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MAXIMUM AND ENTROPIC REPULSION FOR A GAUSSIAN
MEMBRANE MODEL IN THE CRITICAL DIMENSION!

By NOEMI KURT

Universitdit Ziirich

We consider the real-valued centered Gaussian field on the four-
dimensional integer lattice, whose covariance matrix is given by the Green’s
function of the discrete Bilaplacian. This is interpreted as a model for a semi-
flexible membrane. d = 4 is the critical dimension for this model. We discuss
the effect of a hard wall on the membrane, via a multiscale analysis of the
maximum of the field. We use analytic and probabilistic tools to describe the
correlation structure of the field.

1. Introduction and main results. Let V :=[—1,1]¢, and Vy := NV N Z4.
In this paper we consider the real-valued Gaussian field ¢ = {@x}xcv,, Whose
covariance matrix is given by the Green’s function of the discrete Bilaplacian.
Such a field can be interpreted as a model for a d-dimensional interface in
d + 1-dimensional space. It is described by the formal Hamiltonian Hy (¢) =
%Zx(mpx)z. For this model, d = 4 is critical in the sense that, in dimensions
higher than 4, the infinite volume Gibbs measure exists (see [10, 13]), but not in
d = 4 and below. A phenomenon of interest for random interface models is the
so-called entropic repulsion, which refers to the fact that the presence of a hard
wall forces the interface to move away from the wall. This is modeled by requir-
ing the field {¢,} to be positive inside a certain region. To mathematically un-
derstand entropic repulsion, one needs to study the asymptotics of the probability
P(¢x > 0,x € V) for some region V C Z¢. In the case considered in this paper,
this is achieved by first investigating the asymptotic behavior of the maximum of
the field, via a sophisticated multiscale-analysis developed in [1] for the lattice free
field in the critical dimension. The main difficulty is due to the fact that, unlike the
lattice free field, our model does not have a random walk representation, which
is crucial in most approaches to the lattice free field (see, e.g., [1, 2]). To obtain
the analogous results, we use methods from PDE to get good estimates of some
discrete biharmonic Green’s functions.

Fork e N, let 9 Vy : = {x € V, : dist(x, Vy) < k} be the boundary of thickness
k of V. We write 0V := 901 Vy for the simple boundary. The discrete Laplacian
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688 N. KURT

A is defined on functions f:Z% — R by
d

Af(x):=5= D (fx+e) + flx —e) —2f(x)),
i=1

1
2d
where e; denotes the unit vector in the ith coordinate direction. With some abuse
of notation, we write Af, := (Af)(x). By Ay, we denote the restriction of this
operator to functions which are equal to 0 outside V. We write A? for the itera-
tion, A2 fx):=AAf)(x), and A%V for the restriction of A2 to functions which
are equal to O outside V. It is important to notice that A%\, # (An)?. We can view
A%V as the matrix given by

1
1+ﬁ’ ifx=y,xeVy,
1
-7 if [ x—y|l=1,x,y€ Vy,
A,y =1 1 .
N i7" if|[x —y|=2,x,y € Vy,
1
L if |x — y|=+/2,x,y € Vy,
0, otherwise.

The matrix (A%\,(x, ¥))x,yevy 18 positive definite (see Remark A.7). Let Gy (x, y)
be it’s matrix inverse. This means that we can interpret G as a Green’s function
given by the following discrete biharmonic boundary value problem on Vy: For
xeVy,

A’Gy(x,y) =8(x, ), y € Vy,
Gy(x,y) =0, y€hVy.

(D

To see the connection to boundary value problems of PDE, note that this is a dis-
crete version of the (continuous) biharmonic boundary value problem with Dirich-
let boundary conditions:

A%u(x) = fx), xevV,
u(x) =0, xeav,

iu(x)zO, xedV.
dn
Here, Jin denotes the derivative in the direction of the outer normal vector. How-
ever, we will not directly use this correspondence between discrete and continuous,
apart from gaining inspiration from standard PDE methods.
The model we study in this paper is the centered Gaussian field {¢y}rev, on
Vy with covariances covy (¢x, ¢y) = Gy(x,y). Denote the law of this field by
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Py. Algebraic manipulations show that Py is the Gibbs measure on RY¥ with 0
boundary conditions outside Vy and Hamiltonian

1
Hy(p) = 5 > (Mg

xezd

Note that the choice of boundary conditions in the definition of A%V and Gy is ab-
solutely crucial in order to obtain a Gibbs measure (see [6], Chapter 13), meaning
that, for A C Vy, the distribution conditional on F4c = o (¢y, x € A°), the sigma
field generated by ¢, , x € A€, satisfies

PN ([Fac) () = Pay (), Py(dy)-as.,

where

1 1
Pay(dg) = z_AeXP(‘E > (A¢x>2) [Tdec [] dy.@deo.

xezd x€A xeVy\A

(Z 4 is the normalizing constant.) This implies that Py (-|F4c) is the Gaussian
distribution with mean

) me=—y (AD ) Y ANy, DY

yeA ZEAC

and covariance matrix (Ai)_l. Here, Ai is the restriction of A2 to functions,
which are 0 outside A. We would not obtain this Gibbsianness if we chose (A )2
[resp. (A4)?] in the place of A%\, (resp. Ai). Since the range of interaction of A”
is 2, we see that Py (:|Fac) = Py (-|F,4).

This model is called the membrane or Laplacian model. One should compare
it to the well-known lattice free field or gradient model, whose Hamiltonian is
given by H AV, (p) := ﬁ > |V(px|2. Note that H Ig (¢) is small if ¢ is approximately
constant, which implies that this model favors interfaces that are essentially flat.
On the other hand, the membrane model prefers configurations with constant cur-
vature. In the physics literature, for example [9, 14], linear combinations of the
two models are considered as models for semiflexible membranes (or semiflexible
polymers if d = 1). Contrary to the gradient model, there are only a few mathe-
matically rigorous results for the membrane model, in d > 5, where the infinite
volume limit exists [10, 13], and in d = 1 [3, 4]. One reason why the Laplacian
model is more difficult to study is the absence of a random walk representation,
which is exploited for the gradient model, and allows to get precise expressions for
many quantities, in particular, the variance. In this paper we treat the membrane
model in the critical dimension, d = 4, which means that we need to consider the
finite volume Vy, where boundary effects come into play. Although we do not in-
vestigate the behavior of the field close to the boundary but only in the bulk, there
are considerable analytical difficulties to overcome, which stem from the boundary
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conditions of the Green’s function. We are able, using analytical and probabilistic
methods, to control the variances in a way that is sufficient to apply the methods
of [1]. Let y := %, and define for § € (0, 1/2)

V;E, = {x € Vy :dist(x, Vi) > N}.

Our first result consists of bounds on the variances:

PROPOSITION 1.1. Letd =4, andlet0 <5 < 1/2.

(a) There exists C > 0 such that SUp, ey, Vary (¢x) <y log N 4+ C.
(b) There exists C(8) > 0 such that SUP ey |vary (¢x) — y log N| < C(5).

Proposition 1.1 (together with the concentration result Lemma 2.11 in the next
section) is the key to the results in this paper. It shows why the four-dimensional
membrane model behaves in many ways like the two-dimensional lattice free field.
We have the same behavior of the maximum:

THEOREM 1.2. Letd =4.

(@
hm PN( sup @y >2,/2 10gN) 0

xGVN

(b) Let 0 <6 < 1/2, and 0 < n < 1. There exists a constant ¢ = c(n, 6) > 0,
such that

( sup @y < 2\/> n) log N) < exp(—c(log N)?).

er‘;

These bounds on the maximum allow us to give the precise asymptotics of the
probability that the field is positive on a certain region inside V. Let D C V be
connected with smooth boundary, which has positive distance to dV. Let Dy :=
ND N Z* and define

QE = {{(px}xGVN tox > 0Vx e DN}-

We think of Dy as a hard wall that forces the field to be positive. The probability
of this event is given by our next result. Let H>(V) denote the usual Sobolev space
of twice differentiable functions on V, and HO2 the subspace of functions in H 2(v)
which are O at the boundary of V.

