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MAXIMUM AND ENTROPIC REPULSION FOR A GAUSSIAN
MEMBRANE MODEL IN THE CRITICAL DIMENSION1

BY NOEMI KURT

Universität Zürich

We consider the real-valued centered Gaussian field on the four-
dimensional integer lattice, whose covariance matrix is given by the Green’s
function of the discrete Bilaplacian. This is interpreted as a model for a semi-
flexible membrane. d = 4 is the critical dimension for this model. We discuss
the effect of a hard wall on the membrane, via a multiscale analysis of the
maximum of the field. We use analytic and probabilistic tools to describe the
correlation structure of the field.

1. Introduction and main results. Let V := [−1,1]d , and VN := NV ∩ Zd .
In this paper we consider the real-valued Gaussian field ϕ = {ϕx}x∈VN

, whose
covariance matrix is given by the Green’s function of the discrete Bilaplacian.
Such a field can be interpreted as a model for a d-dimensional interface in
d + 1-dimensional space. It is described by the formal Hamiltonian HN(ϕ) =
1
2
∑

x(�ϕx)
2. For this model, d = 4 is critical in the sense that, in dimensions

higher than 4, the infinite volume Gibbs measure exists (see [10, 13]), but not in
d = 4 and below. A phenomenon of interest for random interface models is the
so-called entropic repulsion, which refers to the fact that the presence of a hard
wall forces the interface to move away from the wall. This is modeled by requir-
ing the field {ϕx} to be positive inside a certain region. To mathematically un-
derstand entropic repulsion, one needs to study the asymptotics of the probability
P(ϕx ≥ 0, x ∈ V ) for some region V ⊂ Zd . In the case considered in this paper,
this is achieved by first investigating the asymptotic behavior of the maximum of
the field, via a sophisticated multiscale-analysis developed in [1] for the lattice free
field in the critical dimension. The main difficulty is due to the fact that, unlike the
lattice free field, our model does not have a random walk representation, which
is crucial in most approaches to the lattice free field (see, e.g., [1, 2]). To obtain
the analogous results, we use methods from PDE to get good estimates of some
discrete biharmonic Green’s functions.

For k ∈ N, let ∂kVN := {x ∈ V c
N : dist(x,VN) ≤ k} be the boundary of thickness

k of VN. We write ∂VN := ∂1VN for the simple boundary. The discrete Laplacian
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� is defined on functions f : Zd → R by

�f (x) := 1

2d

d∑
i=1

(
f (x + ei) + f (x − ei) − 2f (x)

)
,

where ei denotes the unit vector in the ith coordinate direction. With some abuse
of notation, we write �fx := (�f )(x). By �N , we denote the restriction of this
operator to functions which are equal to 0 outside VN. We write �2 for the itera-
tion, �2f (x) := �(�f )(x), and �2

N for the restriction of �2 to functions which
are equal to 0 outside VN. It is important to notice that �2

N �= (�N)2. We can view
�2

N as the matrix given by

�2
N(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1

2d
, if x = y, x ∈ VN ,

− 1

d
, if |x − y| = 1, x, y ∈ VN ,

1

4d2 , if |x − y| = 2, x, y ∈ VN ,

1

2d2 , if |x − y| = √
2, x, y ∈ VN ,

0, otherwise.

The matrix (�2
N(x, y))x,y∈VN

is positive definite (see Remark A.7). Let GN(x, y)

be it’s matrix inverse. This means that we can interpret GN as a Green’s function
given by the following discrete biharmonic boundary value problem on VN : For
x ∈ VN,

�2GN(x, y) = δ(x, y), y ∈ VN,
(1)

GN(x, y) = 0, y ∈ ∂2VN.

To see the connection to boundary value problems of PDE, note that this is a dis-
crete version of the (continuous) biharmonic boundary value problem with Dirich-
let boundary conditions:

�2u(x) = f (x), x ∈ V,

u(x) = 0, x ∈ ∂V,

d

dn
u(x) = 0, x ∈ ∂V .

Here, d
dn

denotes the derivative in the direction of the outer normal vector. How-
ever, we will not directly use this correspondence between discrete and continuous,
apart from gaining inspiration from standard PDE methods.

The model we study in this paper is the centered Gaussian field {ϕx}x∈VN
on

VN with covariances covN(ϕx,ϕy) = GN(x, y). Denote the law of this field by



4D MEMBRANE 689

PN. Algebraic manipulations show that PN is the Gibbs measure on RVN with 0
boundary conditions outside VN and Hamiltonian

HN(ϕ) = 1

2

∑
x∈Zd

(�ϕx)
2.

Note that the choice of boundary conditions in the definition of �2
N and GN is ab-

solutely crucial in order to obtain a Gibbs measure (see [6], Chapter 13), meaning
that, for A ⊂ VN, the distribution conditional on FAc = σ(ϕx, x ∈ Ac), the sigma
field generated by ϕx, x ∈ Ac, satisfies

PN(·|FAc)(ψ) = PA,ψ(·), PN(dψ)-a.s.,

where

PA,ψ(dϕ) := 1

ZA

exp

(
−1

2

∑
x∈Zd

(�ϕx)
2

) ∏
x∈A

dϕx

∏
x∈VN\A

δψx (dϕx).

(ZA is the normalizing constant.) This implies that PN(·|FAc) is the Gaussian
distribution with mean

mx = − ∑
y∈A

(�2
A)−1(x, y)

∑
z∈Ac

�2(y, z)ψz(2)

and covariance matrix (�2
A)−1. Here, �2

A is the restriction of �2 to functions,
which are 0 outside A. We would not obtain this Gibbsianness if we chose (�N)2

[resp. (�A)2] in the place of �2
N (resp. �2

A). Since the range of interaction of �2

is 2, we see that PN(·|FAc) = PN(·|F∂2A).

This model is called the membrane or Laplacian model. One should compare
it to the well-known lattice free field or gradient model, whose Hamiltonian is
given by H∇

N (ϕ) := 1
2d

∑ |∇ϕx |2. Note that H∇
N (ϕ) is small if ϕ is approximately

constant, which implies that this model favors interfaces that are essentially flat.
On the other hand, the membrane model prefers configurations with constant cur-
vature. In the physics literature, for example [9, 14], linear combinations of the
two models are considered as models for semiflexible membranes (or semiflexible
polymers if d = 1). Contrary to the gradient model, there are only a few mathe-
matically rigorous results for the membrane model, in d ≥ 5, where the infinite
volume limit exists [10, 13], and in d = 1 [3, 4]. One reason why the Laplacian
model is more difficult to study is the absence of a random walk representation,
which is exploited for the gradient model, and allows to get precise expressions for
many quantities, in particular, the variance. In this paper we treat the membrane
model in the critical dimension, d = 4, which means that we need to consider the
finite volume VN, where boundary effects come into play. Although we do not in-
vestigate the behavior of the field close to the boundary but only in the bulk, there
are considerable analytical difficulties to overcome, which stem from the boundary
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conditions of the Green’s function. We are able, using analytical and probabilistic
methods, to control the variances in a way that is sufficient to apply the methods
of [1]. Let γ := 8

π2 , and define for δ ∈ (0,1/2)

V δ
N := {x ∈ VN : dist(x,V c

N) ≥ δN}.
Our first result consists of bounds on the variances:

PROPOSITION 1.1. Let d = 4, and let 0 < δ < 1/2.

(a) There exists C > 0 such that supx∈VN
varN(ϕx) ≤ γ logN + C.

(b) There exists C(δ) > 0 such that supx∈V δ
N
|varN(ϕx) − γ logN | ≤ C(δ).

Proposition 1.1 (together with the concentration result Lemma 2.11 in the next
section) is the key to the results in this paper. It shows why the four-dimensional
membrane model behaves in many ways like the two-dimensional lattice free field.
We have the same behavior of the maximum:

THEOREM 1.2. Let d = 4.

(a)

lim
N→∞PN

(
sup

x∈VN

ϕx ≥ 2
√

2γ logN

)
= 0

(b) Let 0 < δ < 1/2, and 0 < η < 1. There exists a constant c = c(η, δ) > 0,

such that

PN

(
sup

x∈V δ
N

ϕx ≤ (
2
√

2γ − η
)

logN

)
≤ exp(−c(logN)2).

These bounds on the maximum allow us to give the precise asymptotics of the
probability that the field is positive on a certain region inside VN. Let D ⊂ V be
connected with smooth boundary, which has positive distance to ∂V . Let DN :=
ND ∩ Z4 and define

�+
N := {{ϕx}x∈VN

:ϕx ≥ 0 ∀x ∈ DN

}
.

We think of DN as a hard wall that forces the field to be positive. The probability
of this event is given by our next result. Let H 2(V ) denote the usual Sobolev space
of twice differentiable functions on V, and H 2

0 the subspace of functions in H 2(V )

which are 0 at the boundary of V.

THEOREM 1.3. Let d = 4.

lim
N→∞

1

(logN)2 logPN(�+
N) = −8γC2

V (D),

where C2
V (D) = inf{1

2

∫
V |�h|2 dx :h ∈ H 2

0 (V ),h ≥ 1 a.e. on D}.
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One would like to understand the behavior of the field conditioned on the event
�+

N. We can prove the following. For 0 ≤ ε < 1 and x ∈ DN, let VεN(x) denote
the box of side-length εN with center x, and ϕεN(x) := 1

|VεN (x)|
∑

y∈VεN (x) ϕy.

PROPOSITION 1.4. For any η > 0,

lim
N→∞ sup

x∈DN,

VεN (x)⊂DN

PN

(
ϕεN(x) ≤ (

2
√

2γ − η
)

logN
∣∣�+

N

) = 0.

This implies that the local sample mean of the field is pushed by the hard wall
to a height of at least 2

√
2γ logN. In the physics literature this phenomenon is

referred to as entropic repulsion [12], since it is due to the fluctuations of the
field that it moves away from the wall. It is expected that the upper bound on the
height of the conditioned field is the same, that is, that PN(ϕεN(x) ≥ (2

√
2γ +

η)logN |�+
N) = 0. Also, for the gradient model, the result holds for the height

variables ϕx in the place of ϕεN(x) [1]. The proof for the gradient model uses the
FKG-inequalities. For the membrane model, the criterion for the FKG-property,
Corollary 1.8 of [8] is satisfied only in the infinite volume case and without the
positivity constraint. We therefore need to average over the heights in order to
obtain the result.

The paper is organized as follows. In the next section we investigate the vari-
ance structure of the four-dimensional membrane model and prove Proposition 1.1
and some related results. Here we exploit the fact that we can compare GN to the
Green’s function corresponding to (�N)2, for which we have a random walk in-
terpretation. The comparison of the two Green’s functions is based on analytical
tools on the regularity of the solutions of boundary value problems. Some of the
more technical proofs are deferred to the Appendix. In Section 3 we give the proof
of Theorem 1.2, using the same multiscale analysis as for the gradient model. We
refer to [1] for detailed comments on the ideas behind this method. The proof of
Theorem 1.3 is given in Section 4, and that of Proposition 1.4 in Section 5.

