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ENTROPIC MEASURE AND WASSERSTEIN DIFFUSION

BY MAX-K. VON RENESSE AND KARL-THEODOR STURM

Technische Universität Berlin and Universität Bonn

We construct a new random probability measure on the circle and on
the unit interval which in both cases has a Gibbs structure with the relative
entropy functional as Hamiltonian. It satisfies a quasi-invariance formula with
respect to the action of smooth diffeomorphism of the sphere and the interval,
respectively. The associated integration by parts formula is used to construct
two classes of diffusion processes on probability measures (on the sphere or
the unit interval) by Dirichlet form methods. The first one is closely related
to Malliavin’s Brownian motion on the homeomorphism group. The second
one is a probability valued stochastic perturbation of the heat flow, whose
intrinsic metric is the quadratic Wasserstein distance. It may be regarded as
the canonical diffusion process on the Wasserstein space.

1. Introduction.

(a) Equipped with the L2-Wasserstein distance dW [cf. (2.1)], the space P (M)
of probability measures on an Euclidean or Riemannian spaceM is itself a rich ob-
ject of geometric interest. Due to the fundamental works of Y. Brenier, R. McCann,
F. Otto, C. Villani and many others (see, e.g., [7, 8, 21–23, 32]) there are well
understood and powerful concepts of geodesics, exponential maps, tangent spaces
TμP (M) and gradientsDu(μ) of functions on this space. In a certain sense, P (M)
can be regarded as an infinite dimensional Riemannian manifold, or at least as an
infinite dimensional Alexandrov space with nonnegative lower curvature bound if
the base manifold (M,d) has nonnegative sectional curvature.

A central role is played by the relative entropy: P (M)→ R ∪ {+∞} with re-
spect to the Riemannian volume measure dx on M

Ent(μ)=
⎧⎨
⎩
∫
M
ρ logρ dx, if dμ(x)� dx with ρ(x)= dμ(x)

dx
,

+∞, else.

The relative entropy as a function on the geodesic space (P (M), dW) is K-convex
for a given number K ∈ R if and only if the Ricci curvature of the underlying
manifold M is bounded from below by K [25, 29]. The gradient flow for the rel-
ative entropy in the geodesic space (P (M), dW) is given by the heat equation
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∂
∂t
μ=�μ on M [17]. More generally, a large class of evolution equations can be

treated as gradient flows for suitable free energy functionals S :P (M)→R [32].
What is missing until now, is a natural “Riemannian volume measure” P

on P (M). The basic requirement will be an integration by parts formula for the
gradient. This will imply the closability of the pre-Dirichlet form

E(u, v)=
∫
P (M)

〈Du(μ),Dv(μ)〉Tμ dP(μ)

in L2(P (M),P), which in turn will be the key tool in order to develop an analytic
and stochastic calculus on P (M). In particular, it will allow us to construct a kind
of Laplacian and a kind of Brownian motion on P (M). Among others, we intend
to use the powerful machinery of Dirichlet forms to study stochastically perturbed
gradient flows on P (M) which—on the level of the underlying spaces M—will
lead to a new concept of stochastic partial differential equations (preserving prob-
ability by construction).

Instead of constructing a “uniform distribution” P on P (M), for various rea-
sons, we prefer to construct a probability measure Pβ on P (M) formally given
as

dPβ(μ)= 1

Zβ
e−β·Ent(μ) dP(μ)(1.1)

for β > 0 and some normalization constant Zβ . (In the language of statistical me-
chanics, β is the “inverse temperature” and Zβ the “partition function” whereas
the entropy plays the role of a Hamiltonian.)

(b) One of the basic results of this paper is the rigorous construction of such an
entropic measure Pβ in the one-dimensional case, that is, M = S1 or M = [0,1].
We will essentially make use of the representation of probability measures by their
inverse distributions function gμ. It allows to transfer the problem of constructing
a measure Pβ on the space of probability measures P ([0,1]) [or P (S1)] into the
problem of constructing a measure Q

β
0 (or Qβ ) on the space G0 (or G, resp.) of

nondecreasing functions from [0,1] (or S1, resp.) into itself.
In terms of the measure Q

β
0 on G0, for instance, the formal characterization (1.1)

then reads as follows:

dQ
β
0 (g)=

1

Zβ
e−β·S(g) dQ0(g).(1.2)

Here Q0 denotes some “uniform distribution” on G0 ⊂ L2([0,1]) and S :G0 →
[0,∞] is the entropy functional

S(g) := Ent(g∗ Leb)=−
∫ 1

0
logg′(t) dt.
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This representation is reminiscent of Feynman’s heuristic picture of the Wiener
measure—now with the energy

H(g)=
∫ 1

0
g′(t)2 dt

of a path replaced by its entropy. Q
β
0 will turn out to be (the law of) the Dirichlet

process or normalized Gamma process.
(c) The key result here is the quasi-invariance or, in other words, a change

of variable formula for the measure Pβ (or P
β
0 ) under push forwards μ �→ h∗μ

by means of smooth diffeomorphisms h of S1 (or [0,1], resp.). This is equivalent
to the quasi-invariance of the measure Qβ under translations g �→ h ◦ g of the
semigroup G by smooth h ∈ G. The density

dPβ(h∗μ)
dPβ(μ)

=Xβh · Y 0
h (μ)

consists of two terms. The first one

X
β
h (μ)= exp

(
β

∫
S1

logh′(t) dμ(t)
)

can be interpreted as exp(−β Ent(h∗μ))/ exp(−β Ent(μ)) in accordance with our
formal interpretation (1.1). The second one

Y 0
h (μ)=

∏
I∈gaps(μ)

√
h′(I−) · h′(I+)
|h(I)|/|I |

can be interpreted as the change of variable formula for the (nonexisting) mea-
sure P. Here gaps(μ) denotes the set of intervals I =]I−, I+[⊂ S1 of maximal
length with μ(I) = 0. Note that Pβ is concentrated on the set of μ which have
no atoms and not absolutely continuous parts and whose supports have Lebesgue
measure 0.

(d) The tangent space at a given point μ in P =P (S1) (or in P0 =P ([0,1]))
will be an appropriate completion of the space C∞(S1,R) (or C∞([0,1],R),
resp.). The action of a tangent vector ϕ on μ (“exponential map”) is given by
the push forward ϕ∗μ. This leads to the notion of the directional derivative

Dϕu(μ)= lim
t→0

1

t

[
u
(
(Id + tϕ)∗μ)− u(μ)]

for functions u :P → R. The quasi-invariance of the measure Pβ implies an inte-
gration by parts formula (and thus the closability)

D∗ϕu=−Dϕu− Vϕ · u
with drift Vϕ = limt→0

1
t
(Y
β
Id+tϕ − 1).

The subsequent construction will strongly depend on the choice of the norm on
the tangent spaces TμP . Basically, we will encounter two important cases.
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(e) Choosing TμP = Hs(S1,Leb) for some s > 1/2—independent of μ—
leads to a regular, local, recurrent Dirichlet form E on L2(P ,Pβ) by

E(u,u)=
∫
P

∞∑
k=1

|Dϕku(μ)|2 dPβ(μ)

where {ϕk}k∈N denotes some complete orthonormal system in the Sobolev space
Hs(S1). According to the theory of Dirichlet forms on locally compact spaces
[14], this form is associated with a continuous Markov process on P (S1) which is
reversible with respect to the measure Pβ . Its generator is given by

1

2

∑
k

DϕkDϕk +
1

2

∑
k

Vϕk ·Dϕk .(1.3)

This process (gt )t≥0 is closely related to the stochastic processes on the diffeomor-
phism group of S1 and to the “Brownian motion” on the homeomorphism group
of S1, studied by Airault, Fang, Malliavin, Ren, Thalmaier and others [1–3, 12,
13, 20]. These are processes with generator 1

2
∑
k DϕkDϕk . Hence, one advantage

of our approach is to identify a probability measure Pβ such that these processes—
after adding a suitable drift—are reversible.

Moreover, previous approaches are restricted to s ≥ 3/2 whereas our construc-
tion applies to all cases s > 1/2.

(f) Choosing TμG= L2([0,1],μ) leads to the Wasserstein Dirichlet form

E(u,u)=
∫
P0

‖Du(μ)‖2
L2(μ)

dP
β
0 (μ)

on L2(P0,P
β
0 ). Its square field operator is the squared norm of the Wasserstein

gradient and its intrinsic distance (which governs the short time asymptotic of
the process) coincides with the L2-Wasserstein metric. The associated continuous
Markov process (μt )t≥0 on P ([0,1]), which we shall call Wasserstein diffusion, is
reversible with respect to the entropic measure P

β
0 . It can be regarded as a stochas-

tic perturbation of the Neumann heat flow on P ([0,1]) with small time Gaussian
behavior measured in terms of kinetic energy.

Analogously, we construct a stochastic perturbation of the heat flow on S1 as
the reversible Markov process on P (S1) associated with the Dirichlet form

E(u,u)=
∫
P
‖Du(μ)‖2

L2(μ)
dPβ(μ)

on L2(P ,Pβ).
(g) The restriction to dimension 1 throughout this paper has two reasons (or in

other words, allows for two important simplifications):

1. In dimension 1, probability measures are uniquely characterized in terms of
their distribution functions (or equivalently, in terms of their inverse distribu-
tions functions). Functions seem to be much easier to handle than measures.
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2. The Wasserstein space based on a 1-dimensional space is flat; based on any
higher dimensional space it is curved (cf. [19, 22, 29]). In particular, the Wasser-
stein space based on the interval can be isometrically embedded as a compact
convex subset into a Hilbert space. A related fact is that the composition of
two optimal transports is an optimal transport in dimension 1 but not in higher
dimensions.

In a forthcoming paper [30], it will be indicated how to overcome—at least
partly—the restriction to dimension 1.

(h) An early draft of this paper has already inspired several new contribu-
tions: Von Renesse, Yor and Zambotti [26] present an alternative proof—based
on martingale arguments—to the change of variable formula (Theorem 4.3) for
the Dirichlet process as well as generalizations to Gamma (and related Lévy)
processes. A canonical particle approximation to the Wasserstein diffusion is pre-
sented in [5]. Döring and Stannat [10] deduce estimates for spectral gap and loga-
rithmic Sobolev inequality for the Wasserstein diffusion.

2. Spaces of probability measures and monotone maps. The goal of this
paper is to study stochastic dynamics on spaces P (M) in caseM is the unit interval
[0,1] or the unit circle S1.

2.1. The spaces P0 =P ([0,1]) and G0. Let us collect some basic facts for the
space P0 =P ([0,1]) of probability measures on the unit interval [0,1] the proofs
of which can be found in the monograph [32]. Equipped with the L2-Wasserstein
distance dW , it is a compact metric space. Recall that

dW(μ, ν) := inf
γ

(∫ ∫
[0,1]2

|x − y|2γ (dx, dy)
)1/2

,(2.1)

where the infimum is taken over all probability measures γ ∈ P ([0,1]2) hav-
ing marginals μ and ν [i.e., γ (A ×M) = μ(A) and γ (M × B) = ν(B) for all
A,B ⊂M].

Let G0 denote the space of all right continuous nondecreasing maps g : [0,1[→
[0,1] equipped with the L2-distance

‖g1 − g2‖L2 =
(∫ 1

0
|g1(t)− g2(t)|2 dt

)1/2

.

Moreover, for notational convenience each g ∈ G0 is extended to the full interval
[0,1] by g(1) := 1. The map

χ :G0 →P0, g �→ g∗ Leb

(= push forward of the Lebesgue measure on [0,1] under the map g) establishes
an isometry between (G0,‖ · ‖L2) and (P0, dW ). The inverse map χ−1 :P0 → G0,
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μ �→ gμ assigns to each probability measure μ ∈P0 its inverse distribution func-
tion defined by

gμ(t) := inf{s ∈ [0,1] :μ[0, s]> t}(2.2)

with inf ∅ := 1. In particular, for all μ,ν ∈P0

dW(μ, ν)= ‖gμ − gν‖L2 .(2.3)

For each g ∈ G0 the generalized inverse g−1 ∈ G0 is defined by g−1(t)= inf{s ≥
0 :g(s) > t}. Obviously,

‖g1 − g2‖L1 = ‖g−1
1 − g−1

2 ‖L1(2.4)

(being simply the area between the graphs) and (g−1)−1 = g. Moreover,
g−1(g(t))= t for all t provided g−1 is continuous. (Note that under the measure
Q
β
0 to be constructed below the latter will be satisfied for a.e. g ∈ G0.)
On G0, there exist various canonical topologies: the L2-topology of G0 regarded

as subset of L2([0,1],R); the image of the weak topology on P0 under the map
χ−1 :μ �→ gμ (= inverse distribution function); the image of the weak topology
on P0 under the map μ �→ g−1

μ (= distribution function). All these—and several
others—topologies coincide.

PROPOSITION 2.1. For each sequence (gn)n ⊂ G0, each g ∈ G0 and each
p ∈ [1,∞[ the following are equivalent:

(i) gn(t)→ g(t) for each t ∈ [0,1] in which g is continuous;
(ii) gn→ g in Lp([0,1]);

(iii) g−1
n → g−1 in Lp([0,1]);

(iv) μgn→ μg weakly;
(v) μgn→ μg in dW .

In particular, G0 is compact.

Let us briefly sketch the main arguments of the

PROOF OF PROPOSITION 2.1. Since all the functions gn and g−1
n are bounded,

properties (ii) and (iii) obviously are independent of p. The equivalence of (ii) and
(iii) for p = 1 was already stated in (2.4) and the equivalence between (ii) for
p = 2 and (v) was stated in (2.3). The equivalence of (iv) and (v) is the well-
known fact that the Wasserstein distance metrizes the weak topology. Another
well-known characterization of weak convergence states that (iv) is equivalent
to (i′): g−1

n (t)→ g−1(t) for each t ∈ [0,1] in which g−1 is continuous. Finally,
(i′)⇔ (i) according to the equivalence (ii)⇔ (iii) which allows to pass from con-
vergence of distribution functions g−1

n to convergence of inverse distribution func-
tions gn. The last assertion follows from the compactness of P0 in the weak topol-
ogy. �
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2.2. The spaces G, G1 and P =P (S1). Throughout this paper, S1 =R/Z will
always denote the circle of length 1. It inherits the group operation+ from R with
neutral element 0. For each x, y ∈ S1 the positively oriented segment from x to
y will be denoted by [x, y] and its length by |[x, y]|. If no ambiguity is possible,
the latter will also be denoted by y − x. In contrast to that, |x − y| will denote
the S1-distance between x and y. Hence, in particular, |[y, x]| = 1− |[x, y]| and
|x − y| = min{|[y, x]|, |[x, y]|}. A family of points t1, . . . , tN ∈ S1 is called an
“ordered family” if

∑N
i=1 |[ti , ti+1]| = 1 with tN+1 := t1 (or, in other words, if all

the open segments ]ti , ti+1[ are disjoint).
Put

G(R)= {g : R→R right continuous nondecreasing with

g(x + 1)= g(x)+ 1 for all x ∈R}.
Due to the required equivariance with respect to the group action of Z, each
map g ∈ G(R) induces uniquely a map π(g) :S1 → S1. Put G := π(G(R)). The
monotonicity of the functions in G(R) induces also a kind of monotonicity of
maps in G: each continuous g ∈ G will be order preserving and homotopic to
the identity map. In the sequel, however, we often will have to deal with dis-
continuous g ∈ G. The elements g ∈ G will be called monotone maps of S1.
G is a compact subspace of the L2-space of maps from S1 to S1 with metric
‖g1 − g2‖L2 = (∫S1 |g1(t)− g2(t)|2 dt)1/2.

With the composition ◦ of maps, G is a semigroup. Its neutral element e is the
identity map. Of particular interest in the sequel will be the semigroup G1 = G/S1

where functions g,h ∈ G will be identified if g(·)= h(· + a) for some a ∈ S1.

PROPOSITION 2.2. The map

χ :G1 →P , g �→ g∗ Leb

(= push forward of the Lebesgue measure on S1 under the map g) and its inverse
χ−1 :P → G1, μ �→ gμ [with gμ as defined in (2.2)] establish an isometry between
the space G1 equipped with the induced L2-distance

‖g1 − g2‖G1 =
(

inf
s∈S1

∫
S1
|g1(t)− g2(t + s)|2 dt

)1/2

and the space P of probability measures on S1 equipped with the L2-Wasserstein
distance. In particular, G1 is compact.

PROOF. The bijectivity of χ and χ−1 is clear. It remains to prove that

dW(μ, ν)= ‖gμ − gν‖G1(2.5)

for all μ,ν ∈ P . Obviously, it suffices to prove this for all fully supported, ab-
solutely continuous μ,ν (or equivalently for continuous, strictly increasing gμ,gν)
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since the latter are dense in P (or in G1, resp.). For such a pair of measures, there
exists a map F :S1 → S1 (“optimal transport map”) which minimizes the trans-
portation costs [32]. Moreover, this map has at least one fixpoint s ∈ S1. (Other-
wise, small rotations—either to the left or to the right—will reduce the transporta-
tion costs.) Then the map F is an optimal transport map for the mass μ on the
segment ]s,1 + s[ onto the mass ν on the segment ]s,1 + s[. The results from
the previous subsection, hence, imply that the minimal cost for such a transport is
given by

∫
S1 |gμ(t)− gν(t + a)|2 dt with a = g−1

ν (s)− g−1
μ (s).

On the other hand, for each a ∈ S1 the map gν(g−1
μ (·)+ a) pushes forward μ

to ν. Therefore,

dW(μ, ν)
2 ≤

∫
S1

∣∣x − gν(g−1
μ (x)+ a

)∣∣2μ(dx)= ∫
S1
|gμ(t)− gν(t + a)|2 dt,

which proves the claim. �

3. Dirichlet process and entropic measure.

3.1. Gibbsean interpretation and heuristic derivation of the entropic measure.
One of the basic results of this paper is the rigorous construction of a measure Pβ

formally given as (1.1) in the one-dimensional case, that is,M = S1 orM = [0,1].
We will essentially make use of the isometries χ :G1 →P =P (S1), g �→ g∗ Leb
and χ :G0 → P0 = P ([0,1]). They allow to transfer the problem of constructing
measures Pβ on spaces of probability measures P (or P0) into the problem of
constructing measures Qβ (or Q

β
0 ) on spaces of functions G1 (or G0, resp.). In

terms of the measure Q
β
0 on G0, for instance, the formal characterization (1.1)

then reads as follows:

Q
β
0 (dg)=

1

Zβ
e−β·S(g)Q0(dg).(3.1)

Here Q0 denotes some “uniform distribution” on G0 ⊂ L2([0,1]) and S :G0 →
[0,∞] is the entropy functional S(g) := Ent(g∗ Leb). If g is absolutely continuous
then S(g) can be expressed explicitly as

S(g)=−
∫ 1

0
logg′(t) dt.

The representation (3.1) is reminiscent of Feynman’s heuristic picture of the
Wiener measure. Let us briefly recall the latter and try to use it as a guideline
for our construction of the measure Q

β
0 .

According to this heuristic picture, the Wiener measure Pβ with diffusion con-
stant σ 2 = 1/β should be interpreted (and could be constructed) as

Pβ(dg)= 1

Zβ
e−β·H(g)P(dg)(3.2)
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with the energy functional H(g) = 1
2

∫ 1
0 g

′(t)2 dt . Here P(dg) is assumed to be
the “uniform distribution” on the space G∗ of all continuous paths g : [0,1] → R

with g(0) = 0. Even if such a uniform distribution existed, typically almost all
paths g would have infinite energy. Nevertheless, one can overcome this difficulty
as follows.

Given any finite partition {0 = t0 < t1 < · · · < tN = 1} of [0,1], one should
replace the energy H(g) of the path g by the energy of the piecewise linear inter-
polation of g

HN(g)= inf{H(g̃) : g̃ ∈ G∗, g̃(ti)= g(ti) ∀i} =
N∑
i=1

|g(ti)− g(ti−1)|2
2(ti − ti−1)

.

Then (3.2) leads to the following explicit representation for the finite dimensional
distributions

Pβ(gt1 ∈ dx1, . . . , gtN ∈ dxN)
(3.3)

= 1

Zβ,N
exp

(
−β

2

N∑
i=1

|xi − xi−1|2
ti − ti−1

)
pN(dx1, . . . , xN).

Here pN(dx1, . . . , xN) = P(gt1 ∈ dx1, . . . , gtN ∈ dxN) should be a “uniform dis-
tribution” on RN and Zβ,N a normalization constant. Choosing pN to be the
N -dimensional Lebesgue measure makes the RHS of (3.3) a projective family of
probability measures. According to Kolmogorov’s extension theorem this family
has a unique projective limit, the Wiener measure Pβ on G∗ with diffusion constant
σ 2 = 1/β .

Now let us try to follow this procedure with the entropy functional S(g) replac-
ing the energy functional H(g). Given any finite partition {0 = t0 < t1 < · · · <
tN < tN+1 = 1} of [0,1], we will replace the entropy S(g) of the path g by the
entropy of the piecewise linear interpolation of g

SN(g)= inf{S(g̃) : g̃ ∈ G0, g̃(ti)= g(ti) ∀i}

= −
N+1∑
i=1

log
g(ti)− g(ti−1)

ti − ti−1
· (ti − ti−1).

This leads to the following expression for the finite dimensional distributions

Q
β
0 (gt1 ∈ dx1, . . . , gtN ∈ dxN)

(3.4)

= 1

Zβ,N
exp

(
β

N+1∑
i=1

log
xi − xi−1

ti − ti−1
· (ti − ti−1)

)
qN(dx1, . . . , dxN),

where qN(dx1, . . . , xN) = Q0(gt1 ∈ dx1, . . . , gtN ∈ dxN) is a “uniform distribu-
tion” on the simplex �N = {(x1, . . . , xN) ∈ [0,1]N : 0 < x1 < x2 · · · < xN < 1}
and x0 := 0, xN+1 := 1.
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What is a “canonical” candidate for qN? A natural requirement will be the in-
variance property

qN(dx1, . . . , dxN)

= [(xi−1,xi+k )∗(3.5)

× qk(dxi, . . . , dxi+k−1)]dqN−k(dx1, . . . , dxi−1, dxi+k, . . . , dxN)

for all 1 ≤ k ≤ N and all 1 ≤ i ≤ N − k + 1 with the convention x0 = 0,
xN+1 = 1 and the rescaling map a,b : ]0,1[k→ Rk, yj �→ yj (b− a) + a for
j = 1, . . . , k.

