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TRANSCIENCE/RECURRENCE FOR NORMALLY REFLECTED
BROWNIAN MOTION IN UNBOUNDED DOMAINS

BY R0OSS G. PINSKY

Technion—Israel Institute of Technology

Let D C RY be an unbounded domain and let B(t) be a Brownian
motion in D with normal reflection at the boundary. We study the tran-
science/recurrence dichotomy, focusing mainly on domains of the form D =
{(x,2) € RItm . |z| < H(|x|)}, where d =1+ m and H is a sufficiently reg-
ular function. This class of domains includes various horn-shaped domains
and generalized slab domains.

1. Introduction and statement of results. Let D C R? be an unbounded do-
main with C2-boundary and consider Brownian motion {B(r),0 <t < oo} in D
with normal reflection at the boundary [4]. The normally reflected Brownian mo-
tion is a reversible Markov process with self-adjoint generator %A N, Where Ay
is the Neumann Laplacian on D. In this paper we study the transience/recurrence
dichotomy for this process.

We recall the following facts which can be found in [3]. For a bounded open set
U C D, let ty = inf{t > 0: B(t) € U} denote the first hitting time of U, the clo-
sure of U. Let P, and E\, denote probabilities and expectations for the normally
reflected Brownian motion starting from y € D. One has either Py(ty < 00) =1,
for all y ¢ U and all bounded open U for which D — U is connected, or else,
one has Py(ty < o0) < 1, for all such y and U. In the former case, the process
is recurrent and in the latter case it is transient and one has lim;_ oo | B(?)| = 00
a.s. In the recurrent case, the process is called positive recurrent or null recurrent,
respectively, according to whether it does or does not possess an invariant proba-
bility measure. One has either Eyty < oo, for all y and U as above, or else one
has Eyty = oo, for all such y and U. The former case is equivalent to positive
recurrence.

The power of self-adjointness renders disarmingly simple the characterization
of positive recurrence for the normally reflected Brownian motion:

PROPOSITION 1.  The normally reflected Brownian motion in D C R? is pos-
itive recurrent if and only if Vol(D) < oo.
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PROOF. For one direction, note that, by self-adjointness, the transition density
function p(z, y, y") for the normally reflected Brownian motion is symmetric in y
and y’; therefore, fD p(t,y,y)dy= [pp(t,y',y)dy = 1. Thus, if Vol(D) < oo,
then the constant Vol( D) is the invariant probability density. On the other hand, if
there exists an invariant probability density ¢, then by the spectral theorem and
the regularity, ¢ must be an eigenfunction corresponding to the eigenvalue O for
—%AN; that is, ¢ is %AN—harmonic: %AN(]S =0in D and V¢p -n =0o0n dD. The
existence of the invariant probability measure guarantees recurrence, and it is well
known that the generator of a recurrent Markov process possesses no nonconstant
positive harmonic functions [3], Chapter 4; thus, we conclude that ¢ is constant.
But if ¢ is constant and is a probability density on D, then Vol(D) < co. [J

With regard to the transience/recurrence dichtomy, the self-adjointness no
longer acts as a deus ex machina. However, it does allow one to prove that this
dichotomy exhibits monotonicity with respect to the domain; that is, if the nor-
mally reflected Brownain motion in D is recurrent, then the normally reflected
Brownian motion in D is also recurrent if D C D. The proof hinges on a varia-
tional formula which we now describe. Let D, = D N {|y| < n}, assume without
loss of generality that D1 = {|y| < 1} and let ADon {ueC*(D,—D)NC(D, —
Di):u=1on0dD; and u =0 on {|y| =n} N D}. Then [2, 3]

=0, if B(t) is recurrent;

— 1 2
(1.1 t= lim inf [Vul~dy { >0, if B(¢) is transient.

—>OOM€A( D,

If D C D, then it is easy to see that any ue A ,,» When restricted to the appropri-

ate smaller domain, belongs to A The domam monotonicity follows from this

and (1.1).

In particular, the domain monotonicity renders trivial the dichotomy of tran-
science/recurrence when d = 2: since standard Brownian motion in all of R? is
recurrent, normally reflected Brownian motion in any domain D C R? is a fortiori
recurrent.

