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We investigate invariant random fields on the sphere using a new type
of spherical wavelets, called needlets. These are compactly supported in fre-
quency and enjoy excellent localization properties in real space, with quasi-
exponentially decaying tails. We show that, for random fields on the sphere,
the needlet coefficients are asymptotically uncorrelated for any fixed angular
distance. This property is used to derive CLT and functional CLT conver-
gence results for polynomial functionals of the needlet coefficients: here the
asymptotic theory is considered in the high-frequency sense. Our proposals
emerge from strong empirical motivations, especially in connection with the
analysis of cosmological data sets.

1. Introduction. Over the last two decades, wavelets have emerged as one of
the most interesting tools of statistical investigation. In this paper we give an appli-
cation to the statistical analysis of data sets indexed by the unit sphere S?. This is
motivated mostly by the analysis of the Cosmic Microwave Background radiation
(hereafter CMB), currently a very active field of research in astrophysics. Every
year hundreds of papers appear in physics journals about CMB and the interest on
this topic is going to grow in the next few years when the ESA satellite PLANCK
will provide a fresh flow of high-resolution data. Examples of spherical data appear
also in other areas of the astrophysical sciences [see Angers and Kim (2005)] or
outside astrophysics, that is, brain shape modeling and image analysis [see, e.g.,
Mardia and Patrangenaru (2005), Dryden (2005) and Dette, Melas and Pepely-
shev (2005)].

CMB data pose a large amount of challenging statistical problems, for instance,
estimation of the correlation structure and of the parameters governing this correla-
tion, testing on the law of the field itself (which is predicted to be Gaussian, or very
close to Gaussian, by leading physical models of the Big Bang dynamics), detec-
tion of outliers in the observed data (which may signal observations of noncosmo-
logical origin, i.e., so-called point sources), testing for isotropy and many others
[see Genovese et al. (2004a, 2004b), Marinucci (2004) and Marinucci (2006)].
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Random fields on the sphere can be investigated using Fourier developments in
spherical harmonics. These methods are, however, difficult to adapt when the data
are known only on a portion of the spherical surface. This is actually the case of
CMB data, as the observation of this field is missing in the equatorial region, due
to the direct radiation from the Milky Way.

In this paper we investigate the statistical properties of the so-called needlets.
These are a family of spherical wavelets which were introduced by Narcowich,
Petrushev and Ward (2006). Needlets enjoy several properties which are not shared
by other spherical wavelets. First they enjoy good localization properties in fre-
quency: needlets are compactly supported in the frequency domain with a bounded
support which depends explicitly on a user-chosen parameter. On the other hand,
needlets enjoy excellent localization properties in real space, with an exponen-
tial decay of the tails (see Figure 2 for a typical graph). See Antoine and Van-
dergheynst (1999) and Antoine et al. (2002) for a different approach to spherical
wavelets.

As a major consequence of the localization property both in the frequency and
in the space domain, the needlet coefficients are asymptotically uncorrelated as the
frequency tends to oo for any fixed angular distance. This is the first example of
such kind of results for any type of spherical wavelets [see Baldi et al. (2008) for
a similar result on the torus]. We use this key property to derive a central limit
theorem and a functional central limit theorem for general nonlinear statistics of
the wavelets coefficients. We discuss how from these results one can derive, for
instance, procedures for testing goodness-of-fit on the angular power spectra.

Let us stress again the great advantage of needlets: their ability (due to local-
ization properties) of dealing with data known only on portions of the spherical
surface. We remark also that the needlet construction does not rely on any sort of
tangent plane approximation which is typically undertaken to implement wavelets
on the sphere.

The plan of the paper is as follows. In Section 2 we describe the construction
of needlets, following the approach of Narcowich, Petrushev and Ward (2006). In
Section 3 we use them to investigate random fields on the sphere and derive the
basic correlation inequality. In Section 4 we recall some classical results on the
diagram formula, that are needed in Sections 5 and 6 to derive the main conver-
gence results. In Sections 7 and 8 we discuss statistical applications and the effect
of missing observations.

2. Construction of needlets. This construction is due to Narcowich, Petru-
shev and Ward (2006). Its aim is essentially to build a very well-localized tight
frame constructed using spherical harmonics, as discussed below. It was recently
extended to more general Euclidean settings with fruitful statistical applications
[see Kerkyacharian et al. (2007)].