Throughout the paper, c,C, c′ etc. will denote generic positive constants whose
value may change from line to line. By Br we denote the ball of radius r and
center 0.

2. Variance structure and the discrete Green’s function. The aim of this
section is to control GN(x, x). To this purpose, we compare it to a biharmonic
Green’s function with different boundary conditions. Let

E1 := {v :VN ∪ ∂2VN → R :v(x) = 0 ∀x ∈ ∂2VN }.
Recall from the Introduction that the covariance matrix of the model is given by
the unique function GN(x, ·) in E1 which satisfies �2GN(x, y) = δ(x, y).
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Let us introduce the usual harmonic Green’s function. Let A be an arbitrary
subset of Zd, fix x ∈ A, and let 
A(x, ·) be the unique lattice function which
satisfies

�
A(x, y) = −δ(x, y), y ∈ A,


A(x, y) = 0, y ∈ ∂A.

(Existence and uniqueness follows from standard discrete harmonic analysis; see,
e.g., Chapter I of [11].) Let 
N(x, y) := 
VN

(x, y). Define now for x, y ∈ VN,

GN(x, y) := ∑
z∈VN


N(x, z)
N(z, y),(3)

and extend GN(x, ·) to a function on VN ∪ ∂2VN by requiring

GN(x, y) = 0, y ∈ VN+1 \ VN and
(4)

�GN(x, y) = 0, y ∈ ∂VN.

It is straightforward to check that, with these conditions, �2GN(x, y) = δ(x, y)

for all x, y ∈ VN. In fact, GN(x, ·) is the (again unique) function which satisfies

�2GN(x, y) = δ(x, y), y ∈ VN,

GN(x, y) = 0, y ∈ VN+1 \ VN,

�GN(x, y) = 0, y ∈ ∂VN.

The main idea of this section is to compare GN(x, y) and GN(x, y). In fact, we
will later on show that if x ∈ V δ

N,

sup
y∈V δ

N

|GN(x, y) − GN(x, y)| ≤ c

for some c = c(δ) < ∞. This will be done by studying the boundary value problem
satisfied by GN(x, y) − GN(x, y) and showing that the solution of this boundary
value problem is sufficiently regular (in a sense to be specified). Since GN is given
in terms of 
N, well-known results from harmonic analysis and random walks
give us a very good control on the behavior of GN(x, y). Combining all this will
then prove Proposition 1.1.

Before embarking on the comparison of GN and GN, we derive the necessary
estimates on GN. We collect the following well-known results on 
N, which we
will use to describe GN. For proofs we refer to [11], Chapter I. Let A be an arbi-
trary subset of Zd , and write 
A for the Green’s function of the Dirichlet problem
on A. The following hold:
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• 
A(x, y) is the expected number of visits in y ∈ A of a simple random walk
starting at x which is killed as it exits A, that is,


A(x, y) = Ex

(
τA∑

k=0

1{Xk=y}
)

=
∞∑

k=0

Px(Xk = y, k < τA),

where τA = inf{k ≥ 0 :Xk ∈ Ac}.
• If d ≥ 3, limN→∞
VN

(x, y) =: 
(x, y) exists for all x, y ∈ Zd, and as |x −
y| → ∞,


(x, y) = ad

1

|x − y|d−2 + O(|x − y|1−d),

with ad = 2
(d−2)ωd

, where ωd is the volume of the unit ball in Rd .
• ([11], Proposition 1.5.9) If d ≥ 3, for all x �= 0


BN
(0, x) = ad

(
1

|x|d−2 − 1

Nd−2

)
+ O(|x|1−d).

• If d ≥ 3, then


A(x, y) = 
(x, y) − ∑
z∈∂A

Px(XτA
= z)
(z, y).

• 
A(x, y) = 
A(y, x).

• 
A(x, y) ≤ 
B(x, y) if A ⊂ B.

The fact that GN is just the convolution of 
N with itself leads to the following
representation in terms of simple random walk: Letting x, y ∈ VN, let {Xk}, {Ym}
be two independent simple random walks on the lattice Zd, whose joint law with
start in x and y respectively we denote by Px,y . Let τN denote the first exit time
of VN. Now we see from the random walk representation of 
N that

GN(x, y) = ∑
z∈VN


N(x, z)
N(z, y) = Ex,y

[
τN∑
k=0

τN∑
m=0

1{Xk=Ym}
]

and

GN(x, y) = ∑
z∈VN


N(x, z)
N(z, y)

=
∞∑

k,m=0

∑
z∈VN

Px(Xk = z, k < τN)Pz(Ym = y,m < τN)

=
∞∑

k,m=0

Px(Xk+m = y, k + m < τN)

=
∞∑

k=0

(k + 1)Px(Xk = y, k < τN).
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Hence, we have proven the following:

LEMMA 2.1. If x, y ∈ VN , the following hold:

GN(x, y) = Ex,y

[
τN∑
k=0

τN∑
m=0

1{Xk=Ym}
]

=
∞∑

k=0

(k + 1)Px(Xk = y, k < τN).

Estimates on GN(x, x) are easily obtained:

LEMMA 2.2. Let d = 4. If δ ∈ (0,1/2), there exist constants c1 = c1(δ) > 0,

c2 > 0, such that, for x ∈ V δ
N ,

8

π2 logN + c1 ≤ GN(x, x) ≤ 8

π2 logN + c2.

PROOF. Let Br(x) denote the ball of radius r about x ∈ VN. Since 
N(x, x) ≤

(x, x), we obtain

GN(x, x) ≤ ∑
z∈B2N


(x, z)
(z, x) ≤ a2
4

∑
z∈B2N(x)

z �=x

1

|x − z|4 + O(1)

≤ 4a2
4ω4

∫ 2N

1

1

r
dr + O(1) = 8

π2 log(2N) + c.

The lower bound follows by taking BδN(x) in the place of B2N(x):

GN(x, x) ≥ ∑
z∈BδN


BδN
(x, z)
BδN

(z, x) ≥ 4a2
4ω4

∫ δN

1

1

r
dr + O(1)

= 8

π2 log(δN) + c.

�

We need to introduce discrete Sobolev norms. Let ∂−VN := {x ∈ VN : dist(x,

V c
N) ≤ 1}. We denote the first difference in the ith direction of a function

v : Zd → R by ∇iv(x) := v(x + ei) − v(x), and more general, for a multiindex
α = (α1, . . . , αd) ∈ Nd , write ∇αv(x) := ∇α1

1 · · ·∇αd

d v(x).

For v :VN ∪ ∂kVN → R define

‖v‖2
Hk(VN)

:=
k∑

j=0

∑
α∈Nd :
|α|=j

∑
x∈VN

(Nj∇αv(x))2.

For v,w ∈ E1 define

D(v,w) := ∑
x∈VN

�v(x)�w(x) + ∑
x∈∂−VN

r(x)v(x)w(x),
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where r(x) := |{y ∈ V c
N : dist(x, y) = 1}|. Obviously, 1 ≤ r(x) ≤ d for all x ∈

∂−VN. It is immediate that D(·, ·) is symmetric, bilinear and positive definite. We
write ‖v‖D := √

D(v, v). In Appendix A we prove some estimates for discrete
Sobolev norms and the Dirichlet form D(·, ·).

To compare GN and GN , we use the fact that the difference of the two Green’s
functions,

HN(x, y) := GN(x, y) − GN(x, y),

satisfies the following boundary value problem:

�2HN(x, y) = 0, y ∈ VN,

HN(x, y) = GN(x, y), y ∈ ∂2VN.

Let f be any function VN ∪ ∂2VN → R which satisfies f (y) = GN(x, y) for all
y ∈ ∂2VN. Then u(y) := HN(x, ·) − f (·) satisfies

�2u(y) = g(y), y ∈ VN,
(5)

u(y) = 0, y ∈ ∂2VN,

where g(y) := −�2f (y). The idea is now to choose an f sufficiently regular
in the interior of VN, and show that this yields a solution u of (5) which is C1

in the discrete sense on V δ
N, meaning that if x ∈ V δ

N,0 < δ < 1/2, we have
supy∈V δ

N
|u(y)| ≤ c and supy∈V δ

N
|∇u(y)| ≤ c

N
. Then we can derive estimates on

HN(x, y) for x, y ∈ V δ
N .

Note that a function u is a solution of (5) if and only if for any function v :VN ∪
∂2VN → R it satisfies ∑

x∈VN

�2u(x)v(x) = ∑
x∈VN

g(x)v(x).

(Take v = 1x, x ∈ VN .) Summation by parts now shows that, since u ∈ E1,∑
x∈VN

�2u(x)v(x) = D(u, v).

Hence, D(·, ·) is the Dirichlet form corresponding to our boundary value problem
and, therefore, an equivalent formulation of (5) is

D(u, v) = 〈g, v〉L2(VN ) ∀v ∈ E1,(6)

where 〈·, ·〉L2(VN ) denotes the L2 scalar product on VN. The Riesz Theorem now
gives us a “weak” solution of (6): Clearly, for fixed w ∈ E1, the map v �→ D(v,w)

is well defined and linear from E1 → R, so that by Riesz there exists hw ∈ E1
such that D(v,w) = 〈hw, v〉L2(VN ), and the map A :w �→ hw is well defined and
linear. It is injective, and therefore bijective since E1 is finite dimensional. Thus,
A−1 exists, and u := A−1(−�2f ) is a solution of (6) and therefore also a solution
of (5).
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LEMMA 2.3. The unique solution u of (5) satisfies

‖u‖H 2(VN ) ≤ cN4‖g‖L2(VN ).

PROOF. We have just shown existence and uniqueness. For the norm esti-
mate, note that by Corollary A.6 we have ‖u‖2

H 2(VN )
≤ cN4D(u,u) = cN4〈g,

u〉L2(VN ) ≤ cN4‖g‖L2(VN )‖u‖L2(VN). But this implies ‖u‖H 2(VN ) ≤ cN4‖g‖L2(VN ).

�

Let us now return to the case where g = −�2f, where we want f to satisfy the
following:

LEMMA 2.4. Let d = 4. Let 0 < δ < 1/2, and 0 < δ′ < δ/2, and let x ∈ V δ
N .

There exists a function f on VN which satisfies the following conditions: There is
a constant c = c(δ, δ′) > 0 such that:

(a) f (y) = GN(x, y) for all y ∈ VN \ V δ′
N ,

(b) |∇αf (y)| ≤ c
N |α| for all y in V δ

N and |α| ≤ 5,

(c) |�2f (y)| ≤ c
N4 , and |∇ i�2f (y)| ≤ c

N5 for all y ∈ VN.