If the qN , N ∈ N, were probability measures then the invariance property ad-
mits the following interpretation: under qN , the distribution of the (N − k)-tuple
(x1, . . . , xi−1, xi+k, . . . , xN) is nothing but qN−k ; and under qN , the distribution
of the k-tuple (xi, . . . , xi+k−1) of points in the interval ]xi−1, xk[ coincides—after
rescaling of this interval—with qk . Unfortunately, no family of probability mea-
sures qN,N ∈N, with property (3.5) exists. However, there is a family of measures
with this property.

By iteration of the invariance property (3.5), the choice of the measure q1 on
the interval �1 =]0,1[ will determine all the measures qN , N ∈ N. Moreover,
applying (3.5) for N = 2, k = 1 and both choices of i yields

[(0,x1)∗q1(dx2)]dq1(dx1)= [(x2,1)∗q1(dx1)]dq1(dx2)(3.6)

for all 0< x1 < x2 < 1. This reflects the intuitive requirement that there should be
no difference whether we first choose randomly x1 ∈]0,1[ and then x2 ∈]x1,1[ or
the other way round, first x2 ∈]0,1[ and then x1 ∈]0, x2[.

LEMMA 3.1. A family of measures qN,N ∈N, with continuous densities sat-
isfies property (3.5) if and only if

qN(dx1, . . . , dxN)=CN dx1 · · · dxN
x1 · (x2 − x1) · · · (xN − xN−1) · (1− xN)(3.7)

for some constant C ∈R+.

PROOF. If q1(dx)= ρ(x) dx then (3.6) is equivalent to

ρ(y) · ρ
(
x

y

)
· 1

y
= ρ(x) · ρ

(
y − x
1− x

)
· 1

1− x
for all 0 < x < y < 1. For continuous ρ this implies that there exists a constant
C ∈R+ such that ρ(x)= C

x(1−x) for all 0< x < 1. Iterated inserting this into (3.5)
yields the claim. �
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Let us come back to our attempt to give a meaning to the heuristic formula (3.1).
Combining (3.4) with the choice (3.7) of the measure qN finally yields

Q
β
0 (gt1 ∈ dx1, . . . , gtN ∈ dxN)

(3.8)

= 1

Zβ,N

N+1∏
i=1

(xi − xi−1)
β(ti−ti1 ) dx1 · · · dxN

x1 · (x2 − x1) · · · (1− xN)
with appropriate normalization constants Zβ,N . Now the RHS of this formula in-
deed turns out to define a consistent family of probability measures. Hence, by
Kolmogorov’s extension theorem it admits a projective limit Q

β
0 on the space G0.

The push forward of this measure under the canonical identification χ :G0 →P0,
g �→ g∗ Leb will be the entropic measure P

β
0 which we were looking for.

The details of the rigorous construction of this measure as well as various prop-
erties of it will be presented in the following sections.

3.2. The measures Qβ and Pβ . The basic object to be studied in this section
is the probability measure Qβ on the space G.

PROPOSITION 3.2. For each real number β > 0 there exists a unique proba-
bility measure Qβ on G, called Dirichlet process, with the property that for each
N ∈N and for each ordered family of points t1, t2, . . . , tN ∈ S1

Qβ(gt1 ∈ dx1, . . . , gtN ∈ dxN)
(3.9)

= �(β)∏N
i=1�(β(ti+1 − ti))

N∏
i=1

(xi+1 − xi)β(ti+1−ti )−1 dx1 · · · dxN .

The precise meaning of (3.9) is that for all bounded measurable u : (S1)N →R∫
G
u(gt1, . . . , gtN ) dQβ(g)

= �(β)∏N
i=1�(β · |[ti , ti+1]|)

×
∫
�N

u(x1, . . . , xN)

N∏
i=1

|[xi, xi+1]|β·|[ti ,ti+1]|−1 dx1 · · · dxN

with �N = {(x1, . . . , xN) ∈ (S1)N :
∑N
i=1 |[xi, xi+1]| = 1} and xN+1 := x1,

tN+1 := t1. In particular, with N = 1 this means
∫
G u(gt ) dQβ(g) = ∫

S1 u(x) dx

for each t ∈ S1.
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PROOF OF PROPOSITION 3.2. It suffices to prove that (3.9) defines a con-
sistent family of finite dimensional distributions. The existence of Qβ (as a “pro-
jective limit”) then follows from Kolmogorov’s extension theorem. The required
consistency means that

�(β)∏N
i=1�(β · |[ti , ti+1]|)

∫
�N

N∏
i=1

|[xi, xi+1]|β·|[ti ,ti+1]|−1u(x1, . . . , xN)dx1 · · · dxN

= �(β)

�(β · |[t1, t2]|) · · ·�(β · |[tk−1, tk+1]|) · · ·�(β · |[tN , t1]|)
·
∫
�N−1

|[x1, x2]|β·|[t1,t2]|−1 · · · |[xk−1, xk+1]|β·|[tk−1,tk+1]|−1 · · ·

× |[xN, x1]|β·|[tN ,t1]|−1

· v(x1, . . . , xk−1, xk, . . . , xN)dx1 · · · dxk−1 dxk+1 · · · dxN,
whenever u(x1, . . . , xN)= v(x1, . . . , xk−1, xk, . . . , xN) for all (x1, . . . , xN) ∈�N .
The latter is an immediate consequence of the well-known fact (Euler’s beta inte-
gral) that∫

[xk−1,xk+1]
|[xk−1, xk]|β·|[tk−1,tk]|−1 · |[xk, xk+1]|β·|[tk,tk+1]|−1 dxk

= �(β · |[tk−1, tk]|)�(β · |[tk, tk+1]|)
�(β · |[tk−1, tk+1]|) |[xk−1, xk+1]|β·|[tk−1,tk+1]|−1. �

For s ∈ S1 let θ̂s :G→ G, g �→ g ◦ θs be the isomorphism of G induced by the
rotation θs :S1 → S1, t �→ t+s. Obviously, the measure Qβ on G is invariant under
each of the maps θ̂s . Hence, Qβ induces a probability measure Q

β
1 on the quotient

spaces G1 = G/S1.
Recall the definition of the map χ :G→P , g �→ g∗ Leb. Since (g ◦ θs)∗ Leb=

g∗ Leb this canonically extends to a map χ : G1 → P . (As mentioned before, the
latter is even an isometry.)

DEFINITION 3.3. The entropic measure Pβ on P is defined as the push for-
ward of the Dirichlet process Qβ on G (or equivalently, of the measure Q

β
1 on G1)

under the map χ . That is, for all bounded measurable u :P →R∫
P
u(μ)dPβ(μ)=

∫
G
u(g∗ Leb) dQβ(g).

3.3. The measures Q
β
0 and P

β
0 . The subspaces {g ∈ G :g(0) = 0} and {g ∈

G0 :g(0) = 0} can obviously be identified. Conditioning the probability measure
Qβ onto this event thus will define a probability measure Q

β
0 on G0. However, we

prefer to give the direct construction of Q
β
0 .
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PROPOSITION 3.4. For each real number β > 0 there exists a unique proba-
bility measure Q

β
0 on G0, called Dirichlet process, with the property that for each

N ∈N and each family 0= t0 < t1 < t2 < · · ·< tN < tN+1 = 1

Q
β
0 (gt1 ∈ dx1, . . . , gtN ∈ dxN)

(3.10)

= �(β)∏
i �(β · (ti+1 − ti))

∏
i

(xi+1 − xi)β·(ti+1−ti )−1 dx1 · · · dxN .

The precise meaning of (3.10) is that for all bounded measurable u : [0,1]N→R∫
G0

u(gt1, . . . , gtN ) dQ
β
0 (g)

= �(β)∏N
i=1�(β · (ti+1 − ti))

×
∫
�N

u(x1, . . . , xN)

N∏
i=0

(xi+1 − xi)β·(ti+1−ti )−1 dx1 · · · dxN

with �N = {(x1, . . . , xN) ∈ [0,1]N : 0 < x1 < x2 < · · · < xn < 1} and x0 = 0,
xN+1 := 1, t0 = 0, tN+1 := 1.

REMARK 3.5. According to these explicit formulae, it is easy to calculate the
moments of the Dirichlet process. For instance,

E
β
0 (gt ) :=

∫
G0

gt dQ
β
0 (g)= t

and

Varβ0 (gt ) :=
∫
G0

(gt − t)2 dQ
β
0 (g)=

1

1+ β t(1− t)
for all β > 0 and all t ∈ [0,1].

DEFINITION 3.6. The entropic measure P
β
0 on P0 = P ([0,1]) is defined as

the push forward of the Dirichlet process Q
β
0 on G0 under the map χ . That is, for

all bounded measurable u :P0 →R∫
P0

u(μ)dP
β
0 (μ)=

∫
G0

u(g∗Leb) dQ
β
0 (g).

REMARK 3.7. (i) According to the above construction Q
β
0 (·) = Qβ(·|

g(0)= 0) and ∫
G0

u(g)dQ
β
0 (g)=

∫
G
u
(
g− g(0))dQβ(g),
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∫
G
u(g)dQβ(g)=

∫ 1

0

∫
G0

u(g + x)dQ
β
0 (g) dx.

(ii) Analogously, the entropic measures on the sphere and on the unit interval
are linked as follows∫

P
u(μ)dPβ(μ)=

∫ 1

0

∫
P0

u((θx)∗μ)dP
β
0 (μ)dx

or briefly

dPβ =
∫ 1

0
[(θ̂x)∗ dP

β
0 ]dx,

where θx :S1 → S1, y �→ x + y and θ̂x :P → P :μ �→ (θx)∗μ. We would like
to emphasize, however, that Pβ �= P

β
0 . For instance, consider u(μ) := ∫

f dμ for
some f :S1 →R (which may be identified with f : [0,1]→R). Then∫

P (S1)
u(μ)dPβ(μ)=

∫
S1
f (x) dx,

whereas ∫
P ([0,1])

u(μ)dP
β
0 (μ)=

∫
[0,1]

f (x)ρβ(x) dx

with ρβ(x)= �(β)
�(βt)�(β(1−t))

∫ 1
0 x

βt−1(1− x)β(1−t)−1 dt .

According to the last remark, it suffices to study in detail one of the four mea-
sures Qβ , Q

β
0 , Pβ and P

β
0 . We will concentrate in the rest of this chapter on the

measure Q
β
0 which seems to admit the most easy interpretations.

3.4. The Dirichlet process as normalized Gamma process. We start recall-
ing some basic facts about the real valued Gamma processes. For α > 0 de-
note by G(α) the absolutely continuous probability measure on R+ with density

1
�(α)

xα−1e−x .

DEFINITION 3.8. A real valued Markov process (γt )t≥0 starting in zero is
called standard Gamma process if its increments γt − γs are independent and dis-
tributed according toG(t− s) for 0≤ s < t . Without loss of generality we may as-
sume that almost surely the function t→ γt is right continuous and nondecreasing.

Alternatively the Gamma process may be defined as the unique pure jump
Lévy process with Lévy measure �(dx)= 1x>0

e−x
x
dx. The connection between

pure jump Lévy and Poisson point processes gives rise to several other equiva-
lent representations of the Gamma process [6, 18]. For instance, let � = {p =
(px,py) ∈ R2} be the Poisson point process on R+ ×R+ with intensity measure
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dx ×�(dy) with � as above, then a Gamma process is obtained by

γt :=
∑

p∈� : px≤t
py.(3.11)

For β > 0 the process γt ·β is a Lévy process with Lévy measure �β(dx) =
β · 1x>0

e−x
x
dx. Its increments are distributed according to

P(γβ·t − γβ·s ∈ dx)= 1

�(β · (t − s))x
β·(t−s)−1e−x dx.

PROPOSITION 3.9. For each β > 0, the law of the process (γt ·β
γβ
)t∈[0,1] is the

Dirichlet process Q
β
0 .

PROOF. This well-known fact is easily obtained from Lukacs’ characteriza-
tion of the Gamma distribution [11]. �

3.5. Support properties.

PROPOSITION 3.10. (i) For each β > 0, the measure Q
β
0 has full support

on G0.
(ii) Q

β
0 -almost surely the function t �→ g(t) is strictly increasing but increases

only by jumps (i.e., the jumps heights add up to 1 and the jump locations are dense
in [0,1]).

(iii) For each fixed t0 ∈ [0,1], Q
β
0 -almost surely the function t �→ g(t) is con-

tinuous at t0.

PROOF. (i) Let g ∈ G ⊂ L2([0,1], dx) and ε > 0 then we have to show
Qβ(Bε(g)) > 0, where Bε(g) = {h ∈ G0 :‖h − g‖L2([0,1]) < ε}. For this choose
finitely many points ti ∈ [0,1] together with δi > 0 such that the set S := {f ∈
G | |f (ti)− g(ti)| ≤ δi ∀i} is contained in Bε(g). Clearly, from (3.10) Qβ(S) > 0
which proves the claim.

(ii) (3.10) implies that Q
β
0 -almost surely g(s) < g(t) for each given pair s < t .

Varying over all such rational pairs s < t , it follows that a.e. g is strictly increasing
on R+.

In terms of the probabilistic representation (3.9), it is obvious that g increases
only by jumps.

(iii) This also follows easily from the representation as a normalized Gamma
process (3.9). �

Restating the previous property (ii) in terms of the entropic measure yields that
P
β
0 -a.e. μ ∈P0 is “Cantor like.” More precisely,

COROLLARY 3.11. P
β
0 -almost surely the measure μ ∈ P0 has no absolutely

continuous part and no discrete part. The topological support of μ has Lebesgue
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measure 0. Moreover,

Ent(μ)=+∞.(3.12)

PROOF. The assertion on the entropy of μ is an immediate consequence of
the statement on the support of μ. The second claim follows from the fact that the
jump heights of g add up to 1. �

In terms of the measure Q
β
0 , the last assertion of the corollary states that

S(g)=+∞ for Q
β
0 -a.e. g ∈ G0.

3.6. Scaling and invariance properties. The Dirichlet process Q
β
0 on G0 has

the following Markov property: the distribution of g|[s,t] depends on g[0,1]\[s,t]
only via g(s), g(t).

And the Dirichlet process Q
β
0 on G0 has a remarkable self-similarity property:

if we restrict the functions g onto a given interval [s, t] and then linearly rescale
their domain and range in order to make them again elements of G0 then this new

process is distributed according to Q
β ′
0 with β ′ = β · |t − s|.

PROPOSITION 3.12. For each β > 0, and each s, t ∈ [0,1], s < t
Q
β
0

(
g|[s,t] ∈ ·

∣∣g[0,1]\[s,t])=Q
β
0

(
g|[s,t] ∈ ·|g(s), g(t))(3.13)

and

(s,t )∗Qβ0 =Q
β·|t−s|
0 ,(3.14)

where s,t :G0 → G0 with s,t (g)(r)= g((1−r)s+rt)−g(s)
g(t)−g(s) for r ∈ [0,1].

PROOF. Both properties follow immediately from the representation in Propo-
sition 3.10. �

COROLLARY 3.13. The probability measures Q
β
0 , β > 0 on G0 are uniquely

characterized by the self-similarity property (3.14) and the distributions of g1/2:

Q
β
0 (g1/2 ∈ dx)= �(β)

�(β/2)2
· [x(1− x)]β/2−1 dx.

PROPOSITION 3.14. (i) For β → 0 the measures Q
β
0 weakly converge to a

measure Q0
0 defined as the uniform distribution on the set {1[t,1] : t ∈]0,1]} ⊂ G0.

Analogously, the measures Qβ weakly converge for β → 0 to a measure Q0

defined as the uniform distribution on the set of constant maps {t : t ∈ S1} ⊂ G.
(ii) For β → ∞ the measures Q

β
0 (or Qβ ) weakly converge to the Dirac

mass δe on the identity map e of [0,1] (or S1, resp.).
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PROOF. (i) Since the space G0 (equipped with the L2-topology) is compact,
so is P (G0) (equipped with the weak topology). Hence the family Q

β
0 , β > 0 is

pre-compact. Let Q0
0 denote the limit of any converging subsequence of Q

β
0 for

β→ 0. According to the formula for the one-dimensional distributions, for each
t ∈]0,1[

Q
β
0 (gt ∈ dx) =

�(β)

�(βt)�(β(1− t)) · x
βt−1(1− x)β(1−t)−1 dx

−→ (1− t)δ{0}(dx)+ tδ{1}(dx)
as β→ 0. Hence, Q0

0 is the uniform distribution on the set {1[t,1] : t ∈]0,1]} ⊂ G0.

(ii) Similarly, Q
β
0 (gt ∈ dx)→ δt (dx) as β→∞. Hence, δe with e : t �→ t will

be the unique accumulation point of Q
β
0 for β→∞. �

Restating the previous results in terms of the entropic measures, yields that the
entropic measures P

β
0 converge weakly to the uniform distribution P0

0 on the set
{(1− t)δ{0} + tδ{1} : t ∈ [0,1]} ⊂P0; and the measures Pβ converge weakly to the

uniform distribution P0 on the set {δ{t} : t ∈ S1} ⊂P whereas for β→∞ both, P
β
0

and Pβ , will converge to δLeb, the Dirac mass on the uniform distribution of [0,1]
or S1, respectively.

The assertions of Proposition 3.12 imply the following Markov property and
self-similarity property of the entropic measure.

PROPOSITION 3.15. For each each x, y ∈ [0,1], x < y
P
β
0

(
μ|[x,y] ∈ ·

∣∣μ|[0,1]\[x,y])= P
β
0

(
μ|[x,y] ∈ ·|μ([x, y]))

and

P
β
0

(
μ|[x,y] ∈ ·|μ([x, y])= α)= P

β·α
0 (μx,y ∈ ·)

with μx,y ∈ P0 (‘rescaling of μ|[x,y]’) defined by μx,y(A) = 1
μ([x,y])μ(x + (y −

x) ·A) for A⊂ [0,1].

3.7. Dirichlet processes on general measurable spaces. Recall Ferguson’s no-
tion of a Dirichlet process on a general measurable space M with parameter mea-
sure m onM . This is a probability measure QmP (M) on P (M), uniquely defined by

the fact that for any finite measurable partition M = ⋃̇N+1
i=1 Mi and σi :=m(Mi).

QmP (M)
(
μ :μ(M1) ∈ dx1, . . . ,μ(MN) ∈ dxN )

= �(m(M))∏N+1
i=1 �(σi)

x
σ1−1
1 · · ·xσN−1

N

(
1−

N∑
i=1

xi

)σN+1−1

dx1 · · · dxN .
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If a map h :M→M leaves the parameter measure m invariant then obviously the
induced map ĥ :P (M)→ P (M), μ �→ h∗μ leaves the Dirichlet process QmP (M)
invariant.

In the particular case M = [0,1] and m= β · Leb, the Dirichlet process QmP (M)

can be obtained as push forward of the measure Q
β
0 (introduced before) under the

isomorphism ζ :G0 → P ([0,1]) which assigns to each g the induced Lebesgue–
Stieltjes measure dg (the inverse ζ−1 assigns to each probability measure its dis-
tribution function):

QmP ([0,1]) = ζ∗Qβ0 .(3.15)

Note that the support properties of the measure QmP ([0,1]) are completely

different from those of the measure P
β
0 . In particular, QmP ([0,1])-almost every

μ ∈P ([0,1]) is discrete and has full topological support; cf. Corollary 3.11. The
invariance properties of QmP ([0,1]) under push forwards by means of measure pre-
serving transformations of [0,1] seems to have no intrinsic interpretation in terms
of Q

β
0 .

4. The change of variable formula for the Dirichlet process and for the
entropic measure. Our main result in this chapter will be a change of variable
formula for the Dirichlet process. To motivate this formula, let us first present an
heuristic derivation based on the formal representation (3.1).

4.1. Heuristic approaches to change of variable formulae. Let us have a look
on the change of variable formula for the Wiener measure. On a formal level, it
easily follows from Feynman’s heuristic interpretation

dPβ(g)= 1

Z
e−β/2

∫ 1
0 g

′(t)2 dt dP(g)

with the (nonexisting) “uniform distribution” P. Assuming that the latter is “trans-
lation invariant” (i.e., invariant under additive changes of variables—at least in
“smooth” directions h) we immediately obtain

dPβ(h+ g)= 1

Z
e−β/2

∫ 1
0 (h+g)′(t)2 dt dP(h+ g)

= 1

Z
e−β/2

∫ 1
0 h

′(t)2 dt−β ∫ 1
0 h

′(t)g′(t) dt · e−β/2
∫ 1

0 g
′(t)2 dt dP(g)

= e−β/2
∫ 1

0 h
′(t)2 dt−β ∫ 1

0 h
′(t) dg(t) dPβ(g).

If we interpret
∫ 1

0 h
′(t) dg(t) as the Itô integral of h′ with respect to the Brown-

ian path g then this is indeed the famous Cameron–Martin–Girsanov–Maruyama
theorem.
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In the case of the entropic measure, the starting point for a similar argumentation
is the heuristic interpretation

dQ
β
0 (g)=

1

Z
eβ

∫ 1
0 logg′(t) dt dQ0(g),

again with a (nonexisting) “uniform distribution” Q0 on G0. The natural concept
of “change of variables,” of course, will be based on the semigroup structure of
the underlying space G0; that is, we will study transformations of G0 of the form
g �→ h ◦ g for some (smooth) element h ∈ G0. It turns out that Q0 should not be
assumed to be invariant under translations but merely quasi-invariant:

dQ0(h ◦ g)= Y 0
h (g) dQ0(g)

with some density Yh. This immediately implies the following change of variable
formula for Q

β
0 :

dQ
β
0 (h ◦ g)=

1

Z
eβ

∫ 1
0 log(h◦g)′(t) dt dQ0(h ◦ g)

= 1

Z
eβ

∫ 1
0 logh′(g(t)) dt · eβ

∫ 1
0 logg′(t) dt · Y 0

h (g) dQ0(g)

= eβ
∫ 1

0 logh′(g(t)) dt · Y 0
h (g) dQ

β
0 (g).

This is the heuristic derivation of the change of variables formula. Its rigorous
derivation (and the identification of the density Yh) is the main result of this chap-
ter.

4.2. The change of variables formula on the sphere. For g,h ∈ G with h ∈ C2

we put

Y 0
h (g) :=

∏
a∈Jg

√
h′(g(a−)) · h′(g(a+))
δ(h ◦ g)/δg(a) ,(4.1)

where Jg ⊂ S1 denotes the set of jump locations of g and

δ(h ◦ g)
δg

(a) := h(g(a+))− h(g(a−))
g(a+)− g(a−) .