Let us denote by S?, the unit sphere of R>. There is a unique positive measure
on S? which is invariant by rotation, with total mass 4. This measure will be
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denoted by dx. The following decomposition is well known:
0

(1) L=,
=0

where L2 denotes the space of square integrable functions on the sphere with re-
spect to dx, and H; denotes the vector space of the restriction to S? of homoge-
neous polynomials on R3, of degree [, which are harmonic (i.e., AP =0, where A
is the Laplacian on R3). # is called the space of spherical harmonics of degree
[see Stein and Weiss (1971), Chapter 4; Varshalovich, Moskalev and Kherson-
skif (1988), Chapter 5] and has dimension 2/ 4 1. The orthogonal projector on #;
is given by the kernel operator

@) VFelr  Pufe)= [ L 3Dro)dy.

where (x, y) is the standard scalar product of R?, and L; is the Legendre polyno-
mial of degree /, defined on [—1, 41], verifying

1 2k +1
[ Lot ==,
-1 8

where §;  is the Kronecker symbol. Moreover, by definition of the projection op-
erator,

1
Li(x, y) = > Yiu()Yim(y),

m=—I1

where the spherical harmonics Yj,,l =1,2,3,...,m = —[,...,[, form an or-
thonormal basis of #;. For an explicit expression of the functions Y, [see
Varshalovich, Moskalev and Khersonskii (1988), Chapter 5]. Let us point out the
reproducing property of the projection operators

) [ LG DLy, 2 dy =Lt 2)

The needlet construction is based on two fundamental steps: Littlewood—Paley de-
composition and discretization, which are summarized in the two following sub-
sections.

2.1. Littlewood—Paley decomposition. Let ¢ be a C* function on R, sym-
metric and decreasing on R supported in || < 1, such that 1 > ¢ (&) > 0 and
pE)=11if |§| < %. Let us define for an arbitrarily chosen B > 1 (see Figure 1):

§

b6 =9(5) - 96 =0
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FI1G. 1.  Typical graph of ¢ (dots) and b? (solid). Here B =2.

so that

) viElz=1 LR(o) =1

Jz0

Remark that b(§) # 0 only if l < |&| < B. Let us now define the operator A ; =
2150 b? ( +)L; and the assomated kernel

Ajr,y) = Zb2< )Ll(xy>) )3 bz(é)h((%)’))-

>0 Bi—1<]<Bi+l

The following proposition is obvious.

PROPOSITION 1. For every f € L%, f = limy_ o Lo(f) + ij‘zo Aj(f),
where L (f) = [ Li((x, y) f(¥)dy and Aj(f) = [ Aj(x,y) f(y)dy. Moreover,
if Mj(x,y) = Y20 b(55) Li((x, ¥)), then

5) Aj(x,y):/Mj(X,Z)Mj(Zvy)dZ-

2.2. Discretization and localization properties. Let
[
=D .
m=0

the space of the restrictions to S? of the polynomials of degree less than /. The fol-
lowing quadrature formula is true: for all / € N there exists a finite subset X; C S?
and positive real numbers 1,, > 0, indexed by n € X;, such that

(©) vieki [ fwdr= 3 s,
neX
The operator M defined in Proposition 1 is such that

ZHM_](-xaz)e‘K[Bj+]]5 xHMj(-va)ECK[Bj+]]7
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so that
7= Mj(x, Z)Mj(Z, y) € ‘K[ZBj+1]

and, by the quadrature formula (6),

A,~<x,y>=/Mj<x,z>M,~<z,y>dz= ST MG MG, y).

Wex[23j+l]

This implies

A,~f<x>=/A,-<x,y>f<y>dy=/ SO MG M. y) () dy

nex

287+
= ¥ e [ Judion e,
n€X ppj+l)
We denote
Xpppirn=2j,  Yjigl):= \/’T"Mf(x’ n)
and have

Lgai <#Z; <cB%
c
for some ¢ > 0. We note N; = /#% ;. It holds, by Proposition 1,

F=Lo(H)+ Y. Y (fvjmeVin.

J nez;

The main result of Narcowich, Petrushev and Ward (2006) is the following lo-
calization property of the v; ;, that are called “needlets”: for any k there exists
a constant ¢ such that, for every & € S?

< ckBJ
~ (1+ BJid(n, £)%’

where d(&,n) = arccos(n, &) is the natural geodesic distance on the sphere. In
other words, needlets are almost exponentially localized around any cubature
point, which motivates their name (see Figure 2 in Section 8). Finally, notice that
the construction in Narcowich, Petrushev and Ward (2006) is made with B = 2.
We introduce here the free parameter B > 1, because in physical applications it
may be useful in fine tuning the concentration in frequency.