PROOF. It suffices to show that |∇αGN(y)| ≤ c
N |α| for all y with δ′N ≤

dist(y,V c
N) ≤ (δ/2)N and |α| ≤ 5. Then we can choose f equal to any regular

function on V δ
N, equal to GN on VN \ V δ′

N , and interpolate in between, which is
possible since the number of interpolation points is of order N4.

If α = (α1, . . . , αd) ∈ Nd
0 and f : Rd → R, we write Dαf (y) := ∂α1 ···∂αd

∂y
α1
1 ···∂yαd

d

f (y).

Note that the proof of Theorem 1.5.5 of [11] can be generalized to show that, if
y �= 0,

∇α
(0, y) = adDα(|y|2−d) + O
(|y|−d−|α|+1)

for some constant ad. Since 
N(x, y) = 
(x, y)−∑
z∈∂VN

P0(XτN
= z)
(z, y), it

follows immediately that for any y with dist(y, ∂VN) ≥ δ′N and |x − y| ≥ (δ/2)N

we have

|∇α
N(x, y)| ≤ c(δ, δ′)N−d−|α|+2.

We first assume x = 0. Split

∇αGN(0, y) = ∑
z∈VN


N(0, z)∇α
N(z, y)

= ∑
z∈V δ

N


N(0, z)∇α
N(z, y) + ∑
z∈VN\V δ

N


N(0, z)∇α
N(z, y).
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If z ∈ V δ
N and dist(y,V c

N) ≥ δ′N, we have |z − y| ≥ δ′N, and we can bound the
first term by∣∣∣∣∣ ∑

z∈V δ
N


N(0, z)∇α
N(z, y)

∣∣∣∣∣ ≤ c

Nd+|α|−2

∑
z∈V δ

N

1

|z|d−2 ≤ c

Nd+|α|−4 .

The second term we split again:∑
z∈VN\V δ

N


N(0, z)∇α
N(z, y)

= ∑
z∈VN\V δ

N


N(0, z)∇α
(z, y)

− ∑
z∈VN\V δ

N

∑
w∈∂VN

Pz(XτN
= w)
N(0, z)∇α
(w,y).

Again we have for any w ∈ ∂VN that |w − y| ≥ δ′N and, therefore, as above,∣∣∣∣∣ ∑
z∈VN\V δ

N

∑
w∈∂VN

Pz(XτN
= w)
N(0, z)∇α
(w,y)

∣∣∣∣∣≤ cN−d−|α|+4.

For the remaining term we use summation by parts (for |α| ≤ 2 this is not neces-
sary, we could use similar estimates as before). Note that, since 
(z, y) = 
(y, z),
we have


(z, y + ei) − 
(z, y) = 
(z − ei, y) − 
(z, y)

and, thus,

∇α
(z, y) = ∇−α
(y, z)

(we always let the difference operator act on the second variable). Thus, if α =
α′ + ei, by summation by parts,∑

z∈VN\V δ
N


N(0, z)∇α
(z, y)

= ∑
z∈VN\V δ

N

∇ei
N(0, z)∇α′

(z, y) + ∑

z∈∂(VN\V δ
N )

r(z)
N(0, z)∇α′

(z, y),

where 1 ≤ r(z) ≤ d is the number of points in VN \ V δ
N which are neighbors of z.

Note that∑
z∈∂(VN\V δ

N )

r(z)
N(0, z)∇α′

(z, y) ≤ cNd−1 1

Nd−2

1

Nd+|α′|−2
≤ c

1

Nd+|α|−4 .
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Similarly, we have for any α′, β with |α′| + |β| = |α| − 1 that∑
z∈∂(VN\V δ

N )

r(z)∇β
N(0, z)∇α′

(z, y) ≤ c

1

Nd+|α|−4 .

Hence, we can iterate summation by parts and obtain that∣∣∣∣∣ ∑
z∈VN\V δ

N


N(0, z)∇α
(z, y)

∣∣∣∣∣
≤
∣∣∣∣∣ ∑
z∈VN\V δ

N

∇α
N(0, z)
(z, y)

∣∣∣∣∣+ c
1

Nd+|α|−4

≤ c
1

Nd+|α|−2

∑
z∈VN\V δ

N

1

|z − y|d−2 + c
1

Nd+|α|−4

≤ c

Nd+|α|−4 .

This completes the proof, since similar arguments hold if x ∈ V δ
N is arbitrary. �

If we choose f as in Lemma 2.4, we know from Lemma 2.3 that the solution u

of (5) is in H 2(VN) in the discrete sense:

COROLLARY 2.5. If supx∈VN
|�2f (x)| ≤ c

N4 , then ‖u‖H 2(VN) ≤ Nd/2.

For our purpose, we need stronger regularity of the solution than what we ob-
tain from Lemma 2.3. To obtain this, we use a discrete version of the well-known
bootstrap-technique in PDE; compare, for example, [15]. The first step is the fol-
lowing lemma.

LEMMA 2.6. Let 1/2 < δ < 1, 0 < ε < 1/8, and let N be large enough, such
that εN > 1. Let χ : Zd → R satisfy |∇αχ | ≤ cN−|α| for any multiindex α, χ = 1
on V δ

N and χ(x) = 0 if dist(x, ∂VN) ≤ 2εN. Furthermore, let v :VN → R be any
function with v(x) = 0 if dist(x, ∂VN) ≤ εN. Then there exists v with ‖v‖H 2(VN ) =
‖v‖H 2(VN ), such that

N4D(N∇i (χu), v) = −N4〈g,Nχ∇iv〉L2(VN ) + I0,

where I0 ≤ c‖u‖H 2(VN )‖v‖H 2(VN ).

PROOF. First, note the product rule for ∇i : ∇i (vw)(x) = ∇iv(x)w(x) +
v(x + ei)∇iw(x). Furthermore, if v has support in the interior of VN, then
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x∈VN

∇iv(x) = 0. Using this and the assumptions on v, we get

N4D(N∇i (χu), v) = N4
∑

x∈VN

�N∇i (χu)(x)�v(x)

= N4
∑

x∈VN

N∇i�(χu)(x)�v(x)

= N4
∑

x∈VN

N∇i (�(χu)�v)(x)

−N4
∑

x∈VN

(�(χu))(x + ei)N∇i�v(x).

Now the first term is 0 due to the choice of the support of v, and the second—using
the product rule on the discrete Laplacian—is equal to

−N4
∑

x∈VN

�u(x + ei)χ(x + ei)N∇i�v(x)

+N4
∑

x∈VN

∑
α:|α|≤2

∑
β:|β|≤1

|α|+|β|=2

k(α,β)(∇αχ)(x + ei)(∇βu)(x + ei)N∇i�v(x)

for suitable k(α,β) ∈ R. In the second term we use summation by parts and the
regularity of χ to bound its absolute value by c‖u‖H 2(VN )‖v‖H 2(VN ). If we define
the translation operator τi by τi(x) := x + ei, we can again use the product rule to
rewrite the first term as

−N4
∑

x∈VN

�u(x + ei)χ(x + ei)N∇i�v(x)

= −N4
∑

x∈VN

(�u)(x + ei)�
(
(χ ◦ τi)N∇iv

)
(x)

+ ∑
x∈VN

(�u)(x + ei)
∑

α:|α|≤2

∑
β:|β|≤1

|α|+|β|=2

k(α,β)∇αχ(x)∇βN∇iv(x).

Here, by (6), the first term is equal to

−N4D
(
u,χN∇i(v ◦ τ−1)

) = −N4〈g,χN∇i(v ◦ τ−1)〉L2(VN ),

and the second is again bounded from above by c‖u‖H 2(VN )‖v‖H 2(VN ). �

PROPOSITION 2.7. Let χ as in Lemma 2.6, and let u be the solution of (5)
where f satisfies the properties (a), (b) and (c) of Lemma 2.4. Then there exists
c > 0 such that

‖χu‖H 3(VN ) ≤ cNd/2.
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PROOF. Let v be the same as in Lemma 2.6. Note that∣∣〈g,Nχ∇iv〉L2(VN )

∣∣ ≤ ‖g‖L2(VN )‖Nχ∇iv‖L2(VN ) ≤ c‖g‖L2(VN )‖v‖H 1(VN )

≤ c‖g‖L2(VN )‖v‖H 2(VN ).

Thus, if we set v = N∇i(χu) in Lemma 2.6 , we have, using Corollary A.6,

‖N∇i (χu)‖2
H 2(VN )

≤ c1N
4D(N∇i (χu),N∇i(χu))

≤ c1‖N∇i (χu)‖H 2(VN )

(
N4‖g‖L2(VN ) + ‖u‖H 2(VN )

)
and so

‖N∇i (χu)‖H 2(VN ) ≤ c
(
N4‖g‖L2(VN ) + ‖u‖H 2(VN )

) ≤ cNd/2

by Corollary A.6 and Lemma 2.3. The claim now follows from Remark A.5. �

COROLLARY 2.8. Let d = 4. If u is a solution of (5), where f satisfies the
properties (a), (b) and (c) of Lemma 2.4, and χ is defined as in Lemma 2.6, then
χu ∈ Hk(VN) for 0 ≤ k ≤ 4.

PROOF. Apply the arguments of Lemma 2.6 and Proposition 2.7 with N∇iu

in the place of u, and N∇ig in the place of g, and use the result of Proposition 2.7.
�

Now we can conclude:

COROLLARY 2.9. Let d = 4, and 0 < δ < 1/2. There exists c(δ) > 0 such
that, for all x ∈ V δ

N ,

sup
y∈V δ

N

|GN(x, y) − GN(x, y)| ≤ c(δ)

and, for all 1 ≤ i ≤ d ,

sup
y∈V δ

N

∣∣∇i

(
GN(x, y) − GN(x, y)

)∣∣ ≤ c(δ)N−1.

PROOF. By Corollary 2.8, χu ∈ H 4(VN) and, thus, by Corollary B.2,
sup|χu| ≤ c and sup|∇iχu| ≤ c/N. Since χ = 1 and ∇iχ = 0 on V δ

N, this implies
supx∈V δ

N
|u(x)| ≤ c and supx∈V δ

N
|∇iu(x)| ≤ c/N. Since GN(x, y) − GN(x, y) =

u(y) + f (y), the claim is proven by the assumptions we made on f. �

Corollary 2.9, together with Lemma 2.2, finally proves the logarithmic variance
structure of the membrane model, which proves Proposition 1.1.
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PROOF OF PROPOSITION 1.1. Note that varN(ϕx) ≤ varN(ϕ0) for all x ∈ VN.

