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SURVIVAL AND COEXISTENCE FOR A MULTITYPE
CONTACT PROCESS

BY J. THEODORE COX1 AND RINALDO B. SCHINAZI2

Syracuse University and University of Colorado, Colorado Springs

We study the ergodic theory of a multitype contact process with equal
death rates and unequal birth rates on the d-dimensional integer lattice and
regular trees. We prove that for birth rates in a certain interval there is coexis-
tence on the tree, which by a result of Neuhauser is not possible on the lattice.
We also prove a complete convergence result when the larger birth rate falls
outside of this interval.

1. Introduction and results. We consider the multitype contact process on
a countable set S, introduced by Neuhauser in [8]. In this paper S is either the
d-dimensional integer lattice Zd , the case considered by Neuhauser, or the homo-
geneous connected tree Td in which each vertex has d + 1 neighbors, d ≥ 2. The
primary reason we are interested in the multitype contact process defined on the
tree Td is that, as we show below, it exhibits phenomena that the process defined
on Zd does not.

In this model each point, or site, of S is either vacant or occupied by an in-
dividual of one of two possible types. The system is described by a configuration
ξ ∈ {0,1,2}S , where ξ(x) = 0 means that site x is vacant, and for i = 1,2, ξ(x) = i

means that x is occupied by an individual of type i. For x, y ∈ S write x ∼ y if
x, y are nearest neighbors, and define

iξ = {x : ξ(x) = i}, ξ ∈ {0,1,2}S, i = 1,2.

For x ∈ S and ξ ∈ {0,1,2}S , let ni(x, ξ) denote the number of neighbors of x that
are of type i,

ni(x, ξ) = ∑
y∼x

1{ξ(y) = i}, i = 1,2.

The multitype contact process ξt with birth rates λ1, λ2 is the Feller process taking
values in {0,1,2}S which makes transitions at x in configuration ξ

i → 0 at rate 1, i = 1,2,(1.1)

0 → i at rate λini(x, ξ), i = 1,2.(1.2)
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Informally, an individual of either type dies at rate one, and for each site x and each
neighboring site y, an individual of type i at x gives birth at rate λi to an individual
of the same type at y, provided that site is vacant. Thus, the two types interact
in their competition for space. Existence and uniqueness of a Feller process ξt

determined by the above rates follows from general results of [6], Theorem I.3.9.
We will give a “graphical construction” of ξt in Section 2 below.

For this process on Zd , Neuhauser proved in [8] that the two types can coexist if
and only if d ≥ 3 and λ1 = λ2 > λc (λc is defined below). In [8] coexistence meant
the existence of a translation invariant measure ν which is invariant for the process
and concentrates on configurations with infinitely many individuals of each type.
That is, letting | · | denote cardinality, ν should satisfy

ν(ξ : |1ξ | = |2ξ | = ∞) = 1.(1.3)

The noncoexistence part of this result was strengthened by Durrett and Neuhauser
in [2]. By Theorem 2 there, if λ2 > λ1 ∨ λc, and if the initial configuration ξ0
has infinitely many type 2 individuals, then for every site x, P(ξt (x) = 1) → 0
as t → ∞. Consequently, there is no invariant measure ν, translation invariant or
otherwise, satisfying (1.3).

Switching from Zd to Td , one can use the approach from [8] to show that if
λ1 �= λ2, then there can be no invariant measure ν which is homogeneous (invari-
ant under the obvious shifts) and also satisfies (1.3). However, the arguments in [2],
which involve a block construction, do not seem to be directly applicable on the
tree, leaving open the possibility of nonhomogeneous invariant measures satisfy-
ing (1.3). We show in Theorem 1 that such measures do in fact exist, provided the
birth rates lie in a certain interval. In Theorem 2 we show that there is no coexis-
tence when the birth rates are outside this interval. For this result our method of
proof applies equally well on Zd .

In order to state our results, it is necessary to briefly review the basic, single-
type contact process ζt introduced by Harris in [4], treated in detail in Chapter VI
of [6] and in Part I of [7]. In this process each site of S is either vacant or occupied
by an individual, and ζt is the set of occupied sites at time t . Supposing S is either
Zd or Td and A ⊂ S, the transition rates are given by

A → A \ {x} for x ∈ A at rate 1,

A → A ∪ {x} for x /∈ A at rate λ|{y ∈ A :y ∼ x}|.
For A ⊂ S let ζA

t denote the process with initial state ζA
0 = A, and for x ∈ S write

ζ x
t for ζ

{x}
t . We give a construction of ζt in Section 2 below.

Define the two critical values λ∗ ≤ λ∗ by

λ∗ = inf{λ :P(ζ x
t �= ∅ ∀t > 0) > 0}

and

λ∗ = inf{λ :P(x ∈ ζ x
t i.o. as t → ∞) > 0}.
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By translation invariance, the above probabilities do not depend on x. The contact
process is said to die out if P(|ζ x

t | ≥ 1 ∀t > 0) = 0, survive weakly if this proba-
bility is positive but P(x ∈ ζ x

t i.o. as t → ∞) = 0, and survive strongly if this last
probability is positive. It is known that for S = Zd weak survival does not occur,
λ∗ = λ∗, and the common value λc is finite and strictly positive. However, for the
tree Td , weak survival does occur. It is known that 0 < λ∗ < λ∗ < ∞, the process
dies out if λ = λ∗ and survives weakly if λ = λ∗ (see Proposition I.4.39 and Theo-
rem I.4.65 in [7]). It turns out that these different possibilities for survival must be
taken into account when investigating the question of coexistence for the multitype
process on Td .

For the tree Td fix a site O ∈ Td and call it the root. For x �= y ∈ Td there is
a unique sequence of distinct sites x = x0, x1, . . . , xn = y such that xi−1 ∼ xi for
i = 1, . . . , n. Let this n be the distance from x to y, |x − y| = n. Let BK be the
ball of radius K centered at O, BK = {y ∈ Td : |y − O| ≤ K}, and let ∂BK denote
the outer boundary, ∂BK = {y ∈ Td : |y −O| = K + 1}. For x ∈ Td let S(x) be the
sector of the tree starting at x pointing away from the root, that is,

S(x) = {y ∈ Td : |y − O| = |y − x| + |x − O|}.
A nice set of configurations to work with is �0, the set of configurations η ∈
{0,1,2}Td which satisfy:

∃K < ∞ such that η is constant on each S(y), y ∈ ∂BK.(1.4)

Our first results are for the case that both birth rates lie between the two con-
tact process critical values. For this case there is coexistence, and even weak con-
vergence starting from any configuration in �0. For a probability measure ν on
{0,1,2}S , ξt ⇒ ν as t → ∞ means that the finite dimensional distributions of ξt

converge to those given by ν.

THEOREM 1. Assume S = Td and λ1, λ2 ∈ (λ∗, λ∗].
(i) If ξ0 ≡ i on S(y) for some site y, then for all sites x,

lim inf
t→∞ P

(
ξt (x) = i

)
> 0.(1.5)

(ii) If ξ0 = η ∈ �0, then

ξt ⇒ νη as t → ∞(1.6)

for some measure νη which is necessarily invariant for ξt .
(iii) Assume η ∈ �0. If |iη| = ∞, then νη(ξ : |iξ | = ∞) = 1. If η ≡ i on some

sector S(y) and |x| → ∞, x ∈ S(y), then νη(ξ : ξ(x) = j) → 0 if j is not 0 or i.
(iv) Assume η,η′ ∈ �0. If |{x :η(x) �= η′(x)}| < ∞, then νη = νη′ . If ∃y ∈ Td

and i �= j such that η ≡ i and η′ ≡ j on S(y), then νη �= νη′ .
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Theorem 1 shows there is coexistence even for unequal birth rates, provided
the two rates lie in the contact process weak survival interval, and exhibits a large
class of nonhomogeneous invariant measures νη. If η ∈ �0 is identically 1 on some
sector and identically 2 on another, then by (ii) and (iii) above, νη is a nonhomo-
geneous invariant measure which satisfies (1.3). This means that when λ1 < λ2
and both rates lie in (λ∗, λ∗], the 2’s are not strong enough to drive the 1’s from
bounded regions of the tree, and coexistence is possible. Two-type competition
models have been studied by many others; see [1, 3] and [5] for instance. The
model in [5] exhibits “global” coexistence with unequal rates, in that P(|1ξt | ≥
1, |2ξt | ≥ 1 ∀t > 0) > 0 for every initial configuration with |1ξ0| ≥ 1, |2ξ0| ≥ 1.
Coexistence results are proved in [1] for the multitype contact process on Zd with
long-range interactions, or an additional “death” mechanism. Theorem 1 may give
the first “local” coexistence result for a nearest-neighbor interaction model with
equal death rates and unequal birth rates.