(7 V)0 (§)

3. Isotropic fields on the sphere and the needlet expansion. In this section
we define the needlet expansion of an isotropic random field 7 on S*. We say
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that 7 is invariant by rotation (or isotropic) if
VpeSOE) E[T (px)T (py)] =EI[T (x)T (y)].

This is equivalent to the fact that the covariance function of the process is of the
form

E[T ()T (y)]= K((x,y)),

where K is a bounded function defined on [—1, +1].
Throughout this paper we make the following assumption.

ASSUMPTION 1. T is a centered Gaussian field, that is, mean square contin-
uous and isotropic.

Let us decompose K on the basis of Legendre polynomials:

872 !l J
K = C/L;, C = K L .
;11 121+1/_1 (u)Li(u)du
We write
T(x)=)Y Tix),
>0
where

i) = [ TOILi(tr. ) d
(Tp = 0 as the field is assumed to be centered). It is immediate that
EIT, () Te()]=8uCiLi((x,y))  forevery x,y €S,

Actually all vectors in H; are eigenvectors of the Karhunen—Logve expansion of
K ({-, -)). The previous projection can be realized explicitly as

1
(8) Ti(x)= Y amYim(x),
m=-—I
where
) = f T(x) Yy (x) dox.

(aim)i,m 1s a triangular array of complex uncorrelated [but for the condition
(—D™aym = aj,—m] r.v’s and C; is equal to the variance of ayy,.

For every integer j, let Z; be the set of cubature points defined in the previous
section. The points 1 belonging to Z ; will be denoted §jx, k =1, ..., N;. Similarly
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we denote v/ , by ¥ «, and the needlet coefficient of a function f, (f, ¥ ;)r2,
by B, k. Hence the random needlet coefficients are

ik =T Winde = [ T@W @ dx = i Zb< )Tl(sm
Actually
[T dx = /Sz;n(xwfj,k(x)dx

_\/7219( )Z/ TGO Ly (v, £0)) dx
_fzb( 5) [ oL ds
—\/7219( )60,

in view of the reproducing properties of the projection kernel. Hence

[
ElBjxBjx]=/Ajirjr Z bz(g) Ki({&jk:&jx)
/

E[B.xB; k']

Cor(Bjk: Bju) :=
Y ELA3 LA, ]
_ ViR S 02 B K (ks §juk))
/)\.jvk)\.j,k’ Zle(l/Bj)ClLl(l)

Y b*(U/BHK(Ej k. Ejx))
> b2(1/BHCILI()
We shall need to assume some regularity conditions on the asymptotic behavior of
angular power spectrum C;.

and

ASSUMPTION 2. There exist M > 0, a > 2 and a sequence of functions (g;);

such that
l
],
C =1 gj(Bj)

for every [ such that B/~ <1 < B/*!, and positive numbers cy, ¢, k., 7 =
0,..., M, such that

al™<C<al™,  sup suwp gV W)=k,
J B~-l<u<B
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d"

where gﬁr) (u) = 5=

gj(u) (a uniform bounded differentiability condition).

REMARK 2. Assumption 2 is a regularity condition on the asymptotics of the
angular power spectrum which is trivially satisfied, for instance, if C; =[~*. Note
that the sequence (g;); belongs uniformly to the Sobolev space WMo,

The following result is the basic localization inequality which plays a crucial
role for the arguments below.

LEMMA 3.

Cu
10 Cor(Bjk Bjx '
(10) | Or(ﬂjykaﬁfskﬂf(1+de(€j,k,§j,k’))M’

where, as hinted above, d(§; y, &; 1) = arccos({ k. &} k'))-

PROOF. Observe first that, as we assumed that ¢1/™* < C; < ¢l %,
. I .
(2—a)j 2 2-a)j
(11) c1B < El b (Bj)ClLl(l) <coB .