To simplify notation, here and in the sequel (if no ambiguity seems possible), we
write y − x instead of |[x, y]| to denote the length of the positively oriented seg-
ment from x to y in S1. We will see below that the infinite product in the definition
of Y 0

h (g) converges for Qβ -a.e. g ∈ G. Moreover, for β > 0 we put

X
β
h (g) := exp

(
β

∫ 1

0
logh′(g(s)) ds

)
, Y

β
h (g) :=Xβh (g) · Y 0

h (g).(4.2)
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THEOREM 4.1. Each C2-diffeomorphism h ∈ G induces a bijective map
τh :G→ G, g �→ h ◦ g which leaves the measure Qβ quasi-invariant:

dQβ(h ◦ g)= Yβh (g) dQβ(g).

In other words, the push forward of Qβ under the map τ−1
h = τh−1 is absolutely

continuous with respect to Qβ with density Yβh :

d(τh−1)∗Qβ(g)
dQβ(g)

= Yβh (g).

The function Yβh is bounded from above and below (away from 0) on G.

By means of the canonical isometry χ :G→P , g �→ g∗ Leb, Theorem 4.1 im-
mediately implies:

COROLLARY 4.2. For each C2-diffeomorphism h ∈ G the entropic measure
Pβ is quasi-invariant under the transformation μ �→ h∗μ of the space P :

dPβ(h∗μ)= Yβh (χ−1(μ)) dPβ(μ).

The density Yβh (χ
−1(μ)) introduced in (4.2) can be expressed as follows

Y
β
h (χ

−1(μ))= exp
[
β

∫ 1

0
logh′(s)μ(ds)

]
· ∏
I∈gaps(μ)

√
h′(I−) · h′(I+)
|h(I)|/|I | ,

where gaps(μ) denotes the set of segments I =]I−, I+[⊂ S1 of maximal length
with μ(I)= 0 and |I | denotes the length of such a segment.

4.3. The change of variables formula on the interval. From the representation
of Qβ as a product of Q

β
0 and Leb (see Remark 3.7) and the change of variable

formulae for Qβ and Leb, one can deduce a change of variable formula for Q
β
0

similar to that of Theorem 4.1 but containing an additional factor 1
h′(0) . In this

case, one has to restrict to translations by means of C2-diffeomorphisms h ∈ G
with h(0)= 0.

More generally, one might be interested in translations of G0 by means of
C2-diffeomorphisms h ∈ G0. In contrast to the previous situation, it now may hap-
pen that h′(0) �= h′(1).

For g ∈ G0 and C2-ismorphism h : [0,1]→ [0,1] we put

Y
β
h,0(g) :=Xβh (g) · Yh,0(g)(4.3)

with

Yh,0(g)= 1√
h′(0) · h′(1) · Y

0
h (g)
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and Xβh (g) and Y 0
h (g) defined as before in (4.1), (4.2). Note that here and in the

sequel by a C2-isomorphism h ∈ G0 we understand an increasing homeomorphism
h : [0,1] → [0,1] such that h and h−1 are bounded in C2([0,1]), which in partic-
ular implies h′ > 0.

THEOREM 4.3. Each translation τh :G0 → G0, g �→ h ◦ g by means of a
C2-isomorphism h ∈ G0 leaves the measure Q

β
0 quasi-invariant:

dQ
β
0 (h ◦ g)= Yβh,0(g) dQ

β
0 (g)

or, in other words,

d(τh−1)∗Qβ0 (g)
dQ

β
0 (g)

= Yβh,0(g).

The function Yβh,0 is bounded from above and below (away from 0) on G0.

COROLLARY 4.4. For each C2-isomorphism h ∈ G0 the entropic measure P
β
0

is quasi-invariant under the transformation μ �→ h∗μ of the space P0:

dP
β
0 (h∗μ)
dP

β
0 (μ)

= exp
[
β

∫ 1

0
logh′(s)μ(ds)

]
· 1√
h′(0) · h′(1)

· ∏
I∈gaps(μ)

√
h′(I−) · h′(I+)
|h(I)|/|I | ,

where gaps(μ) denotes the set of intervals I =]I−, I+[⊂ [0,1] of maximal length
with μ(I)= 0 and |I | denotes the length of such an interval.

REMARK 4.5. Theorem 4.3 seems to be unrelated to the quasi-invariance of
the measure QmP ([0,1]) under the transformation dg → h · dg/〈h,dg〉 shown in
[15]. Nor is it anyhow implied by the quasi-ivarariance formula for the general
measure valued gamma process as in [31] with respect to a similar transformation.
In our present case the latter would correspond to the mapping dγ → h · dγ of the
(measure valued) Gamma process dγ .

4.4. Proofs for the sphere case.

LEMMA 4.6. For each C2-diffeomorphism h ∈ G

X
β
h (g)= lim

k→∞

k−1∏
i=0

[
h(g(ti+1))− h(g(ti))
g(ti+1)− g(ti)

]β(ti+1−ti )
.(4.4)

Here ti = i
k

for i = 0,1, . . . , k− 1 and tk = 0. Thus ti+1 − ti := |[ti , ti+1]| = 1
k

for
all i.
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PROOF. Without restriction, we may assume β = 1. According to Taylor’s
formula

h(g(ti+1))= h(g(ti))+ h′(g(ti)) · (g(ti+1)− g(ti))
+ 1

2h
′′(γi) · (g(ti+1)− g(ti))2

for some γi ∈ [g(ti), g(ti+1)]. Hence,

lim
k→∞

k−1∏
i=0

[
h(g(ti+1))− h(g(ti))
g(ti+1)− g(ti)

]ti+1−ti

= lim
k→∞

k−1∏
i=0

[
h′(g(ti))+ 1

2
h′′(γi) · (g(ti+1)− g(ti))

]ti+1−ti

= lim
k→∞ exp

(
k−1∑
i=0

{[
logh′(g(ti))

+ log
(

1+ 1

2

h′′(γi)
h′(g(ti))

(
g(ti+1)− g(ti))

)]
· (ti+1 − ti)

})

(�)= exp

(
lim
k→∞

k−1∑
i=0

{logh′(g(ti)) · (ti+1 − ti)}
)

= exp
(∫ 1

0
logh′(g(t)) dt

)
=X1

h(g).

Here (�) follows from the fact that

1+ 1

2

h′′(γi)
h′(g(ti))

· (g(ti+1)− g(ti))= h(g(ti+1))− h(g(ti))
g(ti+1)− g(ti) · 1

h′(g(ti))

= h′(ηi) · 1

h′(g(ti))
≥ ε > 0

for some ηi ∈ [g(ti), g(ti+1)] and some ε > 0, independent of i and k. Thus

k−1∑
i=0

∣∣∣∣log
[
1+ 1

2

h′′(γi)
h′(g(ti))

· (g(ti+1)− g(ti))
]∣∣∣∣ · (ti+1 − ti)

≤ C1 ·
k−1∑
i=0

1

2

∣∣∣∣ h
′′(γi)

h′(g(ti))

∣∣∣∣ · (g(ti+1)− g(ti)) · (ti+1 − ti)

≤ C2 ·
k−1∑
i=0

(
g(ti+1)− g(ti)) · (ti+1 − ti)≤ C3 · 1

k
.

�
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LEMMA 4.7. For each C3-diffeomorphism h ∈ G

Y 0
h (g) := lim

k→∞

k−1∏
i=0

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]
,(4.5)

where ti = i
k

for i = 0,1, . . . , k− 1 and tk = 0.

PROOF. Let h and g be given. Depending on some ε > 0 let us choose l ∈ N

large enough (to be specified in the sequel) and let a1, . . . , al denote the sites in
[0,1) where the l largest jumps of g occur. Put J ∗g = Jg \ {a1, . . . , al} and for
simplicity al+1 := a1. For k very large (compared with l) and j = 1, . . . , l let kj
denote the index i ∈ {0,1, . . . , k − 1}, for which aj ∈ [ti , ti+1[. Then again by
Taylor’s formula

kj+1−1∏
i=kj+1

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]−1

=
kj+1−1∏
i=kj+1

[
1+ 1

2

h′′(g(ti))
h′(g(ti))

· (g(ti+1)− g(ti))

+ 1

6

h′′′(ηi)
h′(g(ti))

· (g(ti+1)− g(ti))2
]

(1a)≤ exp

(kj+1−1∑
i=kj+1

log
[
1+

{
1

2
(logh′)′(g(ti))+ ε

l

}
· (g(ti+1)− g(ti))

])

(1b)≤ eε/l · exp

(
1

2

kj+1−1∑
i=kj+1

(logh′)′(g(ti)) · (g(ti+1)− g(ti))
)
,

provided l and k are chosen so large that

|g(ti+1)− g(ti)| ≤ ε

C1 · l
for all i ∈ {0, . . . , k− 1} \ {k1, . . . , kl}, where C1 = supx,y

|h′′′(x)|
6·h′(y) .

On the other hand,√√√√ h′(g(tkj+1))

h′(g(tkj+1))
= exp

(∫ g(tkj+1 )

g(tkj+1)

(
1

2
logh′

)′
(s) ds

)

= exp

(kj+1−1∑
i=kj+1

[(
1

2
logh′

)′
(g(ti)) · (g(ti+1)− g(ti))
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+
(

1

2
logh′

)′′
(γi) · 1

2

(
g(ti+1)− g(ti))2

])

(2)≥ e−ε/l · exp

(
1

2

kj+1−1∑
i=kj+1

(logh′)′(g(ti)) · (g(ti+1)− g(ti))
)
,

provided l and k are chosen so large that

|g(ti+1)− g(ti)| ≤ ε

C2 · l
for all i ∈ {0,1, . . . , k− 1} \ {k1, . . . , kl}, where C2 = supx |(1

2 logh′)′′(x)|.

Therefore,

∏
i∈{0,1,...,k−1}\{k1,...,kl}

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]−1

≤ e2ε ·
l∏
j=1

√√√√ h′(g(tkj+1))

h′(g(tkj+1))
= (I).

In order to derive the corresponding lower estimate, we can proceed as before in
(1a) and (2) (replacing ε by −ε and ≤ by ≥ and vice versa). To proceed as in (1b)
we have to argue as follows

exp

(kj+1−1∑
i=kj+1

log
[
1+

{(
1

2
logh′

)′
(g(ti))− ε

l

}
· (g(ti+1)− g(ti))

])

(1c)≥ e−ε/l · exp

(kj+1−1∑
i=kj+1

(1− ε) ·
(

1

2
logh′

)′
(g(ti)) · (g(ti+1)− g(ti))

)
,

provided l and k are chosen so large that

log
(
1+C3 · (g(ti+1)− g(ti)))≥ (1− ε) ·C3 · (g(ti+1)− g(ti))

for all i ∈ {0,1, . . . , k− 1} \ {k1, . . . , kl}, where C3 = supx |(1
2 logh′)′(x)|.

Thus we obtain the following lower estimate

∏
i∈{0,1,...,k−1}\{k1,...,kl}

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]−1

≥ e−2ε ·
[
l∏
j=1

√√√√ h′(g(tkj+1))

h′(g(tkj+1))

]1−ε



1138 M.-K. VON RENESSE AND K.-T. STURM

≥ e−2ε ·C−ε/23 ·
l∏
j=1

√√√√ h′(g(tkj+1))

h′(g(tkj+1))
= (II),

since[
l∏
j=1

√√√√ h′(g(tkj+1))

h′(g(tkj+1))

]ε
= exp

(
ε

2

l∑
j=1

[logh′(g(tkj+1))− logh′(g(tkj+1))]
)

≤ exp

(
ε

2

l∑
j=1

C3 · [g(tkj+1)− g(tkj+1)]
)

≤ exp
(
ε

2
C3

)
,

where C3 = supx |(logh′)′(x)|.
Now for fixed l as k→∞ the bound (I) converges to

(I′)= e2ε ·
l∏
j=1

√
h′(g(aj+1−))
h′(g(aj+))

and the bound (II) to

(II′)= e−2ε ·C−ε/23 ·
l∏
j=1

√
h′(g(aj+1−))
h′(g(aj+)) .

Finally, it remains to consider

∏
i∈{k1,...,kl}

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]−1

= (III).

Again for fixed l and k→∞ this obviously converges to

(III′)=
l∏
j=1

[
1

h′(g(aj−)) ·
δ(h ◦ g)
δg

(aj )

]
.

Putting together these estimates and letting l→∞, we obtain the claim. �

LEMMA 4.8. (i) For all g,h ∈ G with h ∈ C2 strictly increasing, the infinite
product in the definition of Y 0

h (g) converges. There exists a constant C = C(β,h)
such that ∀g ∈ G

1

C
≤ Yβh (g)≤ C.

(ii) If hn→ h in C2 then Y 0
hn
(g)→ Y 0

h (g).

(iii) Let Y 0
h,k,X

β
h,k, Y

β
h,k denote the sequences used in Lemmas 4.6 and 4.7

to approximate Y 0
h ,X

β
h ,Y

β
h . Then there exists a constant C = C(β,h) such that
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∀g ∈ G, ∀k ∈N

1

C
≤ Yβh,k(g)≤ C.

PROOF. (i) Put C = sup |(logh′)′|. Given g ∈ G and ε > 0, we choose k
large enough such that

∑
a∈Jg(k) |g(a+) − g(a−)| ≤ ε, where Jg(k) = Jg \

{a1, a2, . . . , ak} denotes the “set of small jumps” of g. Here we enumerate the
jump locations a1, a2, . . . ∈ Jg according to the size of the respective jumps. Then
with suitable ξa ∈ [g(a−), g(a+)]∑

a∈Jg(k)

∣∣∣∣log

√
h′(g(a−))√h′(g(a+))
δ(h ◦ g)/(δg)(a)

∣∣∣∣
≤ ∑
a∈Jg(k)

∣∣∣∣12 logh′(g(a−))+ 1

2
logh′(g(a−))− logh′(ξ(a))

∣∣∣∣
≤ ∑
a∈Jg(k)

∣∣C · (g(a+)− g(a−))∣∣= C · ε.
Hence, the infinite sum
∑
a∈Jg

log

√
h′(g(a−))√h′(g(a+))
δ(h ◦ g)/(δg)(a) = lim

k→∞
∑

a∈Jg(k)
log

√
h′(g(a−))√h′(g(a+))
δ(h ◦ g)/(δg)(a)

is absolutely convergent and thus also infinite product in the definition of Y 0
h (g)

converges. The same arguments immediately yield

| logY 0
h (g)| ≤

∑
a∈Jg

∣∣∣∣12 logh′(g(a−))+ 1

2
logh′(g(a−))− logh′(ξ(a))

∣∣∣∣
(4.6)

≤ C.

(ii) In order to prove the convergence Y 0
hn
(g)→ Y 0

h (g), for given g ∈ G we
split the product over all jumps into a finite product over the big jumps and an
infinite product over all small jumps. Obviously, the finite products will converge
(for any choice of k)

∏
a∈{a1,...,ak}

√
h′n(g(a−))

√
h′n(g(a+))

δ(hn ◦ g)/(δg)(a) −→ ∏
a∈{a1,...,ak}

√
h′(g(a−))√h′(g(a+))
δ(h ◦ g)/(δg)(a)

as n→∞ provided hn → h in C2. Now let C = supn supx |(logh′n)′(x)| and
choose k as before. Then uniformly in n∣∣∣∣∣log

∏
a∈Jg\{a1,...,ak}

√
h′n(g(a−))

√
h′n(g(a+))

δ(hn ◦ g)/(δg)(a)
∣∣∣∣∣≤ C · ε.
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(iii) Let C1 = supx |h′(x)| and C2 = supx |(logh′)′(x)|. Then for all g and k:

Xh,k(g)=
k−1∏
i=0

h′(ηi)ti+1−ti ≤ C1

and

Y 0
h,k(g)=

k−1∏
i=0

h′(g(ti))
h′(γi)

= exp

[
k−1∑
i=0

(logh′)′(ζi) · (g(ti)− γi)
]

≤ exp

[
C2 ·

k−1∑
i=0

|g(ti)− γi |
]
≤ exp(C2)

(with suitable γi, ηi ∈ [g(ti), g(ti+1)] and ζi ∈ [g(ti), γi]). Analogously, the lower
estimates follow. �

PROOF OF THEOREM 4.1. In order to prove the equality of the two measures
under consideration, it suffices to prove that all of their finite dimensional distrib-
utions coincide. That is, for each m ∈ N, each ordered family t1, . . . , tm of points
in S1 and each bounded continuous u : (S1)m −→R one has to verify that∫

G
u(h−1(g(t1)), h

−1(g(t2)), . . . , h
−1(g(tm))) dQβ(g)

=
∫
G
u(g(t1), g(t2), . . . , g(tm)) · Yβh (g) dQβ(g).

Without restriction, we may restrict ourselves to equidistant partitions, that is, ti =
i
m

for i = 1, . . . ,m. Let us fix m ∈N, u and h. For simplicity, we first assume that
h is C3. Then by Lemmas 4.6–4.8 and Lebesgue’s theorem∫

G
u

(
g

(
1

m

)
, . . . , g(1)

)
· Yβh (g) dQβ(g)

=
∫
G
u

(
g

(
1

m

)
, . . . , g(1)

)
· lim
k→∞Y

β
h,k(g) dQβ(g)

= lim
k→∞

∫
G
u

(
g

(
1

m

)
, . . . , g(1)

)

·
mk−1∏
i=0

[
h′
(
g

(
i

km

))
· g((i + 1)/(km))− g(i/(km))
h(g((i + 1)/(km)))− h(g(i/(km)))

]

·
mk−1∏
i=0

[
h(g((i + 1)/(km)))− h(g(i/(km)))
g((i + 1)/(km))− g(i/(km))

]β/(km)
dQβ(g)
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= lim
k→∞

�(β)

[�(β/km)]km
∫
Smk1

u(xk, x2k, . . . , xmk)

mk−1∏
i=0

h′(xi)

·
mk−1∏
i=0

[h(xi+1)− h(xi)]β/(km)−1 dx1 · · · dxmk

= lim
k→∞

�(β)

[�(β/km)]km

×
∫
Smk1

u(xk, x2k, . . . , xmk)

·
mk−1∏
i=0

[h(xi+1)− h(xi)]β/(km)−1 dh(x1) · · · dh(xmk)

= lim
k→∞

�(β)

[�(β/km)]km
∫
Smk1

u(h−1(yk), h
−1(y2k), . . . , h

−1(ymk))

·
mk−1∏
i=0

[yi+1 − yi]β/(km)−1 dy1 · · · dymk

=
∫
G
u

(
h−1

(
g

(
1

m

))
, h−1

(
g

(
2

m

))
, . . . , h−1(g(1))

)
dQβ(g).

Now we treat the general case h ∈ C2. We choose a sequence of C3-functions
hn ∈ G with hn→ h in C2. Then

∫
G
u(h−1(g(t1)), h

−1(g(t2)), . . . , h
−1(g(tm))) dQβ(g)

= lim
n→∞

∫
G
u(h−1

n (g(t1)), h
−1
n (g(t2)), . . . , h

−1
n (g(tm))) dQβ(g)

= lim
n→∞

∫
G
u(g(t1), g(t2), . . . , g(tm)) · Yβhn(g) dQβ(g)

=
∫
G
u(g(t1), g(t2), . . . , g(tm)) · Yβh (g) dQβ(g).

For the last equality, we have used the dominated convergence Yβhn(g)→ Y
β
h (g)

(due to Lemma 4.8). �

4.5. Proof for the interval case. The proof of Theorem 4.3 uses completely
analogous arguments as in the previous section. To simplify notation, for h ∈
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C1([0,1]), k ∈N let Xh,k, Y 0
h,k :G0 →R be defined by

Xh,k(g) :=
k−1∏
i=0

[
h(g(ti+1))− h(g(ti))
g(ti+1)− g(ti)

]ti+1−ti

and

Y 0
h,k(g) :=

[
g(t1)− g(t0)

h(g(t1))− h(g(t0))
] k−1∏
i=1

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]
,

where ti = i
k

with i = 0,1, . . . , k. Similar to the proof of Theorem 4.1 the mea-

sure Q
β
0 satisfies the following finite dimensional quasi-invariance formula.

For any u : [0,1]m−1 →R, m, l ∈N and C1-isomorphism h : [0,1]→ [0,1]∫
G0

u(h−1(g(t1)), h
−1(g(t2)), . . . , h

−1(g(tm−1))) dQ
β
0 (g)

=
∫
G0

u(g(t1), g(t2), . . . , g(tm−1)) ·Xβh,l·m(g) · Y 0
h,l·m(g)dQ

β
0 (g),

where ti = i
m

, i = 1, . . . ,m − 1. The passage to the limit for letting first l and
then m to infinity is based on the following assertions.

LEMMA 4.9. (i) For each C2-isomorphism h ∈ G0 and g ∈ G0

Xh(g)= lim
k→∞Xh,k(g).

(ii) For each C3-isomorphism h ∈ G0 and g ∈ G0

lim
k→∞Y

0
h,k(g)

= ∏
a∈Jg

√
h′(g(a+)) · h′(g(a−))
δ(h ◦ g)/(δg)(a)

× 1√
h′(g(0)) · h′(g(1−)) ·

⎧⎨
⎩

1, if g(1−)= g(1),
h′(g(1−))

δ(h ◦ g)/(δg)(1) , else,

where Jg ⊂]0,1[ is the set of jump locations of g on ]0,1[. In particular,

lim
k→∞Y

0
h,k(g)= Yh,0(g) for Q

β
0 -a.e.g.

(iii) For all g ∈ G0 and C2-isomorphism h ∈ G0, the infinite product in the
definition of Yh,0(g) converges. There exists a constant C = C(β,h) such that
∀g ∈ G0

1

C
≤ Yβh,0(g)≤ C.
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(iv) If hn→ h in C2([0,1], [0,1]) with h as above, then Y 0,hn(g)→ Y0,h(g).
(v) For each C3-isomorphism h ∈ G0 there exists a constant C = C(β,h) such

that ∀g ∈ G, ∀k ∈N

1

C
≤Xβh,k(g) · Y 0

h,k(g)≤ C.

