nb3

)
.

By the tail bound in Lemma 4, we have

P
(
Mk ≥ Rrk

nb3

)
≤ c1B

k exp
(
−c2Rrkn

Dck

)
+ c1B

k exp
(
−c3R

2r2
k

D2c2k

)
≤ c1B

k(exp(−c5Rkn) + exp(−c6R
2k2)

)
,

where c5 and c6 are universal constants. Thus, if R > c7 logB for some suitably
large constant c7 (that need not depend on n), then, from the above bound and (13),
we can conclude that

P
(
M ≥ R

nb3

)
≤ c8 exp(−c9Rn) + c8 exp(−c10R

2).

The condition R > c7 logB can be dropped by choosing c8 large enough, be-
cause B , c9 and c10 do not vary with n. This completes the proof. �

Now, we obtain Theorems 1 and 2, which are the main results of this section.
These establish uniform convergence results for the kernel smoothed squared in-
crements.

THEOREM 1. Suppose R1–R3, K1–K2, O1 hold and f is a C2 diffeomor-
phism. Then, for all compact sets � ⊂ �,

sup
t∈�

|Bn,b(t) − g(t)| −→ 0 w.p. 1

as n → ∞, b → 0 and n−1b−3 = O(n−β) for some β > 0, where g(t) := (8 −
2α+1)|J t

f h|α .
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PROOF. Let � be a compact subset of � and let t0 ∈ �. Let bn → 0 as
n → ∞, so that n−1b−3

n ≤ cn−β . Set Mn = supt∈� |Xt − Xt0 |, where Xt :=
Bn,bn(t) − EBn,bn(t). Then,

sup
t∈�

|Bn,bn(t) − g(t)| ≤ sup
t∈�

|Bn,bn(t) − EBn,bn(t)| + sup
t∈�

|EBn,bn(t) − g(t)|

≤ Mn + |Bn,bn(t0) − EBn,bn(t0)| + o(1) by Claim 1.

Now, by the bound in Claim 3, we have
∞∑

n=1

P(Mn ≥ n−β/2) ≤
∞∑

n=1

L2 exp(−L3 min{n1+β/2, nβ}) < ∞.

Therefore, Mn → 0 with probability one. Finally, n−1b−3
n = O(n−β) for some

β > 0 is a sufficient condition for |Bn,bn(t0) − EBn,bn(t0)| a.e.−→ 0 by Corollary 1.
�

THEOREM 2. Suppose the assumptions of Theorem 1 hold along with the ad-
ditional assumption that K is a compactly supported kernel and f is a C3 diffeo-
morphism. Then, for all compact sets � ⊂ �,

sup
t∈�

|∂uBn,b(t) − ∂ug(t)| −→ 0 w.p. 1

as n → ∞, b → 0, n−1b−4 = O(n−β) for some β > 0 such that β > 1 − 4γ .
Note that γ > 0 is the number appearing in assumption R2 and g(t) := (8 −
2α+1)|J t

f h|α .

PROOF. Let � be a compact subset of � and let t0 ∈ �. Let bn → 0 as n → ∞
so that n−1b−4

n ≤ cn−β . Set Mn = supt∈� |X̃t − X̃t0 |, where X̃t := ∂uBn,bn(t) −
E∂uBn,bn(t). Then,

sup
t∈�

|∂uBn,bn(t) − ∂ug(t)| ≤ sup
t∈�

|∂uBn,bn(t) − E∂uBn,bn(t)|

+ sup
t∈�

|E∂uBn,bn(t) − ∂ug(t)|

≤ Mn + |∂uBn,bn(t0) − E∂uBn,bn(t0)| + o(1),

where o(1) is established by similar methods to that of Claim 1 using the fact that
K is a C2 compactly supported kernel.

Now, Corollary 2 establishes that |∂hBn,bn(t0)−E∂hBn,bn(t0)| a.s.−→ 0. The proof

that Mn
a.s.−→ 0 is similar to Theorem 1, with the exception that, now, instead of the

bound from Claim 3, one can show

P
(
Mn ≥ R

nb4

)
≤ L1 exp(−L2 min{Rn,R2}),

which is sufficient to prove the claim. �
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4. Consistent estimates of (μ,τ). At this point, it becomes advantageous to
switch to complex variable notation, so that points in the plane (x, y) ∈ R2 corre-
spond to points in the complex plane x + iy ∈ C. Under this correspondence, C1

diffeomorphisms f (x, y) = (u(x, y), v(x, y)) of R2 can be considered as C1 dif-
feomorphisms of C by writing f (x + iy) = u(x, y) + iv(x, y). For the remainder
of the paper, we use Ref and Imf to denote the real and imaginary parts of the
complex representation of the map f .