We recall the following bound for type II polynomials which is derived in
Narcowich, Petrushev and Ward (2006), Theorem 2.6:

[ CMBZJ
;@(3‘,) (. 3)

<
T (1+Bd(x,y)M’
where c)s only depends on sup ;> ;< ||¢§k) l1. Whence, using this for ¢;(x) =
b?(x)x~%g;(x) and (11),
‘zl b2(1/ B K (£ s,-,ko)‘
> b2(1/B)CL(1)
> b2 (1/BHCILi((Ejik, sj,kf»’
> b2(1/BIYCIL(1)
B Zlb2<l/Bf>l—°’gj<l/Bf)Lz<<s,-,k,s,;k/»‘
> b2(1/BI)CLi(1)
Y b2<l/Bf)(l/B-f>—°‘g,~(l/BJ‘)Lz«sj,k,s,-,kf»’
B Biey b2(1/BI)CiLi(1)
< CM
T (I+BidEjr &M O

REMARK 4. As mentioned in the Introduction, the previous lemma highlights
a peculiar feature: the needlet coefficients at any finite distance are asymptotically
uncorrelated. This property is at the heart of our results below.
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4. The central limit theorem for polynomial functionals of needlet co-
efficients. In the sequel, we make an extensive use of diagrams, which are
mnemonic devices for computation of moments and cumulants of polynomials of
Gaussian random variables. We adopt standard terms and notation (edges, nodes,
connected components, ...), and we refer to Surgailis (2003), Marinucci (2006)
and Baldi et al. (2008), Section 5, for definitions and background results. See also
Nualart and Peccati (2005) for a more recent point of view.

In the arguments to follow, we focus on polynomial functionals of the (normal-
ized) wavelets coefficients, of the form

= Bk
(12) E E wyq Hy Bjx), Bjk = —"——,
Nj oo ! . / ,/Eﬁ%k

where u =1,2,..., U. Recall that N; = \/#Z;. Here w,, are real scalars and H,
denotes the gth Hermite polynomial. As Hermite polynomials are an algebraic
basis, every polynomial in the variables Ej,k is of the form (12); we start from
a general characterization of the behavior of the sequences &, y;. First we define
the covariance matrix €2, with elements

(13) Qj = {E[hu,Njhv,Nj]}u,vzl ,,,,, U-

Throughout the sequel we assume the following regularity condition:

ASSUMPTION 3. There exists jo such that for j > jo the covariance matrix €2
is invertible.

Assumption 3 is a nondegeneracy condition on the asymptotics of the statistics

of interest. Consider for instance the scalar case U = 1. From the diagram formula,
it is immediate to obtain

1 2 -
E[l’lu Nj = Z Var(Z Hq (ﬁj,k))
J g=1 k

N ElBjxBjx] 77
Yo Z q'wig D
Y

Jq=1 kk=1L/ELB7 (1EIB ]
The previous condition merely states that our nonlinear statistics have a nondegen-
erate asymptotic variance. Ruling aside pathological cases, it should be noted that
the previous assumption basically requires w? up > 0 for some p. In the multivari-
ate case U > 1 we also require that the polynomials £, N; and h,, N; are linearly

independent. It is to be noted, however, that the assumption fails for a polynomial
of order 1.



ASYMPTOTICS FOR SPHERICAL NEEDLETS 1159

THEOREM 5. Under Assumptions 1,2 and 3, as Nj — o0

_1 2 D
Q... hun) S N, Iy),
j—00

where Iy denotes the identity matrix of dimension U .
PROOF. We note first that the multivariate result follows immediately from the

case U =1, as by the Cramér—Wald device it is enough to focus on sequences of
the form

U
= Z)‘uhu,Nj
u=1
and
Zu 1)¥uhu N; Zu 1)\ hu N
T IS ha Bl ) JEIS Uy AP
However, it is clear that, for any choice of real numbers Aq, ..., Ay,
N oo U 1 N o
N, ZZkuwuqu(,Bj,k):Fzzwq[{q(ﬂj,k)a
J k=1g=1u=1 J k=1¢g=1

where W, := Zf/:l AuWyg - Itis obvious that E[hu,Nj] = 0. Hence to complete the
argument it is sufficient to prove that, as N; — oo,

lim E[(_ hy, )p}_{w—l)" for p=2,4
N— oo VVar(hy;) 10, otherwise.