Then both claims follow from the estimates on GN in Lemma 2.2 and Corol-
lary 2.9. �

Additionally to Proposition 1.1, Lemma 2.11 below will be crucial for the ap-
proximation of the field with a hierarchical one (see [1]). We therefore introduce
the discrete version of the fundamental solution for the Bilaplacian: Let, as be-
fore, (Xk)k∈N be a simple random walk on the lattice, and let Px denote it’s law
conditional on starting in x. Let

a(x, y) :=
∞∑

k=0

(k + 1)
(
Px(Xk = x) − Px(Xk = y)

)
.

Lemma 2.10 below shows that this is finite for any pair x, y ∈ Zd . Note first that
a(0,0) = 0, and that a(x, y) = a(0, y − x). The local central limit theorem ([11],
Theorem 1.2.1) allows us to compute a(x, y):

LEMMA 2.10. Let d = 4. There exists a constant K , such that for all y �= 0,

for all 0 < α < 2,

a(0, y) = 8

π2 log |y| + K + o(|y|−α).(7)

PROOF. First, note that a(0, y) = ∑∞
k=0 k(P0(Xk = 0) − P0(Xk = y)) +


(0,0) − 
(0, y). Remember that 
(0, y) ≤ O(|y|−2), and 
(0,0) is a constant.

Let p(k, x) := 8
π2k2 exp(−2|x|2

k
) and

E(k, x) :=
{

P0(Xk = x) − p(k, x), if P0(Xk = x) �= 0,
0, otherwise.

Let us first assume that y is even. Then
∞∑

k=0

k
(
P0(Xk = 0) − P0(Xk = y)

) =
∞∑

k=1

2k
(
P0(X2k = 0) − P0(X2k = y)

)
and

∞∑
k=1

2k
(
P0(X2k = 0) − P0(X2k = y)

)

=
∞∑

k=1

2k
(
p(2k,0) − p(2k, y) + E(2k,0) − E(2k, y)

)
.

We first consider the remainder term. From the local CLT with error bounds ([11],
Theorem 1.2.1) we know

|E(k, y)| ≤ O(k−3) and |E(k, y)| ≤ |y|−2O(k−2)
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and, consequently,
∞∑

k=1

2kE(2k, y) ≤ ∑
k≤|y|2/2

2kE(2k, y) + ∑
k>|y|2/2

2kE(2k, y)

≤ |y|2 ∑
k≤|y|2/2

E(2k, y) + ∑
k>|y|2/2

2kO((2k)−3)

≤ |y|2 ∑
k≤|y|2/2

E(2k, y) + O(|y|−2).

But from Lemma 1.5.2 of [11] we know that
∑∞

k=0 E(k, y) = o(|y|−α) for any
α < 4 as |y| → ∞.

Now consider the other term. By definition,
∞∑

k=1

2k
(
p(2k,0) − p(2k, y)

) = 4

π2

∞∑
k=1

1

k

(
1 − exp(−|y|2/k)

)
.

Now use exactly the same steps as in the proof of Theorem 1.6.2 of [11] to show
that there is a constant K̃ such that

4

π2

∞∑
k=1

1

k

(
1 − exp(−|y|2/k)

) = 4

π2

(
log |y|2 + K̃ + O(|y|−2)

)
.

This proves the case where y is even with K = 
(0,0)+ 4
π2 K̃ +∑∞

k=1 2kE(2k,0).

If y is odd,
∞∑

k=0

k
(
P0(Xk = 0) − P0(Xk = y)

)

=
∞∑

k=1

2k
(
P0(X2k = 0) − P0(X2k+1 = y)

)− 
(0, y)

= 1

2d

∑
v:|y−v|=1

∞∑
k=1

2k
(
P0(X2k = 0) − P0(X2k = v)

)− 
(0, y).

Of course, all these v are even, so we obtain, since 1
2d

∑
v:|y−v|=1 log |v|2 =

log |y|2 + O(|y|−2),

a(0, y) = 4

π2

1

2d

∑
v:|y−v|=1

log |v|2 + K + o(|y|−α) = 8

π2 log |y| + K + O(|y|−α),

where α < 2 and K is the same as before. �

This result together with the random walk representation for GN is the key to
proving the following result:
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LEMMA 2.11. Letting 0 < n < N, let AN ⊂ Zd be a box of side-length N

and An ⊂ AN be a box of side-length n with the same center xB ∈ Zd as AN. Let
0 < ε < 1/2. There exists c > 0 such that, for all x ∈ An with |x − xB | ≤ εn,

var
(
E(ϕx |F∂2An) − E(ϕxB

|F∂2An)
∣∣F∂2AN

) ≤ cε.

PROOF. Note that for any two subsets E ⊂ F of Zd we have

var(ϕx |FFc) = var(ϕx |FEc) + var
(
E(ϕx |FEc)|FFc

) ≥ var(ϕx |FEc).(8)

Let Bn := Bn(xB) = {z ∈ Zd : |xB − z| < n} be the ball of radius n around xB. We
define GBn analogous to GN as the Green’s function of the biharmonic problem (1)
on Bn instead of VN. Likewise, GBn is defined by (3) and (4) on Bn, and HBn :=
GBn − GBn . It is clear that the regularity considerations of this section apply to
GBn and GBn as well and, thus, Corollary 2.9 can be applied. Note Bn ⊂ An, and
so

var
(
E(ϕx − ϕxB

|F∂2An)|F∂2AN

)
= var(ϕx − ϕxB

|FAc
N
) − var(ϕx − ϕxB

|FAc
n
)

≤ lim
N→∞

(
var(ϕx − ϕxB

|FAc
N
) − var(ϕx − ϕxB

|FBc
n
)
)

(9)

= lim
N→∞

(
GN(x, x) − 2GN(x, xB) + GN(xB, xB)

−GBn(x, x) + 2GBn(x, xB) − GBn(xB, xB)
)
.

(Of course we do not know if the limit exists, but otherwise the rhs is equal to
+∞.) Now, GN = GN + HN. From Corollary 2.9 we know that |HN(y, z) −
HN(y, z+ ei)| ≤ cN−1, and since |x −xB | ≤ εn, we need at most 4εn steps to get
from xB to x. Thus, |HN(y, x) − HN(y, xB)| ≤ εn · cN−1 if y ∈ {x, xB}, and so

lim
N→∞

(
HN(x, x) − 2HN(x, xB) + HN(xB, xB)

−HBn(x, x) + 2HBn(x, xB) − HBn(xB, xB)
)

≤ lim
N→∞ εn · cN−1 + εn · cn−1 ≤ cε.

We are therefore left with estimating the terms in (9) involving GN and GBn. We
have

GN(x, x) − 2GN(x, xB) + GN(xB, xB)

−GBn(x, x) + 2GBn(x, xB) − GBn(xB, xB)

=
∞∑

k=0

(k + 1)
[
Px(Xk = x, τBn ≤ k ≤ τBN

) − Px(Xk = xB, τBn ≤ k ≤ τBN
)

+PxB (Xk = xB, τBn ≤ k ≤ τBN
)

−PxB (Xk = x, τBn ≤ k ≤ τBN
)
]
.
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Hence, using the above monotonicity (8), we are done if we show
∞∑

k=0

(k + 1)
[
Px(Xk = x, k ≥ τBn) − Px(Xk = xB, k ≥ τBn)

(10)
+PxB (Xk = xB, k ≥ τBn) − PxB (Xk = x, k ≥ τBn)

] ≤ cε.

Define

T1 := ∑
z∈∂Bn

(
Px(XτBn

= z) − PxB (XτBn
= z)

)(
a(z, xB) − a(z, x)

)
and

T2 := ∑
z∈∂Bn

∞∑
m=0

m
(
Px(τBn = m,XτBn

= z) − PxB (τBn = m,XτBn
= z)

)
×(


(z, x) − 
(z, xB)
)
.

Due to Lemma 2.10, for x, xB as above, supz∈∂Bn
|a(z, xB) − a(z, x)| ≤ cε, which

implies |T1| ≤ cε. For T2, observe that, by construction, |z−xB | ≥ n and |z−x| ≥
(1 − ε)n, which implies supz∈∂Bn


(z, x) ≤ c
(1−ε)2n2 and likewise for 
(z, xB). On

the other hand,∑
z∈∂Bn

∞∑
m=0

m
(
Px(τBn = m,XτBn

= z) − PxB (τBn = m,XτBn
= z)

)
= Ex(τBn) − ExB (τBn).

From [11], Equation 1.21, we know that

n2 − |y − xB |2 ≤ Ey(τBn) ≤ (n + 1)2 − |y − xB |2
for all y ∈ Bn. Therefore, |Ex(τBn) − ExB (τBn)| ≤ ε2n2 + 2n + 1, and if n is large
enough, |T2| ≤ cε. Thus, we have shown

|T1 + T2| ≤ cε(11)

for some finite c. We have by definition of 
(·, ·) and a(·, ·),

T1 + T2 =
∞∑

k=0

∞∑
m=0

∑
z∈∂Bn

(k + m + 1)
(
Pz(Xk = x) − Pz(Xk = xB)

)
(12)

×(
Px(τBn = m,XτBn

= z) − PxB (τBn = m,XτBn
= z)

)
.

By the Markov property,

Px(Xk = x, k ≥ τBn)
(13)

=
∞∑

m=0

∑
z∈∂Bn

Pz(Xk−m = x)Px(τBn = m,XτBn
= z)
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and similarly for Px(Xk = xB, k ≥ τBn) etc. Equations (12) and (13) imply
∞∑

k=0

(k + 1)
[
Px(Xk = x, k ≥ τBn) − Px(Xk = xB, k ≥ τBn)

+PxB (Xk = xB, k ≥ τBn) − PxB (Xk = x, k ≥ τBn)
] ≤ T1 + T2 ≤ cε,

the last inequality by (11). This completes the proof of (10). �

3. Maximum of the field. In this section we prove Theorem 1.2, using the
strategy of [1] and [5], whose crucial ingredients are the logarithmic structure of
the variances (Proposition 1.1) and the concentration result (Lemma 2.11). Let
α ∈ (1/2,1). We cover V δ

N with boxes of side-length Nα as in [1]: Let x0 ∈ VN,

and let

Mα := {x0 + i(Nα + 2) : i = (i1, . . . , i4) ∈ N4 such that x0 + i(Nα + 2) ⊂ VN }.
We consider the set of boxes B with midpoint in Mα and side-length Nα. We will
always assume that Nα is an odd integer, which is no restriction as N → ∞. By
construction, the boundaries between two boxes have thickness 2 (on the lattice),
which is the range of interactions of �2. Let �α denote the set of such boxes
which are contained in V δ

N, and let �α := ⋃
B∈�α

∂2B be the set of all boundaries
of boxes in �α. We denote by Fα the sigma-algebra generated by the ϕx : x ∈ �α.