The main utility of switching to complex notation is that we can directly use
the results and techniques of conformal and quasiconformal theory to establish
consistent estimates of f . This section starts by defining the complex dilatation μ

and log-scale τ of a C1 diffeomorphism. We then conclude by showing how the
results of the previous section can be used to construct consistent estimates of μ

and τ . In the next section, we show how the estimates of μ and τ can be used to
establish consistent estimates of f .

For a function f ∈ C1(U), define the complex derivatives

∂f := 1

2

(
∂f

∂x
− i

∂f

∂y

)
, ∂f := 1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

The complex dilatation and the log-scale are then defined as

μ := ∂f/∂f,(14)

τ := log |∂f |.(15)

The complex dilatation μ characterizes the infinitesimal ellipse with inclination
arg(−μ/2) and eccentricity 1+|μ|

1−|μ| that gets mapped to an infinitesimal circle under
the image of f . In addition, μ uniquely determines f up to post composition
with conformal maps. The log-scale τ is then used to recover the conformal post
composition, so that, together, μ and τ uniquely determine f up to a rotation and
translation. For a short introduction to quasiconformal theory, see the appendices
of [5] or [4]. For more a complete treatment, see [2, 26, 27] and [28].

In the previous section, we constructed a sequence of functions Bn,bn(t), which
converge uniformly on compacts as n → ∞ to (8 − 2α+1)|J t

f h|α , where h :=
(h1, h2) is a vector of our choice. Using complex variable notation, we can write
|J t

f h| = |h∂f + h∂f |, where h = h1 + ih2. By factoring out ∂f , we get |h∂f +
h∂f |α = |∂f |α|h + hμ|α . Now, by choosing h = 1, i,1 + i (for increments in the
north–south, east–west and diagonal directions), we can construct three functions
W1,n, W2,n and W3,n, which converge to |∂f ||1 +μ|, |∂f ||1 −μ| and |∂f ||1 + i +
μ(1 − i)|, respectively. In particular,

W1,n(t) →
∣∣∣∣J t

f

(
1
0

)∣∣∣∣ , W2,n(t) →
∣∣∣∣J t

f

(
0
1

)∣∣∣∣ , W3,n(t) →
∣∣∣∣J t

f

(
1
1

)∣∣∣∣ ,
where the convergence is uniform in t on compacts subsets of � as n → ∞. No-
tice that W1,n, W2,n and W3,n are the factors of stretching that the affine transfor-
mation J t

f applies to the lines in the horizontal, vertical and diagonal directions.
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Therefore, the points, (W−1
1,n,0), (0,W−1

2,n) and (W−1
3,n,W−1

3,n) asymptotically lie on
the ellipse that gets mapped to a circle with unit radius under the affine trans-
formation induced by the matrix J t

f . Since the general equation for an ellipse is
ax2 + bxy + cy2 = 1, we have

an := W 2
1,n → a,

cn := W 2
2,n → c,

bn := W 2
3,n − W 2

1,n − W 2
2,n → b.

The area of the ellipse specified by ax2 + bxy + cy2 = 1 is 2π/
√

4ac − b2.
Since J t

f sends the ellipse ax2 + bxy + cy2 = 1 to the unit circle, we have that

π = det(J t
f ) 2π√

4ac−b2
, which gives√

4ancn − b2
n → 2det(J t

f ) = 2(|∂f |2 − |∂f |2).
Now, to solve for (μ, τ ), first notice that an + cn → |∂f |2(|1 + μ|2 + |1 − μ|2) =
2|∂f |2 + 2|∂f |2. Therefore,