THEOREM 1.3. Letd =4.

li log Py (Q},) = —8 G D),
Jim g vy 08 Py (@) = =8y €H(D)

where @%,(D) = inf{% Iy |Ah|2dx:h e HOZ(V), h>1ae.on D}.
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One would like to understand the behavior of the field conditioned on the event
QX, We can prove the following. For 0 < ¢ < 1 and x € Dy, let V .y (x) denote

the box of side-length ¢ N with center x, and @,y (x) := m 2yeVon(x) Py-

PROPOSITION 1.4. Forany n > 0,

li Py (@ <(2,/2y —n)log N|Q}) =0.
Jim xZ‘f}Z, N (@en (X) < (24/2y —n)log N|Q2y)
Ven(x)CDy

This implies that the local sample mean of the field is pushed by the hard wall
to a height of at least 2/2y log N. In the physics literature this phenomenon is
referred to as entropic repulsion [12], since it is due to the fluctuations of the
field that it moves away from the wall. It is expected that the upper bound on the
height of the conditioned field is the same, that is, that Py (@, y(x) > (24/2y +
n)logN| Q;) = 0. Also, for the gradient model, the result holds for the height
variables ¢y in the place of @,y (x) [1]. The proof for the gradient model uses the
FKG-inequalities. For the membrane model, the criterion for the FKG-property,
Corollary 1.8 of [8] is satisfied only in the infinite volume case and without the
positivity constraint. We therefore need to average over the heights in order to
obtain the result.

The paper is organized as follows. In the next section we investigate the vari-
ance structure of the four-dimensional membrane model and prove Proposition 1.1
and some related results. Here we exploit the fact that we can compare Gy to the
Green’s function corresponding to (Ay)?, for which we have a random walk in-
terpretation. The comparison of the two Green’s functions is based on analytical
tools on the regularity of the solutions of boundary value problems. Some of the
more technical proofs are deferred to the Appendix. In Section 3 we give the proof
of Theorem 1.2, using the same multiscale analysis as for the gradient model. We
refer to [1] for detailed comments on the ideas behind this method. The proof of
Theorem 1.3 is given in Section 4, and that of Proposition 1.4 in Section 5.

Throughout the paper, ¢, C, ¢’ etc. will denote generic positive constants whose
value may change from line to line. By B, we denote the ball of radius r and
center 0.

2. Variance structure and the discrete Green’s function. The aim of this
section is to control Gy (x, x). To this purpose, we compare it to a biharmonic
Green’s function with different boundary conditions. Let

Ei={v:VyUdhVy - R:v(x) =0Vx € 9 Vy}.

Recall from the Introduction that the covariance matrix of the model is given by
the unique function Gy (x, -) in E| which satisfies A2G N (x, y)=48(x, ).
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Let us introduce the usual harmonic Green’s function. Let A be an arbitrary
subset of Z4¢, fix x € A, and let T A(x,-) be the unique lattice function which
satisfies

Al Ao(x,y) = =6(x, y), yEA,
Fa(x,y)=0, y €dA.

(Existence and uniqueness follows from standard discrete harmonic analysis; see,
e.g., Chapter I of [11].) Let 'y (x, y) := Ty, (x, ¥). Define now for x, y € Vy,

3) G, y)i= Y Ty TN GE ),

ze€VN
and extend Gy (x, -) to a function on Vy U 8, Vy by requiring

(4) 5N(x’)’):0, yGVN+1\VN and
AGN(x,y)=0,  y€dVy.

It is straightforward to CIECk that, with these conditions, AZG y (x, y) =468(x,y)
for all x, y € V. In fact, Gy (x, -) is the (again unique) function which satisfies

A*Gy(x,y)=8(x,y),  yeVy,
Gy(x,y) =0, y€VNi1\ VN,
AGy(x,y) =0, y€aVy.

The main idea of this section is to compare Gy (x, y) and G y(x, y). In fact, we
will later on show that if x € V,‘E,,

sup |Gy (x,y) = Gn(x, )l <c

)
yeVN

for some ¢ = ¢(§) < o0o. This will be done by studying the boundary value problem
satisfied by Gy (x, y) — Gy (x, y) and showing that the solution of this boundary
value problem is sufficiently regular (in a sense to be specified). Since G y is given
in terms of 'y, well-known results from harmonic analysis and random walks
give us a very good control on the behavior of Gy (x, y). Combining all this will
then prove Proposition 1.1.

Before embarking on the comparison of Gy and Gy, we derive the necessary
estimates on G y. We collect the following well-known results on I'y, which we
will use to describe G y. For proofs we refer to [11], Chapter 1. Let A be an arbi-
trary subset of Z?, and write "4 for the Green’s function of the Dirichlet problem
on A. The following hold:
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e I'4(x,y) is the expected number of visits in y € A of a simple random walk
starting at x which is killed as it exits A, that is,

A 00
Calx,y) =E* (Z I{szy}> = ZPX(Xk =y, k<14),
k=0 k=0
where 74 = inf{k > 0: X € A¢}.
o If d >3, limy_ ooy, (x,y) =:T'(x,y) exists for all x,y e Z4, and as lx —
y|— o0,

T(x,y)=ay +0(lx —y|'™,

|x — y|92
with ag = m, where w, is the volume of the unit ball in R,
e ([11], Proposition 1.5.9) If d > 3, for all x #£0
1 1 l—d

I'py(0,x) =aq X2 Nd2 + O(lx]™%).
o If d > 3, then

Fa(x,y) =T, y) = > P'(X, =20, y).
z€0A

o Ma(x,y)=Ta(y, x).
o 'y(x,y)<TI'p(x,y)if ACB.

The fact that Gy is just the convolution of "y with itself leads to the following
representation in terms of simple random walk: Letting x, y € Vi, let { X}, {Yin}
be two independent simple random walks on the lattice Z¢, whose joint law with
start in x and y respectively we denote by P*-Y. Let Ty denote the first exit time
of V. Now we see from the random walk representation of I'y that

Gn(x,y)= ) Twnx, 2)In(z,y) =EW[Z ) 1{Xk=Ym}]

ZGVN k=0m=0

and
Gn(x.y)= > Tn(x, )TN, Y)

zeVy
o

= Z ZPX(szz,k<rN)PZ(Y =y, m<7TyN)
k,m=0zeVy

o0
= Z P (Xksm =y, k+m < ty)
k,m=0

o0
=) (k+ DP*(Xk =y, k < ).
k=0
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Hence, we have proven the following:

LEMMA 2.1. Ifx,y € Vy, the following hold:

N N o0
Gn(x,y)=E"Y [Z > l{Xk:Ym}:| =Y (k+DP*(Xx =y, k <1).
k=0 m=0 k=0

Estimates on Gy (x, x) are easily obtained:

LEMMA 2.2. Letd =4.1f§ € (0, 1/2), there exist constants ¢y = c1(5) > 0,
¢y > 0, such that, for x € V‘S,

8 — 8
—zlogN—l—m <Gnyx,x) < —zlogN—l—cz.
b4 T

PROOF. Let B, (x) denote the ball of radius r about x € V. Since 'y (x, x) <
I'(x, x), we obtain

Gy, x)< Y T'(x,l(zx)<a; Y. 2+ 0
lx —z|
Z€ByN zEByN (X)
Z#x

5 2N 8
§4a4w4/ —dr+0(1)=—210g(2N)+c.
17 b4
The lower bound follows by taking Bsy (x) in the place of By (x):

_ 5N
Gy(x,x)> > rBaN(x,z)FBBN(z,x)z4aﬁw4/1 —dr+0(1)

ZEBsN

8
= log(6N) + c.
g

We need to introduce discrete Sobolev norms. Let d_Vy := {x € Vy :dist(x,
Vy) < 1}. We denote the first difference in the ith direction of a function
v:Z% - R by V;v(x) := v(x + ¢;) — v(x), and more general, for a multiindex
o= (a,...,0q) € N9, write V¥ (x) := V]! .- V{0 (x).

For v:Vy U9 Vy — R define

k
Il =0 Do 2 (N V()2
J=0aeNd:xeVy
la|=j

For v, w € E| define

D, w):= Y Av@Awx) + Y rxvx)w(x),

xeVy xed_Vy
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where r(x):= |{y € Vy : dist(x, y) = 1}|. Obviously, 1 < r(x) <d for all x €
d—Vy. It is immediate that D (-, -) is symmetric, bilinear and positive definite. We
write [[v]lp = /D (v, v). In Appendix A we prove some estimates for discrete
Sobolev norms and the Dirichlet form D¢, -).

To compare Gy and Gy, we use the fact that the difference of the two Green’s
functions,

Hy(x,y):=Gn(x,y) = Gn(x,),
satisfies the following boundary value problem:
A’Hy(x,y)=0,  yeVy,
Hy(x,y)=Gn(x,y),  yedhVy.

Let f be any function Vy U 3,Vy — R which satisfies f(y) = Gy(x, y) for all
y € 32Vy. Then u(y) := Hy(x,-) — f(-) satisfies

Au(y)=g(y),  yeVy,
(5)
u(y) =0, yeanVy,

where g(y) := —AZ?f(y). The idea is now to choose an f sufficiently regular
in the interior of Vy, and show that this yields a solution u of (5) which is C!
in the discrete sense on VI’\S,, meaning that if x € Vi0o<d <1 /2, we have
SuPyevﬁ,|“()’)| < c¢ and supergWu(y)l < % Then we can derive estimates on
Hy(x,y)forx,ye VI‘E,.