It is a different story when λ1 �= λ2 with one or both rates larger than λ∗. In this
case coexistence, even in the weak sense of (1.7) below, is not possible.

THEOREM 2. Assume S is Zd or Td and λ2 > λ1 ∨ λ∗. For any initial config-
uration ξ0 and x ∈ S,

lim
t→∞P

(
ξt (x) = 1 and |2ξt | ≥ 1

) = 0.(1.7)

Consequently, limt→∞ P(ξt (x) = 1) = 0 if |2ξ0| = ∞.

For S = Zd , (1.7) follows from the results in Section 3 of [2]. We include this
case in the statement of Theorem 2 since our proof for S = Td applies equally
well to the lattice case, and is simpler than the one in [2]. The lack of coexistence
in (1.7) means that an invariant measures can concentrate on only one type, and
allows us to prove that the process converges weakly from any initial configuration.
We need some additional notation and information about the basic contact process
before stating our results.

For the single-type contact process ζt with birth rate λ, define the survival prob-
abilities αA = αA(λ) by

αA = P(ζA
t �= ∅ ∀t ≥ 0), A ⊂ S,(1.8)

and let α = α{x}, which by translation invariance does not depend on x.
It is well known (see (I.1.4) of [7]) that there is a probability measure ν̄ = ν̄λ

called the upper invariant measure such that

ζ S
t ⇒ ν̄λ as t → ∞.(1.9)

Letting δ∅ be the unit point mass on the empty set, ν̄ �= δ∅ if and only if λ > λ∗.
The complete convergence theorem for ζt is the statement

ζA
t ⇒ (1 − αA)δ∅ + αAν̄ as t → ∞ ∀A ⊂ S.(1.10)
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It is known that (1.10) holds for both Zd and Td if λ > λ∗ (see Theorems I.2.27
and I.4.70 in [7]).

We show here that there is an analogous theorem for the multitype contact
process if λ2 > λ1 > λ∗. To state it, we must define appropriate survival proba-
bilities and “upper invariant measures.” For birth rates λ1, λ2 and configurations
η ∈ {0,1,2}S , let ξ0 = η and define αi

η = αi
η(λ1, λ2), i = 1,2, by

α1
η = P(1ξt �= ∅ ∀t ≥ 0 and 2ξt = ∅ eventually),

(1.11)
α2

η = P(2ξt �= ∅ ∀t ≥ 0).

We need probability measures ν̄i = ν̄i
λi

on {0,1,2}S , which correspond to ν̄λi
and

concentrate on configurations in which all individuals are of type i. These mea-
sures are defined by the requirements

ν̄1(ξ : 2ξ = ∅) = ν̄2(
ξ : 1ξ(x) = ∅

) = 1

and

ν̄i(ξ : iξ ∩ A �= ∅) = ν̄λi
(ζ : ζ ∩ A �= ∅), A ⊂ S, i = 1,2.

With these definitions in place, we can now state our complete convergence the-
orem for ξt when λ2 > λ1 > λ∗. In the following let δ0 denote the measure on
{0,1,2}S which concentrates on the single configuration ξ ≡ 0.

THEOREM 3. Assume S is Zd or Td , λ2 > λ1 > λ∗ and ξ0 = η. Then

ξt ⇒ (1 − α1
η − α2

η)δ0 + α1
ην̄

1 + α2
ην̄

2 as t → ∞.(1.12)

Given Theorem 2, this result is not surprising. If the 2’s survive, then the 1’s
are driven out of bounded regions, so the 2’s in effect form a single type contact
process and (1.10) takes over. If there are finitely many 2’s which die out while the
1’s manage to survive, then the 1’s form a single type contact process and again
(1.10) takes over.

The complete convergence theorem for the contact process (1.10) does not hold
on Td for λ ∈ (λ∗, λ∗]. In this case the contact process has a wide variety of in-
variant measures (see Theorems I.4.107 and I.4.121 of [7]) and, hence, possible
limits for ζt . We cannot expect (1.12) to hold as stated if λ1 ≤ λ∗ < λ2. However,
if we restrict ξ0 to configurations for which the corresponding contact process of
1’s converges weakly, then ξt also converges weakly.

THEOREM 4. Assume S = Td , λ2 > λ∗ ≥ λ1 and ξ0 = η. Let ζt be the single-
type contact process with birth rate λ1 and initial state ζ0 = 1η, and assume that
ζt ⇒ μ as t → ∞. Then

ξt ⇒ (1 − α2
η)μ̄

1 + α2
ην̄

2 as t → ∞,(1.13)

where μ1(ξ : 2ξ = ∅) = 1 and μ1(ξ : 1ξ ∩ A �= ∅) = μ(ζ : ζ ∩ A �= ∅).
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For S = Zd , the conclusions of Theorems 2 and 3 can be derived from results
in [2] (Lemma 3 and the construction in Section 3 there). However, our methods are
simpler and should apply without much change to other choices for S, including
some periodic graphs.

As previously noted, for S = Zd and λ1 = λ2 > λc, it was shown in [8] that
there is coexistence for d ≥ 3 but not for d ≤ 2. Presumably the arguments for
these results can be adapted to handle the tree Td , where one expects there should
be coexistence for λ1 = λ2 > λ∗.

In the next section we construct our processes using the standard “graphical
construction” via Poisson processes. The construction naturally contains various
couplings and dual processes used in our proofs. In Sections 3–6 we prove Theo-
rems 1–4, respectively.

We note that our main tool is the ancestor duality introduced by Neuhauser
in [8].

2. Construction and duality. We start by constructing our process using Har-
ris’ graphical method, assuming from now on that

λ1 ≤ λ2.(2.1)

The construction takes place in the space–time set S × [0,∞) using independent
families of Poisson processes. For x ∈ S let {T x

n :n ≥ 1} be the arrival times of
a Poisson process with rate 1. At the times T x

n we put a δ at site x to indicate that
there is a death at x: if site x is occupied by either type, it becomes vacant at that
time. For all pairs of nearest neighbors x, y ∈ S let {Bx,y

n :n ≥ 1} be the arrival
times of a Poisson process with rate λ2. At the times B

x,y
n we do two things. We

draw an arrow from site x to site y, and with probability 1 −λ1/λ2, independently
of everything else, label the arrow with a “2” (and otherwise do not label the ar-
row). If there is a 2 at x and y is vacant at that time, then there is a birth of a 2 at y.
If there is a 1 at x and y is vacant, we put a 1 at y provided the arrow does not have
a 2 on it. Thus, the 2-arrows are really “2-only” arrows. If λ1 = λ2, then no arrow
is marked with a 2. The Poisson processes T x,Bx,y , x, y ∈ S, are all independent
of one another.

For sites x, y ∈ S and times 0 < s ≤ t , we say there is a path up from (x, s) to
(y, t) if there is a sequence of times t0 = s < t1 < t2 < · · · < tn = t and a sequence
of sites x0 = x, x1, . . . , xn = y such that, for i = 1,2 . . . , n, xi−1 ∼ xi , there is an
arrow from xi−1 to xi at time ti and the time segments {xi} × (ti−1, ti) do not
contain any δ’s. By default, there is always a path up from (x, t) to (x, t). A path
up which has at least one arrow labeled 2 will be called a “2-path,” and a path with
no arrows labeled 2 will be called a “1-path.” Note that 1’s propagate only along
1-paths, but 2’s propagate along both 1-paths and 2-paths. For s < t , there is an
i-path down from (y, t) to (x, s) if and only if there is an i-path up from (x, s)

to (y, t). Given an initial configuration ξ0, we may construct ξt , t ≥ 0, from our
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Poisson processes by following paths from occupied sites forward in time, using
δ’s for deaths and arrows for births, as appropriate.