PROOF. The proofs of (i) and (iii)–(iv) carry over from their respective coun-
terparts on the sphere, Lemmas 4.6 and 4.8 above. We sketch the proof of state-
ment (ii) which needs most modification. For ε > 0 choose l ∈N large enough and
let a2, . . . , al−1 denote the l − 2 largest jumps of g on ]0,1[. For k very large
(compared with l) we may assume that a2, . . . , al−2 ∈]2

k
,1 − 2

k
[. Put a1 := 1

k
,

al := 1− 1
k

. For j = 1, . . . , l let kj denote the index i ∈ {1, . . . , k − 1}, for which
aj ∈ [ti , ti+1[. In particular, k1 = 1 and kl = k− 1. Then using the same arguments
as in Lemma 4.7 one obtains, for k and l sufficiently large, the two-sided bounds

(I)= e2ε ·
l−1∏
j=1

√√√√ h′(g(tkj+1))

h′(g(tkj+1))

≥ ∏
i∈{1,...,k−1}\{k1,...,kl}

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]−1

≥ e−2ε ·C−ε/23 ·
l−1∏
j=1

√√√√ h′(g(tkj+1))

h′(g(tkj+1))
= (II).

For fixed l and k→∞ the bounds (I) and (II) converge to

(I′)= e2ε

√
h′(g(a2−))
h′(g(0))

·
l−2∏
j=2

√
h′(g(aj+1−))
h′(g(aj+)) ·

√
h′(g(1−))
h′(g(al−1+))

and

(II′)= e−2ε ·C−ε/23 ·
√
h′(g(a2−))
h′(g(0))

·
l−2∏
j=2

√
h′(g(aj+1−))
h′(g(aj+)) ·

√
h′(g(1−))
h′(g(al−1+)) .

It remains to consider the three remaining terms

(III)= ∏
i∈{k2,...,kl−1}

[
h′(g(ti)) · g(ti+1)− g(ti)

h(g(ti+1))− h(g(ti))
]−1

,

which for fixed l and k→∞ converges to

(III′)=
l−1∏
j=2

[
1

h′(g(aj−)) ·
δ(h ◦ g)
δg

(aj )

]
,

(IV)=
[

g(1/k)− g(0)
h(g(1/k))− h(g(0))

]−1

·
[
h′
(
g

(
1

k

))
· g(2/k)− g(1/k)
h(g(2/k))− h(g(1/k))

]−1

,
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converging by right continuity of g to

(IV′)= h′(g(0))
and

(V)=
[
h′
(
g

(
k − 1

k

))
· g(1)− g((k − 1)/k)

h(g(1))− h(g((k − 1)/k))

]−1

,

which tends, also for k→∞, to

(V′)=
⎧⎨
⎩

1, if g continuous in 1,
δ(h ◦ g)
δg

(1)
1

h′(g(1−)) , else.

Combining these estimates and letting l→∞, we obtain the first claim. The sec-
ond claim in statement (ii) follows from the fact that g is continuous in t = 1
Q
β
0 -almost surely. �

5. The integration by parts formula. In order to construct Dirichlet forms
and Markov processes on G, we will consider it as an infinite dimensional mani-
fold. For each g ∈ G, the tangent space TgG will be an appropriate completion of
the space C∞(S1,R). The whole construction will strongly depend on the choice
of the norm on the tangent spaces TgG. Basically, we will encounter two important
cases:

• in Chapter 6 we will study the case TgG = Hs(S1,Leb) for some s > 1/2, in-
dependent of g; this approach is closely related to the construction of stochastic
processes on the diffeomorphism group of S1 and Malliavin’s Brownian motion
on the homeomorphism group on S1; cf. [20].

• in Chapter 7 we will assume TgG=L2(S1, g∗Leb); in terms of the dynamics on
the space P (S1) of probability measures, this will lead to a Dirichlet form and
a stochastic process associated with the Wasserstein gradient and with intrinsic
metric given by the Wasserstein distance.

In this chapter, we develop the basic tools for the differential calculus on G. The
main result will be an integration by parts formula. These results will be indepen-
dent of the choice of the norm on the tangent space.

5.1. The drift term. For each ϕ ∈ C∞(S1,R), the flow generated by ϕ is the
map eϕ : R × S1 → S1, where for each x ∈ S1 the function eϕ(·, x) : R → S1,
t �→ eϕ(t, x) denotes the unique solution to the ODE

dxt

dt
= ϕ(xt )(5.1)

with initial condition x0 = x. Since eϕ(t, x) = etϕ(1, x) for all ϕ, t, x under con-
sideration, we may simplify notation and write etϕ(x) instead of eϕ(t, x).
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Obviously, for each ϕ ∈ C∞(S1,R) the family etϕ , t ∈ R is a group of orienta-
tion preserving, C∞-diffeomorphism of S1. [In particular, e0 is the identity map e
on S1, etϕ ◦ esϕ = e(t+s)ϕ for all s, t ∈R and (eϕ)−1 = e−ϕ .]

Since ∂
∂t
etϕ(x)|t=0 = ϕ(x) we obtain as a linearization for small t

etϕ(x)≈ x + tϕ(x).(5.2)

More precisely, ∣∣etϕ(x)− (
x + tϕ(x))∣∣≤ C · t2

as well as ∣∣∣∣ ∂∂x etϕ(x)−
(

1+ t ∂
∂x
ϕ(x)

)∣∣∣∣≤C · t2
uniformly in x and |t | ≤ 1.

For ϕ ∈ C∞(S1,R) and β > 0 we define functions V βϕ :G→R by

V βϕ (g) := V 0
ϕ (g)+ β

∫
S1
ϕ′(g(x)) dx,

where

V 0
ϕ (g) :=

∑
a∈Jg

[
ϕ′(g(a+))+ ϕ′(g(a−))

2
− ϕ(g(a+))− ϕ(g(a−))

g(a+)− g(a−)
]
.(5.3)

LEMMA 5.1. (i) The sum in (5.3) is absolutely convergent. More precisely,

|V 0
ϕ (g)| ≤

∑
a∈Jg

∣∣∣∣ϕ
′(g(a+))+ ϕ′(g(a−))

2
− ϕ(g(a+))− ϕ(g(a−))

g(a+)− g(a−)
∣∣∣∣

≤ 1

2

∫
S1
|ϕ′′(x)|dx

and

|V βϕ (g)| ≤ (1/2+ β) ·
∫
S1
|ϕ′′(x)|dx.

(ii) For each β ≥ 0

V βϕ (g)=
∂

∂t
Y βetϕ (g)

∣∣∣∣
t=0
= ∂

∂t
Y
β
e+tϕ(g)

∣∣∣∣
t=0
.(5.4)

PROOF. (i) According to Taylor’s formula, for each a ∈ Jg
ϕ′(g(a+))+ ϕ′(g(a−))

2
− δ(ϕ ◦ g)

δg
(a)

= 1

2(g(a+)− g(a−))
∫ g(a+)
g(a−)

∫ g(a+)
g(a−)

sgn(y − x) · ϕ′′(y) dy dx.
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Hence,

∑
a∈Jg

∣∣∣∣ϕ
′(g(a+))+ ϕ′(g(a−))

2
− δ(ϕ ◦ g)

δg
(a)

∣∣∣∣
≤ 1

2

∑
a∈Jg

∣∣∣∣ 1

(g(a+)− g(a−))
∫ g(a+)
g(a−)

∫ g(a+)
g(a−)

sgn(y − x) · ϕ′′(y) dy dx
∣∣∣∣

≤ 1

2

∑
a∈Jg

∫ g(a+)
g(a−)

|ϕ′′(y)|dy

= 1

2

∫
S1
|ϕ′′(y)|dy.

Finally, ∣∣∣∣
∫
S1
ϕ′(g(x)) dx

∣∣∣∣≤ sup
y∈S1

|ϕ′(y)| ≤
∫
S1
|ϕ′′(y)|dy.

(ii) Let us first consider the case β = 0.

∂

∂t
logY 0

etϕ
(g)

∣∣∣∣
t=0
= ∂

∂t

∑
a∈Jg

[
1

2
log

(
∂

∂x
etϕ

)
(g(a+))

+ 1

2
log

(
∂

∂x
etϕ

)
(g(a−))− log

δ(etϕ ◦ g)
δg

(a)

]∣∣∣∣
t=0

= ∑
a∈Jg

∂

∂t

[
1

2
log

(
∂

∂x
etϕ

)
(g(a+))

+ 1

2
log

(
∂

∂x
etϕ

)
(g(a−))− log

δ(etϕ ◦ g)
δg

(a)

]∣∣∣∣
t=0
.

In order to justify that we may interchange differentiation and summation, we
decompose (as we did several times before) the infinite sum over all jumps in Jg
into a finite sum over big jumps a1, . . . , ak and an infinite sum over small jumps in
Jg(k)= Jg \ {a1, . . . , ak}. Of course, the finite sum will make no problem. We are
going to prove that the contribution of the small jumps is arbitrarily small. Recall
from Lemma 4.8 that

∑
a∈Jg(k)

[
1

2
log

(
∂

∂x
etϕ

)
(g(a+))+ 1

2
log

(
∂

∂x
etϕ

)
(g(a−))− log

δ(etϕ ◦ g)
δg

(a)

]

≤ Ct ·
∑

a∈Jg(k)
[g(a+)− g(a−)],
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where Ct := supx | ∂∂x log( ∂
∂x
etϕ)(x)|. Now Ct ≤ C · |t | for all |t | ≤ 1 and an ap-

propriate constant C. Thus for any given ε > 0∣∣∣∣∣ ∂∂t
∑

a∈Jg(k)

[
1

2
log

(
∂

∂x
etϕ

)
(g(a+))

+ 1

2
log

(
∂

∂x
etϕ

)
(g(a−))− log

δ(etϕ ◦ g)
δg

(a)

]∣∣∣∣∣
t=0

≤ ε

provided k is chosen large enough [i.e., such that C · ∑a∈Jg(k) |g(a+) −
g(a−)| ≤ ε]. This justifies the above interchange of differentiation and summa-
tion.

Now for each x ∈ S1

∂

∂t

(
log

∂

∂x
etϕ(x)

)∣∣∣∣
t=0
= ϕ′(x)

since the linearization of etϕ for small t yields

etϕ(x)≈ x + tϕ(x), ∂

∂x
etϕ(x)≈ 1+ tϕ′(x).

Similarly, for small t we obtain

δ(etϕ ◦ g)
δg

(a)≈ 1+ t · δ(ϕ ◦ g)
δg

(a)

and thus
∂

∂t

δ(etϕ ◦ g)
δg

(a)

∣∣∣∣
t=0
= δ(ϕ ◦ g)

δg
(a).

Therefore,

∂

∂t
logY 0

etϕ
(g)

∣∣∣∣
t=0
= V 0

ϕ (g).

On the other hand, obviously

∂

∂t
logY 0

etϕ
(g)

∣∣∣∣
t=0
= ∂

∂t
Y 0
etϕ
(g)

∣∣∣∣
t=0

since Y 0
e0
(g)= 1.

Finally, we have to consider the derivative of Xetϕ . Based on the previous argu-
ments and using the fact that ∂

∂t
log( ∂

∂x
etϕ)(x) is uniformly bounded in t ∈ [−1,1]

and x ∈ S1 we immediately see

∂

∂t
logXetϕ (g)

∣∣∣∣
t=0
= ∂

∂t

∫
S1

log
(
∂

∂x
etϕ

)
(g(y)) dy

∣∣∣∣
t=0

=
∫
S1

∂

∂t
log

(
∂

∂x
etϕ

)∣∣∣∣
t=0
(g(y)) dy =

∫
S1
ϕ′(g(y)) dy.
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Again Xe0(g)= 1. Therefore,

∂

∂t
[Xetϕ ]β(g)

∣∣∣∣
t=0
= β ·

∫
S1
ϕ′(g(y)) dy

and thus

∂

∂t
Y βetϕ (g)

∣∣∣∣
t=0
= V βϕ (g).

This proves the first identity in (5.4). The proof of the second one V βϕ (g) =
∂
∂t
Y
β
e+tϕ(g)|t=0 is similar (even slightly easier). �

5.2. Directional derivatives. For functions u :G→R we will define the direc-
tional derivative along ϕ ∈ C∞(S1,R) by

Dϕu(g) := lim
t→0

1

t
[u(etϕ ◦ g)− u(g)](5.5)

provided this limit exists. In particular, this will be the case for the following
“cylinder functions.”

DEFINITION 5.2. We say that u :G→ R belongs to the class Sk(G) if it can
be written as

u(g)=U(g(x1), . . . , g(xm))(5.6)

for some m ∈N, some x1, . . . , xm ∈ S1 and some Ck-function U : (S1)m→R.

It should be mentioned that functions u ∈Sk(G) are in general not continuous
on G.

LEMMA 5.3. The directional derivative exists for all u ∈S1(G). In particular,
for u as above

Dϕu(g)= lim
t→0

1

t
[u(g+ t · ϕ ◦ g)− u(g)]

=
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕ(g(xi))

with ∂iU := ∂
∂yi
U . Moreover, Dϕ :Sk(G)→Sk−1(G) for all k ∈N∪ {∞} and

‖Dϕu‖L2(Qβ) ≤
√
m · ‖∇U‖∞ · ‖ϕ‖L2(S1).
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PROOF. The first claim follows from

Dϕu(g)= ∂

∂t
U(etϕ(g(x1)), . . . , etϕ(g(xm)))

∣∣∣∣
t=0

=
m∑
i=1

∂iU(etϕ(g(x1)), . . . , etϕ(g(xm))) · ∂
∂t
etϕ(g(xi))

∣∣∣∣
t=0

=
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕ(g(xi))

= ∂

∂t
U
(
g(x1)+ tϕ(g(x1)), . . . , g(xm)+ tϕ(g(xm)))

∣∣∣∣
t=0

= lim
t→0

1

t
[u(g+ t · ϕ ◦ g)− u(g)].

For the second claim,

‖Dϕu‖2
L2(Qβ)

=
∫
G

(
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕ(g(xi))
)2

dQβ(g)

≤
∫
G

(
m∑
i=1

(∂iU)
2(g(x1), . . . , g(xm)) ·

m∑
i=1

ϕ2(g(xi))

)
dQβ(g)

≤ ‖∇U‖2∞ ·
m∑
i=1

∫
G
ϕ2(g(xi)) dQβ(g)

=m · ‖∇U‖2∞ ·
∫
S1
ϕ2(y) dy. �

5.3. Integration by parts formula on G. For ϕ ∈ C∞(S1,R) let D∗ϕ denote the
operator in L2(G,Qβ) adjoint to Dϕ with domain S1(G).

PROPOSITION 5.4. Dom(D∗ϕ)⊃S1(G) and for all u ∈S1(G)

D∗ϕu=−Dϕu− V βϕ · u.(5.7)

PROOF. Let u, v ∈S1(G). Then∫
Dϕu · v dQβ = lim

t→0

1

t

∫
[u(etϕ ◦ g)− u(g)] · v(g) dQβ(g)

= lim
t→0

1

t

∫
[u(g) · v(e−tϕ ◦ g) · Yβe−tϕ − u(g) · v(g)]dQβ(g)

= lim
t→0

1

t

∫
u(g) · [v(e−tϕ ◦ g)− v(g)]dQβ(g)
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+ lim
t→0

1

t

∫
u(g) · v(g) · [Yβe−tϕ − 1]dQβ(g)

+ lim
t→0

1

t

∫
u(g) · [v(e−tϕ ◦ g)− v(g)] · [Yβe−tϕ − 1]dQβ(g)

=−
∫
u ·Dϕv dQβ(g)−

∫
u · v · V βϕ dQβ(g)+ 0.

To justify the last equality, note that according to Lemma 4.8 | logYβetϕ | ≤ C · |t |
for |t | ≤ 1. Hence, the claim follows with dominated convergence and (5.4). �

COROLLARY 5.5. The operator (Dϕ,S1(G)) is closable in L2(Qβ). Its clo-
sure will be denoted by (Dϕ,Dom(Dϕ)).

In other words, Dom(Dϕ) is the closure (or completion) of S1(G) with respect
to the norm

u �→
(∫
[u2 + (Dϕu)2]dQβ

)1/2

.

Of course, the space Dom(Dϕ) will depend on β but we assume β > 0 to be fixed
for the sequel.

REMARK 5.6. The bilinear form

Eϕ(u, v) :=
∫
Dϕu ·Dϕv dQβ, Dom(Eϕ) :=Dom(Dϕ)(5.8)

is a Dirichlet form on L2(G,Qβ) with form core S∞(G). Its generator (Lϕ,
Dom(Lϕ)) is the Friedrichs extension of the symmetric operator

(−D∗ϕ ◦Dϕ,S2(G)).

5.4. Derivatives and integration by parts formula on G0. Now let us have
a look on flows on [0,1]. To do so, let a function ϕ ∈ C∞([0,1],R) with
ϕ(0) = ϕ(1) = 0 be given. [Note that each such function can be regarded as
ϕ ∈ C∞(S1,R) with ϕ(0) = 0.] The flow equation (5.1) now defines a flow etϕ ,
t ∈R, of order preserving C∞ diffeomorphisms of [0,1]. In particular, etϕ(0)= 0
and etϕ(1)= 1 for all t ∈R.

Lemma 5.1 together with Theorem 4.3 immediately yields:

LEMMA 5.7. For ϕ ∈ C∞([0,1],R) with ϕ(0)= ϕ(1)= 0 and each β ≥ 0

∂

∂t
Y
β
etϕ,0

(g)

∣∣∣∣
t=0
= V βϕ (g)−

ϕ′(0)+ ϕ′(1)
2

=: V βϕ,0(g).(5.9)
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For functions u :G0 → R we will define the directional derivative along ϕ ∈
C∞([0,1],R) with ϕ(0)= ϕ(1)= 0 as before by

Dϕu(g) := lim
t→0

1

t
[u(etϕ ◦ g)− u(g)](5.10)

provided this limit exists. We will consider three classes of “cylinder functions”
for which the existence of this limit is guaranteed.

DEFINITION 5.8. (i) We say that a function u :G0 → R belongs to the class
Ck(G0) (for k ∈N∪ {0,∞}) if it can be written as

u(g)=U
(∫

�f (t)g(t) dt
)

(5.11)

for some m ∈ N, some �f = (f1, . . . , fm) with fi ∈ L2([0,1],Leb) and some
Ck-function U : Rm → R. Here and in the sequel, we write

∫ �f (t)g(t) dt =
(
∫ 1

0 f1(t)g(t) dt, . . . ,
∫ 1

0 fm(t)g(t) dt).
(ii) We say that u :G0 →R belongs to the class Sk(G0) if it can be written as

u(g)=U(g(x1), . . . , g(xm))(5.12)

for some m ∈N, some x1, . . . , xm ∈ [0,1] and some Ck-function U :Rm→R.
(iii) We say that u :G0 →R belongs to the class Zk(G0) if it can be written as

u(g)=U
(∫

�α(gs) ds
)

(5.13)

with U as above, �α = (α1, . . . , αm) ∈ Ck([0,1],Rm) and
∫ �α(gs) ds =

(
∫ 1

0 α1(gs) ds, . . . ,
∫ 1

0 αm(gs) ds).

REMARK 5.9. For each ϕ ∈ C∞(S1,R) with ϕ(0) = 0 (which can be re-
garded as ϕ ∈ C∞([0,1],R) with ϕ(0) = ϕ(1) = 0), the definitions of Dϕ in
(5.5) and (5.10) are consistent in the following sense. Each cylinder function
u ∈S1(G0) defines by v(g) := u(g − g0) (∀g ∈ G) a cylinder function v ∈S1(G)
with Dϕv =Dϕu on G0. Conversely, each cylinder function v ∈S1(G) defines by
u(g) := v(g) (∀g ∈ G0) a cylinder function u ∈S1(G0) with Dϕv =Dϕu on G0.

LEMMA 5.10. (i) The directional derivative Dϕu(g) exists for all u ∈
C1(G0) ∪ S1(G0) ∪ Z1(G0) (in each point g ∈ G0 and in each direction ϕ ∈
C∞([0,1],R) with ϕ(0) = ϕ(1) = 0) and Dϕu(g)= limt→0

1
t
[u(g + t · ϕ ◦ g)−

u(g)]. Moreover,

Dϕu(g)=
m∑
i=1

∂iU

(∫
�f (t)g(t) dt

)
·
∫
fi(t)ϕ(g(t)) dt
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for each u ∈ C1(G0) as in (5.11),

Dϕu(g)=
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕ(g(xi))

for each u ∈S1(G0) as in (5.12) and

Dϕu(g)=
m∑
i=1

∂iU

(∫
�α(gs) ds

)
·
∫
α′i (gs)ϕ(gs) ds

for each u ∈ Z1(G0) as in (5.13).
(ii) For ϕ ∈ C∞([0,1],R) with ϕ(0) = ϕ(1) = 0 let D∗ϕ,0 denote the operator

in L2(G0,Q
β
0 ) adjoint to Dϕ . Then for all u ∈ C1(G0)∪S1(G0)∪ Z1(G0)

D∗ϕ,0u=−Dϕu− V βϕ,0 · u.(5.14)

PROOF. See the proof of the analogous results in Lemma 5.3 and Proposi-
tion 5.4. �

REMARK 5.11. The operators (Dϕ,C1(G0)), (Dϕ,S1(G0)) and (Dϕ,Z1(G0))

are closable in L2(Q
β
0 ). The closures of (Dϕ,C1(G0)), (Dϕ,Z1(G0)) and (Dϕ,

S1(G0)) coincide. They will be denoted by (Dϕ,Dom(Dϕ)). See (proof of) Corol-
lary 6.11.

6. Dirichlet form and stochastic dynamics on G. At each point g ∈ G,
the directional derivative Dϕu(g) of any “nice” function u on G defines a lin-
ear form ϕ �→ Dϕu(g) on C∞(S1). If we specify a pre-Hilbert norm ‖ · ‖g on
C∞(S1) for which this linear form is continuous then there exists a unique ele-
ment Du(g) ∈ TgG with Dϕu(g) = 〈Du(g),ϕ〉g for all ϕ ∈ C∞(S1). Here TgG
denotes the completion of C∞(S1) with respect to the norm ‖ · ‖g .

The canonical choice of a Dirichlet form on G will then be (the closure of)

E(u, v)=
∫
G
〈Du(g),Dv(g)〉g dQβ(g), u, v ∈S1(G).(6.1)

Given such a Dirichlet form, there is a straightforward procedure to construct an
operator (“generalized Laplacian”) and a Markov process (“generalized Brownian
motion”). Different choices of ‖ · ‖g in general will lead to completely different
Dirichlet forms, operators and Markov processes.

We will discuss in detail two choices: in this chapter we will choose ‖ · ‖g
(independent of g) to be the Sobolev norm ‖ · ‖Hs for some s > 1/2; in the re-
maining chapters; ‖ · ‖g will always be the L2-norm ϕ �→ (

∫
S1 ϕ(gt )

2 dt)1/2 of
L2(S1, g∗Leb).