√
4ancn − b2

n + an + cn → 4|∂f |2. Similarly,

4 Re(μ) = |1 + μ|2 − |1 − μ|2,(16)

4 Im(μ) = |1 + i + μ(1 − i)|2 − |1 + μ|2 − |1 − μ|2,(17)

which gives

an − cn√
4ancn − b2

n + an + cn

−→ Re(μ),(18)

bn√
4ancn − b2

n + an + cn

−→ Im(μ),(19)

log
(√

4ancn − b2
n + an + cn

) −→ 2τ + log 4.(20)

Therefore, under the conditions of Theorem 1, we can construct estimates μ̂

and τ̂ that converge to μ and τ , respectively, where the convergence is uniform
on compact subsets of � with probability one as n → ∞. Moreover, under the
extra conditions of Theorem 2, ∂μ̂ → ∂μ uniformly on compact subsets of � with
probability one.

5. Estimating f . In this section, we show how to construct an estimate f̂ on
a simply connected domain U such that U ⊂ �. Then, we show that f̂ converges
to f uniformly on compact subsets of U . The construction of f̂ is on U instead
of � because we need the uniform convergence of μ̂, ∂μ̂ and τ̂ to establish the
convergence of f̂ . It is open as to whether one can construct f̂ on the full obser-
vation region that converges uniformly on compact subsets.
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We start, in Section 5.1, with a discussion on how f can be recovered, uniquely
up to a rotation and translation, from the true μ and τ . This will indicate how we
recover f̂ from the estimated μ̂ and τ̂ . Finally, we show f̂ → f uniformly on
compact subsets of U in Section 5.3.

5.1. Recovering f from (μ, τ ). First, let U be a simply connected domain
such that U ⊂ �. The C1 diffeomorphism f now satisfies f = g ◦ fμ on U ,
where fμ is the unique normalized quasiconformal map with dilatation μ that
maps U to the unit disk D (see the Appendix in [4]). Since f and fμ have the
same complex dilatation, g = f ◦ f −1

μ is a conformal map defined on D. It turns
out that this decomposition of f is useful, in that the complex dilatation μ deter-
mines fμ and τ is used to recover the conformal map g.

To see how to recover g from τ , notice that ∂f = ∂(g ◦ fμ) = (g′ ◦ fμ) ∂fμ.
Therefore,

log |g′| = log |∂f | ◦ f −1
μ − log |∂fμ| ◦ f −1

μ .(21)

Since g is conformal on D, logg′ is holomorphic on D. Moreover, logg′ =
log |g′| + i arg(g′). Therefore, using (21), Re logg′ = τ ◦ f −1

μ − log |∂fμ| ◦ f −1
μ ,

which can be recovered from (μ, τ ). Since the real and imaginary parts of holo-
morphic maps are harmonic conjugates, which are unique up to a constant, we can
recover Im logg′ + θ , where θ ∈ R is an unknown factor. Now, by exponentiating,
we can recover eiθg′. Then,

eiθg(z) + c =
∫ z

z0

eiθg′(w)dw,

where the integral is taken over a line connecting z0 to z. Therefore, μ and τ are
sufficient to recover f = g ◦ fμ on U up to a rotation and translation.

5.2. Constructing f̂ from (μ̂, τ̂ ). The technique for recovering f̂ in Sec-
tion 5.1 would work if we knew that there existed a quasiconformal map f̂ with
complex dilatation μ̂ such that τ̂ = log |∂f̂ |. Unfortunately, there is no simple
condition on τ̂ for the existence of such an f̂ . The main problem is that we do not
precisely measure log |g′|, which is required to be harmonic. Instead, we only have
an estimate of log |g′|. The estimate, which is motivated by (21), is defined by

l̂og |g′| := τ̂ ◦ f −1
μ̂

− log |∂fμ̂| ◦ f −1
μ̂

.(22)

Since l̂og |g′| is not guaranteed to be harmonic, it may not always be possible to
find the harmonic conjugate used to recover logg′. In what follows, we notice that
logg′ is in the Bergman space of holomorphic functions with finite L2 integrals.
We then use the Bergman projection to find a holomorphic function whose real
part approximates l̂og |g′|.
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We define our estimate f̂ of f in the region U as

f̂ = ĝ ◦ fμ̂,(23)

where fμ̂ is the unique normalized quasiconformal map sending U to D, and the
function ĝ is the holomorphic map, unique up to translations, defined on the unit
disk D and satisfying

ĝ′ = exp(P l̂og |g′|),
where the operator P is defined by

Ph(w) := 2

π

∫
D

h(z)

(1 − zw)2 dx dy − Re h(0),

where z = x + iy. The integral transform in the above definition is the Bergman
projection (see [16] for an introduction to Bergman spaces).