Conditional on Fα, what happens inside different boxes is independent.
Now fix K ∈ N. Set αi := α(1 − i−1

K
),1 ≤ i ≤ K + 1. We define the following

sets of boxes: First, let 
α1 := �α1 . Then 
αi
, i ≥ 2, is defined recursively: For

B ∈ 
αi−1, let 
B,αi
:= {B ′ ∈ �αi

:B ′ ⊂ B/2}, and 
αi
:= ⋃

B∈
αi−1

B,αi

. For
B ∈ �α, we denote the midpoint of B by xB. Let

ϕB := EN(ϕxB
|F∂2B) = EN(ϕxB

|Fα).

If B ∈ �αi
and B ′ ∈ �αj

, with αi ≤ αj such that xB = xB ′, by (8) and Proposi-
tion 1.1, we see that

var(ϕB |Fαj
) = var(ϕxB

|Fαj
) − var(ϕxB

|Fαi
) = γ (αj − αi) logN + O(1).(14)

Note that, by (2), there exist coefficients h(z) ∈ R such that

ϕB = ∑
z∈∂2B

h(z)ϕz.

Unlike in the case of the lattice free field, however, the h(z) need not lie between 0
and 1 (in fact, one can see that there are both positive and negative coefficients, and
they need not be bounded in N ). Some arguments in the proof need to be adapted
to this fact, in particular, comparing ϕB and ϕxB

requires some work, for which we
use Gaussian tail estimates. For the sake of readability, we give a complete proof,
including also those parts that are practically identical to [1] or [5]. Note that one
direction is easy to prove:
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PROOF OF THEOREM 1.2(A). Using Proposition 1.1, we obtain

PN

(
sup

x∈VN

ϕx ≥ 2
√

2γ logN

)

≤ |VN | sup
x∈VN

PN

(
ϕx ≥ 2

√
2γ logN

)
≤ N4

√
γ logN + c√

2π2
√

2γ logN
exp

(
− (2

√
2γ logN)2

2γ logN + O(1)

)
,

which tends to zero as N → ∞. �

The second part is obtained from the following more general result (com-
pare [5]):

THEOREM 3.1. Let 0 < δ < 1/2, and let 0 < λ0 < 1 and λ0 < λ < 1. For all
ε > 0, there exists c = c(δ, λ0) > 0 such that

PN

(∣∣{x ∈ V δ
N :ϕx ≥ 2

√
2γ λ logN

}∣∣ ≤ N4(1−λ2)−ε) ≤ exp(−c(logN)2).

PROOF OF THEOREM 1.2(B). Chose in Theorem 3.1 λ sufficiently close to 1,
such that 2

√
2γ λ ≥ (2

√
2γ − η) and 4λ2 > 4 − ε are both satisfied. �

To prove Theorem 3.1, we start on level α = α1 of the box structure introduced
before, and show that, on this level, a sufficiently high number of the ϕB,B ∈ 
α,

are positive.

LEMMA 3.2. Let 1/2 < δ < 1 and α ∈ (1/2,1). There exist positive constants
κ, a depending on α and δ, such that

PN(|{B ∈ 
α :ϕB ≥ 0}| ≤ Nκ) ≤ exp(−a(logN)2).

PROOF. Set α′ = (1 + α)/2, which implies α′ > α. We consider the event

A :=
{
�

{
B ∈ �α′ :ϕB ≥ −(1 − α′)

√
2γ logN

2

}
≥ N1−α′

}
.

The lemma will be proven showing that the following two estimates hold:

PN

(
A ∩ {

�{B ∈ 
α :ϕB ≥ 0} ≤ Nκ}) ≤ exp(−c(logN)2)(15)

for some c > 0, and

PN(Ac) ≤ exp(−c(logN)2).(16)
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Obviously, these two estimates prove the lemma. We start with the second estimate.
Let us split the event Ac into

PN(Ac) ≤ PN

(
Ac ∩

{
max

B∈�α′
ϕB ≤ (logN)2

})
(17)

+PN

(
max

B∈�α′
ϕB > (logN)2

)
and bound the two terms. First, notice that for any 0 < ρ < 1 we have

PN

(
max
x∈VN

ϕx > (1 − ρ)(logN)2
)

≤ N4 max
x∈VN

PN

(
ϕx > (1 − ρ)(logN)2)

(18)

≤ N4 exp
(
−(1 − ρ)2(logN)4

2γ logN + C

)
≤ exp(−c(logN)3).

Now we get

PN

({
max

B∈�α′
ϕB > (logN)2

}
∩
{

max
x∈VN

ϕx ≤ (1 − ρ)(logN)2
})

≤ PN

({
max

B∈�α′
ϕB > (logN)2

}
∩
{

max
x∈�α′

ϕxB
≤ (1 − ρ)(logN)2

})
(19)

≤ |�α′ | max
B∈�α′

PN

({ϕB > (logN)2} ∩ {ϕxB
≤ (1 − ρ)(logN)2})

≤ cN4EN

(
PN

(
ϕxB0

≤ (1 − ρ)(logN)2|F∂B0

)
1{ϕB0>(logN)2}

)
for some fixed B0 ∈ �α′ . Since by Proposition 1.1, conditional on FB0, the random
variable ϕxB0

− ϕB0 is centered Gaussian with var(ϕxB0
− ϕB0) ≤ γα′ logN, we

have on {ϕB0 > (logN)2}

PN

(
ϕxB0

≤ (1 − ρ)(logN)2|F∂B0

)
≤ PN

(
ϕxB0

− ϕB0 ≤ −ρ(logN)2|F∂B0

)
(20)

≤ exp(−c(logN)3).

Together, (18), (19) and (20) give the required bound on the second term in
(17). To bound the first term, note that on Ac ∩ {maxB∈�α′ ϕB ≤ (logN)2} we
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have

1

|�α′ |
∑

B∈�α′
ϕB

(21)

≤ −(1 − α′)
√

2γ logN

2
+ N1−α′

|�α′ |
(

(1 − α′)
√

2γ logN

2
+ (logN)2

)
.

Since |�α′ | = O(N4(1−α′)), we get from (21)

1

|�α′ |
∑

B∈�α′
ϕB ≤ −(1 − α′)

√
2γ logN

3
.(22)

By Lemma C.1, we know that var( 1
|�α′ |

∑
B∈�α′ ϕB) < ∞, therefore, we obtain

with (22)

PN

(
Ac ∩

{
max |
B∈�α′

ϕB ≤ (logN)2
})

≤ PN

(
1

|�α′ |
∑

B∈�α′
ϕB ≤ −(1 − α′)

√
2γ logN

3

)

≤ exp
( −(1 − α′)2γ (logN)2

9 var(1/|�α′ |∑B∈�α′ ϕB)

)
≤ exp(−c(logN)2).

This gives the second bound in (17) and thus proves (16). For the proof of (15),
we consider only the set of boxes in �α which have the same center as some box
of �α′ : Let

�α,α′ := {B ∈ �α :∃B ′ ∈ �α′ with xB = xB ′ }.
We have

PN

(
A ∩ {|{B ∈ 
α :ϕB ≥ 0}| ≤ Nκ})
≤ PN

(
A ∩ {|{B ∈ �α,α′ :ϕB ≥ 0}| ≤ Nκ})(23)

≤ EN

(
PN(|{B ∈ �α,α′ :ϕB ≥ 0}| ≤ Nκ |Fα′)1A

)
.

We know that on A there exist at least N1−α′
boxes B ′ ∈ �α′ where there

is ϕB ′ ≥ −(1 − α′)
√

2γ logN/2. Choose N1−α′
of them and call them B ′

1, . . . ,

B ′
N1−α′ . Let Bi ∈ �α,α′ be the box with center xBi

= xB ′
i
. Set

ζi := ϕBi
− ϕB ′

i
.
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Then for κ < 1 − α′,

PN

(|{B ∈ �α,α′ :ϕB ≥ 0}| ≤ Nκ |Fα′
)

(24)

≤ PN

(
N1−α′∑
i=1

1{ζi≥(1−α′)
√

2γ (logN)/2} ≤ Nκ

)
.

By construction, we have ϕB ′
i

= EN(ϕxB′
i

|Fα′) = EN(EN(ϕxBi
|Fα)|Fα′) =

EN(ϕBi
|F ′

α). Therefore, we know the following:

• The ζi are centered Gaussian random variables under PN(·|Fα′).
• By (14), var(ζi) = varB ′

i
(ϕBi

) = γ (1 −α′) logN +O(1), since α′ −α = 1 −α′.

This implies

PN

(
ζi ≥ 1 − α′

2

√
2γ logN

)
≥ exp

(−(1 − α′) logN

4

)
= N−(1−α′)/4.(25)

If we choose now κ = (1 −α′)/2 and set θi = 1{ζi≥(1−α′)
√

2γ (logN)/2}, we know

that on A we have
∑N1−α′

i=1 θi ≤ N(1−α′)/2, and from (25) we get Eθi ≥ N−(1−α′)/4.

This implies∣∣∣∣∣
N1−α′∑
i=1

(θi − Eθi)

∣∣∣∣∣ ≥ ∣∣N(1−α′)/2 − N1−α′ · N(1−α′)/4∣∣ ≥ N3(1−α′)/4

2
,(26)

from which we conclude, using Lemma 11 of [1],

PN

(
N1−α′∑
i=1

1{ζi≥(1−α′)
√

2γ (logN)/2} ≤ N(1−α′)/2

)

≤ PN

(∣∣∣∣∣
N1−α∑
i=1

(θi − Eθi)

∣∣∣∣∣ ≥ N3(1−α′)/4

2

)

≤ exp
(
− N3(1−α′)/2

4(2N1−α′ + N3(1−α′)/4)/3

)
≤ exp

(−cN
(
1−α′)/2).

By (23) and (24), this is more than we need to prove (15). �

PROOF OF THEOREM 3.1. Fix α ∈ (1/2,1). From the previous lemma we
know that we can find some κ = κ(α) > 0, such that we can assume that at least
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Nκ of the ϕB,B ∈ �α, are positive. We use the notation of the previous section,
and define, for 1 ≤ k ≤ K + 1 and ε > 0, the event

Ak : = Ak(ε,α,K)

= ⋃
B ′∈
αk

⋃
B∈
B′,αk+1

{
|ϕB ′ − EN(ϕB |Fαk

)|

≥ ελα2
√

2γ
1

K

(
1 − 1

K

)
logN

}
.

By Lemma 2.11, var(ϕB ′ − E(ϕB |Fαk
)|Fαk+1) ≤ c, and we can bound

P(Ak) ≤ |
αk
||
B ′,αk+1 | exp

(
−ε2λ2α28γ (1/K2)(1 − 1/K)2(logN)2

2c

)
(27)

≤ exp(−c(logN)2).