For the sequel, fix—once for ever—the number β > 0 and drop it from the
notations, that is, Q :=Qβ , Vϕ := V βϕ , etc.
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6.1. The Dirichlet form on G. Let (ψk)k∈N denote the standard Fourier basis
of L2(S1). That is,

ψ2k(x)=
√

2 · sin(2πkx), ψ2k+1(x)=
√

2 · cos(2πkx)

for k = 1,2, . . . and ψ1(x) = 1. It constitutes a complete orthonormal system in
L2(S1): each ϕ ∈ L2(S1) can uniquely be written as ϕ(x)=∑∞

k=1 ck ·ψk(x) with
Fourier coefficients of ϕ given by ck := ∫

S1 ϕ(y)ψk(y) dy. In terms of these Fourier
coefficients we define for each s ≥ 0 the norm

‖ϕ‖Hs :=
(
c2

1 +
∞∑
k=1

k2s · (c2
2k + c2

2k+1)

)1/2

(6.2)

on C∞(S1). The Sobolev space Hs(S1) is the completion of C∞(S1) with respect
to the norm ‖ · ‖Hs . It has a complete orthonormal system consisting of smooth
functions (ϕk)k∈N. For instance, one may choose

ϕ2k(x)=
√

2 · k−s · sin(2πkx), ϕ2k+1(x)=
√

2 · k−s · cos(2πkx)(6.3)

for k = 1,2, . . . and ϕ1(x)= 1.
A linear form A :C∞(S1)→R is continuous with respect to ‖ · ‖Hs—and thus

can be represented as A(ϕ) = 〈ψ,ϕ〉Hs for some ψ ∈ Hs(S1) with ‖ψ‖Hs =
‖A‖Hs—if and only if

‖A‖Hs :=
(
|A(ψ1)|2 +

∞∑
k=1

k2s · (|A(ψ2k)|2 + |A(ψ2k+1)|2)
)1/2

<∞.(6.4)

PROPOSITION 6.1. Fix a number s > 1/2. Then for each cylinder function
u ∈ S(G) and each g ∈ G, the directional derivative defines a continuous linear
form ϕ �→ Dϕu(g) on C∞(S1) ⊂ Hs(S1). There exists a unique tangent vector
Du(g) ∈Hs(S1) such that Dϕu(g)= 〈Du(g),ϕ〉Hs for all ϕ ∈ C∞(S1).

In terms of the family �= (ϕk)k∈N from (6.3)

Du(g)=
∞∑
k=1

Dϕku(g) · ϕk(·)

and

‖Du(g)‖2
Hs =

∞∑
k=1

|Dϕku(g)|2.(6.5)

PROOF. It remains to prove that the RHS of (6.5) is finite for each u and g
under consideration. According to Lemma 5.3, for any u ∈ S(G) represented as
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in (5.12)

∞∑
k=1

|Dϕku(g)|2 =
∞∑
k=1

(
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕk(g(xi))
)2

≤m · ‖∇U‖2∞ ·
∥∥∥∥∥
∞∑
k=1

ϕ2
k

∥∥∥∥∥∞ =m · ‖∇U‖
2∞ ·

(
1+ 4

∞∑
k=1

k−2s

)
.

And, indeed, the latter is finite for each s > 1/2. �

For the sequel, let us now fix a number s > 1/2 and define

E(u, v)=
∫
G
〈Du(g),Dv(g)〉Hs dQ(g)(6.6)

for u, v ∈S1(G). Equivalently, in terms of the family �= (ϕk)k∈N from (6.3)

E(u, v)=
∞∑
k=1

∫
G
Dϕku(g) ·Dϕkv(g) dQ(g).(6.7)

THEOREM 6.2. (i) (E ,S1(G)) is closable. Its closure (E ,Dom(E)) is a reg-
ular Dirichlet form on L2(G,Q) which is strongly local and recurrent (hence, in
particular, conservative).

(ii) For u ∈S1(G) with representation (5.6)

E(u,u)=
∞∑
k=1

∫
G

(
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕk(g(xi))
)2

dQ(g).

The generator of the Dirichlet form is the Friedrichs extension of the operator L
given on S2(G) by

Lu(g)=
m∑

i,j=1

∞∑
k=1

∂i∂jU(g(x1), . . . , g(xm))ϕk(g(xi))ϕk(g(xj ))

+
m∑
i=1

∞∑
k=1

∂iU(g(x1), . . . , g(xm))[ϕ′k(g(xi))+ Vϕk(g)]ϕk(g(xi)).

(iii) Z1(G) is a core for Dom(E) (i.e., it is contained in the latter as a dense
subset). For u ∈ Z1(G) with representation (5.13)

E(u,u)=
∞∑
k=1

∫
G

(
m∑
i=1

∂iU

(∫
�α(gt ) dt

)
·
∫
α′i (gt )ϕk(gt ) dt

)2

dQ(g).
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The generator of the Dirichlet form is the Friedrichs extension of the operator L
given on Z2(G) by

Lu(g)=
m∑

i,j=1

∞∑
k=1

∂i∂jU

(∫
�α(gt ) dt

)
·
∫
α′i(gt )ϕk(gt ) dt ·

∫
α′j (gt )ϕk(gt ) dt

+
m∑
i=1

∞∑
k=1

∂iU

(∫
�α(gt ) dt

)

×
{
Vϕk(g)+

∫
[α′′i (gt )ϕ2

k (gt )+ α′i(gt )ϕ′k(gt )ϕk(gt )]dt
}
.

(iv) The intrinsic metric ρ can be estimated from below in terms of the
L2-metric:

ρ(g,h)≥ 1√
C
‖g − h‖L2 .

REMARK 6.3. All assertions of the above theorem remain valid for any E
defined as in (6.7) with any choice of a sequence�= (ϕk)k∈N of smooth functions
on S1 with

C :=
∥∥∥∥∥
∞∑
k=1

ϕ2
k

∥∥∥∥∥∞ <∞.(6.8)

[This condition is satisfied for the sequence from (6.3) if and only if s > 1/2.]

The proof of Theorem 6.2 will make use of the following

LEMMA 6.4. (i) Dom(E) contains all functions u which can be represented
as

u(g)=U(‖g − f1‖L2, . . . ,‖g− fm‖L2)(6.9)

with some m ∈N, some f1, . . . , fm ∈ G and some U ∈ C1(Rm,R).
For each u as above, each ϕ ∈ C∞(S1) and Q-a.e. g ∈ G

Dϕu(g)=
m∑
i=1

∂iU(‖g − f1‖L2, . . . ,‖g− fm‖L2)

·
∫
S1

sign
(
g(t)− fi(t)) |g(t)− fi(t)|‖g− fi‖L2

ϕ(g(t)) dt,

where sign(z) := +1 for z ∈ S1 with |[0, z]| ≤ 1/2 and sign(z) := −1 for z ∈ S1

with |[z,0]|< 1/2.
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(ii) Moreover, Dom(E) contains all functions u which can be represented as

u(g)=U(gε1(x1), . . . , gεm(xm))(6.10)

with some m ∈ N, some x1, . . . , xm ∈ S1, some ε1, . . . , εm ∈]0,1[ and some U ∈
C1((S1)m,R).

Here gε(x) := ∫ x+ε
x g(t) dt ∈ S1 for x ∈ S1 and 0< ε < 1. More precisely,

gε(x) := π
(∫ x+ε
x

π−1g(t) dt

)
,

where π :G(R)→ G (cf. Section 2.2) denotes the projection and π−1 :G→ G(R)
the canonical lift with π−1(g)(t) ∈ [g(x), g(x)+ 1] ⊂R for t ∈ [x, x + 1] ⊂R.

For each u as above, each ϕ ∈ C∞(S1) and each g ∈ G

Dϕu(g)=
m∑
i=1

∂iU(gε1(x1), . . . , gεm(xm)) ·
1

εi

∫ xi+εi
xi

ϕ(g(t)) dt.

(iii) The set of all u of the form (6.10) is dense in Dom(E).

PROOF. (i) Let us first prove that for each f ∈ G, the map u(g)= ‖g − f ‖L2

lies in Dom(E). For n ∈ N, let πn :G→ G be the map which replaces each g by
the piecewise constant map:

πn(g)(t) := g
(
i

n

)
for t ∈

[
i

n
,
i + 1

n

[
.

Then by right continuity πn(g)→ g as n→∞ and thus

1

n

n−1∑
i=0

∣∣∣∣g
(
i

n

)
− f

(
i

n

)∣∣∣∣
2

−→
∫
S1
|g(t)− f (t)|2 dt.

Therefore, for each g ∈ G as n→∞

un(g) :=Un
(
g(0), g

(
1

n

)
, . . . , g

(
n− 1

n

))
−→ u(g),(6.11)

where Un(x1, . . . , xn) := ( 1
n

∑n−1
i=0 dn(xi+1 − f ( in))2)1/2 and dn is a smooth ap-

proximation of the distance function x �→ |x| on S1 (which itself is nondifferen-
tiable at x = 0 and x = 1

2 ) with |d ′n| ≤ 1 and dn(x)→ |x| as n→∞. Obviously,
un ∈S1(G).

By dominated convergence, (6.11) also implies that un → u in L2(G,Q).
Hence, u ∈Dom(E) if (and only if) we can prove that

sup
n

E(un) <∞.
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But

E(un)=
∞∑
k=1

∫
G

∣∣∣∣∣
n∑
i=1

∂iUn

(
g(0), g

(
1

n

)
, . . . , g

(
n− 1

n

))
· ϕk

(
g

(
i − 1

n

))∣∣∣∣
2

dQ(g)

≤
∞∑
k=1

∫
G

1

n

n∑
i=1

ϕ2
k

(
g

(
i − 1

n

))
dQ(g)=

∞∑
k=1

‖ϕk‖2
L2 <∞,

uniformly in n ∈N. This proves the claim for the function u(g)= ‖g− f ‖L2 .
From this, the general claim follows immediately: if vn, n ∈ N, is a se-

quence of S1(G) approximations of g �→ ‖g − 0‖L2 then un(g) := U(vn(g −
f1), . . . , vn(g − fm)) defines a sequence of S1(G) approximations of u(g) =
U(‖g − f1‖L2, . . . ,‖g − fm‖L2).

(ii) Again it suffices to treat the particular case m = 1 and U = id , that is,
u(g) = gε(x) for some x ∈ S1 and some 0 < ε < 1. Let g̃ ∈ G(R) be the lifting
of g and recall that u(g) = π(1

ε

∫ x+ε
x g̃(t) dt). Define un ∈ S1(G) for n ∈ N by

un(g)= π( 1
n

∑n−1
i=0 g̃(x + i

n
ε)). Right continuity of g̃ implies un→ u as n→∞

pointwise on G and thus also in L2(G,Q). To see the boundedness of E(un) note
that Dϕun(g)= 1

n

∑n−1
i=0 ϕ(g(x + i

n
ε)). Thus

E(un)≤
∞∑
k=1

∫
G

1

n

n−1∑
i=0

ϕ2
k

(
g

(
x + i

n
ε

))
dQ(g)=

∞∑
k=1

‖ϕk‖2
L2 <∞.

(iii) We have to prove that each u ∈S1(G) can be approximated in the norm
(‖ · ‖2 + E(·))1/2 by functions un of type (6.10). Again it suffices to treat the
particular case u(g) = g(x) for some x ∈ S1. Choose un(g) = g1/n(x). Then by
right continuity of g, un→ u pointwise on G and thus also in L2(G,Q). Moreover,
Dϕun(g)= n ∫ x+1/n

x ϕ(g(t)) dt (for all ϕ and g) and therefore

E(un)≤
∞∑
k=1

n

∫ x+1/n

x
ϕ2
k (g(t)) dt dQ(g)=

∞∑
k=1

‖ϕk‖2
L2 <∞. �

PROOF OF THEOREM 6.2. (a) The sum E of closable bilinear forms with com-
mon domain S1(G) is closable, provided it is still finite on this domain. The latter
will follow by means of Lemma 5.3 which implies for all u ∈S1(G) with repre-
sentation (5.11)

E(u,u)=
∞∑
k=1

∫
G

(
m∑
i=1

∂iU(g(x1), . . . , g(xm)) · ϕk(g(xi))
)2

dQ(g)

≤m · ‖∇U‖2∞ ·
∞∑
k=1

‖ϕk‖2
L2(S1)

<∞.

Hence, indeed E is finite on S1(G).
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(b) The Markov property for E follows from that of the Eϕk (u, v)=
∫
GDϕku ·

Dϕkv dQ.
(c) According to the previous lemma, the class of continuous functions of

type (6.10) is dense in Dom(E). Moreover, the class of finite energy functions
of type (6.9) is dense in C(G) [with the L2 topology of G⊂ L2(S1); cf. Proposi-
tion 2.1]. Therefore, the Dirichlet form E is regular.

(e) The estimate for the intrinsic metric is an immediate consequence of the
following estimate for the norm of the gradient of the function u(g)= ‖g − f ‖L2

(which holds for each f ∈ G uniformly in g ∈ G):

‖Du(g)‖2 =
∞∑
k=1

(∫
S1

sign
(
g(t)− fi(t)) |g(t)− fi(t)|‖g − fi‖L2

ϕk(g(t)) dt

)2

≤
∞∑
k=1

∫
S1
ϕ2
k (g(t)) dt ≤ ‖

∞∑
k=1

ϕ2
k‖∞ =: C.

(f) The locality is an immediate consequence of the previous estimate: Given
functions u, v ∈Dom(E) with disjoint supports, one has to prove that E(u, v)= 0.
Without restriction, one may assume that supp[u] ⊂ Br(g) and supp[v] ⊂ Br(h)
with ‖g − h‖L2 > 2r + 2δ. (The general case will follow by a simple covering
argument.) Without restriction, u, v can be assumed to be bounded. Then |u| ≤
Cwδ,g and |v| ≤ Cwδ,h for some constant C, where

wδ,g(f )=
[

1

δ
(r + δ − ‖f − g‖L2)∧ 1

]
∨ 0.

Given un ∈S1(G) with un→ u in Dom(E) put

un = (un ∧wδ,g)∨ (−wδ,g).
Then un→ u in Dom(E). Analogously, vn→ v in Dom(E) for vn = (vn∧wδ,h)∨
(−wδ,h). But obviously, E(un, vn)= 0 since un · vn = 0. Hence, E(u, v)= 0.

(g) In order to prove that Z1(G) is contained in Dom(E) it suffices to prove that
each u ∈ Z1(G) of the form u(g)= ∫

α(gt ) dt can be approximated in Dom(E) by
un ∈S1(G). Given u as above with α ∈ C1(S1,R) put un(g) = 1

n

∑n
i=1 α(gi/n).

Then un ∈S1(G), un→ u on G and

Dϕun(g)= 1

n

n∑
i=1

α′(gi/n)ϕ(gi/n)→
∫
α′(gt )ϕ(gt ) dt =Dϕu(g).

Moreover,

E(un,un)=
∫
G

∑
k

∣∣∣∣∣1n
n∑
i=1

α′(gi/n)ϕk(gi/n)
∣∣∣∣∣
2

dQ(g)

≤ C ·
∫
G

1

n

n∑
i=1

α′(gi/n)2 dQ(g)=C ·
∫
S1
α′(t)2 dt



ENTROPIC MEASURE AND WASSERSTEIN DIFFUSION 1159

uniformly in n ∈N. Hence, u ∈Dom(E) and

E(u,u)= lim
n→∞E(un,un)=

∫
G

∑
k

∣∣∣∣
∫
S1
α′(gt )ϕk(gt ) dt

∣∣∣∣
2

dQ(g).

(h) The set Z1(G) is dense in Dom(E) since according to assertion (ii) of the
previous lemma already the subset of all u of the form (6.10) is dense in Dom(E).

Finally, one easily verifies that Z2(G) is dense in Z1(G) and (using the inte-
gration by parts formula) that L is a symmetric operator on Z2(G) with the given
representation. �

COROLLARY 6.5. There exists a strong Markov process (gt )t≥0 on G, asso-
ciated with the Dirichlet form E . It has continuous trajectories and it is reversible
with respect to the measure Q. Its generator has the form

1

2
L= 1

2

∑
k

DϕkDϕk +
1

2

∑
k

Vϕk ·Dϕk

with {ϕk}k∈N being the Fourier basis of Hs(S1).

REMARK 6.6. This process (gt )t≥0 is closely related to the stochastic
processes on the diffeomorphism group of S1 and to the “Brownian motion”
on the homeomorphism group of S1, studied by Airault, Fang, Malliavin, Ren,
Thalmaier and others [1–3, 12, 13, 20]. These are processes with generator
1
2L0 = 1

2
∑
k DϕkDϕk . For instance, in the case s = 3/2 our process from the pre-

vious corollary may be regarded as “Brownian motion plus drift.” All the previous
approaches are restricted to s ≥ 3/2. The main improvements of our approach are:

• identification of a probability measure Q such that these processes—after
adding a suitable drift—are reversible;

• construction of such processes in all cases s > 1/2.

6.2. Finite dimensional noise approximations. In the previous section, we
have seen the construction of the diffusion process on G under minimal assump-
tions. However, the construction of the process is rather abstract. In this section,
we try to construct explicitly a diffusion process associated with the generator of
the Dirichlet form E from Theorem 6.2. Here we do not aim for greatest generality.

Let a finite family � = (ϕk)k=1,...,n of smooth functions on S1 be given and
let (Wt)t≥0 with Wt = (W 1

t , . . . ,W
n
t ) be a n-dimensional Brownian motion, de-

fined on some probability space (�,F ,P). For each x ∈ S1 we define a stochastic
processes (ηt (x))t≥0 with values in S1 as the strong solution of the Itô differential
equation

dηt (x)=
n∑
k=1

ϕk(ηt (x)) dW
k
t +

1

2

n∑
k=1

ϕ′k(ηt (x))ϕk(ηt (x)) dt(6.12)
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with initial condition η0(x)= x. Equation (6.12) can be rewritten in Stratonovich
form as follows

dηt (x)=
n∑
k=1

ϕk(ηt (x)) � dWk
t .(6.13)

Obviously, for every t and for P-a.e. ω ∈�, the function x �→ ηt (x,ω) is an ele-
ment of the semigroup G. (Indeed, it is a C∞-diffeomorphism.) Thus (6.13) may
also be interpreted as a Stratonovich SDE on the semigroup G:

dηt =
n∑
k=1

ϕk(ηt ) � dWk
t , η0 = e.(6.14)

This process on G is right invariant: if gt denotes the solution to (6.14) with
initial condition g0 = g for some initial condition g ∈ G then gt = ηt ◦ g. One
easily verifies that the generator of this process (gt )t≥0 is given on S2(G) by
1
2
∑n
k=1DϕkDϕk . What we aim for, however, is a process with generator

−1

2

n∑
k=1

D∗ϕkDϕk =
1

2

n∑
k=1

DϕkDϕk +
1

2

n∑
k=1

Vϕk ·Dϕk .

Define a new probability measure Pg on (�,F ), given on Ft by

dPg = exp

(
n∑
k=1

∫ t

0
Vϕk(ηs ◦ g)dWk

s −
1

2

n∑
k=1

∫ t

0
|Vϕk (ηs ◦ g)|2 ds

)
dP(6.15)

and a semigroup (Pt )t≥0 acting on bounded measurable functions u on G as fol-
lows

Ptu(g)=
∫
�
u(ηt (g(·),ω)) dPg(ω).

PROPOSITION 6.7. (Pt )t≥0 is a strongly continuous Markov semigroup on G.
Its generator is an extension of the operator 1

2L=−1
2
∑n
k=1D

∗
ϕk
Dϕk with domain

S2(G). That is, for all u ∈S2(G) and all g ∈ G

lim
t→0

1

t

(
Ptu(g)− u(g))= 1

2
Lu(g).(6.16)

PROOF. The strong continuity follows easily from the fact that ηt (x, ·)→ x

a.s. as t→ 0 which implies by dominated convergence

Ptu(g)=
∫
�
u(ηt ◦ g)dPg→ u(g)

for each continuous u :G→R.
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Now we aim for identifying the generator. According to Girsanov’s theorem,
under the measure Pg the processes

W̃ k
t =Wk

t −
1

2

∫ t

0
Vϕk (ηs ◦ g)ds

for k = 1, . . . , n will define n independent Brownian motions. In terms of these
driving processes, (6.12) can be reformulated as

dgt (x)=
n∑
k=1

ϕk(gt (x)) dW̃
k
t +

1

2

n∑
k=1

[ϕ′k(gt (x))+ Vϕk(gt )]ϕk(gt (x)) dt(6.17)

(recall that gs = ηs ◦ g). The chain rule applied to a smooth function U on (S1)m,
therefore, yields

dU(gt (y1), . . . , gt (ym))

=
m∑
i=1

∂

∂xi
U(gt (y1), . . . , gt (ym)) dgt (yi)

+ 1

2

m∑
i,j=1

∂2

∂xi ∂xj
U(gt (y1), . . . , gt (ym)) d〈g·(yi), g·(yj )〉t

=
m∑
i=1

n∑
k=1

∂

∂xi
U(gt (y1), . . . , gt (ym))ϕk(gt (yi)) dW̃

k
t

+ 1

2

m∑
i=1

n∑
k=1

∂

∂xi
U(gt (y1), . . . , gt (ym))[ϕ′k(gt (yi))+ Vϕk(gt )]

× ϕk(gt (yi)) dt

+ 1

2

m∑
i,j=1

n∑
k=1

∂2

∂xi ∂xj
U(gt (y1), . . . , gt (ym))ϕk(gt (yi))ϕk(gt (yj )) dt.

Hence, for a cylinder function of the form u(g)=U(g(y1), . . . , g(ym)) we obtain

lim
t→0

1

t

(
Ptu(g)− u(g))

= lim
t→0

1

t

∫
�
[U(gt (y1), . . . , gt (ym))−U(g0(y1), . . . , g0(ym))]dPg

= lim
t→0

1

t

∫
�

∫ t

0

[
1

2

m∑
i=1

n∑
k=1

∂

∂xi
U(gs(y1), . . . , gs(ym))

× [ϕ′k(gs(yi))+ Vϕk (gs)]ϕk(gs(yi))

+ 1

2

m∑
i,j=1

n∑
k=1

∂2

∂xi ∂xj
U(gs(y1), . . . , gs(ym))
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× ϕk(gs(yi))ϕk(gs(yj ))
]
ds dPg

(∗)= 1

2

m∑
i=1

n∑
k=1

∂

∂xi
U(g(y1), . . . , g(ym))[ϕ′k(g(yi))+ Vϕk (g)]ϕk(g(yi))

+ 1

2

m∑
i,j=1

n∑
k=1

∂2

∂xi ∂xj
U(g(y1), . . . , g(ym))ϕk(g(yi))ϕk(g(yj ))

= 1

2

n∑
k=1

[DϕkDϕku(g)+ Vϕk(g) ·Dϕku(g)] = −
1

2

n∑
k=1

D∗ϕkDϕku(g).