To motivate our choice of operator P , we first mention that the true conformal
map g satisfies

(P log |g′|)(w) = P

(
logg′ + logg′

2

)
(w)

= 1

π

∫
D

logg′(z)
(1 − zw)2 dx dy + 1

π

∫
D

logg′(z)
(1 − zw)2 dx dy − log |g′(0)|

= logg′(w) + logg′(0) − log |g′(0)|
= logg′(w) + iθ,

where θ = − Im logg′(0). In the above computation, we used the fact that for any
conformal map g defined on D, the holomorphic function logg′ is in the Bergman
space A2(D) (this is true by Theorem 9.4 of [36] along with the fact that the Bloch
space is a subset of the Bergman space). Therefore, the projection P can be used
to recover the harmonic conjugate of log |g′| up to an unknown constant θ . In
what follows, we show l̂og |g′| → log |g′| and P l̂og |g′| → P log |g′| uniformly
on compact subsets of D as n → ∞.

5.3. f̂ converges to f . We show that, under appropriate conditions, f̂ con-
verges uniformly on compact subsets of U , with probability 1. First, we establish
the following lemma.

LEMMA 5. Suppose that μn,μ ∈ C2(U) are complex dilatations such that

μn
L∞(U)−→ μ and ∂μn

L∞(U)−→ ∂μ on a bounded, simply connected domain U . Sup-
pose, in addition, that one can extend μn,μ to functions μ∗

n,μ
∗ ∈ C2(W) on a sim-

ply connected domain W containing U such that μn
L∞(W)−→ μ and ∂μn

L∞(W)−→ ∂μ.
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Then,

log |∂fμn | ◦ f −1
μn

→ log |∂fμ| ◦ f −1
μ ,(24)

P log |∂fμn | ◦ f −1
μn

→ P log |∂fμ| ◦ f −1
μ ,(25)

uniformly on compact subsets of D as n → ∞.

PROOF. First, decompose fμn and fμ so that,

fμn = hn ◦ f̃n, fμ = h ◦ f̃ ,

where f̃n and f̃ are normalized quasiconformal maps on the whole plane with
complex dilatations obtained by extending μn and μ to the whole plane by
smoothly truncating to zero away from U . Here, hn and h are conformal maps
sending f̃n(U) and f̃ (U) to the unit disk D, respectively. Note that the trunca-
tion must be done in such a way that μ̃n has uniformly bounded compact support,

μ̃n is as smooth as μn, μ̃n
L∞−→ μ̃ and ∂μ̃n

L∞−→ ∂μ̃ (existence guaranteed by the
existence of the extensions μ∗,μ∗

n on W ). Now, the quasiconformal maps f̃n con-

verge uniformly to f̃ on U , since μ̃n
L∞−→ μ̃ with uniformly bounded support (see

Lemma 1 on page 55 of [2]).
Notice ∂fμn = (h′

n ◦ f̃n) ∂f̃n, which gives

(log ∂fμn) ◦ f −1
μn

= logh′
n ◦ h−1

n + log ∂f̃n ◦ f −1
μn

.(26)

See the Appendix in [4] for a discussion on how to define a continuous version of
log ∂fμn and log ∂f̃n. To establish (24) and (25) we show that both terms in (26)
converge uniformly on compact subsets of D, as well as the result of applying the
operator P to both terms.

For the first term, logh′
n ◦ h−1

n , in (26), notice that h−1
n = f̃n ◦ f −1

μn
and

h−1 = f̃ ◦ f −1
μ . Since f̃n → f̃ uniformly on U , f̃ is Hölder continuous on U

and f −1
μn

→ f −1
μ uniformly on compact subsets of D, h−1

n → h−1 uniformly on
compact subsets of D (this follows by Corollary 9 and Lemmas 10 and 13 of [4]).
Since the functions ξn := h−1

n and ξ := h−1 are conformal maps of D, log ξ ′
n and

log ξ ′ are both holomorphic and log ξ ′
n → log ξ ′ uniformly on compact subsets.