Note that a function u is a solution of (5) if and only if for any function v: Vy U

3>,V — R it satisfies

> At =Y g)v).

xeVy xeVy

(Take v = 1,, x € Vy.) Summation by parts now shows that, since u € E1,

> APu)v(x) = D(u, v).

XEVN

Hence, D(-, -) is the Dirichlet form corresponding to our boundary value problem
and, therefore, an equivalent formulation of (5) is

(6) D(u,v)=(g,v)L,(vy) Yv e Eq,

where (-, -)1,(vy) denotes the L; scalar product on V. The Riesz Theorem now
gives us a “weak” solution of (6): Clearly, for fixed w € E1, the map v — D (v, w)
is well defined and linear from E; — R, so that by Riesz there exists hy, € E
such that D (v, w) = (hy, V) 1,(vy), and the map A:w +— hy, is well defined and
linear. It is injective, and therefore bijective since E is finite dimensional. Thus,
A~ lexists, and u := A~ (= A2 f) is a solution of (6) and therefore also a solution
of (5).
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LEMMA 2.3. The unique solution u of (5) satisfies
leell 2y < N8l Laev)-

PROOF. We have just shown existence and uniqueness. For the norm esti-

mate, note that by Corollary A.6 we have ||u||%12(VN) < cN*D(u,u) = cN*(g,

u)r20vyy < ENANgl 2y 1l Ly(vy)- But this implies [[ull g2y, ) < eN*gllLyvy)-
O

Let us now return to the case where g = —A? f, where we want f to satisfy the
following:

LEMMA 2.4. Letd=4.Let0 <8 <1/2,and 0 <8' <§/2, and let x € V;\S,.
There exists a function f on Vy which satisfies the following conditions: There is
a constant ¢ = c¢(8,8") > 0 such that:

@ f()=GCGn(x,y) forallyeVy\Vy,
(b) [V fW)| < §ia forall y in Vy and || <35,

© IA?f(D] < 7, and |V A f(y)| < 55 forall y € Vy.

PROOF. It suffices to show that |V¢Gy(y)| < v for all y with §'N <
dist(y, Vy) < (8/2)N and || < 5. Then we can choose f equal to any regular
function on V]f,, equal to Gy on Vy \ V;E,/, and interpolate in between, which is

possible since the number of interpolation points is of order N4.

Ifa=(ay,...,aq) € N¢and f:R? — R, we write DY f (y) := %f(y).
1 9%

Note that the proof of Theorem 1.5.5 of [11] can be generalized to show that, if
y#0,

VOT (0, y) = ag D*(ly|*~%) 4+ O (|y| =~ I+ 1)

for some constant ag4. Since ['y (x, y) =T (x, y) — ZZ€8VN IP’O(XTN =2)I(z,y), it
follows immediately that for any y with dist(y, dVy) > 8N and |x — y| > (§/2)N
we have

IVOTy (x, y)| < c(8, 8)N 4~ 1+2,
We first assume x = 0. Split

VYGn(0,y)= Y T'n(0,2)V'TN(z, y)

zeVy

=) TwO.)VITNG N+ Y, Tn0,2VINGE ).

zeVy zeVN\VS



4D MEMBRANE 697

If z € V3 and dist(y, V) > 8'N, we have |z — y| > §'N, and we can bound the
first term by

o c 1 c
Z I'n(0,2)ViTN(z, )| < N2 25 2|2 < N4
zeVy

8
z€Vy

The second term we split again:

> TI'n(0,2)VTn(z.y)

ZEVN\VS

= Y TIn0,2V'T(z.y)

ZeVN\V]

- > ) P(Xey =w)I'n(0,2) VT (w, y).

zeVN\VI‘E, wedVy

Again we have for any w € dVy that |w — y| > §' N and, therefore, as above,

Y Y PH(Xpy =w)In(0,2) VT (w, y)| < N -4l

ZEVN\VI‘E, wedVy

For the remaining term we use summation by parts (for |«| < 2 this is not neces-
sary, we could use similar estimates as before). Note that, since ['(z, y) ='(y, 2),
we have

I'(z,y+e)—Ty)=Tz—e,y) —T(zy)
and, thus,

ViT(z, ) =V T (y,2)

(we always let the difference operator act on the second variable). Thus, if o =
o' + e;, by summation by parts,

> Tw(0,2)VT(.y)

Z€VN\VS

= Y VWOV T+ Y. r@IN0,9V TG, Y),
eV \VE z€d(VN\VR)

where 1 < r(z) <d is the number of points in Vy \ V;\S, which are neighbors of z.
Note that

1 1 1
Nd=2 Nt =2 = S Ndria—4-

> r@TN(0, )V T(z, y) < cN9!
z€d(Vn\V§)
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Similarly, we have for any «’, 8 with |&| + |B| = || — 1 that

> r@VATN(O0, )V T (2, y) <

CNd+lal—4"
z€d(Vn\V3)

Hence, we can iterate summation by parts and obtain that

> Tw(0,2VT(z.y)

zeVN\VR
<| Y VIn(0.2T(z.y) T CyaTia—4
ZeVN\VR
1 1 1
=< CW Z |z — y|d—2 +cNd+|a\—4
zeVN\Vy
c
<—.
= Nd+la|-4

This completes the proof, since similar arguments hold if x € VI‘\S, is arbitrary. [J

If we choose f as in Lemma 2.4, we know from Lemma 2.3 that the solution u
of (5) is in H2(Vy) in the discrete sense:

COROLLARY 2.5. Ifsup,cy, |A%f(x)| < <5, then ||ull g2y, < N2

For our purpose, we need stronger regularity of the solution than what we ob-
tain from Lemma 2.3. To obtain this, we use a discrete version of the well-known
bootstrap-technique in PDE; compare, for example, [15]. The first step is the fol-
lowing lemma.

LEMMA 2.6. Let1/2<8§<1,0<¢e < 1/8, and let N be large enough, such
that eN > 1. Let x : 7% — R satisfy |[V* x| < cN~\ for any multiindex o, x =1
on VI‘\S, and x(x) =0 if dist(x, dVy) < 2eN. Furthermore, let v:Vy — R be any
Sfunction with v(x) =0 if dist(x, dVy) < eN. Then there exists v with 1Vl g2qvyy =
vl g2¢vy)»> such that

N*D(NV;(xu),v) = —N*g, NxVi®) 1, (vy) + I,
where Iy < cllull g2y IVl g2evyy-

PROOF. First, note the product rule for V;: V;(vw)(x) = Viv(x)w(x) +
v(x + ¢;)Viw(x). Furthermore, if v has support in the interior of Vy, then
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> xevy Viv(x) =0. Using this and the assumptions on v, we get

N*D(NV;(xu),v) =N* > ANV;(xu)(x)Av(x)

xeVy

=N* > NViA(xu)(x)Av(x)

xeVy

=N* Y7 NVi(AGu Av)(x)

xeVy

—N* 3" (A(xw) (x + €))NV; Av(x).

xeVy

Now the first term is O due to the choice of the support of v, and the second—using
the product rule on the discrete Laplacian—is equal to

—N* Z Au(x +e)x(x +e;)NV; Av(x)

xeVy

NS ke AV + e) (V) (x + e) NV Av(x)
xeVya:la|<2 B:BI<1
||+ B]=2

for suitable k(«, B) € R. In the second term we use summation by parts and the
regularity of x to bound its absolute value by cl|ul| g2y, IVl g2(v,,)- If we define
the translation operator 7; by t;(x) := x + ¢;, we can again use the product rule to
rewrite the first term as

—N* 3" Au(x+e)x(x +e)NV;iAv(x)

xeVy

=—N* > (Auw)(x + e) A((x 0 1)) NV;v) (x)

xeVy

Y A +e) Y. > ke HVIX @ VINVu(x).
xeVn ala|<2 B:B|<1
ol +11=2

Here, by (6), the first term is equal to
—N*D(u, xNViwor ") = =N*g, xNVi(wo t ™)) vy,
and the second is again bounded from above by cllull g2y, 1Vl g2 vy U
PROPOSITION 2.7. Let x as in Lemma 2.6, and let u be the solution of (5)

where f satisfies the properties (a), (b) and (c) of Lemma 2.4. Then there exists
¢ > 0 such that

d/2
I ull g3 vy < N2
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PROOF. Let v be the same as in Lemma 2.6. Note that

(g, NxVit) Lyov) | S 18l L) IN X VitllLyviy < gl 101 ey
<cligh,cvpm llvll g2evy)-
Thus, if we set v = NV;(xu) in Lemma 2.6 , we have, using Corollary A.6,
INV: 32y < AN DNV (xu), NV (xu))

< clINVi Gl vy (NH 18 1o v + lull g2 vy
and so
INV; )l 2y < €N Igllav + lull g2 gyy) < eNY?
by Corollary A.6 and Lemma 2.3. The claim now follows from Remark A.5. [
COROLLARY 2.8. Letd =4. If u is a solution of (5), where f satisfies the

properties (a), (b) and (c) of Lemma 2.4, and x is defined as in Lemma 2.6, then
yu € HX(Vy) for 0 <k < 4.