We must show that, as N; — oo and for all p > 3,

N? N2
1 1 0
Cum(N Z quH (/8] ki)s N Z quH (/8] k) )

Jk=1¢=1 J kp=1g=1
2
0 N
= Z wa ”'wqp Cum Z (IBJ kl Z f]p(l‘gj’kp)
q1.--9p Nj ki=1 Nj kp=1
2
0 Nj
o DI T D SR DI §
— NP a0 4qp Yiuk,
J 4q1--4p GeVe(ql,...qp) ki,...kp=11<u<v<p
N2
c J (G)
= N7 sup Z Z 1_[ | Viky |77 — 0,
j qredp GeVe(qt,....qp) ki,...kp=11<u<v<p
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where 1,,,(G) counts the number of edges between node u and node v. It is then
clearly enough if we can prove that

N2
J
Z |J/kuky |’hw(G)
ki, kp=11<u<v=<p
2[(p—1)/2]
= O(Nj )
OW!™,  forp=3,57.....
low!™).,  forp=2.4.6.....
Now write
N} :
Xgiqy(G) = > Vi k, |70 (9.
ki,..., kp=11<u<v<p

Note that each of the covariances is bounded by 1, so that xg,..4,(G) is a nonin-
creasing function of 1,,(G), u,v =1, ..., p. We modify iteratively the elements
Nuy (G) by picking (u, v) at random, and then decreasing 7,,(G) by 1; in graphi-
cal terms, this can be viewed as taking a new graph G; where an edge between u
and v has been deleted (G| need no longer be connected). We repeat this proce-
dure until (in a finite number of steps, T, say), we obtain a graph, G, such that
the following circumstances are met:

(a) There are no isolated nodes.

(b) There exists at least a path covering three nodes.

(c) The connected components do not allow loops.

It is simple to see that we can reach Gr in a finite number of steps by the
following algorithm:

(1) We keep lowering n,, until we get to the point where the next step would
necessarily violate condition (a)

(2) If condition (b) is met, we stop our procedure.

(3) If condition (b) fails, it means we have only components with two nodes and
it is sufficient to raise by a unity any of the n,, (i.e., to introduce an edge between
two components).

It is clear that there are at most [pT_l] such components. For brevity we assume
that there are no paths with more than three nodes, the argument in the remaining
cases being entirely analogous. We partition the nodes u =1, ..., p into subsets
11 and I, according to the following rule. All nodes that belong to more than one
edge belong to I7; then for components with only two nodes we put the one whose
index is smaller again into /1. All the remaining others are put into /5. It is simple
to check that the cardinality of I equals the number of unconnected components
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in Gt and hence is smaller than pT_l Since |y, k,| < 1, we have

[T W™ O =TT Ivas ™07

I<u<v<p ueliUl,
u<v<p

G
< l_[ |kaku|n”v( T)

uel
u<v<p

< [T k-

uelh
U<v=p

Note that by construction, &, appears exactly once in the covariances whenever
u € I>; hence we obtain

Zj 1_[|ka|_2 Z 1_[|ka|

ki, kp=1 uel ky,uel ky,ucly ucl
U<v<p U<v=<p

YOI (z |ykukv|).

ky,uely uely \k,,uecl
u<v<p

Thus we obtain, using (10) and the following Lemma 6,

S I (z |ykukv|)

ky,uely uely \k,,uecl
u<v<p

2

Cu g
<y [Z (1+Bjd('§j,k’§j,k/))M:|

kuueli Lk'ez;

S Z C: O(sz[(p_l)/z]).

LEMMA 6. If M > 3, there exists a constant C fw such that
2
N; |

. <Cl,.
,El (1+ BidEji. &M — M

PROOF. It is proved in Narcowich, Petrushev and Ward (2006) that to get cu-
bature points for polynomials of degree less than L, it is enough to take a maximal
e-mesh on the sphere with € ~ % [i.e., a set {x1,...,xg} with d(x;, xj) > € for
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Xi £ X j and K maximal]. Using a simple covering argument, we have Ilg(—z)l <

K < \B(e/2)| where | B(¢)] is the volume of (any) ball of radius €, and | B(¢)| ~

so K ~ L2,
Let L ~ B/ and the corresponding mesh defining Z j» as balls are disjoint and
d(&jk, x) <2d(&jk, &) by the triangular inequality, we obtain

N2
Z’ 1
= (U + BId (. 0™

1 dx
T B(1/@L)) kZ /B@,k/ @y (14 LdEjk &)™

dx
<crL? /
k/ezzj B 1/eL) (1+ Ld(Ej . x)M

) dx ) sin6 do
<CL / =2Cr / —_—
s? (1 + Larccos((§ x, x))M o (1+LOM

T 0de 1/L 1 oo
§2C7rL2f e 2an2<f 0do + — el—Mde)
0

o (1+LoO)M — LM JiL
_2CnL2<i+ ! ;> 2CT.
202 " LM (M —2)L2M 0

5. The functional central limit theorem. We are now ready to introduce the
following continuous-time vector process:

[Jr]

3 9‘1/2<h1N,,...,hU,Nj>’, 0<r<I,
j=2.4,.

where €2; was defined in (13). Here U > 1 is a fixed integer.