Noticing that log ξ ′
n = − logh′

n ◦ h−1
n and log ξ ′ = − logh′ ◦ h−1, gives

logh′
n ◦ h−1

n → logh′ ◦ h−1(27)

uniformly on compact subsets of D as n → ∞. In addition, log ξ ′
n and log ξ ′ are

both in the Bergman space A2(D) (and are therefore unaffected by the Bergman
projection), which establishes that

P logh′
n ◦ h−1

n → P logh′ ◦ h−1(28)

uniformly on compact subsets of D as n → ∞.
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For the second term log ∂f̃n ◦f −1
μn

in (26), notice that the results in the Appendix

of [4] establish that log ∂f̃ is Hölder continuous on U and log ∂f̃n
L∞(U)−→ log ∂f̃ .

Therefore, log ∂f̃n ◦f −1
μn

converges to log ∂f̃ ◦f −1
μ uniformly on compact subsets.

Moreover, since the continuity of log ∂f̃ on C implies that it is bounded on U ,
log ∂f̃n ◦ f −1

μn
also convergences in L2(D). Therefore,

log ∂f̃n ◦ f −1
μn

→ log ∂f̃ ◦ f −1
μ ,(29)

P log ∂f̃n ◦ f −1
μn

→ P log ∂f̃ ◦ f −1
μ(30)

uniformly on compact subsets of D as n → ∞. The last convergence is due to
the fact that the Bergman projection is a bounded operator on L2(D) and that
convergence in the Bergman space implies convergence on compacts. Finally, (27),
(28), (29) and (30) establishes the lemma. �

THEOREM 3. Suppose R1–R3, O1, K1–K2, K is a compactly supported ker-
nel, f is a C3 diffeomorphism, n → ∞, b → 0 and n−1b−4 = O(n−β) for some
β > 0 such that β > 1 − 4γ . Let U be a simply connected open subset of the ob-
servation region � such that U ⊂ �. Then, the estimated map f̂ , defined on U

by (23), converges to eiθf + c uniformly on compact subsets of U with proba-
bility one, where θ is an unidentifiable rotation angle and c is an unidentifiable
translation.

PROOF. The results of Theorems 1 and 2, along with the comments made
in Section 4, establish that μ̂ → μ, ∂μ̂ → ∂μ and τ̂ → τ uniformly on U with
probability one as n → ∞. Therefore, fμ̂ → fμ uniformly on compact subsets of
U (by Corollary 9 of [4]). It is now sufficient to show that ĝ converges uniformly
on compact subsets of D to g (where sufficiency is by Lemma 11 of [4]).

We first show

l̂og |g′| → log |g′|,(31)

P l̂og |g′| → P log |g′|(32)

uniformly on compact subsets of D as n → ∞. Remember, l̂og |g′| is defined by

l̂og |g′| := τ̂ ◦ f −1
μ̂

− log |∂fμ̂| ◦ f −1
μ̂

.(33)

Lemma 5 immediately establishes the required convergence for the second term
log |∂fμ̂| ◦ f −1

μ̂
. The first term τ̂ ◦ f −1

μ̂
converges to τ ◦ f −1

μ both uniformly on

compacts of D and in L2(D). This follows by Lemma 13 of [4], since τ̂
L∞(U)−→ τ

and that τ is Hölder continuous and bounded on U (since f is assumed to be a C3

diffeomorphism). Since the Bergman projection is a bounded operator from L2(D)

to A2(D), we also have that P τ̂ ◦ f −1
μ̂

A2(D)−→ P τ ◦ f −1
μ . The convergence is also

uniformly on compact subsets by Lemma 12 of [4]. This establishes (31) and (32).
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Now, by the comments made in Section 5.2, P log |g′| = logg′ + iθ . There-
fore, by (31) and (32), exp(P l̂og |g′|) converges uniformly on compacts to
eiθg′. Since U is simply connected, exp(P l̂og |g′|) has an antiderivative ĝ

such that ĝ′ = exp(P l̂og |g′|) and ĝ → eiθg + c uniformly on compact subsets
of D. Therefore, f̂ converges to eiθf + c uniformly on compact subsets of U .

�
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