We will later choose K ≥ ελ, such that c is independent of ε and λ.

On
⋂

k Ac
k, we can apply the tree-argument of [1]. For k ≤ K , we denote by

B(k) a sequence of k boxes B1 ⊃ B2 ⊃ · · · ⊃ Bk, where Bi ∈ 
αi
,1 ≤ i ≤ k. Set

Dk := {
B(k) :ϕBi

≥ (α − αi)2λ
√

2γ (1 − 1/K) logN,1 ≤ i ≤ k
}
.

We show that if on the kth scale there are many such sequences, so there will be on
the (k + 1)st scale. Let nk := Nκ+4α(k−1)(1/K)(1−λ2), where κ is the same constant
as in Lemma 3.2, and define

Ck := {|Dk| ≥ nk}.
Assume that we are on Ck. Choose nk sequences B

(k)
j = {Bj,1,Bj,2, . . . ,Bj,k},

1 ≤ j ≤ nk in Dk . Note that Bj,k �= Bi,k if i �= j, since otherwise the sequences
would coincide. Set

ζj := 1

|
Bj,k,αk+1 |
∑

B∈
Bj,k ,αk+1

1{ϕB−ϕBj,k
≥λα2

√
2γ (1/K)(1−1/K) logN}

Note that |
Bj,k,αk+1 | = (Nα/K/2)4 and, therefore,

Ck ∩ Cc
k+1 ⊂ Ck ∩

{
nk∑

j=1

ζj ≤ nk+1 · 16

N4α/K

}
.

If we set

ζ̃j := 1

|
Bj,k,αk+1 |
∑

B∈
Bj,k ,αk+1

1{ϕB−E(ϕB |Fαk
)≥(1+ε)λα2

√
2γ (1/K)(1−1/K) logN},



4D MEMBRANE 711

we have ζj ≥ ζ̃j on Ac
k and, therefore,

PN(Ck ∩ Cc
k+1 ∩ Ac

k) ≤ PN

(
nk∑

j=1

ζ̃j ≤ nk+1 · 16

N4α/K

)
.

To bound this probability, we need some large deviation estimates on the bino-
mial variables

∑nk

j=1 ζ̃j . Note that, due to (14), the ϕB −EN(ϕB |Fαk
) are centered

Gaussian variables with variance

var(ϕB |Fαk
) ≥ α

K
γ logN + c.

Therefore,

EN(ζ̃j |Fαk
)

≥ inf
B

PN

(
ϕB − EN(ϕB |Fαk

) ≥ (1 + ε)λα2
√

2γ
1

K

(
1 − 1

K

)
logN

∣∣∣Fαk

)

≥ exp
(
−(1 + ε)2λ2α28γ (1/K2)(1 − 1/K)2(logN)2

2α(1/K)γ logN

)
= N−4(α/K)λ2(1−1/K)2(1+ε)2

.

Thus, on Ck ∩ Ac
k,

Cc
k+1 ⊂

{
nk∑

j=1

(
ζ̃j − E(ζ̃j |Fαk

)
) ≤ nk+1

(
16/N4(α/K))

−nkN
−4(α/K)λ2(1−1/K)2(1+ε)2

}

⊂
{∣∣∣∣∣

Nκ∑
j=1

(
ζ̃j − E(ζ̃j |Fαk

)
)∣∣∣∣∣ ≥ 1

2
Nκ−4(α/K)λ2(1−1/K)2(1+ε)2

}
,

if, for the last line, ε is chosen such that (1 − 1/K)(1 + ε) < 1, making the second
term dominate (recall λ < 1). Then Lemma 11 of [1] yields on Ck ∩ Ac

k

PN(Cc
k+1|Fαk

) ≤ 2 exp
(
− N2κ−8λ2(α/K)(1−1/K)2(1+ε)2

2Nκ + (2/3)Nκ−4λ2(α/K)(1−1/K)2(1+ε)2

)
(28)

≤ exp
(−Nκ−8λ2(α/K)(1−1/K)2(1+ε)2)

.
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Choose K large enough, such that κ − 8α
K

> 0. Note that n1 = Nκ. This implies,
using Lemma 3.2 and (28),

PN(Cc
K) ≤ PN(Cc

1) +
K∑

k=2

(
PN(Cc

k ∩ Ck−1 ∩ Ac
k−1) + PN(Ak−1)

)

= PN(Cc
1) +

K∑
k=2

(
EN

(
PN(Cc

k |Fαk
)1Ck−1∩Ac

k−1

)+ PN(Ak−1)
)

≤ exp
(−c1(logN)2)+ (K) exp

(−Nκ−8λ2(α/K)(1−1/K)2(1+ε)2)
(29)

+ exp(−c2(logN)2)

≤ exp(−c(logN)2).

Let now HN(a) := {x ∈ V δ
N :ϕx ≥ 2

√
2γ a logN}. We consider the event

LK = LK(α,λ) := {∣∣HN

(
λ(α − αK−1)

)∣∣ ≤ nK−1
}
.

Note that

PN(LK) ≤ PN

(∣∣{B ∈ �αK
: ϕxB

≥ 2
√

2γ λ(α − αK−1) logN
}∣∣ ≤ nK−1

)
.

This implies

P(LK ∩ CK) ≤ EN

(
P
(∣∣{B ∈ �αK

:ϕxB
≥ 2

√
2γ λ(α − αK−1) logN

}∣∣
≤ nK−1|FαK

)
1CK

)
.

On CK ∩ LK we have at least nK boxes B ∈ �αK
with ϕB ≥ 2

√
2γ λ(α −

αK) logN, and only for at most nK−1 of them we have ϕxB
≥ 2

√
2γ λ(α −

αK) logN. Thus, for at least nK − nK−1 boxes, ϕxB
− ϕB ≤ μK logN, with

μK := 2
√

2γ λ(αK − αK−1). Now we use the fact that, conditional on FαK
, the

ϕxB
− ϕB are independent centered Gaussian with variance equal to γαK logN,

and that αK − αK−1 = − α
K

< 0, and nK−1 = nKN−(4α/K)(1−λ2) to obtain

PN

(∣∣{B ∈ �αK
:ϕxB

≥ 2
√

2γ λ(α − αK−1) logN
}∣∣ ≤ nK−1|FαK

)
≤ PN

(|{B ∈ �αK
:ϕxB

− ϕB ≤ μK logN}| ≥ nK − nK−1|FαK

)
≤ PN

(
ϕxB

− ϕB ≤ − α

K
2
√

2γ λ(1 − 1/K) logN |FαK

)(1−N−(4α/K)(1−λ2))nK

(30)

≤ exp
(
−4λ2 α

K
(1 − 1/K)2(logN)

(
1 − N−(4α/K)(1−λ2))nK

)
≤ exp(−c(logN)2).
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To complete the proof, we get from (29) and (30), using α −αK−1 = α(1 − 2
K

),

PN

(∣∣∣∣HN

(
λα

(
1 − 2

K

))∣∣∣∣ ≤ nK−1

)
≤ PN(LK ∩ CK) + PN(Cc

K)

(31)
≤ exp(−c(logN)2).

We can now choose K large enough and α close to 1, such that with (31)

PN

(∣∣{x ∈ V δ
N :ϕx ≥ 2

√
2γ λ logN

}∣∣ ≤ N4(1−λ2)−ε)
≤ PN

(∣∣∣∣HN

(
λα

(
1 − 2

K

))∣∣∣∣ ≤ nK−1

)
≤ exp(−c(logN)2). �

4. Probability to stay positive. Having obtained the same result for the max-
imum of the interface as in the case of the 2-dimensional lattice free field, we can
again use the strategy of [1].

PROOF OF THEOREM 1.3, THE LOWER BOUND. First, note that by a den-
sity argument, C2

V (D) = inf{1
2

∫
V |�h|2 dx :h ∈ C∞

0 (V ),h ≥ 1 a.e. on D}, where
C∞

0 (V ) denotes the infinitely often differentiable functions on V which vanish at
∂V . Choose a function f ∈ C∞

0 (V ), f ≥ 0, f = 1 on D, and a number a > 2
√

2γ .

Set ϕ̃x := ϕx +a logNf ( x
N

). Then {ϕ̃x}x∈VN
is a Gaussian family with covariances

GN(x, y), x, y ∈ VN, and expectation a logNf ( x
N

). Denote the law of this family
by P a

N, and let fN(x) := f (x/N). The relative entropy of P a
N with respect to PN

is defined as HN(P a
N |PN) := Ea

N(log
dP a

N

dPN
). Note that

dP a
N

dPN

(ϕ) = exp
[

1

2

(〈ϕ,G−1
N ϕ〉VN

− 〈ϕ − a logNfN,G−1
N (ϕ − a logNfN)〉VN

)]
,

where 〈·, ·〉VN
denotes the L2-scalar product on VN and, therefore,

Ea
N

(
log

dP a
N

dPN

)
= a2

2
(logN)2〈�NfN,�NfN 〉VN

,

from which we conclude

lim
N→∞

1

(logN)2 HN(P a
N |PN) = a2

2
‖�f ‖2

L2(V )
.

Moreover,

P a
N((�+

N)c) ≤ ∑
x∈DN

P a
N(ϕx < 0) = ∑

x∈DN

PN(ϕx < −a logN)

≤ N4 exp
(−a2(logN)2

2γ logN

)
= o(1)
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as N → ∞. Using the entropy inequality (see, e.g., [7], Appendix B.3), we have

log
PN(�+

N)

P a
N(�+

N)
≥ −HN(P a

N |PN) + e−1

P a
N(�+

N)

and, hence,

lim inf
N→∞

1

(logN)2 logPN(�+
N) ≥ −a2

2
‖�f ‖L2(V )

for any choice of a and f as above. Optimizing over a and f gives the lower
bound. �

PROOF OF THE UPPER BOUND. Fix β > 0. For K ∈ N, α ∈ (1/2,1) define

EK,β,α := {
�
{
B ∈ �α :B ⊂ DN,ϕB ≤ (

2
√

2γ − β
)

logN
} ≤ K

}
,

the event that we have few boxes B ∈ �α with ϕB ≤ (2
√

2γ − β) logN. We will
now show that the probability that �+

N occurs on Ec
K,β,α is small. If η > 0, ε ∈

(0,1/2), α ∈ (0,1), let

A := ⋃
B∈�α

⋃
x∈B(ε)

{|ϕB − EN(ϕx |Fα)| ≥ η logN},

where B(ε) is the set of points x ∈ B , which are contained inside a box of side-
length εNα and center xB. We split

PN(Ec
K,β,α ∩ �+

DN
) ≤ EN

(
PN

(
(Ec

K,β,α ∩ �+
DN

)|Fα

)
1Ac

)+ PN(A).