We now define several “reverse” time dual processes, starting with the simplest.
For x ∈ S, t > 0, i = 1,2 and 0 ≤ s ≤ t , define

Di,(x,t)
s = {y ∈ S : there is an i-path down from (x, t) to (y, t − s)}

and D
(x,t)
s = D

1,(x,t)
s ∪ D

2,(x,t)
s . The ancestor process introduced in [8] is more

complicated. Fix x ∈ S and t > 0, and consider D
(x,t)
s ,0 ≤ s ≤ t . If D

(x,t)
s

is not empty, then the sites in D
(x,t)
s are the possible ancestors at (forward)

time t − s of (x, t), which can be arranged in decreasing order of priority,
(a1(s), a2(s), . . . , an(s)) for some n, with a1(s) denoting the primary ancestor
(see [8]). The j th ancestor aj is associated with a path up from (aj , t − s) to
(x, t), which may or may not contain an arrow labeled 2, blocking propagation of
1’s. We will use an equivalent but slightly different formulation of this process,
which we now describe.

An ancestor configuration ξ̂ is either the empty set, or a sequence of pairs
((a1, b1), . . . , (an, bn)) for some n ≥ 1, where each aj ∈ S and bj is either

1 or 2. The ancestor process ξ̂
(x,t)
s ,0 ≤ s ≤ t , is a Markov process defined as

follows. First, put ξ̂
(x,t)
0 = ((x,1)). Suppose now that s < t and ξ̂

(x,t)
u has been

defined for u ∈ [0, s]. If ξ̂
(x,t)
s = ∅, put ξ̂

(x,t)
v = ∅ for all s < v ≤ t . If ξ̂

(x,t)
s =

((a1, b1), . . . , (an, bn)) for some n ≥ 1, let u be the the smallest time larger than s

at which an event occurs at (forward) time t − u affecting any of the aj . If there is

no such u ≤ t , put ξ̂
(x,t)
v = ξ̂

(x,t)
s for all s < v ≤ t , then we are done. Now suppose

u < t :

1. If the event affecting aj at time t − u is an arrow pointing from some
site a to aj , insert (a, b) into ((a1, b1), . . . , (an, bn)) after each (ai, bi) such that
ai = aj :

• If the arrow from a to aj is labeled 2, set b = 2 for each of these insertions.
• If the arrow is unlabeled, set b = 1, except for insertions after any (ai, bi) with

bi = 2, in which case set b = 2.

2. If the event affecting aj is a δ, then delete each (ai, bi) from ((a1, b1), . . . ,

(an, bn)) with ai = aj .

Let ξ̂
(x,t)
u be the resulting sequence, setting ξ̂

(x,t)
u = ∅ if all the ai were deleted.

Iteration of this procedure defines ξ̂
(x,t)
v for all v ∈ [0, t]. For an ancestor con-

figuration ξ̂ = ((a1, b1), . . . , (an, bn)), let supp(̂ξ ) = {aj : 1 ≤ j ≤ n}, so that

supp(̂ξ
(x,t)
s ) = D

(x,t)
s . We say that the j th ancestor aj is 1-blocked if bj = 2. If

λ1 = λ2, then there are no 1-blocked ancestors and the bj can be dispensed with.

The duality equation relating ξ̂
(x,t)
s and ξt−s is

ξt (x) = �
(
x, ξ̂ (x,t)

s , ξt−s

)
, s ∈ [0, t],(2.2)
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FIG. 1.

where �(x, ξ̂ , ξ) is the function of sites x ∈ S, ancestor configurations ξ̂ , and
configurations ξ ∈ {0,1,2}S defined as follows. If ξ̂ = ∅, put �(x, ξ̂ , ξ) = 0.
Otherwise, ξ̂ = ((a1, b1), . . . , (an, bn)) for some n ≥ 1, and we start check-
ing the ancestors one at a time. If ξ(a1) = 2, set �(x, ξ̂ , ξ) = 2, indicating
a 2 propagates up. If ξ(a1) = 1 and b1 = 1, set �(x, ξ̂ , ξ) = 1, indicating
a 1 propagates up. Now suppose either ξ(a1) = 1 and b1 = 2, or ξ(a1) = 0.
If n = 1, set �(x, ξ̂ , ξ) = 0. Otherwise n ≥ 2, and we consider (a2, b2) and
proceed as with (a1, b1), either setting �(x, ξ̂ , ξ) equal to 1 or 2, or exhaust-
ing the set of ancestors completely, in which case we set �(x, ξ̂ , ξ) = 0. The
duality equation (2.2) holds because it holds at time s = 0, and each transi-
tion preserves its validity. For an example, see Figure 1, in which the solid
circles indicate deaths, ξ0(a) = 2, ξ0(b) = 1, ξ0(c) = 0, ξ0(d) = 1, ξ0(e) = 2,
ξ̂

(c,t)
s = ((b,1), (a,2), (c,1), (d,1), (e,2), (d,2)), ξt−s(a) = ξt−s(c) = ξt−s(e) =

1, ξt−s(b) = ξt−s(d) = 0 and �(c, ξ̂
(c,t)
s , ξt−s) = 1.

The reverse time ancestor processes ξ̂
(x,t)
s are defined only for bounded time

intervals. However, as in [8], we can switch to forward time, and define ancestor
processes ξ̄

(x,t)
s , s ≥ t , in the analogous way, so that the laws of ξ̄

(x,0)
s , s ∈ [0, t],

and ξ̂
(x,t)
s , s ∈ [0, t], are the same. Thus, in Figure 1, ξ̄

(d,t−s)
t = ((d,1), (e,2)). We

will write ξ̄ x
s for ξ̄

(x,0)
s .
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Our construction also contains various couplings with the single-type contact
process. Consider x ∈ S and t > 0. For s ≥ t , let ζ

1,(x,t)
s be the set of sites y such

that there is a 1-path up from (x, t) to (y, s), and let ζ
2,(x,t)
s be the set of sites y

such that there is either a 1-path or 2-path up from (x, t) to (y, s). Write ζ i,x
s for

ζ
i,(x,0)
s and ζ i,A

s for
⋃

x∈A ζ i,x
s , i = 1,2. Each process ζ i,x

s , s ≥ 0, is a single-type
contact processes with birth rate λi . Also, D

1,(x,t)
s ,0 ≤ s ≤ t , has the same law as

ζ 1,x
s ,0 ≤ s ≤ t , and D

(x,t)
s ,0 ≤ s ≤ t , has the same law as ζ 2,x

s ,0 ≤ s ≤ t . Finally,

we make the observation that supp(ξ̄
(x,t)
s ), s ≥ t , and ζ

2,(x,t)
s , s ≥ t , have the same

law.
A word on notation. Throughout we will use ξ, η for elements of {0,1,2}S , ζ

for subsets of S, and ξ̄ and ξ̂ for ancestor configurations.

3. Proof of Theorem 1. Recall that (2.1) is in force.

PROOF OF (1.5). It suffices to assume that ξ ≡ 1 on S(y) for some neighbor
y of O, and show that there is some x ∈ S(y) such that

lim inf
t→∞ P

(
ξt (x) = 1

)
> 0.(3.1)

We start with a simple consequence of the duality equation (2.2): for any x ∈ S,
then {

∅ �= D
1,(x,t)
t and D

(x,t)
t ⊂ S(y)

} ⊂ {ξt (x) = 1}.(3.2)

This follows because on the event on the left-hand side D
(x,t)
t = supp(̂ξ

(x,t)
t ) =

{a1, . . . , an} for some n ≥ 1, ξ0(ai) = 1 for each i, and since D
1,(x,t)
t is nonempty,

at least one of the ai is not 1-blocked. Therefore, �(x, ξ̂
(x,t)
t , ξ0) = 1, so ξt (x) = 1

by (2.2).
By (3.2), we have

P
(
ξt (x) = 1

) ≥ P
(
D

1,(x,t)
t �= ∅

) − P
(
D

(x,t)
t �⊂ S(y)

)
= P(ζ

1,x
t �= ∅) − P

(
ζ

2,x
t �⊂ S(y)

)
≥ P(ζ 1,x

s �= ∅ for all s ≥ 0) − P
(
ζ 2,x
s ∩ Sc(y) �= ∅ for some s ≥ 0

)
.