In order to justify (∗), we have to verify continuity in s in all the expressions pre-
ceding (∗). The only term for which this is not obvious is Vϕk(gs). But gs = ηs ◦ g
with a function ηs(x,ω) which is continuous in x and in s. Thus Vϕk(ηs(·,ω) ◦ g)
is continuous in s. �

REMARK 6.8. All the previous argumentations in principle also apply to in-
finite families of (ϕk)k=1,2,..., provided they have sufficiently good integrability
properties. For instance, the family (6.3) with s > 5

2 will do the job. There are
three key steps which require a careful verification:

• the solvability of the Itô equation (6.12) and the fact that the solutions are home-
omorphisms of S1; here s ≥ 3

2 suffices (cf. [20]);
• the boundedness of the quadratic variation of the drift to justify Girsanov’s trans-

formation in (6.15); for s > 5
2 this will be satisfied since Lemma 5.1 implies

(uniformly in g)

∞∑
k=1

|Vϕk (g)|2 ≤ (β + 1)2
∞∑
k=1

∫ 1

0
|ϕ′′k (x)|2 dx ≤ 4(β + 1)2

∞∑
k=1

k4−2s;

• the finiteness of the generator and Itô’s chain rule for C2-cylinder functions;
here s > 3

2 will be sufficient.

REMARK 6.9. Another completely different approximation of the process
(gt )t≥0 in terms of finite dimensional SDEs is obtained as follows. For N ∈ N,
let S1

N denote the set of cylinder functions u :G→ R which can be represented
as u(g) = U(g(1/N), g(2/N), . . . , g(1)) for some U ∈ C1((S1)N). Denote the
closure of (E ,S1

N) by (EN,Dom(EN)). It is the image of the Dirichlet form
(EN,Dom(EN)) on �N ⊂ (S1)N given by

EN(U)=
∫
�N

N∑
i,j=1

∂iU(x) ∂jU(x)aij (x)ρ(x) dx(6.18)
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with

aij (x)=
∞∑
k=1

ϕk(xi)ϕk(xj ), ρ(x)= �(β)

�(β/N)N

N∏
i=1

(xi+1 − xi)β/N−1 dx

and (as before) �N = {(x1, . . . , xN) ∈ (S1)N :
∑N
i=1 |[xi, xi+1]| = 1}. That is,

EN(u)=EN(U)
for cylinder functions u ∈ S1

N as above. Let (Xt ,Px)t≥0,x∈�N be the Markov
process on �N associated with EN . Then the semigroup associated with EN is
given by

T Nt u(g)= Eg(1/N),...,g(1)[U(Xt)].
Now let (gt ,Pg)t≥0,g∈G and (Tt )t≥0 denote the Markov process and the L2-

semigroup associated with E . Then as N→∞
T 2N
t → Tt strongly in L2

since

E2N ↘ E

in the sense of quadratic forms, [24], Theorem S.16. [Note that
⋃
N∈N S1

2N is dense
in Dom(E).]

6.3. Dirichlet form and stochastic dynamics on G1 and P . In order to define
the derivative of a function u :G1 → R we regard it as a function ũ on G with the
property ũ(g)= ũ(g ◦ θz) for all z ∈ S1. This implies thatDϕũ(g)= (Dϕũ)(g ◦ θz)
whenever one of these expressions is well defined. In other words, Dϕũ defines a
function on G1 which will be denoted byDϕu and called the directional derivative
of u along ϕ.

COROLLARY 6.10. (i) Under assumption (6.8), with the notations from
above,

E(u,u)=
∞∑
k=1

∫
G1

|Dϕku|2 dQ.

defines a regular, strongly local, recurrent Dirichlet form on L2(G1,Q).
(ii) The Markov process on G analyzed in the previous section extends to a

(continuous, reversible) Markov process on G1.

In order to see the second claim, let g, g̃ ∈ G with g̃ = g ◦ θz for some z ∈ S1.
Then obviously,

g̃t (·,ω)= ηt (g̃(·),ω)= ηt (g(· + z),ω)= gt (·,ω) ◦ θz.
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Moreover,

Pg̃ = Pg

since Vϕ(g ◦ θz)= Vϕ(g) for all ϕ under consideration and all z ∈ S1.
The objects considered previously—derivative, Dirichlet form and Markov

process on G1—have canonical counterparts on P . The key to these new objects
is the bijective map χ :G1 →P .

The flow generated by a smooth “tangent vector” ϕ :S1 →R through the point
μ ∈ P will be given by ((etϕ)∗μ)t∈R. In these terms, the directional derivative
of a function u :P → R at the point μ ∈ P in direction ϕ ∈ C∞(S1,R) can be
expressed as

Dϕu(μ)= lim
t→0

1

t
[u((etϕ)∗μ)− u(μ)],(6.19)

provided this limit exists. The adjoint operator to Dϕ in L2(P ,P) is given (on a
suitable dense subspace) by

D∗ϕu(μ)=−Dϕu(μ)− Vϕ(χ−1(μ)) · u(μ).(6.20)

The drift term can be represented as

Vϕ(χ
−1(μ))= β

∫ 1

0
ϕ′(s)μ(ds)

(6.21)

+ ∑
I∈gaps(μ)

[
ϕ′(I−)+ ϕ′(I+)

2
− ϕ(I+)− ϕ(I−)|I |

]
.

Given a sequence �= (ϕk)k∈N of smooth functions on S1 satisfying (6.8), we
obtain a (regular, strongly local, recurrent) Dirichlet form E on L2(P ,P) by

E(u,u)=∑
k

∫
P
|Dϕku(μ)|2 dP(μ).(6.22)

It is the image of the Dirichlet form defined in (6.7) under the map χ . The generator
of E is given on an appropriate dense subspace of L2(P ,P) by

L=−
∞∑
k=1

D∗ϕkDϕk .(6.23)

For P-a.e. μ0 ∈ P , the associated Markov process (μt )t≥0 on P starting in μ0 is
given as

μt(ω)= gt (ω)∗ Leb,

where (gt )t≥0 is the process on G, starting in g0 := χ−1(μ0). [As mentioned be-
fore, (gt )t≥0 admits a more direct construction provided we restrict ourselves to a
finite sequence �= (ϕk)k=1,...,n.]
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6.4. Dirichlet form and stochastic dynamics on G0 and P0. For s > 0 and
ϕ : [0,1]→R let the Sobolev norm ‖ϕ‖Hs be defined as in (6.2) and letHs0 ([0,1])
denote the closure of C∞c (]0,1[), the space of smooth ϕ : [0,1]→R with compact
support in ]0,1[. If s ≥ 1/2 (which is the only case we are interested in)Hs0 ([0,1])
can be identified with {ϕ ∈Hs([0,1]) :ϕ(0)= ϕ(1)= 0} or equivalently with {ϕ ∈
Hs(S1) :ϕ(0)= 0}. For the sequel, fix s > 1/2 and a complete orthonormal basis
�= {ϕk}k∈N of Hs0 ([0,1]) with C := ‖∑k ϕ

2
k‖∞ <∞, and define

E0(u,u)=
∞∑
k=1

∫
G0

|Dϕku(g)|2 dQ0(g).

COROLLARY 6.11. (E0,S
1(G0)), (E0,Z

1(G0)) and (E0,C
1(G0)) are clos-

able. Their closures coincide and define a regular, strongly local, recurrent Dirich-
let form (E0,Dom(E0)) on L2(G0,Q0).

PROOF. For the closability (and the equivalence of the respective closures)
of (E0,S

1(G0)) and (E0,Z
1(G0)), see the proof of Theorem 6.2. Also all the as-

sertions on the closure are deduced in the same manner. For the closability of
(E0,C

1(G0)) (and the equivalence of its closure with the previously defined clo-
sures), see the proof of Theorem 7.8 below. �

As explained in the previous subsection, these objects (invariant measure, deriv-
ative, Dirichlet form and Markov process) on G0 have canonical counterparts on
P0 defined by means of the bijective map χ :G0 →P0.

7. The canonical Dirichlet form on the Wasserstein space.

7.1. Tangent spaces and gradients. The aim of this chapter is to construct
a canonical Dirichlet form on the L2-Wasserstein space P0. Due to the isometry
χ :G0 →P0 this is equivalent to construct a canonical Dirichlet form on the metric
space (G0,‖ · ‖L2). This can be realized in two geometric settings which seem to
be completely different:

• Like in the preceding two chapters, G0 can be considered as a group, with com-
position of functions as group operation. The tangent space TgG0 is the closure
(with respect to some norm) of the space of smooth functions ϕ : [0,1] → R

with ϕ(0) = ϕ(1) = 0. Such a function ϕ induces a flow on G0 by (g, t) �→
etϕ ◦ g ≈ g + tϕ ◦ g and it defines a directional derivative by Dϕu(g) =
limt→0

1
t
[u(etϕ ◦ g)− u(g)] for u :G0 →R. The norm on TgG0 we now choose

to be ‖ϕ‖Tg := (
∫
ϕ(gs)

2 ds)1/2. That is,

TgG0 := L2([0,1], g∗Leb).
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For given u and g as above, a gradient Du(g) ∈ TgG0 exists with

Dϕu(g)= 〈Du(g),ϕ〉Tg (∀ϕ ∈ Tg)
if and only if supϕ

Dϕu(g)

‖ϕ◦g‖
L2
<∞.

• Alternatively, we can regard G0 as a closed subset of the space L2([0,1],Leb).
The linear structure of the latter (with the pointwise addition of functions as
group operation) suggests to choose as tangent space

TgG0 := L2([0,1],Leb).

An element f ∈ TgG0 induces a flow by (g, t) �→ g + tf and it defines
a directional derivative (“Frechet derivative”) by Df u(g) = limt→0

1
t
[u(g +

tf ) − u(g)] for u :G0 → R, provided u extends to a neighborhood of G0 in
L2([0,1],Leb) or the flow (induced by f ) stays within G0. A gradient Du(g) ∈
TgG0 exists with

Df u(g)= 〈Du(g), f 〉L2 (∀ϕ ∈ L2)

if and only if supf
Df u(g)

‖f ‖
L2
<∞. In this case, Du(g) is the usual L2-gradient.

Fortunately, both geometric settings lead to the same result.

LEMMA 7.1. (i) For each g ∈ G0, the map ιg :ϕ �→ ϕ ◦ g defines an isometric
embedding of TgG0 = L2([0,1], g∗Leb) into TgG0 = L2([0,1],Leb). For each
(smooth) cylinder function u :G0 →R

Dϕu(g)=Dϕ◦gu(g).
If Du ∈L2(Leb) exists then Du ∈ L2(g∗ Leb) also exists.

(ii) For Q0-a.e. g ∈ G0, the above map ιg :TgG0 → TgG0 is even bijective. For
each u as above Du(g)=Du(g) ◦ g−1 and

‖Du(g)‖Tg = ‖Du(g)‖Tg .

PROOF. (i) is obvious, (ii) follows from the fact that for Q0-a.e. g ∈ G0 the
generalized inverse g−1 is continuous and thus g−1(gt )= t for all t (see Sections
3.5 and 2.1). Hence, the map ιg :TgG0 → TgG0 is surjective: for each f ∈ TgG0

ιg(f ◦ g−1)= f ◦ g−1 ◦ g = f. �

EXAMPLE 7.2. (i) For each u ∈ Z1(G0) of the form u(g) = U(∫ 1
0 �α(gt ) dt)

with U ∈ C1(Rm,R) and �α = (α1, . . . , αm) ∈ C1([0,1],Rm), the gradients
Du(g) ∈ TgG0 = L2([0,1], g∗Leb) and Du(g) ∈ TgG0 = L2([0,1],Leb) exist:

Du(g)=
m∑
i=1

∂iU

(∫
�α(gt ) dt

)
· α′i (g(·)),

Du(g)=
m∑
i=1

∂iU

(∫
�α(gt ) dt

)
· α′i (·)
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and their norms coincide:

‖Du(g)‖2
Tg
= ‖Du(g)‖2

Tg
=

∫ 1

0

∣∣∣∣∣
m∑
i=1

∂iU

(∫
�α(gt ) dt

)
· α′i (g(s))

∣∣∣∣∣
2

ds.

(ii) For each u ∈ C1(G0) of the form u(g) = U(∫ 1
0
�f (t)g(t) dt) with U ∈

C1(Rm,R) and �f = (f1, . . . , fm) ∈ L2([0,1],Rm), the gradient

Du(g)=
m∑
i=1

∂iU

(∫
�f (t)g(t) dt

)
· fi(·) ∈ L2([0,1],Leb)

exists and

‖Du(g)‖2
Tg
=

∫ 1

0

∣∣∣∣∣
m∑
i=1

∂iU

(∫
�f (t)g(t) dt

)
· fi(s)

∣∣∣∣∣
2

ds.

For u ∈ C1(G0) ∪ Z1(G0), the gradient Du can be regarded as a map G0 ×
[0,1]→R, (g, t) �→Du(g)(t). More precisely,

D :C1(G0)∪ Z1(G0)→L2(G0 × [0,1],Q0⊗ Leb).

PROPOSITION 7.3. The operator D :Z1(G0)→ L2(G0 × [0,1],Q0 ⊗ Leb) is
closable in L2(G0,Q0).

PROOF. Let W ∈ L2(G0 × [0,1],Q0 ⊗ Leb) be of the form W(g) = w(g) ·
ϕ(gt )with somew ∈ Z1(G0) and some ϕ ∈ C∞([0,1]) satisfying ϕ(0)= ϕ(1)= 0.
Then according to the integration by parts formula for each u ∈ Z1(G0) with
u(g)=U(∫ 1

0 �α(gs) ds)∫
G0×[0,1]

Du ·W d(Q0⊗ Leb)

=
∫
G0

∫ 1

0

m∑
i=1

∂iU

(∫
�α(gs) ds

)
α′i (gt )w(g)ϕ(gt ) dt dQ0(g)

=
∫
G0

Dϕu(g)w(g)dQ0(g)=
∫
G0

u(g)D∗ϕw(g)dQ0(g).

To prove the closability of D, consider a sequence (un)n in Z1(G0) with un→ 0 in
L2(Q0) and Dun→ V in L2(Q0⊗ Leb). Then∫

V ·W d(Q0⊗ Leb)= lim
n

∫
Dun ·W d(Q0⊗ Leb)

(7.1)
= lim

n

∫
unD

∗
ϕw dQ0 = 0
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for all W as above. The linear hull of the latter is dense in L2(Q0 ⊗ Leb). Hence,
(7.1) implies V = 0 which proves the closability of D. �

The closure of (D,Z1(G0)) will be denoted by (D,Dom(D)). Note that a priori
it is not clear whether D coincides with D on C1(G0). (See, however, Theorem 7.8
below.)

7.2. The Dirichlet form.

DEFINITION 7.4. For u, v ∈ Z1(G0) ∪ C1(G0) we define the “Wasserstein
Dirichlet integral”

E(u, v)=
∫
G0

〈Du(g),Dv(g)〉L2 dQ0(g).(7.2)

THEOREM 7.5. (i) (E,Z1(G0)) is closable. Its closure (E,Dom(E)) is a reg-
ular, recurrent Dirichlet form on L2(G0,Q0).

Dom(E)=Dom(D) and for all u, v ∈Dom(D)

E(u, v)=
∫
G0×[0,1]

Du ·Dv d(Q0⊗ Leb).

(ii) The set Z∞0 (G0) of all cylinder functions u ∈ Z∞(G0) of the form u(g) =
U(

∫ �α(gs) ds) with U ∈ C∞(Rm,R) and �α = (α1, . . . , αm) ∈ C∞([0,1],Rm) sat-
isfying α′i (0)= α′i (1)= 0 is a core for (E,Dom(E)).

(iii) The generator (L,Dom(L) of (E,Dom(E)) is the Friedrichs extension of
the operator (L,Z∞0 (G0)) given by

Lu(g)=−
m∑
i=1

D∗αiui(g)

=
m∑

i,j=1

∂i ∂jU

(∫
�α(gs) ds

)
·
∫ 1

0
α′i (gs)α′j (gs) ds

+
m∑
i=1

∂iU

(∫
�α(gs) ds

)
· V β
α′i
(g),

where ui(g) := ∂iU(∫ �α(gs) ds) and V β
α′i
(g) denotes the drift term defined in Sec-

tion 5.1 with ϕ = α′i ; β > 0 is the parameter of the entropic measure fixed through-
out the whole chapter.

(iv) The Dirichlet form (E,Dom(E)) has a square field operator given by

�(u, v) := 〈Du,Dv〉L2(Leb) ∈ L1(G0,Q0)
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with Dom(�) = Dom(E) ∩ L∞(G0,Q0). That is, for all u, v,w ∈ Dom(E) ∩
L∞(G0,Q0)

2
∫
w · �(u, v) dQ0 = E(u, vw)+E(uw,v)−E(uv,w).(7.3)

PROOF. (a) The closability of the form (E,Z1(G0)) follows immediately from
the previous Proposition 7.3. Alternatively, we can deduce it from assertion (iii)
which we are going to prove first.

(b) Our first claim is that E(u,w)=− ∫
u ·LwdQ0 for all u,w ∈ Z∞0 (G0). Let

u(g) = U(∫ �α(gs) ds) and w(g) =W(∫ �γ (gs) ds) with U,W ∈ C∞(Rm,R) and
�α = (α1, . . . , αm), �γ = (γ1, . . . , γm) ∈ C∞([0,1],Rm) satisfying α′i(0)= α′i (1)=
γ ′i (0)= γ ′i (1)= 0. Observe that

〈Du(g),Dw(g)〉L2 =
m∑

i,j=1

∂iU

(∫
�α(gs) ds

)
· ∂jW

(∫
�γ (gs) ds

)

·
∫ 1

0
α′i (gs)γ ′j (gs) ds

=
m∑
i=1

ui(g) ·Dα′iw(g).

Hence, according to the integration by parts formula from Lemma 5.10

E(u,w)=
∫
G0

〈Du(g),Dw(g)〉L2 dQ0(g)

=
m∑
i=1

∫
G0

ui(g) ·Dα′iw(g) dQ0(g)

=
m∑
i=1

∫
G0

D∗
α′i
ui(g) ·w(g)dQ0(g)

=−
∫
G0

Lu(g) ·w(g)dQ0(g).

This proves our first claim. In particular, (L,Z∞0 (G0)) is a symmetric operator.
Therefore, the form (E,Z∞0 (G0)) is closable and its generator coincides with the
Friedrichs extension of L.

(c) Now let us prove that Z∞0 (G0) is dense in Z1(G0). That is, let us prove that
each function u ∈ Z1(G0) can be approximated by functions uε ∈ Z∞0 (G0). For
simplicity, assume that u is of the form u(g) = U(∫ α(gs) ds) with U ∈ C1(R)

and α ∈ C1([0,1]). (That is, for simplicity, m = 1.) Let Uε ∈ C∞(R) for ε > 0
be smooth approximations of U with ‖U − Uε‖∞ + ‖U ′ − U ′ε‖∞ → 0 as ε→ 0
and let αε ∈ C∞(R) with α′ε(0)= α′ε(1)= 0 be smooth approximations of α with
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‖α − αε‖∞ → 0 and α′ε(t)→ α′(t) for all t ∈]0,1[ as ε→ 0. Moreover, assume
that supε ‖α′‖∞ <∞.

Define uε ∈ Z∞0 (G0) as uε(g)= Uε(∫ αε(gs) ds). Then uε→ u in L2(G0,Q0)

by dominated convergence relative Q0.
Since

sup
ε

sup
g∈G

(
U ′ε

(∫
αε(g(s)) ds

))2 ∫
[0,1]

α′ε(gs)2 ds ≤ C,

(α′ε)2(g(s))
ε→0−→ α′(gs)2 ∀s ∈ [0,1] \ ({g = 0} ∩ {g = 1})

and

[0,1] \ ({g = 0} ∩ {g = 1})=]0,1[ for Q0-almost all g ∈ G0

one finds by dominated convergence in L2([0,1],Leb), for Q0-almost all g ∈ G0(
U ′ε

(∫
αε(gs) ds

))2 ∫
[0,1]

α′ε(gs)2 ds
ε→0−→

(
U ′

(∫
α(gs) ds

))2 ∫
[0,1]

α′(gs)2 ds.

Hence also with

E(uε, uε) =
∫
G0

(
U ′ε

(∫
αε(gs) ds

))2

·
∫
α′ε(gs)2 dsQ0(dg)

ε→0−→
∫
G0

(
U ′

(∫
α(gs)ds

))2

·
∫
α′(gs)2 dsQ0(dg)

by dominated convergence in L2(G0,Q0). In particular, {uε}ε constitutes a Cauchy
sequence relative to the norm ‖v‖2

E,1 := ‖v‖2
L2(G,Q)

+E(v, v). In fact, since the se-
quence uε is uniformly bounded with respect to ‖ · ‖E,1, by weak compactness
there is a weakly converging subsequence in (Dom(E),‖ · ‖E,1). Since the associ-
ated norms converge, the convergence is actually strong in (Dom(E),‖ · ‖E,1).
Moreover, since uε → u in L2(G0,Q0), this limit is unique. Hence the entire
sequence converges to u ∈ (Dom(E),‖ · ‖E,1), such that in particular E(u,u) =
limε→0 E(uε, uε).

This proves our second claim. In particular, it implies that also (E,Z1(G0)) is
closable and that the closures of Z∞0 (G0) and Z1(G0) coincide.

(d) Obviously, (E,Dom(E)) has the Markovian property. Hence, it is a Dirich-
let form. Since the constant functions belong to Dom(E), the form is recurrent.
Finally, the set Z1(G0) is dense in (C(G0),‖ · ‖∞) according to the theorem of
Stone–Weierstrass since it separates the points in the compact metric space G0.
Hence, (E,Dom(E)) is regular.