For the rest of this paper we will study the transcience/recurrence dichotomy
in domains D C R9, d > 3, of the following form. Let H > O be a continuous
function on [0, o). For [,m > 1 with [ + m > 3, denote points y € Rt by y =
(x,7), where x € R' and z € R™. Let

(1.2) D={(x,z) € R :|z| < H(]x])}.

We single out two particular subclasses of domains as above. In the case that =1,
we will write d — 1 instead of m, and such domains will be called d-dimensional
horn-shaped domains. In the case that m = 1, we will write d — 1 instead of /, and
such domains will be called d-dimensional generalized slab domains.

Before presenting the results, we note the following point of departure. In con-
sonance with the above notation, denote the normally reflecting Brownian motion
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as B(t) = (X (t), Z(t)). Consider the case that H is constant. Then D is the prod-
uct of R' and a ball in R™. (In particular, if / =1, it is a cylinder and if m =1,
it is a slab.) Then X (¢) in isolation is a standard /-dimensional Brownian motion.
If [ < 2, then it is clear that the recurrence of X (t) guarantees the recurrence of
B(t). By the domain monotonicity noted above, this recurrence will also hold for
any domain that is contained in D. Thus, for [ < 2, the interesting case occurs
when H is unbounded. On the other hand, if / > 3, then X (¢) is transient and, thus,
so is B(¢). By domain monotonicity, this transience will also hold for any domain
containing D. Thus, the interesting case occurs when lim;_, o, H (s) =0.
We will impose the following regularity conditions on H.

ASSUMPTION H. H € C3([0,00)) and satisfies the following condi-
tions: limg_ oo H(s)H"(s) = limg_ oo H'(s) =0, H(s)H'(s) = 0o(s) as s — o0,

’ 3 / 2
[ (Pf{((ss))) ds<oo,f°°@ds<oo.

REMARK. Assumption H allows for H(s) ~ s¥ with ¥ < 1 but not with
y > 1. However, this growth restriction is in fact irrelevant, as will be noted in
the remark following the theorem and examples below.

THEOREM 1. Letd =1+ m >3 and let D C R be the domain defined
by (1.2) via a function H which satisfies Assumption H.

(i) If [® s'"'H "™ (s)ds = oo and D S D, then normally reflected Brownian
motion in D is recurrent.

(i) If [*s'""IH™™(s)ds < 0o and D C D, then normally reflected Brownian
motion in D is transient.

REMARK. For a related result in the context of random walks, see [1],
page 400.

EXAMPLE 1 (Horn-shaped domains). Denote points in RY, d > 3, by (x, z)
with x € R and z € R?~!. Let D be the d-dimensional horn-shaped domain defined
by D={(x,z) € R%:|z| < (1 + |x|)7}. Then normally reflected Brownian motion
in D is recurrent if y < d+1 and transient if y > ﬁ.

EXAMPLE 2 (Generalized slab domains). Denote points in R?, d > 3, by
(x,z) withx € R4~ and z € R.If D is the d-dimensional generalized slab defined
by D ={(x,z) € R?:|z| < (1 + |x|)?}, then the normally reflected Brownian mo-
tion in D is recurrent if y <3 —d and transientif ¥y >3 —d. If d =3 and D is the
generalized slab domain defined by D = {(x, z) € R%:|z| < log? (2 + |x])}, then
the normally reflected Brownian motion in D is recurrent if y < 1 and transient if
y > 1.
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EXAMPLE 3. For the domain D = {(x,z) € R"™:|z| < H(]x])}, with

H (s) ~ s?, the normally reflected Brownian motion is recurrent if y < %l and

transient if y > == 2 L

REMARK. Example 3 demonstrates that for any domain D defined by (1.2)
with H (s) ~ sV, the value of y that represents the cut-off between recurrence and
transience is never greater than . This fact, along with the domain monotonicity
with regard to transience and recurrence renders irrelevant the growth condition
imposed by Assumption H and noted in the remark following that assumption.