Since λ1 > λ∗, the survival probability α(λ1) = α{x}(λ1) [recall (1.8)] is positive.
For x ∈ S(y), the fact that 2’s spread only by nearest neighbor contact implies

{ζ 2,x
s ∩ Sc(y) �= ∅ for some s ≥ 0} = {O ∈ ζ 2,x

s for some s ≥ 0}.
We can now make use of Theorem I.4.65 of [7], which states that if λ2 ≤ λ∗, then

P(O ∈ ζ 2,x
s for some s ≥ 0) ≤ (

1/
√

d
)|x−O|

.(3.3)
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(All that is important for us about this bound is that it tends to 0 as |x −O| → ∞.)
By combining the above, it follows that, for all x ∈ S(y) and t ≥ 0,

P
(
ξt (x) = 1

) ≥ α(λ1) − (
1/

√
d
)|x−O|

,(3.4)

which is certainly positive for x ∈ S(y) with |x − O| sufficiently large. �

Before continuing with the proof of Theorem 1, we prove a lemma which shows
that limits of certain finite dimensional distributions for ξt exist when the dual
lands in a region where the initial state is constant. For x ∈ Td and t > 0, let
τ

(x,t)
K = inf{s ∈ [0, t] :D(x,t)

s ∩ BK �= ∅}, with inf(∅) = ∞ [so τ
(x,t)
K = ∞ simply

means D
(x,t)
s ∩ BK = ∅ ∀s ≤ t]. Switching to forward time, let τ

i,x
K = inf{s ≥ 0 :

ζ i,x
s ∩ BK �= ∅} and define the lifetimes σ i,x = inf{s ≥ 0 : ζ i,x

s = ∅}, i = 1,2.

LEMMA 1. Assume that y ∈ ∂BK , ξ0 is constant on S(y), and A0,A1,A2 are
finite disjoint subsets of S(y). Then as t → ∞,

P
(
τ

(z,t)
K = ∞ and ξt (z) = j ∀z ∈ Aj , j = 0,1,2

) → φ(A0,A1,A2)(3.5)

for some φ(A0,A1,A2).

PROOF. Let A = A0 ∪ A1 ∪ A2 ⊂ S(y). (i) Suppose ξ0 ≡ 0 on S(y). For z ∈
A ⊂ S(y), if τ

(z,t)
K = ∞, then supp(̂ξ

(z,t)
t ) ⊂ S(y). Consequently, no ancestor can

land on a site occupied by a 1 or 2, implying ξt (z) cannot be 1 or 2. This means
the left-hand side of (3.5) is zero if either A1 or A2 is nonempty. If A1 = A2 = ∅,
the left-hand side of (3.5) equals

P
(
τ

(z,t)
K = ∞ ∀z ∈ A

) = P(τ
2,z
K > t ∀z ∈ A) → P(τ

2,z
K = ∞ ∀z ∈ A)

as t → ∞.

(ii) Suppose ξ0 ≡ 2 on S(y). Again, τ
(z,t)
K = ∞ implies supp(̂ξ

(z,t)
t ) ⊂ S(y),

so now the left-hand side of (3.5) is zero unless A1 = ∅. In this case, ξt (z) = 2 if
and only if D

(z,t)
t �= ∅. Therefore, the left-hand side of (3.5), for A1 = ∅, equals

P
(
τ

(z,t)
K = ∞ ∀z ∈ A,D

(z,t)
t = ∅ ∀z ∈ A0,D

(z,t)
t �= ∅ ∀z ∈ A2

)
= P(τ

2,z
K > t ∀z ∈ A,σ 2,z ≤ t ∀z ∈ A0, σ

2,z > t ∀z ∈ A2)

→ P(τ
2,z
K = ∞ ∀z ∈ A,σ 2,z < ∞ ∀z ∈ A0, σ

2,z = ∞ ∀z ∈ A2)

as t → ∞.
(iii) Suppose ξ0 ≡ 1 on S(y). Now the left-hand side of (3.5) is zero unless

A2 = ∅, and in this case ξt (z) = 1 if and only if D
1,(z,t)
t �= ∅. Thus, if A2 = ∅, the
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left-hand side of (3.5) equals

P
(
τ

(z,t)
K = ∞ ∀z ∈ A,D

1,(z,t)
t = ∅ ∀z ∈ A0,D

1,(z,t)
t �= ∅ ∀z ∈ A1

)
= P(τ

2,z
K > t ∀z ∈ A,σ 1,z ≤ t ∀z ∈ A0, σ

1,z > t ∀z ∈ A1)

→ P(τ
2,z
K = ∞ ∀z ∈ A,σ 1,z < ∞ ∀z ∈ A0, σ

1,z = ∞ ∀z ∈ A1)

as t → ∞. This proves the lemma. �

PROOF OF THEOREM 1(ii). Assume ξ0 ∈ �0, and K is such that ξ0 is constant
on each S(y), y ∈ ∂BK . We will prove that, for any x ∈ Td , a ∈ {0,1,2},

lim
t→∞P

(
ξt (x) = a

)
exists.(3.6)

Afterward we will show how to modify the proof to handle convergence of all
finite dimensional distributions.

Let L(x,t) be the last time up to time t the dual D
(x,t)
s starting from (x, t) con-

tains some point of BK , L(x,t) = sup{s ≤ t :BK ∩ D
(x,t)
s �= ∅}, with sup(∅) = 0.

We will prove (3.6) using a decomposition based on the value of L(x,t). The case
L(x,t) = 0 is easily handled. If x ∈ BK , then necessarily L(x,t) > 0, while for
x /∈ BK , {L(x,t) = 0} = {τ (x,t)

K = ∞}, and so Lemma 1 implies

lim
t→∞P

(
ξt (x) = a,L(x,t) = 0

)
exists.(3.7)

Now suppose L(x,t) = s for some s ∈ (0, t), which occurs when:

1. ξ̂
(x,t)
s− = ξ̂ ′ for some ξ̂ ′ containing a single w ∈ BK as one or more of the

ancestors of (x, t),
2. there is a δ at this site w at (forward) time t − s,
3. ξ̂

(x,t)
s = ξ̂ , where ξ̂ is obtained from ξ̂ ′ by removing each (ai, bi) with

ai = w,
4. D

(z,t−s)
u ∩ BK = ∅ for all z ∈ supp(̂ξ ) and u ∈ [0, t − s].

Using the convention above for ξ̂ ′ and ξ̂ , the duality equation (2.2) implies that if
0 < t0 < t , we have

P
(
ξt (x) = a,0 < L(x,t) < t0

)
=

∫ t0

0
P

(
L(x,t) ∈ ds, ξt (x) = a

)
= ∑

ξ̂ ′

(K)
∫ t0

0

∫
P

(
L(x,t) ∈ ds, ξ̂

(x,t)
s− = ξ̂ ′, ξt−s ∈ dξ

)
1{�(x, ξ̂ , ξ) = a},

where the sum
∑(K) is over ξ̂ ′ such that supp(̂ξ ′) ∩ BK is a single site. By in-

dependence of disjoint space–time regions of the Poisson processes used in the
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construction in Section 2, and the fact that δ’s occur at rate one, the above equals∑
ξ̂ ′

(K)
∫ t0

0

∫
P

(̂
ξ (x,t)
s = ξ̂ ′)

×P
(
τ

(z,t−s)
K = ∞ ∀z ∈ supp(̂ξ ), ξt−s ∈ dξ

)
1{�(x, ξ̂ , ξ) = a}ds.

For fixed x and ξ̂ , �(x, ξ̂ , ξ) depends on ξ only through the values ξ(z),
z ∈ supp(̂ξ ). Hence, we can define �(x,a, ξ̂ ) to be the set of partitions A =
(A0,A1,A2) of supp(̂ξ ) such that, for all ξ , �(x, ξ̂ , ξ) = a if and only if ξ ≡
j on Aj , j = 0,1,2, for some A ∈ �(x,a, ξ̂ ). Therefore, summing over the pos-

sible values of ξt−s on supp(̂ξ ), and replacing P (̂ξ
(x,t)
s = ξ̂ ′) with P(ξ̄x

s = ξ̂ ′), we
have

P
(
ξt (x) = a,0 < L(x,t) ≤ t0

)
(3.8)

= ∑
ξ̂ ′

(K) ∑
A∈�(x,a,̂ξ)

∫ t0

0
P(ξ̄x

s = ξ̂ ′)qt (s,A) ds,

where

qt (s,A) = P
(
τ

(z,t−s)
K = ∞ and ξt−s(z) = j ∀z ∈ Aj , j = 0,1,2

)
.(3.9)

It is time to use the fact that ξ0 ∈ �0. Let Si be the union of all S(y), y ∈ ∂BK

such that ξ0 ≡ i on S(y), and for the sets Aj above let Ai
j = Aj ∩ Si . Since the

Si are disjoint, and the duals D
(z,t−s)
u do not leave their respective sectors Si on

{τ (z,t−s)
K = ∞}, independence of disjoint space–time regions implies

qt (s,A) = P

( 2⋂
i=0

{
τ

(z,t−s)
K = ∞ and ξt−s(z) = j ∀z ∈ Ai

j , j = 0,1,2
})

=
2∏

i=0

P
(
τ

(z,t−s)
K = ∞ and ξt−s(z) = j ∀z ∈ Ai

j , j = 0,1,2
)
.