But, by Lemma 2.11, we find

PN(A) ≤ N4 exp
(
−η2(logN)2

cε

)
≤ exp

(
−c′η2(logN)2

ε

)
.

We can choose ε arbitrarily small; our choice will be such that c′η2

ε
≥

8γC2
V (D) + 1. Fix B ∈ �α, and set B(ε) := {x ∈ B : dist(x, ∂B) ≥ εNα}. The

idea is to apply Theorem 1.2 to the field (ϕx −EN(ϕx |Fα))x∈B conditional on Fα.

We get

PN

(
sup

x∈B(ε)

(
ϕx − EN(ϕx |Fα)

) ≤ (
2
√

2γ − β
)

logN |Fα

)

≤ PN

(
sup

x∈B(ε)

(
ϕx − E(ϕx |Fα)

) ≤ (
2
√

2γ − β/2
)

logNα|Fα

)
≤ exp(−c(logN)2),
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where c = c(ε,β) if α ∈ (α0(β),1) for some α0(β) > 0. Therefore, on Ac ∩
{ϕ :ϕB ≤ (2

√
2γ − β) logN} we have, if η ≤ β/2,

PN

(
inf
x∈B

ϕx ≥ 0
∣∣∣Fα

)
≤ PN

(
inf

x∈B(ε)

(
ϕx − EN(ϕx |Fα)

) ≥ −(
2
√

2γ − β/2
)

logN |Fα

)
≤ exp(−c(logN)2)

if α ≥ a0(β). This implies

PN(Ec
K,β,α ∩ �+

N) ≤
(

N4−4α

K

)
(exp(−c(logN)2))K

+ exp
(−(

8γC2
V (D) + 1

)
(logN)2)

≤ exp
(
(4 − 4α)K logN − cK(logN)2)

+ exp
(−(

8γC2
V (D) + 1

)
(logN)2)

≤ exp
(−(

8γC2
V (D) + 1

)
(logN)2)

if we choose K large enough such that cK/2 ≥ 8γC2
V (D) + 1.

This means we now only need to consider EK,β,α ∩ �+
DN

. In this case, for any

function f ≥ 0, f ∈ C2(D), we have

1

|�α|
∑

B∈�α,B⊂DN

f (xB/N)ϕB

≥ (
2
√

2γ − β
)

logN

(
1

|�α|
∑

B∈�α,B⊂DN

f (xB/N) − K‖f ‖∞
|�α|

)
.

Therefore,

PN(EK,β,α ∩ �+
DN

)

≤ exp
(
−((2

√
2γ − β) logN(1/|�α|∑B f (xB/N) − cN−4(1−α)))2

2 varN(1/|�α|∑B f (xB/N)ϕB)

)
.

Applying Lemmas C.1 and C.2 completes the proof. �

5. Entropic repulsion. Here we need to use a different approach than in the
lattice free field case, since the FKG property does not hold.

PROOF OF PROPOSITION 1.4. Let P +
N (·) := PN(·|�+

N). We use the notation
of Section 3, in particular, the box-structure, and first assume x = 0. Set ϕεN :=
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ϕεN(x). We claim that, on the set {ϕεN ≤ (2
√

2γ − η) logN} ∩ �+
N, there exists

δ > 0 such that

�
{
x ∈ VεN :ϕx ≤ (

2
√

2γ − η/2
)

logN
} ≥ δ|VεN |.

If this was not the case, we would have

(1 − δ)
(
2
√

2γ − η/2
)

logN ≤ ϕεN ≤ (
2
√

2γ − η
)

logN,

which is impossible if δ is small enough such that (1 − δ)(2
√

2γ − η/2) >

(2
√

2γ − η). Therefore, if α ∈ (0,1), there exists a shift of the Nα-sublattice �α

such that, for this particular shift,

P +
N

(
�
{
x ∈ VεN :ϕx ≤ (

2
√

2γ − η/2
)

logN
} ≥ δ|VεN |)

= P +
N

(
1

|VεN |
∑

x∈VεN

1{ϕx≤(2
√

2γ−η/2) logN} ≥ δ

)

≤ P +
N

(
1

|{B ∈ �α,xB ∈ VεN }|
∑

B∈�α,xB∈VεN

1{ϕxB
≤(2

√
2γ−η/2) logN} ≥ δ

)
.

(This is true since 1
|VεN |

∑
x∈VεN

1{ϕx≤(2
√

2γ−η/2) logN} is the average over all pos-
sible such shifts of the Nα−lattice.) Let Sα := {B ∈ �α,xB ∈ VεN } for this partic-
ular �α. Choose 0 < δ′ < δ. Then

P +
N

(
1

|Sα|
∑

B∈Sα

1{ϕxB
≤(2

√
2γ−η/2) logN} ≥ δ

)

≤ P +
N

(
1

|Sα|
∑

B∈Sα

1{ϕB≤(2
√

2γ−η/4) logN} ≥ δ′
)

(32)

+P +
N

(
1

|Sα|
∑

B∈Sα

1{ϕB−ϕxB
>(η/4) logN} ≥ (δ − δ′)

)
.

We have |Sα| ≥ cεN4(1−α). Thus,

P +
N

(
1

|Sα|
∑

B∈Sα

1{ϕB≤(2
√

2γ−η/4) logN} ≥ δ′
)

≤ P +
N

(
�
{
B ∈ �α :ϕB ≤ (

2
√

2γ − η/4
)

logN
} ≥ cδ′εN4(1−α)).

But in the proof of the upper bound of Theorem 1.3 we have seen that

PN(Ec
k,β,α ∩ �+

N) ≤ exp
(−(

8γC2
V (D) + 1

)
(logN)2),



4D MEMBRANE 717

hence, for large enough N,

P +
N

(
�
{
B ∈ �α :ϕB ≤ (

2
√

2γ − η/4
)

logN
} ≥ cδ′εN4(1−α))

≤ exp(−c(logN)2).

Thus, what is left is the second term in (32). Note

PN

(
ϕB − ϕxB

> (η/4) logN |Fα

) ≤ exp(−cη2 logN).

Let θB := 1{ϕB−ϕxB
>(η/4) logN}. As in the proof of Theorem 1.2, we have, using

Lemma 11 of [1], for large N,

PN

( ∑
B∈Sα

1{ϕB−ϕxB
>(η/4) logN} ≥ (δ − δ′)|Sα|

)

≤ PN

(∣∣∣∣∣ ∑
B∈Sα

(θB − EθB)

∣∣∣∣∣ ≥ cεN4(1−α)((δ − δ′) − N−c′η2))

≤ PN

(∣∣∣∣∣ ∑
B∈Sα

(θB − EθB)

∣∣∣∣∣ ≥ cε(δ − δ′)N4(1−α)

)

≤ 2 exp
(−cε(δ − δ′)N4(1−α)).

Together with Theorem 1.3, this proves

lim
N→∞PN

(
ϕεN ≤ (

2
√

2γ − η
)

logN |�+
N

) = 0

if x = 0. For arbitrary x repeat the argument with a shifted grid. �

APPENDIX A: NORM ESTIMATES

In this section we prove some basic estimates on the discrete Sobolev norms
which are used in the proof of the regularity for the solution of the Dirichlet prob-
lem. Recall

E1 = {v :VN ∪ ∂2VN → R :v(x) = 0 ∀x ∈ ∂2VN }
and for v,w ∈ E1 from Section 2,

D(v,w) := ∑
x∈VN

�v(x)�w(x) + ∑
x∈∂−VN

r(x)v(x)w(x).

Note that the notation D(v,w) and E1 depend on N. We identify v ∈ E1 with the
function we obtain if we extend v to all of Zd by setting it equal to 0 on the whole
of V c

N .
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LEMMA A.1. Let v ∈ E1. There exists a constant c depending on the dimen-
sion such that ∑

x∈VN+1

d∑
i=1

d∑
j=1

(∇i∇j v(x))2 ≤ cD(v, v).

PROOF. Expanding the square gives

(2d)2
∑

x∈VN

(�v(x))2

= ∑
x∈VN

d∑
i,j=1

(
4v(x)2 − 2v(x)v(x + ei) − 2v(x)v(x − ei)

−2v(x)v(x + ej ) − 2v(x)v(x − ej )(33)

+v(x + ei)v(x + ej ) + v(x + ei)v(x − ej )

+v(x − ei)v(x + ej ) + v(x − ei)v(x − ej )
)
.

Now, taking the geometry of VN and the 0-boundary conditions outside VN into
consideration, we can shift the summation, and obtain for any ei with |ei | = 1,∑

x∈VN

v(x)2 = ∑
x∈VN+1

v(x)2 = ∑
x∈VN+1

v(x + ei)
2

= ∑
x∈VN+1

v(x + ei + ej )
2 + ∑

x /∈VN+1:
x+ei+ej∈VN

v(x + ei + ej )
2.

Similarly, we have∑
x∈VN

v(x)v(x − ei)

= ∑
x∈VN

v(x + ei)v(x)

= ∑
x∈VN+1

v(x + ei + ej )v(x + ej ) + ∑
x /∈VN+1:

x+ei+ej∈VN

x+ej∈VN

v(x + ei + ej )v(x + ej )

and∑
x∈VN

v(x − ei)v(x + ej ) = ∑
x∈VN

v(x + ei + ej )v(x) = ∑
x∈VN+1

v(x + ei + ej )v(x).

Furthermore, if i �= j ,∑
x∈VN

v(x − ei)v(x − ej ) = ∑
x∈VN

v(x + ei)v(x + ej ) = ∑
x∈VN+1

v(x + ei)v(x + ej )
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and ∑
x∈VN

v(x − ei)
2 = ∑

x∈VN+1

v(x + ei)
2 − ∑

x∈VN :
x+ei /∈VN

v(x)2

and, finally, ∑
x∈VN

v(x + ei)
2 = ∑

x∈VN+1

v(x + ei)
2 − ∑

x∈VN :
x−ei /∈VN

v(x)2.

We define the following quantities:

T1 :=
d∑

i,j=1

∑
x /∈VN+1

v(x + ei + ej )
2 ≥ 0,

T2 :=
d∑

i=1

∑
x∈VN :

x+ei /∈VN

v(x)2 and T3 :=
d∑

i=1

∑
x∈VN :

x−ei /∈VN

v(x)2.

Note T2 + T3 ≤ ∑
x∈∂−VN

r(x)v(x)2. By the above considerations, the right-hand
side of (33) can be rewritten and bounded as follows:

(2d)2
∑

x∈VN

(�v(x))2

= ∑
x∈VN

d∑
i,j=1

(
v(x)2 + v(x + ei)

2 + v(x + ej )
2 + v(x + ei + ej )

2

− 2v(x)v(x + ei) − 2v(x + ei + ej )v(x + ej ) − 2v(x)v(x + ej )

− 2v(x + ej )v(x) + v(x + ei)v(x + ej ) + 2v(x + ei + ej )v(x)

+ v(x + ei + ej )v(x + ei)
)

+T1 − T2 − T3

≥
d∑

i,j=1

∑
x∈VN+1

(∇i∇j v(x))2 − ∑
x∈∂−VN

r(x)v(x)2.