We now give the probabilistic intuition for Theorem 1. Consider first an
(I + m)-dimensional Brownian motion (X(¢), Z(¢)) in the cylinder {(x,z) €
R!*t™ 17| < a) with skew-reflection at |z| = a corresponding to the reflection vec-
tor (yé—l, —pB é—‘), where 8 > 0 and y are constants and the vector has been nor-

malized by the requirement that y2 + 2 = 1. Let p(t) = |X ®)]. By 1t6’s formula
for diffusions with reflection, one has p(t) = W(z) + 21 fo 75} ds + yL,(1),

where W (¢) is a one-dimensional Brownian motion and L,(¢) is the local time
up to time ¢ of Z(-) at {|z| = a} [4]. We will show below that E ;L,(¢) ~ %t as
t — 00. Thus, over the long run, the local time term behaves like a constant drift of
strength 5 I Consequently, the behavior of p(r) = | X (t)| over the long run should

be like the behavior of the one-diffusion generated by 4 3 dp2 + 12 pl d”fo + 5L %.

With the above analysis in mind, consider the normally reflected Brownian
motion in D, where D is given by (1.2). At a point (x, z) € D, one has |z| =
H(|x]) and the normalized normal reflection vector pointing into D is given by
((H)H?(|x]) + 1)*1/2(H’(|x|)ﬁ, —&)- Taking our cue from the case above with

H'(x])
((HN2(Ix+D1/2>
we would expect the behavior of | X (t)| over the long run to be like that of the one-

I-1d mH'(p)
dimensional diffusion generated by 1 5 de + 75,413 T (H2 ()T D12 dp

we are assuming that H'(p) — 0 as p — oo the above diffusion is not much dif-
ferent from the one generated by A = QW 12 pl jfo + 3 H((pp)) ji)
in Theorem 1 is exactly the transience/recurrence criterion [3], Chapter 5, for the
one-dimensional diffusion whose generator is A.

We now return to show that E, ;L,(t) ~ g’—at as t — oo. The process Z(t) in
isolation is a Brownian on the a-ball with normal reflection at the boundary. Let &,

denote the expectation for this process starting from z. Let A,, denote the Lapla-

constant skew reflection vector, and letting a = H(|x|) and y =

Since

The criterion

cian on R™, let r = |z| and note that %Am(|z|2) =m and 3(5'2) l|z|=a = 2a. Let

=inf{r > 0:|Z(¢t)| = r} and let z, denote a point satisfying |z,| = r. We now
twice apply It6’s formula for diffusions with reflection to the process Z(¢) and the
function |z|? and take expectations. One time we start at z,, /2 and terminate at oy,
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and the other time we start at z, and terminate at o, /2. We obtain
) 5 a2 0u a2
a :82u/2|Z(Ja)| :Z—i-é}a/z A mdt:z-i-mgztl/zo’a

and
a’ 2 2 Ga/2
Zzé’zalZ(o*a/z)l =a +8Za_/(; mdt —2a&,,L,(04/2)

=a® +mé&;,04/2 —2a8;,Ly(04/2).

Of course, we also have Sza/zLa (04) =0 since L,(t) =0 for ¢t < 0,. From the
above equations we obtain

Ez00La(0a) + &, La(0ay2) m
gza/zaa + 8Za0'a/2 2a°

Thus, g'l—a is equal to the expected local time accrued by Z(t) at {|z| = a} over a
complete cycle starting at |z| = 5 and ending again at |z| = 5 after reaching |z| = a
divided by the expected total time of such a complete cycle. Using this, it follows
easily from the renewal theorem that E ;L,(t) ~ 5.t as t — oo.

The rest of the paper is organized as follows. In Section 2 we construct a class
of functions from which we will cull appropriate Lyapunov functions which will
be used to prove Theorem 1. Then in Section 3 we give the proof of Theorem 1.

2. Lyapunov functions. In this section we construct a family of functions
from which we will cull appropriate Lyapunov functions which will be used to
prove Theorem 1. Let D be a domain in R!*™ defined by (1.2) for some choice
of H satisfying Assumption H. Recall that we are writing points in R'*" by (x, z),
where x € R! and z € R™. Let p = |x| and r = |z|. The functions we construct will
be functions of p and r and will denoted by u(p, 7). Each such function u will
depend on a function f, which is an arbitrary C2-function from [0, 00) to (0, 00).
For such an f, we define u by

—lH,(S)r2+s+lH(s)H/(s) r) = f(s) 0<r<H()
2 H(s) 2 ) ’ - '