By Lemma 1, the above product converges for fixed s as t → ∞ to some φ(A) =∏2
i=0 φ(Ai

0,A
i
1,A

i
2). Since each �(x,a, ξ̂ ′) is finite, this implies

lim
t→∞

∑
A∈�(x,a,̂ξ)

qt (s,A) = ∑
A∈�(x,a,̂ξ)

φ(A)(3.10)

for fixed s, ξ̂ ′.
Since

∑
A∈�(x,a,̂ξ) qt (s,A) ≤ 1 and

∑
ξ̂ ′(K)

∫ t0
0 P(ξ̄x

s = ξ̂ ′) ds ≤ t0, the domi-
nated convergence theorem can be applied in (3.8), so that (3.10) implies

lim
t→∞P

(
ξt (x) = a,0 < L(x,t) ≤ t0

)
(3.11)

= ∑
ξ̂ ′

(K) ∑
A∈�(x,a,̂ξ)

φ(A)

∫ t0

0
P(ξ̄x

s = ξ̂ ′) ds.
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The contribution to (3.6) of L(x,t) > t0 for large t0 is negligible, since λ2 ≤ λ∗
implies

lim sup
t0→∞

sup
t≥t0

P
(
t0 < L(x,t) ≤ t

)
(3.12)

≤ lim sup
t0→∞

P(ζ 2,x
s ∩ BK �= ∅ for some s ≥ t0) = 0.

We have thus proved

lim
t→∞P

(
ξt (x) = a,0 < L(x,t) ≤ t

)
= ∑

ξ̂ ′

(K) ∑
A∈�(x,a,̂ξ)

φ(A)

∫ ∞
0

P(ξ̄x
s = ξ̂ ′) ds

and, in view of (3.7), this implies (3.6) must hold.
More generally, let � = {x1, . . . , xm} ⊂ Td , and a :� → {0,1,2}. We claim that

lim
t→∞P

(
ξt (x) = a(x) ∀x ∈ �

)
exists.(3.13)

First, let L�,t = max{L(x,t), x ∈ �}, and use Lemma 1 to obtain

lim
t→∞P

(
ξt (x) = a(x) ∀x ∈ �,L�,t = 0

)
exists.

Next, consider P(ξt (x) = a(x) ∀x ∈ �,0 < L�,t ≤ t0), and decompose this event
according to the value of L�,t ,

P
(
ξt (x) = a(x) ∀x ∈ �,0 < L�,t ≤ t0

)
= ∑

ξ̂ ′
1,...,̂ξ

′
m

(K)
∫ t0

0

∫
P

(
L�,t ∈ ds, ξ̂

(xi ,t)
s− = ξ̂ ′

i ,1 ≤ i ≤ m,ξt−s ∈ dξ
)

×
m∏

i=1

1{�(xi, ξ̂i , ξ) = a(xi)},

where the sum
∑(K) is over ξ̂ ′

1, . . . , ξ̂
′
m such that BK ∩(

⋃
i supp(̂ξ ′

i )) is a single site
w ∈ BK . As before, for each i, ξ̂i is obtained from ξ̂ ′

i by removing all (a, b) with
a = w, if any. By independence of disjoint space–time regions, the above equals∑

ξ̂ ′
1,...,̂ξ

′
m

(K)
∫ t0

0

∫
P

(̂
ξ (xi ,t)
s = ξ̂ ′

i ,1 ≤ i ≤ m
)

×P

(
τ

(z,t−s)
K = ∞ ∀z ∈ supp

(⋃
i

ξ̂i

)
, ξt−s ∈ dξ

)

×
m∏

i=1

1{�(xi, ξ̂i , ξ) = a(xi)}ds.
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Let �(�,a, ξ̂1, . . . , ξ̂m) be the set of partitions A = (A0,A1,A2) of
⋃

i supp(̂ξi)

such that �(xi, ξ̂i , ξ) = a(xi) ∀1 ≤ i ≤ m if and only if ξ ≡ j on Aj , j = 0,1,2,
for some A ∈ �(�,a, ξ̂1, . . . , ξ̂m). Reasoning as before gives

P
(
ξt (x) = a(x) ∀x ∈ �,0 < L�,t < t0

)
= ∑

ξ̂ ′
1,...,̂ξ

′
m

(K) ∑
A∈�(�,a,̂ξ ′

1,...,̂ξ
′
m)

∫ t0

0
P(ξ̄xi

s = ξ̂ ′
i ,1 ≤ i ≤ m)

×P
(
τ

(z,t−s)
K = ∞ and ξt−s(z) = j ∀z ∈ Aj , j = 0,1,2

)
ds.

By the argument leading to (3.11), for some φ(A),

lim
t→∞P

(
ξt (x) = a(x) ∀x ∈ �,0 < L�,t ≤ t0

)
= ∑

ξ̂ ′
1,...,̂ξ

′
m

(K) ∑
A∈�(�,a,̂ξ ′

1,...,̂ξ
′
m)

φ(A)

∫ t0

0
P (̂ξxi

s = ξ̂ ′
i ,1 ≤ i ≤ m)ds.

In view of (3.12), this completes the proof of (3.13). �

PROOF OF THEOREM 1(iii). We may suppose λ1 ≤ λ2, i = 1 and j = 2. Our
first task is to prove νη(ξ : |1ξ | = ∞) = 1. To do this, it is enough by (ii) to show
that for ε > 0 and M ≥ 1 there is a finite A ⊂ S(y) such that

lim
t→∞P

(∑
x∈A

1{ξt (x) = 1} ≥ M

)
≥ 1 − ε.(3.14)

To do this, let � > 0 be large enough so that (1/
√

d)� ≤ α(λ1)/2. Letting ε0 =
α(λ1)/2 > 0, it follows from (3.3) that, for any y0 ∈ S(y) and x0 ∈ S(y0) such that
|x0 − y0| ≥ �,

P
(
ξt (x0) = 1 and y0 /∈ D(x0,t)

s ∀s ≤ t
) ≥ ε0 ∀t ≥ 0.

We construct the set A in (3.14) as follows. Let N be a positive integer large
enough so that a binomial random variable X with parameters N and p ≥ ε0 will
satisfy P(X ≥ M) ≥ 1 − ε. Let y1, . . . , yN be vertices in S(y) such that S(yj ) ∩
S(yk) = ∅ for j �= k, and let xj ∈ S(yj ) satisfy |xj − yj | ≥ � for j = 1, . . . ,N .

Fix t > 0 and define εj = 1{ξt (xj ) = 1, yj /∈ D
(xj ,t)
s ∀s ≤ t}, j = 1, . . . ,N . By

independence of disjoint space–time regions, the εj are independent with P(εj =
1) ≥ ε0, so X = ∑N

j=1 εj is binomial with parameters N and p ≥ ε0 and thus,
(3.14) holds for A = {xi, i = 1, . . . ,N}.