(e) According to Leibniz’s rule, (7.3) holds true for all u, v,w ∈ Z1(G0). Arbi-
trary u, v,w ∈ Dom(E) ∩ L∞(G0,Q0) can be approximated in (E(·)+ ‖ · ‖2)1/2

by un, vn,wn ∈ Z1(G0) which are uniformly bounded on G0. Then unvn→ uv,
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unwn→ uw and vnwn→ vw in (E(·)+‖ · ‖2)1/2. Moreover, we may assume that
wn→w Q0-a.e. on G0 and thus∫

|w�(u, v)−wn�(un, vn)|dQ0

≤
∫
|w−wn|�(u, v) dQ0 +

∫
|wn| · |�(u, v)− �(un, vn)|dQ0 → 0

by dominated convergence. Hence, (7.3) carries over from Z1(G0) to Dom(E) ∩
L∞(G0,Q0). �

LEMMA 7.6. For each f ∈ G0 the function u :g �→ 〈f,g〉L2 belongs to
Dom(E).

PROOF. (a) For f,g ∈ G0 put μf = f∗ Leb and μg = g∗ Leb. Recall that by
Kantorovich duality

1

2
‖f − g‖2

L2 = 1

2
d2
W(μf ,μg)

= sup
ϕ,ψ

{∫ 1

0
ϕ dμf +

∫ 1

0
ψ dμg

}

= sup
ϕ,ψ

{∫ 1

0
ϕ(ft ) dt +

∫ 1

0
ψ(gt ) dt

}
,

where the supϕ,ψ is taken over all (smooth, bounded) ϕ ∈ L1([0,1],μf ), ψ ∈
L1([0,1],μg) satisfying ϕ(x) + ψ(y) ≤ 1

2 |x − y|2 for μf -a.e. x and μg-a.e. y
in [0,1]. Replacing ϕ(x) by |x|2/2− ϕ(x) [and ψ(y) by . . .] this can be restated
as

〈f,g〉L2 = inf
ϕ,ψ

{∫ 1

0
ϕ(ft ) dt +

∫ 1

0
ψ(gt ) dt

}
,(7.4)

where the infϕ,ψ now is taken over all (smooth, bounded) ϕ ∈ L1([0,1],μf ),
ψ ∈ L1([0,1],μg) satisfying ϕ(x) + ψ(y) ≥ 〈x, y〉 for μf -a.e. x and μg-a.e. y
in [0,1]. If g is strictly increasing then ψ can be chosen as

ψ ′ = f ◦ g−1;
cf. [32], Sections 2.1 and 2.2.

(b) Now fix a countable dense set {gn}n∈N of strictly increasing functions in G0
and an arbitrary function f ∈ G0. Let (ϕn,ψn) denote a minimizing pair for (f, gn)
in (7.4) and define un :G0 →R by

un(g) := min
i=1,...,n

{∫ 1

0
ϕ(fi(t)) dt +

∫ 1

0
ψi(g(t)) dt

}
.



1172 M.-K. VON RENESSE AND K.-T. STURM

Note that ψ ′i = f ◦ g−1
i and thus un(gi)= 〈f,gi〉 for all i = 1, . . . , n. Therefore,

|un(g)− un(g̃)| ≤max
i

∫ 1

0
|ψi(g(t))−ψi(g̃(t))|dt

≤max
i
‖ψ ′i‖∞ ·

∫ 1

0
|g(t)− g̃(t)|dt ≤ ‖g − g̃‖L1

for all g, g̃ ∈ G0. Hence, un→ u pointwise on G0 and inL2(G0,Q0)where u(g) :=
〈f,g〉.

(c) The function un is in the class Z0(G0):

un(g)=Un
(∫

�α(gt ) dt
)

with Un(x1, . . . , xn)=min{c1+ x1, . . . , cn+ xn}, ci = ∫
ϕi(f (t)) dt and αi =ψi .

The function Un can be easily approximated by C1 functions in order to verify that
un ∈Dom(E) and

Dun(g)=
n∑
i=1

1Ai (g) ·ψ ′i (g(·))

with a suitable disjoint decomposition G0 = ⋃
i Ai . [More precisely, Ai denotes

the set of all g ∈ G0 satisfying
∫ 1

0 ϕ(fi(t)) dt +
∫ 1

0 ψi(g(t)) dt <
∫ 1

0 ϕ(fj (t)) dt +∫ 1
0 ψj(g(t)) dt for all j < i and

∫ 1
0 ϕ(fi(t)) dt +

∫ 1
0 ψi(g(t)) dt ≤

∫ 1
0 ϕ(fi(t)) dt +∫ 1

0 ψi(g(t)) dt for all j > i.] Thus

‖Dun(g)‖2 =∑
i

1Ai (g) ·
∫ 1

0
ψ ′i (g(t))2 dt

and

E(un)≤max
i≤n

∫
G0

‖ψ ′i ◦ g‖2
L2 dQ0(g).

In particular, since |ψ ′i | ≤ 1,

sup
n

E(un)≤ 1

and thus u ∈Dom(E). �

LEMMA 7.7. For all u ∈ Z1(G0) and all w ∈ C1(G0)∩Dom(E)

E(u,w)=
∫
G0

〈Du(g),Dw(g)〉L2 dQ0(g)(7.5)

[with Du(g) and Dw(g) given explicitly as in Example 7.2].
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PROOF. Recall that for u ∈ Z∞0 (G0) of the form u(g)=U(∫ �α(gt ) dt)
Lu(g)=−

m∑
i=1

D∗
α′i
ui(g)

with ui(g) = ∂iU(∫ �α(gt ) dt). Hence, for w ∈ C1(G0) of the form w(g) =
W(〈�h,g〉)

E(u,w)=−
∫

Lu(g)w(g)dQ0(g)

=
m∑
i=1

∫
G0

D∗
α′i
ui(g)w(g)dQ0(g)=

m∑
i=1

∫
G0

ui(g)Dα′iw(g) dQ0(g)

=
m∑

i,j=1

∫
G0

∂iU

(∫
�α(gt ) dt

)
· ∂jW

(∫
�h(t)g(t) dt

)

·
∫
α′i(g(t))hj (t) dt dQ0(g)

=
∫
G0

〈Du(g),Dw(g)〉dQ0(g).

This proves the claim provided u ∈ Z∞0 (G0). By density this extends to all u ∈
Z1(G0). �

THEOREM 7.8. (i) (E,C1(G0)) is closable and its closure coincides with
(E,Dom(E)). Similarly, (D,C1(G0)) is closable and its closure coincides with
(D,Dom(D)).

(ii) For all u,w ∈ Z1(G0)∪ C1(G0)

�(u,w)(g)= 〈Du(g),Dw(g)〉L2,(7.6)

in particular, E(u,w) = ∫
G0
〈Du(g),Dw(g)〉L2 dQ0(g) [with Du(g) and Dw(g)

given explicitly as in Example 7.2].
(iii) For each f ∈ G0 the function uf :g �→ ‖f − g‖L2 belongs to Dom(E) and

�(uf ,uf )≤ 1 Q0-a.e. on G0.
(iv) (E,Dom(E)) is strongly local.

PROOF. (a) Claim: For each f ∈ L2([0,1],Leb) the function uf :g �→
〈f,g〉L2 belongs to Dom(E) and E(uf ,uf )= ‖f ‖2

L2 .

Indeed, if f ∈ L2 ∩ C1 then f = c0 + c1f1 + c2f2 with f1, f2 ∈ G0 and
c0, c1, c2 ∈ R. Hence, uf ∈ Dom(E) according to Lemma 7.6 and E(uf ,uf ) =∫ ‖Duf ‖2 dQ0 = ‖f ‖2 according to Lemma 7.7. Finally, each f ∈ L2 can be
approximated by fn ∈ L2 ∩ C1 with ‖f − fn‖ → 0. Hence, uf ∈ Dom(E) and
E(uf ,uf )= ‖f ‖2.
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(b) Claim C1(G0)⊂Dom(E).
Let u ∈ C1(G0) be given with u(g) = U(〈 �f ,g〉), U ∈ C1(Rm,R), �f =

(f1, . . . , fm) ∈ L2([0,1],Rm). For each i = 1, . . . ,m let (wi,n)n∈N be an approx-
imating sequence in (Z1(G0), (E + ‖ · ‖2)1/2) for wi :g �→ 〈fi, g〉. Put un(g) =
U(w1,n(g), . . . ,wm,n(g)). Then un ∈ Z1(G0), un → u pointwise on G0 and in
L2(G0,Q0). Moreover,

E(un,un) =
∫ ∥∥∥∥∥

∑
i

∂iU(w1,n(g), . . . ,wm,n(g))Dwi,n(g)

∥∥∥∥∥
2

L2

dQ0(g)

→
∫ ∥∥∥∥∥

∑
i

∂iU(〈f1, g〉, . . . , 〈fm,g〉)Dwi(g)
∥∥∥∥∥

2

L2

dQ0(g)

=
∫
‖Du(g)‖2 dQ0(g).

Hence, u ∈Dom(E) and E(u,u)= ∫ ‖Du(g)‖2 dQ0(g).
(c) Assertion (ii) then follows via polarization and bilinearity. Assertion (iii)

is an immediate consequence of assertion (ii). Assertion (iii) allows to prove the
locality of the Dirichlet form (E,Dom(E)) in the same manner as in the proof of
Theorem 6.2.

(d) Claim: C1(G0) is dense in Dom(E).
We have to prove that each u ∈ Z1(G0) can be approximated by un ∈ C1(G0).

As usual, it suffices to treat the particular case u(g) = ∫ 1
0 α(gt ) dt for some α ∈

C1([0,1]). Put Un(x1, . . . , xn) = 1
n

∑n
i=1 α(xi) and fn,i(t) = n · 1[(i−1)/n,i/n[(t).

Then

un(g) :=Un(〈fn,1, g〉, . . . , 〈fn,n, g〉)= 1

n

n∑
i=1

α

(
n

∫ i/n

(i−1)/n
gt dt

)

defines a sequence in C1(G0) with un(g) → u(g) pointwise on G0 and in
L2(G0,Q0).

Moreover,

Dun(g)=
n∑
i=1

α′
(
n

∫ i/n

(i−1)/n
gt dt

)
· 1[(i−1)/n,i/n[(·)(7.7)

and therefore

E(un) =
∫
G0

1

n

n∑
i=1

α′
(
n

∫ i/n

(i−1)/n
gt dt

)2

dQ0(g)

(7.8)

−→
∫
G0

∫ 1

0
α′(gt )2 dt dQ0(g)= E(u).

Thus (un)n is Cauchy in Dom(E) and un→ u in Dom(E). �
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7.3. Rademacher property and intrinsic metric. We say that a function
u :G0 →R is 1-Lipschitz if

|u(g)− u(h)| ≤ ‖g − h‖L2 (∀g,h ∈ G0).

THEOREM 7.9. Every 1-Lipschitz function u on G0 belongs to Dom(E) and
�(u,u)≤ 1 Q0-a.e. on G0.

Before proving the theorem in full generality, let us first consider the following
particular case.

LEMMA 7.10. Given n ∈ N, let {h1, . . . , hn} be a orthonormal system in
L2([0,1],Leb) and let U be a 1-Lipschitz function on Rn. Then the function
u(g)=U(〈h1, g〉, . . . , 〈hn, g〉) belongs to Dom(E) and �(u,u)≤ 1 Q0-a.e. on G0.

PROOF. Let us first assume that in addition U is C1. Then according to Theo-
rem 7.8, u is in Dom(E) and Du(g)=∑n

i=1 ∂iU(〈�h,g〉) · hi . Thus

�(u,u)(g)= ‖Du(g)‖L2 =
n∑
i=1

|∂iU(〈�h,g〉)|2 ≤ 1.

In the case of a general 1-Lipschitz continuous U on Rn we choose an approx-
imating sequence of 1-Lipschitz functions Uk , k ∈ N, in C1(Rn) with Uk → U

uniformly on Rn and put uk(g)=Uk((〈�h,g〉) for g ∈ G0. Then uk→ u pointwise
and in L2(G0,Q0). Hence, u ∈Dom(E) and �(u,u)≤ 1 Q0-a.e. on G0. �

PROOF OF THEOREM 7.9. Every 1-Lipschitz function u on G0 can be
extended to a 1-Lipschitz function ũ on L2([0,1],Leb) (“Kirszbraun exten-
sion”). Hence, without restriction, assume that u is a 1-Lipschitz function on
L2([0,1],Leb). Choose a complete orthonormal system {hi}i∈N of the separable
Hilbert space L2([0,1],Leb) and define for each n ∈ N the function Un : Rn→ R

by

Un(x1, . . . , xn)= u
(
n∑
i=1

xihi

)

for x = (x1, . . . , xn) ∈Rn. This function Un is 1-Lipschitz on Rn:

|Un(x)−Un(y)| ≤
∥∥∥∥∥
n∑
i=1

xihi −
n∑
i=1

yihi

∥∥∥∥∥
L2

≤ |x − y|.

Hence, according to the previous lemma the function

un(g)=Un(〈h1, g〉, . . . , 〈hn, g〉)
belongs belongs to Dom(E) and �(un,un)≤ 1 Q0-a.e. on G0.
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Note that

un(g)= u
(
n∑
i=1

〈hi, g〉hi
)

for each g ∈L2([0,1],Leb). Therefore, un→ u on L2([0,1],Leb) since
∑n
i=1〈hi,

g〉hi → g on L2([0,1],Leb) and since u is continuous on L2([0,1],Leb). Thus,
finally, u ∈Dom(E) and �(u,u)≤ 1 Q0-a.e. on G0. �

Our next goal is the converse to the previous theorem.

THEOREM 7.11. Every continuous function u ∈ Dom(E) with �(u,u) ≤ 1
Q0-a.e. on G0 is 1-Lipschitz on G0.

LEMMA 7.12. For each u ∈ C1(G0)∪ Z1(G0) and all g0, g1 ∈ G0

u(g1)− u(g0)=
∫ 1

0

〈
Du

(
(1− t)g0 + tg1

)
, g1 − g0

〉
L2 dt.(7.9)

PROOF. Put gt = (1− t)g0 + tg1 and consider the C1 function η : [0,1]→R

defined by ηt = u(gt ). Then

η̇t =Dg1−g0u(gt )= 〈Du(gt ), g1 − g0〉
and thus

η1 − η0 =
∫ 1

0
η̇t dt =

∫ 1

0
〈Du(gt ), g1 − g0〉dt. �

LEMMA 7.13. Let g0, g1 ∈ G0 ∩ C3 and put gt = (1− t)g0 + tg1. Then for
each u ∈Dom(E) and each bounded measurable  :G0 →R∫

G0

[u(g1 ◦ h)− u(g0 ◦ h)] (h)dQ0(h)

(7.10)

=
∫ 1

0

∫
G0

〈Du(gt ◦ h), (g1 − g0) ◦ h〉 (h)dQ0(h) dt.

PROOF. Given g0, g1,  and u ∈Dom(E) as above, choose an approximating
sequence in Z1(G0) ∪ C1(G0) with un→ u in Dom(E) as n→∞. According to
the previous lemma for each n∫

G0

[un(g1 ◦ h)− un(g0 ◦ h)] (h)dQ0(h)

(7.11)

=
∫ 1

0

∫
G0

〈Dun(gt ◦ h), (g1 − g0) ◦ h〉 (h)dQ0(h) dt.
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By assumption un→ u inL2(G0,Q0) and Dun→Du inL2(G0×[0,1],Q0⊗Leb)
as n→∞. Using the quasi-invariance of Q0 (Theorem 4.3) this implies∫

G0

|u(gt ◦ h)− un(gt ◦ h)| (h)dQ0(h)

=
∫
G0

[u(h)− un(h)| (g−1
t ◦ h) · Yβ

g−1
t

(h) dQ0(h)→ 0

as n→∞ as well as∫
G0

‖Du(gt ◦ h)−Dun(gt ◦ h)|2L2 (h)dQ0(h)

=
∫
G0

‖Du(h)−Dun(h)|2L2 (g
−1
t ◦ h) · Yβ

g−1
t

(h) dQ0(h)→ 0.

Hence, we may pass to the limit n→∞ in (7.11) which yields the claim. �

PROOF OF THEOREM 7.11. Let a continuous u ∈ Dom(E) be given with
�(u,u) ≤ 1 Q0-a.e. on G0. We want to prove that u(g1)− u(g0) ≤ ‖g1 − g0‖L2

for all g0, g1 ∈ G0. By density of G0 ∩ C3 in G0 and by continuity of u it suffices
to prove the claim for g0, g1 ∈ G0 ∩C3.

Choose a sequence of bounded measurable  k :G0 → R+ such that the proba-
bility measures k dQ0 on G0 converge weakly to δe, the Dirac mass in the identity
map e ∈ G0. Then according to the previous Lemma and the assumption ‖Du‖ ≤ 1∫

G0

[u(g1 ◦ h)− u(g0 ◦ h)] k(h)dQ0(h)

=
∫ 1

0

∫
G0

〈Du(gt ◦ h), (g1 − g0) ◦ h〉 k(h)dQ0(h) dt

≤
∫ 1

0

∫
G0

‖Du(gt ◦ h)‖L2 · ‖(g1 − g0) ◦ h‖L2 · k(h)dQ0(h) dt

≤
∫
G0

‖(g1 − g0) ◦ h‖L2 · k(h)dQ0(h).

Now the integrands on both sides, h �→ u(g1 ◦h)−u(g0 ◦h) as well as h �→ ‖(g1−
g0) ◦ h‖L2 , are continuous in h ∈ G0. Hence, as k→∞ by weak convergence
 k dQ0 → δe we obtain

u(g1)− u(g0)≤ ‖g1 − g0‖L2 . �

COROLLARY 7.14. The intrinsic metric for the Dirichlet form (E,Dom(E))
is the L2-metric:

‖g1 − g0‖L2

= sup{u(g1)− u(g0) :u ∈ C(G0)∩Dom(E),�(u,u)≤ 1Q0-a.e. on G0}
for all g0, g1 ∈ G0.



1178 M.-K. VON RENESSE AND K.-T. STURM

7.4. Finite dimensional noise approximations. The goal of this section is to
present representations—and finite dimensional approximations—of the Dirichlet
form

E(u, v)=
∫
G0

〈Du(g),Dv(g)〉L2 dQ0(g)

in terms of globally defined vector fields.
If (ϕi)i∈N is a complete orthonormal system in Tg = L2([0,1], g∗Leb) for a

given g ∈ G0 then obviously

〈Du(g),Dv(g)〉L2 =
∞∑
i=1

Dϕiu(g)Dϕiv(g).(7.12)

Unfortunately, however, there exists no family (ϕi)i∈N which is simultaneously
orthonormal in all Tg = L2([0,1], g∗Leb), g ∈ G0. For a general family, the repre-
sentation (7.12) should be replaced by

〈Du(g),Dv(g)〉L2 =
∞∑
i,j=1

Dϕiu(g) · aij (g) ·Dϕj v(g),(7.13)

where a(g) = (aij (g))i,j∈N is the “generalized inverse” to �(g) = (�ij (g))i,j∈N

with

�ij (g) := 〈ϕi, ϕj 〉Tg =
∫ 1

0
ϕi(gt )ϕj (gt ) dt.

In order to make these concepts rigorous, we have to introduce some notations.
For fixed n ∈ N let S+(n) ⊂ Rn×n denote the set of symmetric nonnegative

definite real (n×n)-matrices. For each A ∈ S+(n) a unique element A−1 ∈ S+(n),
called generalized inverse to A, is defined by

A−1x :=
{

0, if x ∈Ker(A),
y, if x ∈ Ran(A) with x =Ay.

This definition makes sense since (by the symmetry of A) we have an orthogonal
decomposition Rn =Ker(A)⊕Ran(A). Obviously,

A−1 ·A=A ·A−1 = πA,
where πA denotes the projection onto Ran(A).

Moreover, for each A ∈ S+(n) there exists a unique element A1/2 ∈ S+(n),
called nonnegative square root of A, satisfying

A1/2 ·A1/2 =A.
Let  (n) denote the map A �→ A−1, regarded as a map from S+(n)⊂ Rn×n to

Rn×n, with  (n)ij (A)= (A−1)ij for i, j = 1, . . . , n. Similarly, put

(n) :S+(n)→ S+(n), A �→ (A1/2)−1 = (A−1)1/2.
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Note that  (n)(A)=(n)(A) ·(n)(A) for all A ∈ S+(n).
The maps  (n) and (n) are smooth on the subset of positive definite matrices

A ∈ S+(n) but unfortunately not on the whole set S+(n). However, they can be
approximated from below (in the sense of quadratic forms) by smooth maps: there
exists a sequence of C∞ maps (n,l) : Rn×n→Rn×n with

ξ ·(n,k)(A) · ξ ≤ ξ ·(n,l)(A) · ξ
for all A ∈ S+(n), ξ ∈Rn and all k, l ∈N with k ≤ l and


(n,l)
ij (A)→

(n)
ij (A)= (A−1/2)ij

for allA ∈ S+(n), i, j ∈ {1, . . . , n} as l→∞. Put (n,l)(A)=(n,l)(A) ·(n,l)(A)
forA ∈Rn×n. Then the sequence ( (n,l))l∈N approximates (n) from below in the
sense of quadratic forms.

Now let us choose a family {ϕi}i∈N of smooth functions ϕi : [0,1] → R which
is total in C0([0,1]) with respect to uniform convergence (i.e., its linear hull is
dense). Put

�ij (g) := 〈ϕi, ϕj 〉Tg =
∫ 1

0
ϕi(gx)ϕj (gx) dx

and

a
(n,l)
ij (g)= (n,l)ij (�(g)), σ

(n,l)
ij (g)=(n,l)ij (�(g)).

Note that the maps g �→ a
(n,l)
ij (g) and g �→ σ

(n,l)
ij (g) (for each choice of n, l, i, j )

belong to the class Z∞(G0). Moreover, put

a
(n)
ij (g)= (n)ij (�(g)).

Then obviously the orthogonal projection πn onto the linear span of {ϕ1, . . . , ϕn} ⊂
Tg = L2([0,1], g∗Leb) is given by

πnu=
n∑

i,j=1

a
(n)
ij (g) · 〈u,ϕi〉Tg · ϕj

and

〈πnu,πnv〉Tg =
n∑

i,j=1

〈u,ϕi〉Tg · a(n)ij (g) · 〈v,ϕj 〉Tg

for all u, v ∈ Tg .