PROOF. Apply the arguments of Lemma 2.6 and Proposition 2.7 with NV;u
in the place of u, and N'V; g in the place of g, and use the result of Proposition 2.7.
O

Now we can conclude:

COROLLARY 2.9. Letd =4, and 0 < 6 < 1/2. There exists c(§) > 0 such
that, for all x € V]‘\S,,

sup |G (x,y) = Gn(x, )| < c(8)
er;?,

and, forall 1 <i <d,
sup |Vi(Gn(x,y) — Gy (x, )| < c(®NTL.

8
yeVy

PROOF. By Corollary 2.8, xu € H*(Vy) and, thus, by Corollary B.2,
sup|xu| < c and sup|V; xu| <c/N. Since x =1 and V; x =0 on V}, this implies
SUPXGVI@W(XN < c and supxev;\sllviu(xﬂ <c¢/N. Since Gy(x,y) — Gy(x,y) =
u(y) + f(v), the claim is proven by the assumptions we made on f. [

Corollary 2.9, together with Lemma 2.2, finally proves the logarithmic variance
structure of the membrane model, which proves Proposition 1.1.
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PROOF OF PROPOSITION 1.1. Note that VarN(iox) < vary (¢g) for all x € Viy.

Then both claims follow from the estimates on Gy in Lemma 2.2 and Corol-
lary 2.9. O

Additionally to Proposition 1.1, Lemma 2.11 below will be crucial for the ap-
proximation of the field with a hierarchical one (see [1]). We therefore introduce
the discrete version of the fundamental solution for the Bilaplacian: Let, as be-
fore, (Xi)ren be a simple random walk on the lattice, and let P* denote it’s law
conditional on starting in x. Let

o
a(x,y)=Y (k+ DHP*Xp=x) —P* Xk =)).
k=0

Lemma 2.10 below shows that this is finite for any pair x, y € Z¢. Note first that
a(0,0) =0, and that a(x, y) = a(0, y — x). The local central limit theorem ([11],
Theorem 1.2.1) allows us to compute a(x, y):

LEMMA 2.10. Let d = 4. There exists a constant K, such that for all y # 0,
forall) <o <2,

8 —a
(7) a(o, Y)=p10g|Y|+K+0(|Y| ).

PROOF. First, note that a(0,y) = X2 k(P'(X; = 0) — PO(Xx = y)) +
', 0) —I'(0, y). Remember that I'(0, y) < 0(|y|_2), and I"(0, 0) is a constant.

2
Let p(k, x) := #exp(— 2';' ) and

E(k,x):= {]P)O(Xk:x)_ﬁ(k,x), if]P)O(Xk =x)#0,
’ 0, otherwise.

Let us first assume that y is even. Then

o0

ZkP°<Xk 0) — P(Xk—y>=2 k(PO (Xor = 0) — P'(Xo = y))
k=0 k=1

and

3 2k(PO (X = 0) — PO(Xo = y))
k=1

ot

2k(P(2k,0) — P(2k, y) 4+ E(2k, 0) — E(2k, y)).

=~
Il

We first consider the remainder term. From the local CLT with error bounds ([11],
Theorem 1.2.1) we know

|Ek, )| <O(k™3) and [E(k,y)| <[y 20k
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and, consequently,

oo
Y 2kEQk,y)< Y, 2kEQk.y)+ Y 2kE(2k.y)
k=1 k<ly|2/2 k>|y[2/2

<W? Y ECQky)+ Y 2k0(2k)77)
k<|y?/2 k>1y|?/2

<bP* > EQky)+0(y™.
k<lyl?/2

But from Lemma 1.5.2 of [11] we know that > 22 E(k,y) = o(|y|™*) for any
o <4as|y| — oo.
Now consider the other term. By definition,

D 2k(P2k,0) = P2k, ) = —5 3+ (1 =exp(=Iy/K).
k=1 k=1

Now use exactly the same steps as in the proof of Theorem 1.6.2 of [11] to show
that there is a constant K such that

4 1 4 -
— 3~ (1 —exp(=|y[*/k) = = (log|y|* + K + O(ly|7%).
T k:lk T

This proves the case where y is even with K =1"(0, 0) + % K+ Y he i 2kE(2k, 0).
If y is odd,

> k(PO(Xe =0) — PU(X =)
k=0

=D 2k(B°(Xok = 0) — P*(Xag41 = ) = (0, )
k=1

1

=4 Yo Y 2k (PO (X =0) — P'(Xox =) — T(0, ).

vily—v|=1k=1
Of course, all these v are even, so we obtain, since %Zvﬂy_m:lloghﬂ2 =
log [y[* + O(Iy|™),
4
72 2d

—a 8 —o
a(0,y) = Y loglvl*+ K +o(y| )= _zloglyl+ K+ O(yl™),

v:|ly—v|=1

where o < 2 and K is the same as before. [

This result together with the random walk representation for Gy is the key to
proving the following result:



4D MEMBRANE 703

LEMMA 2.11. Letting 0 <n < N, let Ay C Z¢ be a box of side-length N
and A, C Ay be a box of side-length n with the same center xg € Z¢ as Ay. Let
0 <& < 1/2. There exists ¢ > 0 such that, for all x € A,, with |x — xp| <é¢n,

var(E(¢x|Faa,) — E(@xg| Foya,) | Foray) < ce.

PROOF. Note that for any two subsets E C F of Z¢ we have
(8)  var(gy|Fre) = var(@x | Fge) + var(E(¢x | Fge) | Fpe) > var(gx | Fge).

Let By, := By (xp) ={z € Z: |xp — z| < n} be the ball of radius n around xp. We
define G g, analogous to G y as the Green’s function of the biharmonic problem (1)
on B, instead of Vy. Likewise, EB,, is defined by (3) and (4) on B, and Hp, =
Gp, — Gp,. It is clear that the regularity considerations of this section apply to
G, and Egn as well and, thus, Corollary 2.9 can be applied. Note B, C A, and
SO

var(E(@x — @xpl| Far4,) | Foray)
= var(¢y — Pxp |~¢A§V) — var(gy — Dxp |?Afl)
“ < lim (Var(%c — $xp |\7:A§V) — var(gy — Dxp |~7:Bg))
N—o0

= lim (Gy(x,x) —2G N (x,xp) + Gn(xp,xB)
N—o0

—Gp,(x,x)+2Gp,(x,xp) — Gp,(xB, xB)).

(Of course we do not know if the limit exists, but otherwise the rhs is equal to
+00.) Now, Gy = Gy + Hy. From Corollary 2.9 we know that |Hy(y,z) —
Hy(yv,z+e)| < c¢N~!, and since |x — x| < en, we need at most 4en steps to get
from xp to x. Thus, |Hy(y,x) — Hy(y,xB)| < én .eN7! if y € {x, xp}, and so

lim (Hy(x,x) —2Hy(x,xp) + Hy(xp, XB)
N—o0

— Hp,(x,x)+2Hp,(x,xp) — Hp,(xp, xp))

< lim en-cN~ ' 4+en-en™!
N—o0

<ce.
We are therefore left with estimating the terms in (9) involving Gy and G g,. We
have
Gn(x,x) —2GN(x,xp) + Gn(xB, xB)
—Gp,(x,x) +2Gp,(x,xp) — G, (xp, XB)
o
=D (k+ D[P"(Xy =x, 15, <k <1py) = P* (X = xp, 75, <k < 1B,
k=0
+P*8 (X =xp, 1B, <k <TBy)

—P*8(Xy =x, 18, <k < 1By)].
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Hence, using the above monotonicity (8), we are done if we show

o
> (k+ D[P*(Xg =x,k >1p,) —P*(Xk = x5,k > 18,)

k=0
1o + P2 (Xy =xp, k> 1p,) —P*(Xy =x,k > 138,)] < ce.
Define
T) := Z (P* (X1, =2) — P8 (X, =2))(a(z, xB) —a(z, x))
z€0B,
and

0, ¢]
Tyi= Y Y m(P*(tp, =m, Xep =2) — P (5, =m, X, =2))
z€0B;, m=0

x(C(z,x) — F(Z,XB))-

Due to Lemma 2.10, for x, xp as above, sup,c,p la(z, xg) —a(z, x)| < ce, which
implies | 77| < ce. For T», observe that, by construction, |z —xp| > n and |z — x| >
(1 —&)n, which implies sup,cyp I'(z, x) < m and likewise for I'(z, xg). On
the other hand,