The fact that ν(ξ : ξ(x) = 2) → 0 as x → ∞, x ∈ S(y) is a simple consequence
of duality and the bound (3.3). Since x ∈ S(y) and ξ0 ≡ 1 on S(y),

P
(
ξt (x) = 2

) ≤ P
(̂
ξ

(x,t)
t ∩ Sc(y) �= ∅

) ≤ (
1/

√
d
)|x−y|

.
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Now let t → ∞ and x → ∞, x ∈ S(y). �

PROOF OF THEOREM 1(iv). Assume η,η′ ∈ �0. Consider both ξt with ξ0 =
η and ξ ′

t with ξ ′
0 = η′ defined via the Poisson processes in Section 2. Let A =

{y ∈ Td :η(y) �= η′(y)}, and suppose A is finite. For any x, since each λi ≤ λ∗,
P (̂ξ

(x,t)
t ∩ A �= ∅) → 0 as t → ∞. By the duality equation (2.2), since ξ0 = ξ ′

0
on Ac, P(ξt (x) �= ξ ′

t (x)) → 0 as t → ∞, which implies νη = νη′ . The remaining
conclusion of (iv) is a simple consequence of (iii). �

4. Proof of Theorem 2. Before beginning the proof of Theorem 2, we state
and prove a fact about the upper invariant measure ν̄ for the single-type con-
tact process. The result we need is an immediate consequence of the inequality
I.2.30(b) of [7] for S = Zd . This inequality also holds for S = Td , but we could
not find a reference. Since the following result is all we need, and its proof may
apply to other choices of S, we give the proof here.

PROPOSITION 1. Assume S is Zd or Td and ν̄ is the upper invariant measure
for the contact process with birth rate λ > λ∗. Let δL = sup|A|>L ν̄(ζ : ζ ∩A = ∅).
Then

δL → 0 as L → ∞.(4.1)

PROOF. Recall the survival probabilities αA from (1.8). A consequence of
duality for the contact process (see (I.1.8) of [7]) is that

ν̄(ζ : ζ ∩ A �= ∅) = αA.(4.2)

Let ζt denote the single-type contact process with birth rate λ. Define the lifetime
σ(x) and the radius r(x) of the process started at x by σ(x) = inf{t ≥ 0 : ζ x

t =
∅} and r(x) = sup{|y − x| :y ∈ ζ x

t for some t ≥ 0}. Let εM(x) = P(σ(x) <

∞, r(x) ≥ M). By translation invariance, εM = εM(x) does not depend on x, and
εM → 0 as M → ∞.

Now fix M,N > 0 and let A be any set consisting of N points such that |x −
y| ≥ M for all x, y ∈ A,x �= y. Then, by the construction in Section 2,

1 − αA = P
(
σ(x) < ∞ ∀x ∈ A

)
≤ P

(
σ(x) < ∞, r(x) < M ∀x ∈ A

)
+P

(∃x ∈ A :σ(x) < ∞ and r(x) ≥ M
)
.

By independence of disjoint space–time regions and translation invariance, the
first probability on the right-hand side equals

∏
x∈A P (σ(x) < ∞, r(x) < M) ≤

(1 − α)N and the second probability is bounded above by
∑

x∈A εM(x) ≤ NεM.

Thus,

1 − αA ≤ (1 − α)N + NεM.
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Since α > 0, given ε > 0, we may choose first N and then M so that (1 −
α)N < ε/2 and NεM < ε/2. Now let L0 be large enough so that any A ⊂ S with
at least L0 points must contain at least N points separated from one another by
distance at least M . It follows from the monotonicity of αA that if |A| > L0, then
ν̄(ζ : ζ ∩ A = ∅) = 1 − αA < ε. �

PROOF OF THEOREM 2. Here is the idea of the proof. Suppose t, u > 0 are
large, ξt+u(x) �= 0 and 2ξt+u �= ∅. Looking forward from time 0, 2ξu cannot be
empty and, with high probability, will have many points. Looking backward from
time t + u, the dual ancestor process starting at (x, t + u) must survive t time
units. For T > 0 large but small compared to t , we search for a space–time point
(y, t + u − s) such that y ∈ D

(x,t+u)
s = supp(̂ξ

(x,t+u)
s ) is the primary ancestor at

time s, y is 1-blocked, and D
(y,t+u−s)
T is nonempty. Trying at most a geometric

number of times, with high probability, we will find such a point (y, s) with s not
too large. Furthermore, D

(y,t+u−s)
T �= ∅ will imply that D

(y,t+u−s)
t−s �= ∅ with high

probability, and also that D
(y,t+u−s)
t−s will intersect 2ξu. (It is this last point which

fails unless λ2 > λ∗.) This will prevent ξt+u(x) = 1 since the sites in D
(y,t+u−s)
t−s

are descendants of a 1-blocked primary ancestor.
We prepare for the proof of (1.7) by assembling a few preliminary facts. Re-

call ν̄ = ν̄λ2 from (1.9). Since λ2 > λ∗, the complete convergence theorem (1.10)
implies that, for any site x and finite A ⊂ S, with α = α(λ2),

lim
t→∞P(ζ

2,x
t �= ∅, ζ

2,x
t ∩ A = ∅) = αν̄(ζ : ζ ∩ A = ∅).(4.3)

Let ρ(T ) = P(ζ
2,x
T �= ∅, ζ

2,x
t = ∅ for some t > T ), and observe that

ρ(T ) → 0 as T → ∞.(4.4)

Since individuals die at constant rate one, standard arguments show that the 2’s
must either die out or that their number must tend to infinity, that is,

P(1 ≤ |2ξu| ≤ L) → 0 as u → ∞(4.5)

for fixed L > 0.
Our argument uses a certain subset Ax

t of the highest priority ancestors of the
forward time ancestor process ξ̄ x

t which we now define. If ξ̄ x
t = ∅, put Ax

t =
∅. Now suppose that ξ̄ x

t = ((a1(t), b1(t)), . . . , (an(t), bn(t)) for some n ≥ 1. Put
Ax

t = ∅ if a1(t) is not 1-blocked [i.e., b1(t) = 1], and otherwise let

Ax
t = {a1(t), . . . , am(t)},(4.6)

where m is the largest index such that a1(t), . . . , am(t) are all 1-blocked. We will
see below that, for large t , Ax

t is large whenever ξ̄ x
t �= ∅.

Our goal is to prove

lim
u→∞ lim sup

t→∞
P

(
ξt+u(x) = 1, |2ξu| ≥ 1

) = 0.(4.7)
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This implies (1.7) since {ξt+u(x) = 1, |2ξt+u| ≥ 1} ⊂ {ξt+u(x) = 1, |2ξu| ≥ 1}. In
fact, on account of (4.5), we may focus our attention on {ξt+u(x) = 1, |2ξu| > L}
for large L.

We begin with an application of the duality equation (2.2),

P
(
ξt+u(x) = 1, |2ξu| > L

) = P
(
�

(
x, ξ̂

(
x,t+u

)
t , ξu

) = 1, |2ξu| > L
)
.(4.8)

By independence of disjoint space–time regions, and switching to the forward time
ancestor process ξ̄ x

t in the second equality,

P
(
�

(
x, ξ̂

(x,t+u)
t , ξu

) = 1, |2ξu| > L
)

=
∫
|2η|>L

P (ξu ∈ dη)P
(
�

(
x, ξ̂

(x,t+u)
t , η

) = 1
)

(4.9)

=
∫
|2η|>L

P (ξu ∈ dη)P
(
�(x, ξ̄ x

t , η) = 1
)
.

It follows from the the definitions of � and Ax
t that

�(x, ξ̄ x
t , η) = 2 on {ξ̄ x

t �= ∅,Ax
t ∩ 2η �= ∅},(4.10)

which implies

P
(
�(x, ξ̄ x

t , η) = 1
) ≤ P(ξ̄x

t �= ∅,Ax
t ∩ 2η = ∅).(4.11)

Now combine this with (4.8) and (4.9) to obtain

P
(
ξt+u(x) = 1, |2ξu| > L

)
(4.12)

≤
∫
|2η|>L

P (ξu ∈ dη)P (ξ̄ x
t �= ∅,Ax

t ∩ 2η = ∅).

To show the right-hand side above is small, we will argue that, for large t and u,
Ax

t ∩ 2η = ∅ is unlikely when ξ̄ x
t �= ∅ by means of the following construction. For

each y ∈ S pick some nearest neighbor ỹ, and fix this assignment. Call a space–
time point (y, s) good if the following events happen:

1. a 2-only arrow pointing from ỹ to y occurs during (s, s + 1),
2. a δ occurs at y at some time during (s + 1, s + 2),
3. no other events affecting y or ỹ occur during [s, s + 2].