THEOREM 7.15. (i) For each n, l ∈N the form (E(n,l),Z1(G0)) with

E(n,l)(u, v)=
n∑

i,j=1

∫
G0

Dϕiu(g) · a(n,l)ij (g) ·Dϕj v(g) dQ0(g)
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is closable. Its closure is a Dirichlet form with generator being the Friedrichs
extension of the symmetric operator (L(n,l),Z2(G0)) given by

L(n,l) =
n∑

i,j=1

a
(n,l)
ij ·DϕiDϕj +

n∑
i,j=1

[
Dϕia

(n,l)
ij + a(n,l)ij · V βϕi

]
Dϕj .(7.14)

(ii) As l→∞
E(n,l)↗ E(n),

where

E(n)(u, v)=
n∑

i,j=1

∫
G0

Dϕiu(g) · a(n)ij (g) ·Dϕj v(g) dQ0(g)

for u, v ∈ Z1(G0). Hence, in particular, E(n) is a Dirichlet form.
(iii) As n→∞

E(n)↗ E

[which provides an alternative proof for the closability of the form (E,Z1(G0))].

PROOF. (i) The function a(n,l)i,j on G0 is a cylinder function in the class Z1(G0).
The integration by parts formula for the Dϕi , therefore, implies that for all u, v ∈
Z2(G0)

E(n,l)(u, v)=∑
i,j

∫
Dϕiu(g)Dϕj v(g)a

(n,l)
ij (g) dQ0(g)

=∑
i,j

∫
u(g) ·D∗ϕi

(
a
(n,l)
ij Dϕj v

)
(g) dQ0(g)

=−
∫
u(g) ·L(n,l)v(g) dQ0(g)

with

L(n,l) =−
n∑

i,j=1

D∗ϕi
(
a
(n,l)
ij Dϕj

)
.

Hence, (E(n,l),Z2(G0)) is closable and the generator of its closure is the Friedrichs
extension of (L(n,l),Z2(G0)).

(ii) The monotone convergence E(n,l)↗ E(n) of the quadratic forms is an im-
mediate consequence of the fact that a(n,l)(g)↗ a(n)(g) (in the sense of symmetric
matrices) for each g ∈ G0 which in turn follows from the defining properties of the
approximations  (n,l) of the generalized inverse  (n).

The limit of an increasing sequence of Dirichlet forms is itself again a Dirichlet
form provided it is densely defined which in our case is guaranteed since it is finite
on Z2(G0).
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(iii) Obviously, the En, n ∈ N constitute an increasing sequence of Dirichlet
forms with En ≤ E for all n. Moreover, Z1(G0) is a core for all the forms under
consideration. Hence, it suffices to prove that for each u ∈ Z1(G0) and each ε > 0
there exists an n ∈N such that∣∣E(n)(u,u)−E(u,u)

∣∣≤ ε.
To simplify notation, assume that u is of the form u(g)= U(∫ α(gt ) dt) for some
U ∈ C1

c (R) and some α ∈ C1([0,1]). By assumption, the set {ϕi, i ∈N} is total in
C0([0,1]) with respect to uniform convergence. Hence, for each δ > 0 there exist
n ∈N and ϕ ∈ span(ϕ1, . . . , ϕn) with ‖α′ − ϕ‖sup ≤ δ which implies

〈α′, ϕ〉Tg
‖ϕ‖Tg

≥ ‖ϕ‖Tg − δ ≥ ‖α′‖Tg − 2δ.

Thus

E(u,u)≥ E(n)(u,u)≥
∫
G0

U ′
(∫

α(gt ) dt

)2

· 〈α′, ϕ〉2Tg ·
1

‖ϕ‖2
Tg

dQ0(g)

≥
∫
G0

U ′
(∫

α(gt ) dt

)2

· (‖α′‖Tg − 2δ)2 dQ0(g)

≥
∫
G0

U ′
(∫

α(gt ) dt

)2

·
(

1

1+ δ‖α
′‖2
Tg
− 4δ

)
dQ0(g)

≥ 1

1+ δE(u,u)− 4δ‖U ′‖2
sup.

Hence, for δ sufficiently small, E(u,u) and E(n)(u,u) are arbitrarily close to each
other. �

REMARK 7.16. For any given g0 ∈ G0, let (gt )t≥0 with gt : (x,ω) �→ gxt (ω)

be the solution to the SDE

dgxt =
n∑

i,j=1

σ
(n,l)
ij (gt ) · ϕj (gxt ) dWi

t

+ 1

2

n∑
i,j=1

a
(n,l)
ij (gt ) · ϕj (gxt ) ·

(
ϕ′i (gxt )+ V βϕi (gt )

)
dt

+ 1

2

n∑
i,j=1

n∑
k,m=1

∂km 
(n,l)
ij (�(gt )) · 〈(ϕkϕm)′, ϕi〉Tg · ϕj (gxt ) dt,

where ∂km 
(n,l)
ij for (k,m) ∈ {1, . . . , n}2 denotes the 1st order partial derivative

of the function  (n,l)ij : Rn×n→ R with respect to the coordinate xkm. Then the
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generator of the process coincides on Z2(G0) with the operator 1
2L(n,l) from (7.14),

the generator of the Dirichlet form E(n,l).
Let us briefly comment on the various terms in the SDE from above:

• The first one,
∑n
i,j=1 σ

(n,l)
ij (gt ) · ϕj (gxt ) dWi

t is the diffusion term, written in Itô
form;

• the second one, 1
2
∑n
i,j=1 a

(n,l)
ij (gt ) · ϕj (gxt ) · ϕ′i (gxt ) dt is a drift which comes

from the transformation between Stratonovich and Itô form (it would disappear
if we wrote the diffusion term in Stratonovich form).

• The next one, 1
2
∑n
i,j=1 a

(n,l)
ij (gt ) ·ϕj (gxt ) ·V βϕi (gt ) dt is a drift which arises from

our change of variable formula. Actually, since

V βϕi (g)= β
∫ 1

0
ϕ′i (g(y)) dy

+ ∑
a∈Jg

[
ϕ′i (g(a+))+ ϕ′i (g(a−))

2
− ϕi(g(a+))− ϕi(g(a−))

g(a+)− g(a−)
]
,

it consists of two parts, one originates in the logarithmic derivative of the entropy
of the g’s (which finally will force the process to evolve as a stochastic pertur-
bation of the heat equation), the other one is created by the jumps of the g’s.

• The last term, 1
2
∑n
i,j=1

∑n
k,m=1 ∂km 

(n,l)
ij (�(gt )) · 〈(ϕkϕm)′, ϕi〉Tg · ϕj (gxt ) dt

involves the derivative of the diffusion matrix. It arises from the fact that the
generator is originally given in divergence form.

7.5. The Wasserstein diffusion (μt ) on P0. The objects considered previ-
ously—derivative, Dirichlet form and Markov process on G0—have canonical
counterparts on P0. The key to these objects is the bijective map χ :G0 → P0,
g �→ g∗ Leb.

We denote by Zk(P0) the set of all (“cylinder”) functions u :P0 →R which can
be written as

u(μ)=U
(∫ 1

0
α1 dμ, . . . ,

∫ 1

0
αm dμ

)
(7.15)

with some m ∈ N, some U ∈ Ck(Rm) and some �α = (α1, . . . , αm) ∈ Ck([0,1],
Rm). The subset of u ∈ Zk(P0) with α′i (0) = α′i(1) = 0 for all i = 1, . . . ,m will
be denoted by Zk0(P0). For u ∈ Z1(P0) represented as above we define its gradient
Du(μ) ∈ L2([0,1],μ) by

Du(μ)=
m∑
i=1

∂iU

(∫
�α dμ

)
· α′i (·)

with norm

‖Du(μ)‖L2(μ) =
[∫ 1

0

∣∣∣∣∣
m∑
i=1

∂iU

(∫
�α dμ

)
· α′i

∣∣∣∣∣
2

dμ

]1/2

.
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The tangent space at a given point μ ∈P0 can be identified with L2([0,1],μ). The
action of a tangent vector ϕ ∈ L2([0,1],μ) on μ (“exponential map”) is given by
the push forward ϕ∗μ.

THEOREM 7.17. (i) The image of the Dirichlet form defined in (7.2) under
the map χ is the regular, strongly local, recurrent Wasserstein Dirichlet form E on
L2(P0,P0) defined on its core Z1(P0) by

E(u, v)=
∫
P0

〈Du(μ),Dv(μ)〉2
L2(μ)

dP0(μ).(7.16)

The Dirichlet form has a square field operator, defined on Dom(E) ∩ L∞, and
given on Z1(P0) by

�(u, v)(μ)= 〈Du(μ),Dv(μ)〉2
L2(μ)

.

The intrinsic metric for the Dirichlet form is the L2-Wasserstein distance dW .
More precisely, a continuous function u :P0 →R is 1-Lipschitz with respect to the
L2-Wasserstein distance if and only if it belongs to Dom(E) and �(u,u)(μ) ≤ 1
for P0-a.e. μ ∈P0.

(ii) The generator of the Dirichlet form is the Friedrichs extension of the sym-
metric operator (L,Z2

0(P0) on L2(P0,P0) given as L= L1 +L2 + β ·L3 with

L1u(μ)=
m∑

i,j=1

∂i ∂jU

(∫
�α dμ

)
·
∫ 1

0
α′iα′j dμ,

L2u(μ)=
m∑
i=1

∂iU

(∫
�α dμ

)

·
( ∑
I∈gaps(μ)

[
α′′i (I−)+ α′′i (I+)

2
− α

′
i (I+)− α′i (I−)

|I |
]

− α
′′
i (0)+ α′′i (1)

2

)
,

L3u(μ)=
m∑
i=1

∂iU

(∫
�α dμ

)
·
∫ 1

0
α′′i dμ.

Recall that gaps(μ) denotes the set of intervals I =]I−, I+[⊂ [0,1] of maximal
length with μ(I)= 0 and |I | denotes the length of such an interval.

(iii) For P0-a.e.μ0 ∈P0, the associated Markov process (μt )t≥0 on P0 starting
in μ0, called Wasserstein diffusion, with generator 1

2L is given as

μt(ω)= gt (ω)∗ Leb,

where (gt )t≥0 is the Markov process on G0 associated with the Dirichlet form of
Theorem 7.5, starting in g0 := χ−1(μ0).
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For each u ∈ Z2
0(P0) the process

u(μt)− u(μ0)− 1

2

∫ t

0
Lu(μs) ds

is a martingale whenever the distribution of μ0 is chosen to be absolutely con-
tinuous with respect to the entropic measure P0. Its quadratic variation process
is ∫ t

0
�(u,u)(μs) ds.

REMARK 7.18. L1 is the second order part (“diffusion part”) of the generator
L, L2 and L3 are first order operators (“drift parts”). The operator L1 describes the
diffusion on P0 in all directions of the respective tangent spaces. This means that
the process (μt ) at each time t ≥ 0 experiences the full “tangential” L2([0,1],μt )-
noise.

L3 is the generator of the deterministic semigroup (“Neumann heat flow”)
(Ht)t≥0 on L2(P0,P0) given by

Htu(μ)= u(htμ).
Here ht is the heat kernel on [0,1] with reflecting (“Neumann”) boundary con-
ditions and htμ(·) = ∫ 1

0 ht (·, y)μ(dy). Indeed, for each u ∈ Z1
0(P0) given as

u(g)=U(∫ �α dμ) we obtain Htu(μ)=U(∫ ∫ �α(x)ht (x, y)μ(dy)dx) and thus

∂tHtu(μ)=
m∑
i=1

∂iU(htμ) · ∂t
∫∫

αi(x)ht (x, y)μ(dy)dx

=
m∑
i=1

∂iU(htμ) ·
∫∫

αi(x)h
′′
t (x, y)μ(dy)dx

=
m∑
i=1

∂iU(htμ) ·
∫∫

α′′i (x)ht (x, y)μ(dy)dx = L3Htu(μ).

Note that L depends on β only via the drift term L3 and 1
β
L→ L3 as β→∞.

The following statement, which in the finite dimensional case is known as
Varadhan’s formula, exhibits another close relationship between (μt ) and the
geometry of (P ([0,1]), dW ). The Gaussian short time asymptotics of the process
(μt )t≥0 are governed by the L2-Wasserstein distance.

COROLLARY 7.19. For measurable setsA,B ∈P0 with positive P0-measure,
let dW(A,B) = ess-inf {dW(ν, ν̃) | ν ∈ A, ν̃ ∈ B} and pt(A,B) = ∫

A

∫
B pt(ν,

dν̃)P0(dν), where pt(ν, dν̃) denotes the transition semigroup for the process
(μt )t≥0.
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Then

lim
t→0

t logpt(A,B)=−dW(A,B)
2

2
.(7.17)

PROOF. This type of result is known as Varadhan’s formula. Its respective
form for (E,Dom(E)) on L2(P0,P0) holds true by the very general results of [16]
for conservative symmetric diffusions, and the identification of the intrinsic metric
as dW in our previous theorem. �

Due to the sample path continuity of (μt ) the Wasserstein diffusion is equiva-
lently characterized by the following martingale problem. Here we use the notation
〈α,μt 〉 = ∫ 1

0 α(x)μt(dx).

COROLLARY 7.20. For each α ∈ C2([0,1]) with α′(0) = α′(1) = 0 the
process

Mt = 〈α,μt 〉 − β
2

∫ t

0
〈α′′,μs〉ds

− 1

2

∫ t

0

( ∑
I∈gaps(μs)

[
α′′(I−)+ α′′(I+)

2
− α

′(I+)− α′(I−)
|I |

]

− α
′′(0)+ α′′(1)

2

)
ds

is a continuous martingale with quadratic variation process

[M]t =
∫ t

0
〈(α′)2,μs〉ds.

REMARK 7.21. For illustration one may compare Corollary 7.20 for (μt ) in
the case β = 1 to the respective martingale problems for four other well-known
measure valued process, say on the real line, namely the so-called super-Brownian
motion or Dawson–Watanabe process (μDW

t ), the Fleming–Viot process (μFW),
both of which we can consider with the Laplacian as drift, the Dobrushin–Doob
process (μDD

t ) which is the empirical measure of independent Brownian motions
with locally finite Poissonian starting distribution, cf. [4, 9, 28], and finally sim-
ply the empirical measure process of a single Brownian motion (μBM

t = δXt ).
For each i ∈ {DW,FV,DD,BM} and sufficiently regular α : R→ R the process
Mi
t := 〈α,μit 〉 − 1

2

∫ t
0 〈α′′,μis〉ds is a continuous martingale with quadratic varia-

tion process

[MDW]t =
∫ t

0
〈α2,μDW

s 〉ds,
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[MFV]t =
∫ t

0
[〈α2,μFV

s 〉 − (〈α,μFV
s 〉)2]ds,

[MDD]t =
∫ t

0
〈(α′)2,μDD

s 〉ds,

[MBM]t =
∫ t

0
〈(α′)2,μBM

s 〉ds.

In view of Corollary 7.19 the apparent similarity of μDD and μBM to the Wasser-
stein diffusion μ is no surprise. However, the effective state spaces of μDD, μBM

and μt are as much different as their invariant measures.

7.6. The canonical Dirichlet form on the Wasserstein space P (S1). In order
to simplify the presentation in the previous parts of this chapter, we restricted our-
selves to the study of the Wasserstein space P0 =P ([0,1]) on the unit interval. All
the concepts and assertions presented have canonical counterparts for the Wasser-
stein space P =P (S1) on the circle. Let us briefly summarize the main results.

In the sequel, we choose P= Pβ (for fixed β > 0) as reference measure on P .
Recall that by Definition 3.3, it is the image χ∗Qβ of the G-valued Dirichlet
process under the map χ :G → P . According to Corollary 4.2, Pβ is quasi-
invariant under the action of smooth diffeomorphisms on S1.

DEFINITION 7.22. We say that u :P →R belongs to the class Zk(P ) if it can
be written as

u(μ)=U(〈�α,μ〉)(7.18)

with U ∈ Ck(Rm,R) and �α = (α1, . . . , αm) ∈ Ck(S1,Rm) and 〈�α,μ〉 = (〈α1,μ〉,
. . . , 〈αm,μ〉).

The following formula is the analogue of Proposition 5.4 and is proved in the
same fashion (see Section 6.3).

PROPOSITION 7.23 (“Integration by parts formula” on P ). For all u, v ∈
Z1(P ) as above

Dϕu(μ)=
m∑
i=1

∂iU(〈�α,μ〉)
∫
S1
α′i · ϕ dμ.

and ∫
P
Dϕu · v dPβ =−

∫
P
u(Dϕv + v · V βϕ ) dPβ,

where

V βϕ (μ)= β
∫
S1
ϕ′(s) dμ+ ∑

I∈gaps(μ)

[
ϕ′(I−)+ ϕ′(I+)

2
− ϕ(I+)− ϕ(I−)|I |

]
.
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For u ∈ Z1(P ) as above we define the map Du :P × S1 →R by

Du(μ, s)=
m∑
i=1

∂iU(〈�α,μ〉)α′i(s).

Then

Dϕu(μ)= 〈Du(μ, ·), ϕ〉L2(μ).

Similar to Proposition 7.3 the integration by parts formula for Pβ above implies
the closability of the operator D :Z1(P )→ L2(P × S1,Pβ ⊗ Leb) in L2(P ,Pβ).
We shall denote this closure by (D,Dom(D)).

DEFINITION 7.24 (Wasserstein pre-Dirichlet form on P ). For u, v ∈ Z1(P )
let

E(u, v)=
∫
P
〈D|μu,D|μv〉L2(μ)P

β(dμ).

Analogous arguments as in Section 7.2 show that E generates a Dirichlet form
as follows.

THEOREM 7.25. (E ,Z1(P )) is closable. Its closure (E,Dom(E)) is a reg-
ular, recurrent Dirichlet form on L2(P ,Pβ). The generator (L,Dom(L)) of
(E,Dom(E)) is the Friedrichs extension of the operator (L,Z∞(P )) given by

Lu(μ)=−
m∑
i=1

D∗αiui(μ)

=
m∑

i,j=1

∂i ∂jU(〈�α,μ〉)〈α′i , α′j 〉μ +
m∑
i=1

∂iU(〈�α,μ〉) · V βα′i (μ),

where ui(μ) := ∂iU(〈�α,μ〉) and V β
α′i
(μ) denotes the drift term defined above with

ϕ = α′i .
The Dirichlet form (E,Dom(E)) is associated with a conservative Pβ -symmet-

ric Hunt process (μt )t≥0 on P with continuous sample paths, called “Wasserstein
Diffusion” on P .

Moreover, the Dirichlet form on the Wasserstein space P has the Rademacher
property.

PROPOSITION 7.26. (i) For μ ∈ P the Wasserstein distance function dμ :
P →R, dμ(ν)= dW(μ, ν) belongs to Dom(E) and �(dμ, dμ)≤ 1 Pβ -a.s.

(ii) Let u ∈ C(P )∩Dom(E) with �(u,u)≤ Pβ , then u is Lipschitz on (P , dW )
with Lip(u)≤ 1.
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The proof of (ii) is essentially the same as for the analogous statement Theo-
rem 7.11. Also for (i), the proof follows the argumentation in Section 7.3. However,
some modifications are required. The first ingredient is:

LEMMA 7.27. Let u ∈ Lip(P (S1))∩Dom(E), then for Pβ almost all μ ∈P .

�(u,u)(μ)= ‖Du(μ, ·)‖2
L2(S1,μ)

≤ Lip[u](μ)2,
where �(·, ·) is the square-field-operator associated to E and

Lip[u](μ)= lim
ε→0

sup
{
u(ρ)− u(η)
dW (ρ, η)

∣∣∣ η �= ρ ∈ Bε(μ)
}

the local Lipschitz constant of u.

PROOF. Since the measures obtained from Pβ under the action μ �→ (xt )∗μ
of flows of the type (5.1) are all mutually equivalent, the arguments from [27],
Lemmas 5.1 and 5.2 and Section 7, carry over almost verbatim to our present
situation, with a trivial change to ibid. Lemma 5.2, in order to use the finer local
Lipschitz constant of u as upper bound.

Using the integration by parts formula for Pβ one may show as in Lemma 7.7
that E(u,u)= ∫

P ‖Du(μ, ·)‖2
L2(S1,μ)

Pβ(dμ). For the identification of �(u,u) one
proceeds as in the proof of statement (iv) of Theorem 7.5. �

The second ingredient is:

LEMMA 7.28. For μ ∈P the function ν→ d2
W(ν,μ) belongs to Dom(E).

PROOF. We use similar arguments as in Lemma 7.6. By Kantorovich duality

1
2d

2
W(ν,μ)= sup{〈ϕ,μ〉 + 〈ψ,ν〉}

where the sup is taken over all (smooth, bounded) ϕ ∈ L1(S1,μ), ψ ∈ L1(S1, ν)

satisfying ϕ(x) + ψ(y) ≤ 1
2d

2(x, y) for μ-a.e. x and ν-a.e. y in S1, where d is
the distance on S1. The optimal ϕ and ψ satisfy φ = ψd μ-a.s., where ψd = ηd
ν-a.s. for some η ∈ C∞(S1), and where f d denotes the 1

2d
2-inf-convolution of a

function f : R→R, that is,

f d(x)= inf
y∈S1

[
1

2
d2(x, y)− f (y)

]
.

If ν is smooth and μ is smooth and fully supported, then the vector field ψ ′(x)
exists in all x ∈ S1 and |ψ ′(x)| ≤ 1 for all x ∈ S1 (since the transport does not map
a point x beyond its cut locus on S1).
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Now fix a countable dense set {νn}n∈N of smooth elements in P and a smooth
fully supported μ ∈P . Let (ϕn,ψn) denote a minimizing pair for (μ, νn) as above
and define un :P (S1)→R by

un(ρ) := max
i=1,...,n

{〈φi,μ〉 + 〈ψi,ρ〉}

as well as u(ρ) := 1
2d

2
W(μ,ρ). Then un→ u pointwise on P and in L2(P ,Pβ)

since un(·)≤ 1
2d

2
W(μ, ·) uniformly in n.

By approximation one verifies that un ∈Dom(E) with

Dun(ρ)=
n∑
i=1

1Ai (ρ) ·ψ ′i (·)

with a suitable disjoint decomposition P =⋃
i Ai . Hence,

‖Dun(ρ)‖2 =∑
i

1Ai (ρ) · 〈|ψ ′i |2, ρ〉 ≤ 1

for all ρ ∈P . In particular, supnE(un)≤ 1 and thus u= limun ∈ Dom(E) which
is the claim for smooth fully supported μ.

Finally, approximation by smooth fully supported μk, k ∈ N, proves the claim
for of arbitrary μ ∈P . �

As corollary to the previous proposition we conclude:

COROLLARY 7.29. The intrinsic metric associated to (E,Dom(E)) on P co-
incides with the Wasserstein metric dW .

Acknowledgment. The authors are grateful to an anonymous referee for var-
ious detailed comments.
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