Wy(r) .=

THEOREM 7.  Under Assumptions 1,2 and 3, as Nj — o0
W, = X,

where X denotes the U -dimensional standard Brownian motion and —> denotes
weak convergence in the Skorohod space D([0, 119).

PROOF. We note first that the multivariate result follows from the case U =1,
as remarked above. It is well known that in order to prove weak convergence we
have to establish convergence of the finite-dimensional distributions and tightness.
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By the Cramér—Wald device, to establish the former it is enough to focus on se-
quences of the form

[Jr] U

1
— = Auh ,
J j=2.4,.. ! ﬁ] 224: Z i

=
4

1 O S 4 X M
VI 57 e \/2524 =t ko Ehu N o v,
B 2525,4,... ot Mchu
\/E(Zﬂﬂ,éx,... Yot ;) |

However, it is clear that for any choice of real numbers A1, ..., Ay,

[Jr]
5y { zzzmqu,w

j=2.4,... Jk lg=lu=I

v (N oo
Z {FZZ@qu(ﬁj,k)

] =24,.. J k=1q=1

where, as before, W, := 2321 Aywyg. On the other hand, a necessary and suffi-
cient condition for tightness of vector processes is tightness for the component
processes. Without any loss of generality, we can hence focus on the univariate
case U = 1. We first consider convergence of the finite-dimensional distributions.
It is straightforward to see that 7’[\]\/ j,ﬁNj/ are independent whenever |j — j'| > 2.
As the process W (r) is a partial sum of independent elements, convergence of the
finite-dimensional distributions follows from the Lyapunov condition

X3, B

a4 Jim, ==
We have
~ I 2 !
E[th]zE[FZZ H, (Bj, k):|
J k g=1
Y

Z Wq Wyp Wq3 Wey
919249393

g

l_[ [B\j,kuﬁj7kv]|nuv(G)}

i kikyksks 1<u<v<4
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> {IE[B).xi Bjio | ELB; k3 Bjk |

N kikoksky
+ |ELB; ks Bk ELBj ey B sl
+ 1 E[,’gj,klgj,kﬂ E[Ej,kgﬁj,kﬂ”
2
1 ~ o~
_c{mDEkalﬁj,bu} =0(1),

J kiky

uniformly over j, in view of Lemma 6. Equation (14) then follows easily from

[Jr] 4
Zj:rZA,...Eth e [Jr] N
772 TIPS

Likewise, by a well-known result, tightness follows from

E[W(r1) — Wy (r) P IWy (r2) — Wy (r)[*]

1 Url  \2 Ul \2
J=LIr+ J=Uril+1

C
< S Unl = Jr)(UJr] = [Jn]) 4C(a - ri)?

for all r| <r <rp, again in view of Lemma 6. [J

6. Statistical applications. In this section, we use the previous results to de-
rive goodness-of-fit for spherical random fields. In particular, we take

N2

1
h1N,——ZH2(/3]k)— Z{ﬂjk

Jkl Jkl
N2

1
han; = —Z{H3(ﬁJ ©) +3H1 (B, k)}— Zﬁ,k,

Jkl Jkl
N2

1
h3n, = — Z{H4(ﬂ] )+ 6Hy(Bj i)} = Z{ﬂ,k —3}.

Jkl Jkl

It is natural to view /1y, as a goodness-of-fit statistic on the angular power spec-
trum {C;}. More precisely, a typical question arising in applications is to check
the validity of a physical model (e.g., specific values of parameters) by means of
a comparison between the expected and observed angular power spectrum. In this
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framework, this goal can be accomplished as follows: recall that

N2 N2

1 2{32 ho ) Z B2 —EIB% ]
_ == — Tk Tk
Nj = ’ Nj i E[ﬁik]

where

21+ 1

1
Elfju) = N? 2 b2<B/)Cl

J Bi—l<]<Bij+l

Then it is clear that &1y, provides a measure of discrepancy between the expected
and observed values of an averaged power spectrum. In order to construct feasible
statistical procedures with an asymptotic justification to investigate this and other
hypotheses of interest, we define

[Jr]
1 ~12
Wiy =— Y. QN honhan) . 0<r<l,
ﬁj:B,Bz,...

where as before

Qj ={Elhun;hv.N;Duv=1....U
and

1 -~ 2 PO
E[h] y,1= Var(hi n;) = e Var(Z Hz(ﬂ,-,k)> = > (BB Bika))’
Jj k

J kiko

1 - -
E[hﬁ,Nj] = Var(hy,n;) = V2 Var(Z{Hz (Bj.x) +3H, (ﬁj,k)})
j

k

=N Z(E[ﬁJ WBiD + N_ = > ElBjxBik).