Then ε0 = P((y, s) is good) > 0 and does not depend on (y, s). If ξ̄ x
s �= ∅, then

ξ̄ x
s = ((a1(s), b1(s)), . . . , (an(s), bn(s))) for some n ≥ 1 and primary ancestor site

a1(s). If (a1(s), s) is good, then a1(s + 2) = ã1(s), and for v ≥ s + 2 the sites of
ξ̄

(a1(s+2),s+2)
v are the highest priority sites of ξ̄ x

v , and they are all 1-blocked.
Fix T > 0 and let sk = k(T + 2) and tk = sk + 2, k ≥ 0. Let R be the smallest k

such that the primary ancestor a in ξ̄ x
sk

is good at time sk and the ancestor process
starting at (ã, tk) lasts at least T time units, that is,

R = inf
{
k : ξ̄ x

sk
�= ∅, (a1(sk), sk) is good and ξ̄ (a1(tk),tk)

sk+1
�= ∅

}
.
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Let ε1 = ε0α(λ2) > 0. By independence of disjoint space–time regions, for any
(y, s) and T > 0,

P
(
(y, s) is good and ξ̄

(ỹ,s+2)
s+2+T �= ∅

)
= P

(
(y, s) is good

)
P

(
ξ̄

(ỹ,s+2)
s+2+T �= ∅

)
(4.13)

= P
(
(y, s) is good

)
P

(
ζ

2,(ỹ,s+2)
s+2+T �= ∅

) ≥ ε1.

Iterating this inequality and using the Markov property gives us

P(ξ̄x
sk

�= ∅ and R > k) ≤ (1 − ε1)
k, k ≥ 0.(4.14)

Consequently, if k0 > 0 and t > sk0+1,

P(ξ̄x
t �= ∅,Ax

t ∩ 2η = ∅)
(4.15)

≤ (1 − ε1)
k0 +

k0∑
k=0

P(R = k, ξ̄ x
t �= ∅,Ax

t ∩ 2η = ∅).

Now define the events

Gk(a) = {R > k − 1, ξ̄ x
sk

�= ∅,
(4.16)

a1(sk) = a, and (a, sk) is good}, a ∈ S.

For k ≤ k0, supp(ξ̄
(ã,tk)
t ) ⊂ Ax

t on Gk(a), and this implies

P(R = k, ξ̄ x
t �= ∅,Ax

t ∩ 2η = ∅)

≤ ∑
a∈S

P
(
Gk(a) ∩ {

ξ̄ (ã,tk)
sk+1

�= ∅, supp
(
ξ̄

(ã,tk)
t

) ∩ 2η = ∅
})

.

For each a, by independence of disjoint space–time regions,

P
(
Gk(a) ∩ {

ξ̄ (ã,tk)
sk+1

�= ∅, supp
(
ξ̄

(ã,tk)
t

) ∩ 2η = ∅
})

≤ P(Gk(a))P
(
ξ̄ (ã,tk)
sk+1

�= ∅, supp
(
ξ̄

(ã,tk)
t

) ∩ 2η = ∅
)

(4.17)
= P(Gk(a))P (ζ

2,ã
T �= ∅, ζ

2,ã
t−tk

∩ 2η = ∅)

≤ P(Gk(a))
(
ρ(T ) + P(ζ

2,ã
t−tk

�= ∅, ζ
2,ã
t−tk

∩ 2η = ∅)
)
,

where we have shifted back to time 0 and used the fact that t > sk0+1. Therefore,
by the bounds (4.15) and (4.17), and the fact that

∑
a∈S P (Gk(a)) ≤ 1,

P(ξ̄x
t �= ∅,Ax

t ∩ 2η = ∅)

≤ (1 − ε1)
k0 + ρ(T )(k0 + 1)(4.18)

+
k0∑

k=0

∑
a∈S

P (Gk(a))P (ζ
2,ã
t−tk

�= ∅, ζ
2,ã
t−tk

∩ 2η = ∅).
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Recall the definition of δL in Proposition 1. For fixed k, a and η such that
|2η| > L, (4.3) implies that

lim
t→∞P(ζ

2,ã
t−tk

�= ∅, ζ
2,ã
t−tk

∩ 2η = ∅) = αν̄(ζ : ζ ∩ 2η = ∅) ≤ δL.

With this we can apply Fatou to (4.18) to obtain

lim sup
t→∞

P(ξ̄x
t �= ∅,Ax

t ∩ 2η = ∅) ≤ (1 − ε1)
k0 + (k0 + 1)

(
ρ(T ) + δL

)
(4.19)

and letting T → ∞ and using (4.4) then gives us

lim sup
t→∞

P(ξ̄x
t �= ∅,Ax

t ∩ 2η = ∅) ≤ (1 − ε1)
k0 + (k0 + 1)δL.(4.20)

With this inequality, we apply Fatou again, this time to (4.12), to obtain

lim sup
t→∞

P
(
ξt+u(x) = 1, |2ξu| > L

) ≤ (1 − ε1)
k0 + (k0 + 1)δL.(4.21)

We have finally established the bound

lim sup
t→∞

P
(
ξt+u(x) = 1, |2ξu| ≥ 1

)
(4.22)

≤ P(1 ≤ |2ξu| ≤ L) + (1 − ε1)
k0 + (k0 + 1)δL.

Now let u,L, k0 → ∞ in order and use (4.5) and (4.1) to finish the proof of (4.7).
�

5. Proof of Theorem 3. Recall the definitions (1.8) and (1.11) and the as-
sumptions of Theorem 3. In view of Theorem 2, it is enough to prove that for all
finite A ⊂ S,

P(iξt ∩ A �= ∅) → αi
ην̄λi

(ζ : ζ ∩ A �= ∅) as t → ∞, i = 1,2.(5.1)

By (4.2), ν̄λi
(ζ : ζ ∩ A �= ∅) = αA(λi) and, hence, (5.1) is equivalent to

lim
t→∞P(iξt ∩ A �= ∅) = αi

ηαA(λi), i = 1,2.(5.2)

First consider the case i = 1. By (1.7), (5.2) will follow once we establish

lim
t→∞P(1ξt ∩ A �= ∅, 2ξt = ∅) = α1

ηαA(λ1).(5.3)

By independence of disjoint space–time regions, for t, u > 0,

P(1ξt+u ∩ A �= ∅, 2ξu = ∅)

≤ P
(1ξu �= ∅, 2ξu = ∅,D

1,(x,t+u)
t �= ∅ for some x ∈ A

)
= P(1ξu �= ∅, 2ξu = ∅)P

(
D

1,(x,t+u)
t �= ∅ for some x ∈ A

)
= P(1ξu �= ∅, 2ξu = ∅)P (ζ

1,A
t �= ∅)

→ α1
ηαA(λ1) as t, u → ∞.
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Since

P(2ξu �= ∅, 2ξt+u = ∅)
(5.4)

≤ P(2ξu �= ∅, 2ξs = ∅ for some s ≥ u) → 0 as u → ∞,

this proves

lim sup
t→∞

P(1ξt ∩ A �= ∅, 2ξt = ∅) ≤ α1
ηαA(λ1).(5.5)

For the required lower bound, duality implies

P(1ξt+u ∩ A �= ∅, 2ξt+u = ∅)

≥ P
(2ξu = ∅,�

(
x, ξ̂

(x,t+u)
t , ξu

) = 1 for some x ∈ A
)
.

On the event {2ξu = ∅}, �(x, ξ̂
(x,t+u)
t , ξu) = 1 if and only if D

1,(x,t+u)
t ∩ 1ξu �= ∅.

Consequently, for any L > 0,

P(1ξt+u ∩ A �= ∅, 2ξt+u = ∅)

≥
∫
|1η|>L,2η=∅

P(ξu ∈ dη)P
(
D

1,(x,t+u)
t ∩ 1η �= ∅ for some x ∈ A

)
=

∫
|1η|>L,2η=∅

P(ξu ∈ dη)P (ζ
1,A
t ∩ 1η �= ∅).

Now we replace P(ζ
1,A
t ∩ 1η �= ∅) with P(ζ

1,A
t �= ∅)−P(ζ

1,A
t �= ∅, ζ

1,A
t ∩ 1η =

∅) so that the above implies

P(1ξt+u ∩ A �= ∅, 2ξt+u = ∅)

≥ P(|1ξu| > L, 2ξu = ∅)P (ζ
1,A
t �= ∅)(5.6)

−
∫
|1η|>L,2η=∅

P(ξu ∈ dη)P (ζ
1,A
t �= ∅, ζ

1,A
t ∩ 1η = ∅).