[e.e]
D) m(Pi(tp, =m, Xep, =2) — P (1, =m, X¢y, =2))
z€dB, m=0
=E"(rp,) —E*8(tp,).
From [11], Equation 1.21, we know that
n® — |y —xp|> <E(tp,) <(n+1)* — |y —xp[

for all y € B,. Therefore, |E*(tp,) — E*(1p,)| < &’n? +2n + 1, and if n is large
enough, | 77| < ce. Thus, we have shown

(11) |T1 + T»| <ce

for some finite c. We have by definition of I'(-, -) and a(, -),

Ti+T=) > > (k+m+ P Xy =x)—P(Xx =xp))

k=0m=02z€0B,
(12)
x(P*(zp, =m, Xop =2) —P*E(rp, =m, Xy =2)).
By the Markov property,
P* (X =x,k>1p,)
(13)

o
=Y Y P(Xiem=x)P*(tp, =m, Xy, =2)
m=02z€0dB,
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and similarly for P* (X = xp, k > tp,) etc. Equations (12) and (13) imply

o0
> (k+ D[P*(Xg =x,k > 18,) —P*(Xy =xp,k > 78,)
k=0

+P8(Xy =xp,k>18,) —PE Xy =x,k>1p,)] <T1 + T <ce,
the last inequality by (11). This completes the proof of (10). [

3. Maximum of the field. In this section we prove Theorem 1.2, using the
strategy of [1] and [5], whose crucial ingredients are the logarithmic structure of
the variances (Proposition 1.1) and the concentration result (Lemma 2.11). Let
a € (1/2,1). We cover V;f, with boxes of side-length N as in [1]: Let xg € Vy,
and let

My :={xo+i(N*+2):i=(i1,...,is) € N* such that xo + i (N® +2) C Vy}.

We consider the set of boxes B with midpoint in M, and side-length N%. We will
always assume that N¢ is an odd integer, which is no restriction as N — oo. By
construction, the boundaries between two boxes have thickness 2 (on the lattice),
which is the range of interactions of A2. Let I, denote the set of such boxes
which are contained in V]‘\S,, and let Ay :=Jpep, 92 B be the set of all boundaries
of boxes in I1,. We denote by £, the sigma-algebra generated by the ¢, : x € Ag.
Conditional on ¥, what happens inside different boxes is independent.

Now fix K € N. Set o; :=a(1 — 1), 1 <i < K + 1. We define the following
sets of boxes: First, let I'y, := Ily,. Then I'y,;,i > 2, is defined recursively: For
BeTly ,,letTpy :={B €lly:B' C B/2}, and Ty, := UBel"ai 1 ['p,q,;. For
B €11, we denote the midpoint of B by xp. Let

0B = EN(@xp|F3,B) = EN(@xp|Fa).

If BeIl, and B’ € Ig;, with o; < e such that xg = xp/, by (8) and Proposi-
tion 1.1, we see that

(14)  var(pp|¥Fq;) = var(gyg| Fo;) — var(gy, | Fo) = v (aj —ai)log N + O(1).
Note that, by (2), there exist coefficients 4(z) € R such that

¥B = Z h(z)¢;.

z€0)B

Unlike in the case of the lattice free field, however, the /(z) need not lie between 0
and 1 (in fact, one can see that there are both positive and negative coefficients, and
they need not be bounded in V). Some arguments in the proof need to be adapted
to this fact, in particular, comparing ¢ g and ¢y, requires some work, for which we
use Gaussian tail estimates. For the sake of readability, we give a complete proof,
including also those parts that are practically identical to [1] or [5]. Note that one
direction is easy to prove:
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PROOF OF THEOREM 1.2(A). Using Proposition 1.1, we obtain

PN( sup @y 22,/2y10gN>

xeVy

<|Vn| sup Py(¢x >2,/2ylogN)

xeVy

4 VylogN +c ( (24/2y log N)? )
<N exp( — ,
2m2./2y log N 2ylogN +0(1)

which tends to zero as N — oco. [

The second part is obtained from the following more general result (com-
pare [5]):

THEOREM 3.1. Let0< 6 <1/2, andlet 0 <ig <1 and Ay <A < 1. For all
e > 0, there exists ¢ = c(8, Ag) > 0 such that

Py(|{x € V8 gy > 2,/2yalog N}| < N*0=4D7) < exp(—c(log N)).

PROOF OF THEOREM 1.2(B). Chose in Theorem 3.1 A sufficiently close to 1,
such that 2./2y 1 > (2/2y — ) and 4A% > 4 — ¢ are both satisfied. [

To prove Theorem 3.1, we start on level @ = o1 of the box structure introduced
before, and show that, on this level, a sufficiently high number of the ¢p, B € I'y,
are positive.

LEMMA 3.2. Let1/2 <8 <1 anda € (1/2,1). There exist positive constants
k,a depending on o and &, such that

Py({B €Ty :9p >0} < N¥) < exp(—a(log N)?).

PROOF. Seta’ = (1 + «)/2, which implies &’ > . We consider the event

—_— —_— / ’
(=) os ) e

A= {jj{B elly :pp >
The lemma will be proven showing that the following two estimates hold:
(15) Py(AN{H{B €Ty :9p > 0} < N*}) < exp(—c(log N)?)
for some ¢ > 0, and

(16) Py (A€) < exp(—c(log N)?).
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Obviously, these two estimates prove the lemma. We start with the second estimate.
Let us split the event A€ into

Pn(AS) < Py <AC N {Bm%X ¢ < (log N)2})
€ o
(17
2
+ Py (52%% > (log N) )

and bound the two terms. First, notice that for any 0 < p < 1 we have

Py (maxg: > (1 = p)log NY?)
erN

< N*max Py(px > (1 — p)(log N)?)

XGVN
(19 1 2(log N)*
SN%XP(_( — p)*(log N) )
2ylogN +C
< exp(—c(logN)3).
Now we get
PN({ max ¢p > (logN)Z} N {maxgox < —p)(og N)Z})
Bell, xeVy
< PN<{ max ¢p > (logN)Z] N { max @y, < (1 — p)(logN)ZD
(19) Bell, xell,,

< M| max Py({gp > (logN)*} Ny, < (1= p)(logN)*})

for some fixed By € I1,. Since by Proposition 1.1, conditional on ¥, the random
variable Pxp, — By is centered Gaussian with Var(goxB0 —¢p,) < ya'logN, we

have on {gp, > (log N)?}

Py (pxy, < (1= p)(log N)*| Fy5,)
(20) < PN(pxy, — 98y < —p(l0g N)*| Fi5,)

<exp(—c(log N)?).

Together, (18), (19) and (20) give the required bound on the second term in
(17). To bound the first term, note that on A° N {maxBena, ¢p < (log N)2} we
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have
1
|naf|3;naf03
. —(1—a)2ylogN N /(1 —a)/2ylogN
< 5 + T < 5 +(1ogN)2).

Since |TI,/| = O(N*1=)) we get from (21)

1 Z <—(1—a/)\/ﬂlogN.

¢B =
M| Bell,, 3

(22)

By Lemma C.1, we know that Var(ln—l/‘ > Bell,, ¢B) < 00, therefore, we obtain
with (22)

PN<AC N {maxl o < (logN)ZD

Bell,
1 —(1—a’)\2ylogN
<Py Y 9B < roe
Te/| Bell,, 3

<ex( —(1 —a)?y (log N)? )
=P ovar(1/1Me | S pern, 95)
< exp(—c(log N)z).

This gives the second bound in (17) and thus proves (16). For the proof of (15),
we consider only the set of boxes in I1, which have the same center as some box
of I, : Let

[y.o ={B€ll,:3B € 1y with xg = xp'}.
We have
Py(AN{|{B €Tq:pp =0} < N*})
(23) < Pv(AN{|{B €My :9p =0} < NY})
< EN(PN({B € lyo :¢p = 0}| < N¥|For)14).

We know that on A there exist at least N'™ boxes B’ € [T, where there
is pp > —(1 — a’)/2y log N/2. Choose N~ of them and call them By, ...,
B;\/l—a/' Let B; € I, o be the box with center xp, = Xp. Set

§i == 9B, — ¥p!-
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Then fork <1 —a/,

PN(|{B € Ha,a/:(pB ZO}| = NKlg:’o/)
(24)

Nl o
= PN( Z l{ciz(l—a%/ﬁ(logmm = NK)'
i=1

By construction, we have ¢p = EN((pr{W’af) = EN(EN(cpr’,|$a)|?O,/) =
En(¢p,|¥,). Therefore, we know the following:

e The ¢; are centered Gaussian random variables under Py (-|Fy).
e By (14), var(¢;) = VarBi/(goBl.) =y(l—a)logN+0(),sincea’ —a=1—a'.