Thus,

d∑
i,j=1

∑
x∈VN+1

(∇i∇j v(x))2 ≤ (2d)2
∑

x∈VN

(�v(x))2 + ∑
x∈∂−VN

r(x)v(x)2

≤ (2d)2D(v, v),

which proves the lemma. �
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LEMMA A.2. Let v ∈ E1. There exists c > 0 such that

∑
x∈VN

v(x)2 ≤ cN2

( ∑
x∈VN

d∑
i=1

(∇iv(x))2 + ∑
x∈∂−VN

r(x)v(x)2

)
.

PROOF. Let x ∈ VN and denote Ai
x := {y ∈ VN :∃k ∈ Z such that y = x + k ·

ei}. Then

v(x)2 = (
v(x) − v(x + ei) + v(x + ei) − v(x + 2ei) + · · · + v(x + k0ei)

)2
,

where k0 ∈ N such that x + k0ei ∈ ∂−VN. Obviously k0 ≤ 2N, thus, using the fact
that (a + b)2 ≤ 2a2 + 2b2 for real numbers a, b, we get

v(x)2 ≤ 2N
((

v(x) − v(x + ei)
)2 + · · ·

+(
v
(
x + (k0 − 1)ei

)− v(x + k0ei)
)2 + v(x + k0ei)

2).
In the same way, we obtain

v(x)2 ≤ 2N
((

v(x) − v(x − ei)
)2 + · · · + v(x + k1ei)

2)
for some k1 ≤ 2N , with x − k1e1 ∈ ∂−VN. This gives

∑
x∈VN

v(x)2 ≤ 2
∑

x∈VN

N

( ∑
y∈Ai

x

(
v(y) − v(y + ei)

)2 + ∑
y∈∂−VN∩Ai

x

v(y)2

)

≤ cN2

( ∑
x∈VN

(
v(x) − v(x + ei)

)2 + ∑
x∈∂−VN

r(x)v(x)2

)
.

Since this inequality holds for any 1 ≤ i ≤ d, the lemma is proven. �

LEMMA A.3. Let v ∈ E1. There exists c > 0 such that, for all 1 ≤ i ≤ d ,∑
x∈VN

(
v(x + ei) − v(x)

)2 ≤ cN2

( ∑
x∈VN

(∇i∇iv(x))2 + ∑
x∈∂−VN

r(x)v(x)2

)
.

PROOF. Let h(x) := ∇iv(x) and repeat the arguments of the proof of
Lemma A.2. �

From Lemmas A.2 and A.3 the following is clear:

COROLLARY A.4. Let v ∈ E1. There exists c > 0 such that

‖v‖2
H 2(VN )

≤ cN4

( ∑
x∈VN

d∑
i,j=1

(∇i∇j v(x))2 + ∑
x∈∂−VN

r(x)v(x)2

)
.
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REMARK A.5. Iterating this procedure, one evidently obtains for any v :VN ∪
∂kVN → R such that, v(x) = 0 for x ∈ ∂kVN, that

‖v‖2
Hk(VN)

≤ cN2k

( ∑
x∈VN

∑
α:|α|=k

(∇αv(x))2 + ∑
x∈∂−VN

r(x)v(x)2

)
.

COROLLARY A.6. Let v ∈ E1. There is c > 0 such that

‖v‖2
H 2(VN )

≤ cN4D(v, v).

PROOF. From Lemma A.1 and Corollary A.4 we obtain

‖v‖2
H 2(VN )

≤ ‖v‖2
H 2(VN+1)

≤ c′(N + 1)4D(v, v) ≤ cN4D(v, v). �

REMARK A.7. This also proves that D(·, ·) is positive definite.

APPENDIX B: DISCRETE SOBOLEV IMBEDDING

The following results are the discrete analogues of the Sobolev Imbedding The-
orems. For completeness, we include the proofs of the versions we use.

PROPOSITION B.1. Let f : Zd → R such that f (x) = 0 on V c
N, and

‖f ‖Hk(VN) ≤ cNd/2 for some constant c independent of N. If k > d/2, then there
exists C > 0 independent of N such that supx∈VN

|f (x)| < C.

PROOF. Let f̂ (t) = ∑
x∈Zd f (x)ei〈t,x〉 denote the Fourier transform of a func-

tion f : Zd → R. Then we have

∇̂kf (t) = ∑
x∈Zd

(
f (x + ek) − f (x)

)
ei〈t,x〉

= ∑
x∈Zd

(
f (x)ei〈t,x−ek〉 − f (x)ei〈t,x〉)

= f̂ (t)(e−itk − 1).

Iterating, we obtain

̂∇k1 · · ·∇kl
f (t) = f̂ (t)(e−itk1 − 1) · · · (e−itkl − 1).(34)

By (34), using the Taylor expansion, we have, for any j ∈ N,

|f̂ (t)|2 · |t |2j ≤ c · · · |f̂ (t)|2|(e−itk1 − 1) · · · (e−itkl − 1)|2 ≤ | ̂∇k1 · · ·∇kl
f (t)|2.
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This yields ∫
[−π,π ]d

|f̂ (t)|dt

=
∫
VN

1

(1 + N2|t |2)l/2 (1 + N2|t |2)l/2|f̂ (t)|dt

≤
(∫

[−π,π ]d
1

(1 + N2|t |2)l dt

)1/2

×
(∫

[−π,π ]d
(1 + N2|t |2)l|f̂ (t)|2 dt

)1/2

≤ cN−l ·
(∫

[−π,π ]d
l∑

j=0

(N |t |)2j |f̂ (t)|2 dt

)1/2

≤ cN−l‖f ‖Hl(VN) ≤ cNd/2−l ,

using the Plancherel Theorem. Thus, we get, by the inverse Fourier transform,

|f (x)| =
∣∣∣∣c ∫[−π,π ]d

f̂ (t)e−i〈t,x〉 dt

∣∣∣∣ ≤ ∫
[−π,π ]d

|f̂ (t)|dt ≤ cNd/2−l . �

This implies the following:

COROLLARY B.2. Let f : Zd → R such that f (x) = 0 on V c
N, and

‖f ‖Hk(VN) ≤ cNd/2 for some constant c independent of N. If k > d/2 + l, then

there exists C > 0 independent of N such that supx∈VN
|∇αf (x)| ≤ C

N |α| for all
0 ≤ |α| ≤ l.

APPENDIX C: COMPUTATION OF THE CONSTANT C2
V (D)

We still need to show the convergence toward the second-order capacity C2
V (D)

in the upper bound of Theorem 1.3. This is analogous to a similar statement in the
higher-dimensional case; compare [10]. Let

H 2
0 (VN) := {f ∈ H 2(VN) :f (x) = 0 ∀x ∈ ∂−VN }

and

C∞
0 (VN) := {

f :VN → R : |∇αf | ≤ c/N |α|, α ∈ Nd
0 , f (x) = 0,∀x ∈ ∂−VN

}
.

If f :V → R, we write fN for the function VN → R, fN(x) := f (x/N).
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LEMMA C.1.

inf
{‖�Nh‖2

L2(VN ) :h ∈ H 2
0 , h ≥ 1 on DN

}
= sup

{
〈1DN

,fN 〉DN
− 1

2
〈fNGNfN 〉 :f ∈ L2(VN) :f = 0 on VN \ DN

}

= sup
{ 〈1DN

,fN 〉2
DN

2〈fN,GNfN 〉DN

:f ∈ L2(VN) :f = 0 on VN \ DN

}
.

PROOF. We start with the first equality. Since E0(VN) is finite dimensional,
there exists a minimizer h

(0)
N . Obviously, h(0)

N = 1 on DN. Furthermore, �2h
(0)
N = 0

outside DN. To see this, set ψ(ε) = ∑
x∈VN

|�h
(0)
N (x) + εϕ(x)| for any test func-

tion ϕ :VN ∪ ∂2VN → R, with ϕ(x) = 0 for all x ∈ VN \ DN. Then dψ
dε

|ε=0 =
0, because h

(0)
N is a minimizer of the norm. But this implies 〈�2h

(0)
N ,ϕ〉VN

=
〈�h

(0)
N ,�ϕ〉VN

= 0 for all ϕ as above, and thus the claim. Set

fN = �2
Nh

(0)
N .

By the fact that f
(n)
N = 0 outside DN, summation by parts gives

2
〈
fN,h

(0)
N

〉
DN

− 〈fN,GNfN 〉DN
= ∑

x∈VN

∣∣�h
(0)
N

∣∣2.
The above yields

sup
{
〈1DN

,fN 〉DN
− 1

2
〈fNGNfN 〉 :f ∈ L2(VN) :f = 0 on VN \ DN

}
≥ 2

〈
fN,h

(0)
N

〉
DN

− 〈fN,GNfN 〉DN

= ∑
x∈VN

∣∣�Nh
(0)
N

∣∣2,
which is one direction in the first equation. The other direction is an elementary
calculation.

The second equation follows by expanding f in a basis of eigenvectors
of the symmetric matrix GN. Maximizing shows that both sides are equal to∑

i∈N
〈ei ,1D〉2

λi
, where the ei are the eigenvectors and λi the corresponding eigen-

values. �

LEMMA C.2. With the above notation,

lim
N→∞ inf

{‖�Nh‖2
L2(VN ) :h ∈ H 2

0 , h ≥ 1 on DN

} = C2
V (D).
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PROOF. {h ∈ H 2
0 (V ) :h ≥ 1D} is a closed convex subset of the Hilbert space

H 2
0 (V ) and, therefore, there exists a minimizer h0 for

∫
V |�h|2 dx. For every

n ∈ N, the discretization h0,N (x) := h0(x/N) belongs to H 2
0 (VN), which proves

one direction. Let ε > 0. For every N ∈ N, we can find h̃(N) ∈ H 2
0 (V ) such that

h̃(N) ≥ 1D and the discretization h̃
(N)
N of h̃(N) is equal to h

(0)
N of the proof of

Lemma C.1. If N is large enough, ‖h̃(N)
N ‖L2(VN) ≥ ‖h̃(N)‖L2(V ) − ε. Since h0

is a minimizer, we have lim infN→∞ ‖h(0)
N ‖N ≥ lim infN→∞ ‖h̃(N)‖L2(V ) − ε ≥

‖h0‖L2(V ) − ε. Since ε > 0 was arbitrary, the claim is proven. �
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