J kiky J kika

2 1 ~ -
Elh3 v, = Var(hs n;) = =5 Var > {Ha(Bjx) + 6H2(Bj.1)}
J

k

Z(E[ﬂj i BinD? L2 V2 Z(E[ﬁ, kB s])

J kika J kiky
Also

1 —~ —~ —~
Elhi Nho N1 = Y2 Z E{H3(Bj k) +3H1(Bj k) H2(Bj k)] =0,
J kiko

1 ~ ~ ~
Elhin;hs ;] = —5 D E[{Ha(Bjx,) + 6Ha(Bjx)} Ha(Bjiy)]
J kika

12 PN
=2 > (BB Bjk)?
J kiky
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and

Elh2,n;h3,N;]

1 ~ ~ ~ —~
= — > EUH3(Bj&,) + 3H1(Bjx) HHa(Bj i) + 6Ha(Bjx)}] =0.
J kika

As from Theorem 7, as J — oo W converges in D([0, 11%) to a three-dimensional
standard Brownian motion X, by focusing on the first row of W, we obtain for
instance the Kolmogorov—Smirnov type test, that is,

lim P< sup |Wy j(r)| > t) = P( sup |X1(r)| > t),
J—=oo \o<r<i 0<r<I1

X1 denoting the first component of X. The derivation of threshold values for ¢
is then standard. Similarly, it is possible to construct tests for Gaussianity and
isotropy based on the skewness and kurtosis statistics /o N; and K3 Ns respectively.
The numerical implementation of these procedures on CMB data is currently un-
derway.

7. Missing observations. As mentioned in the Introduction, we expect
needlets to be extremely robust in the presence of partially observed spherical
random fields, due to their excellent localization properties in real space. This re-
sult can be formalized as follows: we assume we observe T (§) =T (&) + V (&),
where V(&) is a noise field that need not be independent from 7 (£); indeed the
most relevant case is V(§) = —T(§)1zei), G C S? denoting the unobserved sub-
set of the sphere. This situation arises when the field is not observed (and hence its
value is set to zero) for some locations in the sky. This is the situation with CMB
data in the so-called galactic cut region, where CMB is dominated by the Milky
Way emissions. We note N¢(§; ) :={§ € S?:d(g, & k) < &} the neighborhood of
radius ¢ around the cubature point &; i, d denoting as usual the angular distance.
We write

B = [, T@Own©ds

for the wavelets coefficients of 7. The following result highlights the robustness
property of needlets.

PROPOSITION 8.  Let & i be a cubature point such that V(§) =0 on N¢(§; 1)
and assume that

(15) sup E[V (§)*] =: V* < oo.
£eS?

Then, for every M € N,

i _ Cudn/2VFBI
1B = Bixllz = VELBj = B0 = = g7y
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PROOF. We have, by the localization property (7),

2
F—pr= ([, VOUREH)

)

s4n(%)z(/§2|v<wds).

CMBj )
(14+Big)M )"

Therefore

Bl — fi0) <4 [ BIVGP1ds < 16227 ( -

REMARK 9. Remark that in Proposition 8 V is not assumed to be isotropic.
Thus in the case of gaps (15) is obviously satisfied, as E[V (£)?] < E[T (§)?] for
every £ € §2. It is also interesting to stress that, in view of (11),

o 4
E[(,B]k ,BJk) ] <ClBj(a71) CMB] ZWW<C;WBZJ.(O‘*M)
ElB7] (1+ Big)M =

with C), = écchZn A/ 2V*. For M large enough, it is not difficult to show that,
up to different normalizing constants, the limit results in Sections 4, 5 and 6 are
not affected asymptotically by the presence of sky cuts. Although this result must
be taken with a good deal of common sense when working with finite-resolution
experiments, we view this property as a very strong rationale to motivate the use
of needlets in cosmology and astrophysics.

8. Numerical implementation. In this section we address some practical is-
sues concerning the implementation of needlets on real data. In particular we con-
sider data on the Cosmic Microwave Background radiation, as provided by the
NASA experiment WMAP. It is not difficult to devise some kernel construction
that fulfills the conditions highlighted in Section 2. As in Marinucci et al. (2008),
we suggest the following algorithm [cf. Guilloux, Fay and Cardoso (2007) for al-
ternative suggestions].