This implies

(25) PN(C:’ > ) . exp( (1 —(Z)lOgN> _ N—(=a)/4,

If we choose now k = (1 —a') /2 and set 0; = 1, > (1_o7) /27 (log ) 2} WE knOW

that on A we have ZlN:l;a 6; < N(l_“/)/z, and from (25) we get E6; > N—(1=a)/4
This implies

Nl—ot,

D (6 —E6)| =
i=1

from which we conclude, using Lemma 11 of [1],

N3(—a)/4

(26) |N(1—Cl,)/2 _ Nl—a’ . N(l—a')/4} >
- 2 )

Nl o
1— 2
PN( > l=(-ayzraoznyz < N W)

N1 N N3(—a)/4
PN< 6; — EO;)| > f)
- N31=a)/2
- p( 4 2IN1- o +N3(1 a’)/4)/3)
<e ( 1 —a’ /2)

By (23) and (24), this is more than we need to prove (15). [

PROOF OF THEOREM 3.1. Fix « € (1/2,1). From the previous lemma we
know that we can find some « = « (&) > 0, such that we can assume that at least
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N¥ of the ¢p, B € I, are positive. We use the notation of the previous section,
and define, for 1 <k < K + 1 and ¢ > 0, the event

Ap = Ar(e, o, K)

U U {|¢B/ — En(es|%a)]

B'ely, Bely
> ela2,/ 2y (1 - —) logN}

By Lemma 2.11, var(¢p — E(¢g|Fou)|Fa,,) < ¢, and we can bound

Y41

222’8y (1/K?)(1 — 1/K)*(log N)Z)

P(AD) = Pl IT g ex - ¥

(27) 5
< exp(—c(logN)~).

We will later choose K > €A, such that c is independent of ¢ and A.
On N Ay, we can apply the tree-argument of [1]. For k < K, we denote by
ﬁ(k) a sequence of k boxes By D B, D --- D By, where B; e I'y,, 1 <i <k. Set

Di:={BW:¢pp > (@ —a;)21/2y (1 = 1/K)log N, 1 <i <k}.

We show that if on the kth scale there are many such sequences, so there will be on

the (k 4+ 1)st scale. Let ny := N"+4°‘(k_1)(1/]<)(1_12), where « is the same constant
as in Lemma 3.2, and define

Ci :={|Dk| = ng}.

Assume that we are on Cy. Choose n; sequences B( ) ={Bj1,Bj2,...,Bj},
1 < j <ng in Dg. Note that Bj x # By if i # j, smce otherwise the sequences
would coincide. Set

1
6= 2. Npp-us, 21020371/K)1-1/K)log )

I s k41 r
J Be B ot ]

Note that |T'p; ;| = (N*/K /2)* and, therefore,

Lk 16
CeNCipy CCN YD 8) <My - Nk
j=1
If we set
- 1
6= T ol Y. pn-E@nlFa) (40302 371 /K)(1-1/K) log N}
Joks@k+

BerBj,k’D‘k+l
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we have ¢; > Z‘ j on Aj and, therefore,
AL 16
PN(CLN Ciyy NAD < Py (Z £ = i1 W)
j=1

To bound this probability, we need some large deviation estimates on the bino-

mial variables Z;”‘: | g: j- Note that, due to (14), the pp — En (¢p|Fy,) are centered

Gaussian variables with variance
var(pp| Fu) = %y log N +c.
Therefore,
En (&)1 Fo)

) 1 1
= int Py (¢ — EntonlFa) = (1 + 112y 2 (1= ) og V|7, )

(1 + 82228y (1/K*)(1 — 1/K)*(log N)2>
2a(1/K)y log N
_ N—4(a/K)A2(1—1/K)2(1+g)2.

> exp(—

Thus, on C; N A¢,

Nk

Cit1 C {Z(Ej — EGjlFa)) < nis1 (16/N4@/K))
j=1

_nkN—4(a/K)A2(l—1/K)2(1+8)2}

N¥

Y (& — EEIFa)

j=1

|

if, for the last line, ¢ is chosen such that (1 — 1/K)(1 +¢) < 1, making the second
term dominate (recall A < 1). Then Lemma 11 of [1] yields on Cy N A},

- lNK—4(O{/K))»2(1—1/K)2(1+€)2}
pu— 2 9

NZK—SAZ(cx/K)(l—1/K)2(l+s)2 )

c —
PN(Ciyi|Fay) = 26xp< INK £ (2/3) Ne—4R2@/K) (1= 1/K 2 (1+e)?

(28)
< exp(—N"—g)Lz(a/K)(l—1/1()2(1_,_8)2)'
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Choose K large enough, such that k — 87"‘ > (. Note that n; = N*. This implies,
using Lemma 3.2 and (28),

K
Py(C%) < Pn(CH) 4+ Y (PN(CENCio1 N AL} + Py (A1)

k=2
K
= Pn(C)) + Y (En(PN(CEIFa) e, ynas_,) + Pn(Ak-1))
k=2
(29) < exp(—c(log N)Z) + (K) exp(—N’(*gkz("/K)(l*I/K)Z(H‘E)z)

+ exp(—c2(log N)*)
<exp(—c(log N)z).

Let now Hy(a) :={x € V]f, 1@y > 24/2yalog N}. We consider the event

Lg =Lg(o,2) :={|HnMa—ag—1))| <ng_1}.
Note that
Pyn(Lk) < Py(|{B € Moy : @xp = 2\/2y k(e —ag—1)log N}| <ng_1).

This implies

P(LxkNCk) <En(P(|{B € Moy :¢xp >2,/2y (e —ag—1)log N}
<ng—11Fax)lck)-

On Ck N Lk we have at least ng boxes B € Iy, with ¢p > 2/ 2y (e —
ak)log N, and only for at most ng_; of them we have ¢y, > 2,2y A(a —
ak)logN. Thus, for at least nx — ng_1 boxes, ¢y, — ¢p < uglogN, with
uk =22y r(ag —ak_1). Now we use the fact that, conditional on F ., the
¢x, — @p are independent centered Gaussian with variance equal to yog log N,

2 .
and that ag —ag-1=—% <0, and ng | = ng N~@/K)U=27) 6 obtain

PN(|{B € Moy i ¢xy > 2,/27 M@ — ag—1)log N}| < ng—1|Fay)

< Py({B €Muy :¢xy — @B < uxlogN}| >ng —ng_1|Fay)

(1= N—@a/K)1=22)y,

o
(30) <Py (wa —op <5220 - 1/K>logN|faK)
= eXP(—W%(l — 1/K)*(log N)(1 — N—<4°‘/K><1—*2>)n,<>

< exp(—c(log N)Z).
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To complete the proof, we get from (29) and (30), using « —ag—1 = (1 — %),

PN(’%N <)»Ol(1 - %))’ < ”K—l) <Py(LxNCg)+ Pny(Ck)
(3D
< exp(—c(log N)z).

We can now choose K large enough and « close to 1, such that with (31)

Py(|{x € Vi gx = 2,270 l0g N}| < N*1-9-¢)

(- ) 2o

< exp(—c(log N)?). O

4. Probability to stay positive. Having obtained the same result for the max-
imum of the interface as in the case of the 2-dimensional lattice free field, we can
again use the strategy of [1].

PROOF OF THEOREM 1.3, THE LOWER BOUND. First, note that by a den-
sity argument, @%,(D) = inf{% Iy |Ah|?dx:h e C3°(V),h > 1ae.on D}, where
C°(V) denotes the infinitely often differentiable functions on V' which vanish at
dV. Choose a function f € C§°(V), f >0, f =1on D, and a number a > 2,/2y.
Set oy :=¢@x+alogNf (%). Then {¢y }xevy is a Gaussian family with covariances
Gpy(x,y),x,y € Vy, and expectation a log Nf (%). Denote the law of this family
by Py, and let fy(x) := f(x/N). The relative entropy of Py, with respect to Py

is defined as Hy (Py|Pn) := E;(log %). Note that

ary Lo L
)= exp[5(<w, Gy @)y — {9 —alogNfy. Gy (¢ — alog NfN>>vN)],

where (-, )y, denotes the L;-scalar product on Vy and, therefore,

a

a dPN a2 2
Ey logﬁ =7(logN) (ANFN, ANFN) vy,

from which we conclude
a2
M oz HV (PR IPK) = ZIAS 12y
Moreover,
PRUQH) < Y. Piler <0)= Y Py(gr < —alogN)

XGDN XGDN

2 2
—a“(logN)
< N4eXp<W> —o(1)
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as N — oo. Using the entropy inequality (see, e.g., [7], Appendix B.3), we have

gPN(sz N Hy(PRIPy) +e!
Pe@l) P (23)

and, hence,

a2

.. 1
l}vrglgofmlog PN(Q ) > ——||Af||L2(v)

for any choice of a and f as above. Optimizing over a and f gives the lower
bound. [

PROOF OF THE UPPER BOUND. Fix 8> 0. For K e N, @ € (1/2, 1) define

Expo:={t{B€ly:BCDy,op <(2,/2y —B)logN} <K},

the event that we have few boxes B € I, with pp < (2./2y — B)log N. We will
now show that the probability that Q; occurs on E% B is small. If n > 0,¢ €
0,1/2), € (0, 1), let

= U U s — En(px|Fo)| = nlog N},
Belly xeB®

where B® is the set of points x € B, which are contained inside a box of side-
length e N* and center x5. We split

PN(E% o NQD,) < EN(PN((E g.o NQH)IFa)1ac) + Py(A).