For fixed u and L,

lim
t→∞P(|1ξu| > L, 2ξu = ∅)P (ζ

1,A
t �= ∅)

(5.7)
≥ P(|1ξu| ≥ 1, 2ξu = ∅)αA(λ1) − P(1 ≤ |1ξu| ≤ L).

For fixed η with |1η| > L, the complete convergence theorem (1.10) implies that

lim
t→∞P(ζ

1,A
t �= ∅, ζ

1,A
t ∩ 1η = ∅) = αAν̄λ1(ζ : ζ ∩ η = ∅) ≤ δL(5.8)

(recall δL from Proposition 1). We can now plug (5.7) and (5.8) into (5.6) and use
Fatou, keeping u and L fixed, to get

lim inf
t→∞ P(1ξt+u ∩ A �= ∅, 2ξt+u = ∅)

(5.9)
≥ P(|1ξu| ≥ 1, 2ξu = ∅)αA(λ1) − P(1 ≤ |1ξu| ≤ L) − δL.
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The last two terms on the right-hand side above vanish as first u → ∞ and then
L → ∞, and, therefore, lim inft→∞ P(1ξt ∩ A �= ∅, 2ξt = ∅) ≥ α1

ηαA(λ1). To-
gether with (5.5) this completes the proof of (5.3).

Turning to the i = 2 case of (5.2) and using independence of disjoint space–time
regions,

P(2ξt+u ∩ A �= ∅) ≤ P
(2ξu �= ∅,D

(x,t+u)
t �= ∅ for some x ∈ A

)
≤ P(2ξu �= ∅)P (ζ

2,A
t �= ∅).

Now let t, u → ∞ to obtain

lim sup
t→∞

P(2ξt ∩ A �= ∅) ≤ α2
ηαA(λ2).(5.10)

For the required lower bound we make use of the 1-blocked ancestor process
Ax

t defined in (4.6). By duality and independence of disjoint space–time regions,
for any L > 0,

P(2ξt+u ∩ A �= ∅)
(5.11)

≥
∫
|2η|>L

P (ξu ∈ dη)P
(
�(x, ξ̄ x

t , η) = 2 for some x ∈ A
)
.

By (4.10),

P
(
�(x, ξ̄ x

t , η) = 2 for some x ∈ A
)

≥ P(ξ̄x
t �= ∅,Ax

t ∩ 2η �= ∅ for some x ∈ A)

≥ P(ξ̄x
t �= ∅ for some x ∈ A) − ∑

x∈A

P (ξ̄ x
t �= ∅,Ax

t ∩ 2η = ∅)

= P(ζ
2,A
t �= ∅) − ∑

x∈A

P (ξ̄ x
t �= ∅,Ax

t ∩ 2η = ∅).

With this bound we can appeal to (4.20), which implies that, for any k0 > 0,

lim inf
t→∞ P

(
�(x, ξ̄ x

t , η) = 2 for some x ∈ A
)

≥ αA(λ2) − |A|((1 − ε1)
k0 + (k0 + 1)δL

)
.

Now we apply Fatou to (5.11) and obtain

lim inf
t→∞ P(2ξt+u ∩ A �= ∅) ≥ [P(2ξu �= ∅) − P(1 ≤ |2ξu| ≤ L)]

× [
αA(λ2) − |A|((1 − ε1)

k0 + (k0 + 1)δL

)]
.

Finally, we let u,L, k0 → ∞ in order and make use of (4.1) and (4.5) to obtain

lim inf
t→∞ P(2ξt ∩ A �= ∅) ≥ α2

ηαA(λ2),(5.12)

which together with (5.10) completes the proof of (5.2) for i = 2.
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6. Proof of Theorem 4. Recall the notation and definitions of Theorem 4. By
(5.10), (5.12) and Theorem 2, it suffices to assume that |2η| < ∞ and prove

P(1ξt+u ∩ A �= ∅, 2ξt+u = ∅)
(6.1)

→ (1 − α2
η)μ(ζ : ζ ∩ A �= ∅) as t, u → ∞.

The basic idea of the proof is that when the 2’s die out, they “disturb” only
a bounded region of space–time. In this case, ξt+u(x) = 1 is essentially the same
as D

1,(x,t+u)
t+u ∩ 2η �= ∅, since λ1 ≤ λ∗ implies the 1-dual is unlikely to enter the

disturbed space–time region.
Let � ⊂ S be a finite set containing 2η and let ξ�

s be the multitype contact
process restricted to �. That is, put ξ�

0 (x) = η(x) for x ∈ �, ξ�
s (x) = 0 for all

s ≥ 0 and x ∈ �c, and let the dynamics of ξ�
s (x) for x ∈ � be the same as for ξs

except that only the Poisson processes T x,Bx,y , x, y ∈ � are used. Consider the
events

E1 = {
D

1,(x,t+u)
t+u ∩ 1η �= ∅ for some x ∈ A

}
,

E2 = {
D1,(x,t+u)

s ∩ � = ∅ ∀x ∈ A, s ∈ [t, t + u]},
E3 = {2ξ�

u = ∅},
E4 = {2ξ�

s = 2ξs ∀s ∈ [0, u]}.
By independence of disjoint space–time regions, the events E1 ∩ E2 and E3 are
independent, and it is simple to check that

4⋂
i=1

Ei ⊂ {1ξt+u ∩ A �= ∅, 2ξu = ∅} ⊂
( 4⋂

i=1

Ei

)
∪ Ec

2 ∪ Ec
4.(6.2)

We will prove (6.1) by finding appropriate estimates on the P(Ei) and plugging
them into (6.2).

First, by duality,

P(E1) = P(ζ
1,A
t+u ∩ 1η �= ∅) = P(ζ

1,1η
t+u ∩ A �= ∅) = P(ζt+u ∩ A �= ∅).(6.3)

Next, since {2ξu = ∅} ⊂ E3 ∪ Ec
4 and E3 ⊂ {2ξu = ∅} ∪ Ec

4,

P(2ξu = ∅) − P(Ec
4) ≤ P(E3) ≤ P(2ξu = ∅) + P(Ec

4).(6.4)

For fixed finite �, switching to forward time, λ1 ≤ λ∗ implies that

P(Ec
2) ≤ ∑

x∈A

P (ζ 1,x
s ∩ � �= ∅ for some s ≥ t) → 0 as t → ∞,(6.5)

and the fact that 2η is finite implies that

P(Ec
4) → 0 as � ↑ S for fixed u > 0.(6.6)
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For a lower bound on the left-hand side of (6.1), use (6.2), (6.3) and (6.4) to
obtain

P(1ξt+u ∩ A �= ∅, 2ξt+u = ∅)

≥ P

( 3⋂
i=1

Ei

)
− P(Ec

4)

= P(E1 ∩ E2)P (E3) − P(Ec
4)

≥ P(E1)P (E3) − P(Ec
2) − P(Ec

4)

≥ P(ζt+u ∩ A �= ∅)P (2ξu = ∅) − P(Ec
2) − 2P(E4

c ).

Since P(ζt+u ∩A �= ∅) → μ(ζ : ζ ∩A �= ∅) as t → ∞, we let t → ∞, � ↑ S, and
u → ∞ in order above and employ (6.5) and (6.6) to obtain

lim inf
t→∞ P(2ξt = ∅, 1ξt ∩ A �= ∅) ≥ (1 − α2

η)μ(ζ : ζ ∩ A �= ∅).

By a similar argument,

P(1ξt+u ∩ A �= ∅, 2ξu = ∅)

≤ P(E1 ∩ E2)P (E3) + P(Ec
2) + P(Ec

4)

≤ P(ζt+u ∩ A �= ∅)P (2ξu = ∅) + P(Ec
2) + 2P(E4

c )

and, therefore,

lim
u→∞ lim sup

t→∞
P(2ξt+u ∩ A �= ∅, 1ξu = ∅) ≤ (1 − α2

η)μ(ζ : ζ ∩ A �= ∅).

Combining this with (5.4),

P(2ξu �= ∅, 2ξt+u = ∅)

≤ P(2ξu �= ∅, 2ξs = ∅ for some s ≥ u) → 0 as u → ∞
gives us

lim sup
t→∞

P(2ξt = ∅, 1ξt ∩ A �= ∅) ≤ (1 − α2
η)μ(ζ : ζ ∩ A �= ∅),

and we are done.

Acknowledgments. We thank Rick Durrett for showing us the proof of (1.7)
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