In order to construct the function ¢ of Section 2.1 one just defines f(¢) =
exp(—ﬁ) for —1 < <1 and = 0 otherwise. f is obviously C* and compactly
supported in the interval [—1, 1]. We then construct the function

ffl f@)dt
Jh fFwar

Y is C*°, nondecreasing and s.t. ¥ (—1) =0, ¥ (1) = 1. Then the function ¢ is
obtained easily by joining 0 and 1 with i suitably rescaled. Remark that in practice

V() =
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T

-3

T

3

FI1G. 2. Typical graph of the needlet and a corresponding spherical harmonic (dots) as functions
of the geodesic distance. Here j =5 and B = 2. The localizing effect of the Littlewood—Paley device
is remarkable.

one needs only to compute the function b at the points %. Therefore, once the
maximal-resolution is known, these values can be computed and stored once for
all. An instance of a needlet function is given in Figure 2.

The random needlet coefficients are now evaluated as

Biv= [, TG00 dx

0\ < _
(16) =i Xb(55) X[ reTme oo
4 m=—4~

l
12 m=—{

The practical implementation of (16) on a given random field requires the eval-
uation of its spherical harmonic coefficients (ag;,). In principle, the latter can be
recovered by means of (9). In practice, in applications such as CMB data analysis
the random field is continuously observed by means of antennae which average
observations over tiny equal-area regions covering the whole sky; the resulting
values are projected on a discretized grid, where the locations of points in the grid
are chosen in order to make possible the approximation of (9) by means of cuba-
ture formulae; a standard package for this routine is HealPix, described in Gérski
et al. (2005). The final output of this algorithm is indeed a triangular array of coef-
ficients (agn, ), but one may wonder whether numerical approximations may indeed
spoil the validity of the theoretical results presented in the previous sections.

To investigate this claim, we produce some numerical evidence on one of the
key properties of random needlet coefficients, that is, the uncorrelation across dif-
ferent scales (Figure 3). We simulated 100 independent copies of a random field,
using the expansion (8). The coefficients a;;,, were sampled as independent [but for
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4.0000 ¢

0.1000

0.010°

0.0010

0.000&

\Q// =

FIG. 3. Decay of correlation on a CMB-like map. j and j' are on the two axes.

the condition (—1)"ay,, = a;,_;] complex Gaussian r.v.’s with variance C;. The
results look encouraging: the actual correlation for all j — j’ > 2 is in the order
of 0.1-1%, which is indeed consistent with theoretical predictions, up to minor
rounding errors.

We also performed some Monte Carlo experiments on the effect of missing
observations on the values of the needlet coefficients. More precisely, for different
types of sky gaps, we provide estimates of the quantity

_ ElBjr — Ejk]z
ElB7]

First we mimicked the experimental data on the CMB radiation, as described for
instance by the WMAP team (see http://map.gsfc.nasa.gov/). In particular, data on
CMB are contaminated mainly by the presence of the Milky Way (which is located
around the equator, in the standard choice of coordinates) and several so-called
point sources, amounting basically to known clusters of galaxies which produce a
radiation unrelated with CMB. To remove these emissions, the WMAP team has
set to O the value of the field in a certain region, which is known as the KpO mask.

We simulated again 100 independent copies of a random field. The function C;
was chosen in order to mimick the best fit from satellite observations of CMB [see
Pietrobon, Balbi and Marinucci (2006) for details]. We fixed B=1.5and j =11,
corresponding to a range of frequencies from / = 58 to [ = 129. We then estimated
both the needlet coefficients B jk (in the presence of missing observations) and
(for the completely observed field) and evaluated the gap between the two using
the discrepancy D ji of (17).

The results are displayed in Figure 4, where directions corresponding to a value
of Djr > 0.1 are marked with a black dgt. Note that, even for such small val-
ues of j, the difference between B and B is rather small; indeed D j; is above

17) D :


http://map.gsfc.nasa.gov/
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_\
§ “.a‘a“‘}

FIG. 4. Localization properties on a CMB-like map.

the threshold in approximately 20% of the cubature points. As expected, these
points cluster in the neighborhoods of the mask. Refer to Guilloux, Fay and Car-
doso (2007) for further numerical evidence.

Acknowledgment. We are grateful to D. Pietrobon for providing the numeri-
cal results in Section 8.
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