But, by Lemma 2.11, we find

ce &

2 2 1.2 2
Pn(A) = N46XP(—M> < exp(—M)

We can choose ¢ arbitrarily small; our choice will be such that ﬁ >
8yC% (D) + 1. Fix B € I, and set B® := {x € B:dist(x,dB) > eNO‘} The
idea is to apply Theorem 1.2 to the field (¢px — En (¢x|Fa))xep conditional on £, .
We get

PN( sup (¢x — En(9x|Fa)) < (2\/5— ﬁ)logN|f‘”a>

xeB®

< P sup (o2 — EG@il %)) = (227 — B/2)log N1 %, )

xeB®

< exp(—c(log N)?),
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where ¢ = c(¢, B) if a € (ap(B),1) for some ag(B) > 0. Therefore, on A N
{o:9 = 22y — B)log N} we have, if n < /2,

Py ( inf ¢, > 0‘5%)
XEB

<P inf —F F 2 2)log N 3’7)
N(XEB (0x — En(p:l Fa)) = —(2/2 — B/2) log |
< exp(—c(log N)?)
if @ > ag(B). This implies
4—4a

PuEs g = (M) exp-cogn2)K
+ exp(—(8y G} (D) + 1) (log N)?)
<exp((4 —4a)K log N — cK (log N)?)
+ exp(—(8y €L (D) + 1)(log N)?)
< exp(—(8y G} (D) + 1) (log N)?)

if we choose K large enough such that cK /2 > 8)/@ (D) + 1.
This means we now only need to consider Eg g o N Q py - In this case, for any
function f >0, f € CZ(D), we have

1
[Ty

> f(x/N)gs

Belly,BCDy

> (2\/5—/3)10gN(|1_: |

%l Belly,BCDy

Kl fllo
Y s/ =S )

Therefore,
Py(Eg g N QZS )

<exp< (2y2y = B)log N(1/|Ty| Yo f (xp/N) —eN~H! “)))2>
B 2vary (1/|Me| X5 f(x8/N)gB)

Applying Lemmas C.1 and C.2 completes the proof. [J

5. Entropic repulsion. Here we need to use a different approach than in the
lattice free field case, since the FKG property does not hold.

PROOF OF PROPOSITION 1.4. Let P+( ) = Py (- |SZ ). We use the notation
of Section 3, in particular, the box-structure, and first assume x = 0. Set ¢,y =
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@y (x). We claim that, on the set {¢.y < (24/2y —n)logN} N Q7 there exists
6 > 0 such that

f#{x € Ven tox < (2y/2y —n/2)log N} > 8| Ven|.
If this was not the case, we would have
(1-6)(2y/2y —n/2)logN <@,y < (2,/2y —n)logN,

which is impossible if § is small enough such that (1 — §)(24/2y — n/2) >
(2+/2y — n). Therefore, if a € (0, 1), there exists a shift of the N*-sublattice I,
such that, for this particular shift,

Py (#{x € Ven 19x < (2/2y —n/2) log N} = 8| Ve )

1
_ pt
=Pyl 2 le=eyzr-ntoen 28
|Ven|

xeVen

= "N\ |{B eIy, xp € Vo) [0ep <(24/2Z7—n/2) log N} =

Belly,xpeVen

(This is true since IV:T > xeVen Lgpe<(2y27—n/2)log N} 18 the average over all pos-
sible such shifts of the N*—lattice.) Let Sy :={B € 1y, xp € V n} for this partic-
ular IT,. Choose 0 < 8’ < 8. Then

1
+
Py (@ > Npop=@yar—nlogn) = 5)

BeS,

1
+
(32) =Py (@ >~ Non=Cyzz-niosn) Z5/>

BeS,
+ 1 ’
+Py | 2 Lipp—gup>a/4logny = (8 —8) ).
|S0[| BESO[
We have |Sy| > ce N*(1=%)_ Thus,

1
+ /
Py <@ > Lgp=yzr—n/alogn) = 8 )

BeS,

< Py (8B € Matgp < (22 — n/4)log N} = c8/eN*1 ).
But in the proof of the upper bound of Theorem 1.3 we have seen that

PN (Ef .o N} < exp(—(8y C3 (D) + 1) (log N)?),
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hence, for large enough N,

Py (2B € Ma:gp < (2,/2y —n/4)log N} = c8'eN*1-)
< exp(—c(log N)2).
Thus, what is left is the second term in (32). Note
P (¢5 — x5 > (n/4)10g N|Fy) < exp(—cn*log N).

Let 0p := l{gy—¢,,>(m/4) logN}- As in the proof of Theorem 1.2, we have, using
Lemma 11 of [1], for large N,

PN( Z 1{¢B—§0x3>(77/4)10gN} > — 8’)|Sa|)
BeS,

< PN( Z (QB — EGB) > C8N4(l—a)((8 _ 6/) _ N_c/n2)>
BeS,y

= PN( Y (0 — EOp)| > ce(5 — 5/)]\]4(101))
BeS,

<2exp(—ce(8 — §)NH1=),

Together with Theorem 1.3, this proves
Jim Py (@ey = (227 = n)log N | 2}) =0

if x = 0. For arbitrary x repeat the argument with a shifted grid. [J

APPENDIX A: NORM ESTIMATES

In this section we prove some basic estimates on the discrete Sobolev norms
which are used in the proof of the regularity for the solution of the Dirichlet prob-
lem. Recall

Ei={v:VyUhVy > R:v(x)=0Vx €0 Vy}
and for v, w € £ from Section 2,

Dw,w):= Y Av@AwE + Y r@vEwx).

xeVy xed_Vy

Note that the notation D (v, w) and E| depend on N. We identify v € E| with the
function we obtain if we extend v to all of Z¢ by setting it equal to 0 on the whole
of Vy.
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LEMMA A.1. Letv € E|. There exists a constant ¢ depending on the dimen-
sion such that

d d
Yo DY (ViViv(x)? < cD, v).

xeVyqri=1j=1

PROOF. Expanding the square gives
2d)* ) (Av(x))?

XEVN

d
= > > (4@ =20 v(x + &) — 20 v(x —€)

xeVyi,j=1
(33) —2v(xX)v(x +e;) —2v(x)v(x —ej)
+v(x +e)v(x +ej) +v(x +e)v(x —ej)
+v(x —e)v(x +ej) +v(x —ep)v(x —ej)).

Now, taking the geometry of Vyy and the 0-boundary conditions outside Vy into
consideration, we can shift the summation, and obtain for any e; with |e;| =1,

Z v(x)zz Z v(x)2= Z v(x—i—e,-)2

xeVy xeVnii xeVnii
= Y vlxtete)+ Y vx+ete)k
xeVni1 x¢VNy1:
x+ei+ejeVN
Similarly, we have
> v —ei)
xeVy
= > vx+e)v)
xeVy
= Z v(x +e +ejv(x +ej)+ Z v(x +e +ejv(x +ej)
xX€VN11 X¢Vn1:
xX+eitejeVy
X+€_,'€VN
and
Z v(x —e)v(x +ej) = Z v(x +e +ej)v(x) = Z v(x +e +ej)v(x).
xeVy x€Vy XEVN+1

Furthermore, if i # j,
Z v(x —e)v(x —ej) = Z v(x +e)v(x +ej) = Z v(x +e)v(x +ej)

xeVy xeVy xeVn41
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and
Ry N2 2
Z v(x — )" = Z v(x +¢)° — Z v(x)
xeVy xeVn41 xeVy:
x+ei¢Vn
and, finally,
Z v(x+el-)2= Z v(x+e,-)2— Z v(x)z.
xeVy xe€Vn41 xeVy:
x—ei¢Vn

We define the following quantities:

d
T12=Z Z v(x—{—ei—i—ej)zZO,

L,j=1x¢Vyn4i
d d
. 2 . 2
=) Y v and T3:=) > v)
i=1 xeVy: i=1 xeVy:
x+ei¢Vn x—ei¢Vn

Note Th + 13 <) cy_ Vi r(x)v(x)3. By the above considerations, the right-hand
side of (33) can be rewritten and bounded as follows:

Q2d)* Y (Av(x))?

xeVy

d
=Y > W)+ +e) +ulx +ep)? +ulx +e +ej)

xeVyi,j=1
—2v(x)v(x +¢) —2v(x +¢ +ej)v(x +e;) —2v(x)v(x +ej)
—2v(x +ej)v(x) +v(x +e)v(x +ej) +2v(x + ¢ +ej)v(x)
+ v(x +e +ejv(x +e))
+T -1, - T3
d
> Y (ViViu@)t— Y r@v)?
i,j=l1xeVn4 x€d_Vy
Thus,
d
YooY (ViViv)P <D Y (Av)P+ Y rvx)?
i,j=lxeVyi xeVy xeo_Vy

< (2d)*D (v, v),

which proves the lemma. [
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LEMMA A.2. Letv € E|. There exists ¢ > 0 such that

d
> vx)? chz( Y Viv@))P 4+ Y r(x)v(x)2>.

XEVN XGVN i=1 x€3,VN

PROOF. Let x € Vy and denote Ai ={yeVy:FkeZsuchthaty=x +k -
e;}. Then

V() = (V(x) —v(x +e) +v(x +e) —v(x +2¢) 4+ +v(x + koei))z,

where ko € N such that x + kge; € 0_ V. Obviously kg < 2N, thus, using the fact
that (a + b)2 < 2a? + 2b? for real numbers a, b, we get

v(x)? <2N((v(x) — v(x + ei))2 4.
+(v(x + (ko — Der) — v(x + koei))” + v(x + koei)?).

In the same way, we obtain
v(x)? <2N((v(x) — v(x — e,~))2 4 Fo(x +kie)?)

for some k; < 2N, with x — kje; € 0_Vy. This gives

Y w2y N(Z WO vy +e))+ Y v(y)z)

xeVy xeVy yeAi yeoi_ VNﬂAi
< cN2< Z (v(x) —v(x + ei))2 + Z r(x)v(x)2>.
xeVy xed_Vy

Since this inequality holds for any 1 <i <d, the lemma is proven. [

LEMMA A.3. Letv € Eq. There exists ¢ > 0 such that, forall 1 <i <d,

Z (v(x+e)— v(x))2 < CN2( Z (V;Viv(x))> + Z r(x)v(x)2>.

erN XGVN erLVN

PROOF. Let h(x) := V;v(x) and repeat the arguments of the proof of
Lemma A2. [

From Lemmas A.2 and A.3 the following is clear:

COROLLARY A.4. Letv € E|. There exists ¢ > 0 such that

d
Ilvllip(vN)ch“(Z Y (Vivip))Y 4+ Y r(x)v(x)z).

xeVyi,j=l1 xed_Vy
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REMARK A.5. Iterating this procedure, one evidently obtains for any v: Vy U
0 Vny — R such that, v(x) = 0 for x € 9, Vy, that

||v||§,k(VN)scN2"<Z (V)P + Y r(x)v(x>2>.

xeVy a:la|=k x€d_Vy

COROLLARY A.6. Letv € E|. There is ¢ > 0 such that

I3y, < N D@, V).

PROOF. From Lemma A.1 and Corollary A.4 we obtain

I3y < 101320, SNV + DD ) <eN D@0, O

REMARK A.7. This also proves that D¢, -) is positive definite.

APPENDIX B: DISCRETE SOBOLEV IMBEDDING
The following results are the discrete analogues of the Sobolev Imbedding The-

orems. For completeness, we include the proofs of the versions we use.

PROPOSITION B.1. Let f:Z% — R such that f(x) =0 on Vy, and
I Eevyy < cN9/2 for some constant c independent of N. If k > d /2, then there
exists C > 0 independent of N such that sup,.cy, | f(x)| <C.

PROOF. Let f(t) = ez f (x)e'“*) denote the Fourier transform of a func-
tion f:Z¢ — R. Then we have

Vif) =Y (fx+ex) — fx))e' ")

xezd

— Z (f(x)ei(l‘,x—ek) _ f(x)ei(l,x))

xezd
= fe™™ = 1),
Iterating, we obtain
(34) Vi Vi f(0) = FO) e = 1) (e — 1),
By (34), using the Taylor expansion, we have, for any j € N,

1FOP 111 <c o [ FOPIe ™ — 1) - (e = 1)]> < |V, - Vi, £ (D)%
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This yields

[ ol

= ;a + N2|112) 2| F () dr
~Jvy (14 N2|t]2)1/2 f

1 1/2
< —dt)
(f[_n,n]d (14 N2|t|?)!

12
210128\ Fren g2
([ a NP Fora)

! 1/2
<eNT (f | Z<N|r|>2f|f<r>|2dr)
[—7,7] j=0

<cN7N fllgiyyy <N

using the Plancherel Theorem. Thus, we get, by the inverse Fourier transform,

Lf 0l =

c / F)e 60 dt’ < f | F(0)|dt < N4>,
[—m,m]d [—m, ]9

This implies the following:

COROLLARY B.2. Let f:Z% — R such that f(x) = 0 on Vy, and

Il Ek vy < cN42 for some constant c independent of N. If k > d /2 + 1, then

there exists C > 0 independent of N such that sup,cy, |V* f(x)] < Ll for all

— Nla
0<l|a|l =L

APPENDIX C: COMPUTATION OF THE CONSTANT @%, (D)

We still need to show the convergence toward the second-order capacity G%, (D)
in the upper bound of Theorem 1.3. This is analogous to a similar statement in the
higher-dimensional case; compare [10]. Let

HE(Vy):={f € H}(Vy): f(x) =0 Vx € 3_Vy])
and
CWVN) i={f:Vy > R:|[V*f|<c/N* a e Nd, f(x)=0,Vx € 3_Vy}.

If f:V — R, we write fy for the function Vy — R, fx(x) := f(x/N).
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LEMMA C.1.

inf{[| ANRIIT vy 7 € Hi h > 1 0n Dy}

1
- sup{uDN, W) oy = S UNGNIN): f € La(Vi): f =0 on Vi \ DN}

. { (Ipy, fN) D,

2(fn.GN fN) Dy cfeLly(Vn): f=0o0n VN\DN},

PROOF. We start with the first equality. Since Eg(Vy) is finite dimensional,
there exists a minimizer hg\(,)). Obviously, hg\?) =1 on Dy. Furthermore, Azhg\(,)) =0
outside Dy . To see this, set ¥(e) = >y, |Ah§\(,)) (x) + ep(x)| for any test func-
tion ¢:Vy U dhVy — R, with ¢(x) =0 for all x € Vy \ Dy. Then i—'ﬁlezo =
0, because hg\(,)) is a minimizer of the norm. But this implies (Azhﬁ\(,)),cp)vN =
(Ahg\?), Ag)y, =0 for all ¢ as above, and thus the claim. Set

fn=A%hY.
By the fact that f ™ — 0 outside D N, summation by parts gives

2(fN’h§\(/)))DN — (SN Grfnpy = D | AR

XGVN

The above yields
1
SUP{UDN, In)py — §<fNGNfN>3f €Ly(Vy): f=0o0nVy\ DN}

>2(fn. h§3))DN —(fN,GNfN)Dy

>

xeVy

which is one direction in the first equation. The other direction is an elementary
calculation.

The second equation follows by expanding f in a basis of eigenvectors
of the symmetric matrix Gy. Maximizing shows that both sides are equal to
Y ieN fei.lp)” lD , where the ¢; are the eigenvectors and X; the corresponding eigen-
values. |l]

LEMMA C.2. With the above notation,

Nli_r)nooinf{llANh||%2(VN) :he H,h>10n Dy} =C¥(D).
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PrROOF. {h € Hg(V) :h > 1p} is a closed convex subset of the Hilbert space
Hg(V) and, therefore, there exists a minimizer hqo for [y, |Ah|?dx. For every
n € N, the discretization ko y(x) := ho(x/N) belongs to HOZ(VN), which proves
one direction. Let ¢ > 0. For every N € N, we can find ) e H02(V) such that
h™) > 1p and the discretization ﬁg\j,v) of A is equal to hg\(,)) of the proof of
Lemma C.1. If N is large enough, ||ﬁ%v)||L2(VN) > ||fz(N)||L2(V) — ¢. Since hg
is a minimizer, we have liminfy_, o ||h§3)||N > liminfy o0 ||fz(N)||L2(V) —&>
lholl,(vy — €. Since & > 0 was arbitrary, the claim is proven. []

Acknowledgment. Many thanks to Erwin Bolthausen for his advice and im-
portant discussions.
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