Assumption H guarantees that, for sufficiently large s, the first argument in u# above
is increasing in s for each fixed r € [0, H (s)]. Thus, u is well defined by (2.1) for
all sufficiently large s and r < H (s). In particular then, for some pg > 0, u is well
defined on D N {|x| > pp}. Note that for each fixed s, the argument of u in (2.1)
defines a paraboloid with independent variable » = |z|. These paraboloids are the
level sets of u. Note that they have been chosen so that

2.2) (Vu-n)(x,z2)=0 for (x,z) € 9D N {|x| > po},

2.1 u(

where n is the unit inward normal at 0 D.
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We now calculate %Au. Since u depends only on p = |x| and r = |z|, we have

23) Ly, ] +1—1 +1 +m—1
. —Au=—u —1Uu —u
2 2700 op P T 2TTT T oy

Ur.

In the calculations that follow, we simplify notation by defining

L(s)=logH(s) and Q(s)= H(s).
Also, we suppress the argument (—% g’é;‘))ﬂ + 5+ %H (s)H'(s), r) that appears
in u and its derivatives. Differentiating (2.1) with respect to r gives

2.4) —rL/(s)up +u, =0
and differentiating a second time with respect to r gives
(2.5) P2 (L' (5))?upp — L' ($)up 4ty — 2r L (s)upy = 0.
Differentiating (2.1) with respect to s gives
(2.6) (—3r2L"(s) + 14+ 20" ())up = f/(s)
and differentiating a second time with respect to s gives
Q7 (=3Pl + 14+ 10" )) upp + (=1L () + 10" ($))up = f7(5).
Differentiating (2.4) with respect to s gives
(=3r°L" () + 1+ 70"(9)upy
28 —rL'(s)(=Ar*L"(s) + 1+ £ 0"())upp — rL" (s)u,, = 0.

Equation (2.4) allows one to solve for u, in terms of u, and L. Equation (2.8)
allows one to solve for u,, in terms of u,,,u,, L and Q, and then (2.5) allows
one to solve for u,, in terms of these same functions. Equation (2.6) allows one
to solve for u,, in terms of f, L and Q, and then (2.7) allows one to solve for u,,
in terms of these same functions. We are therefore able to express %Au as given
in (2.3) in terms of f, L and Q as follows:

Yaw=1ta ( LH® 2o Y rom
5 u—2( u) —3 H(s)r +s 42 (s) (s),r)
(2.9) ) |
= EA(r,s)f (8) + EB(r’ $)f($),
where
1+ r2(L'(5))?
(2.10) Alr,s) = ———75——

C2
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and

B(r,s) = mZ &) +d -1 Ly 2L
o1 C c/cC C?

L+ (6)H(C/0s)
C3

with
(2.12) C=C(r,s)=1+30"(s) — 3r*L"(s)
and
(2.13) /cz </ )(r s)=s+— Q (s) — 2L (s).

We note that, by the assumptions on H, C(r, s) and ( f C)((r, s) are bounded away
from O for large s and r < H(s).

3. Proof of Theorem 1. It suffices to prove the results for D as in the state-
ment of the theorem. The corresponding results for D then follow from the
domain monotonicity property noted in Section 1. Recall that we are writing
the normally reflected Brownian motion as B(f) = (X (¢), Z(z)). For xo > 0, let
Ty, = inf{t > 0: X () < x¢}. For a C2-function v defined on D N {x > x¢}, Itd’s
formula gives

v(B(t A Tyy))
ATy,

3.1 =v(B(0)) +/ "(V)(B(5)dW (s)

ATy 1 ATy,
+‘/(; E(Av)(B(s))ds +/0 (Vv -n)(B(s))dL(s),

where W is a standard d-dimensional Brownian motion, » is the inward unit nor-
mal at 3D and L is the local time of B(¢) at the boundary 0D. If Vv -n =0 on
dD N{x > xg}, then the local time term vanishes. If one can find such a v for which
Av <0on DN{x > xo} and such that lim,_, o, v(x, ) = 00, then the normally re-
flected Brownian motion is recurrent, while if one can find such a bounded v for
which Av <0 on D N {x > xo} and such that v(x, z) < inf|;|<H (x) v (X0, 2), for
some x] > xg, then the normally reflected Brownian motion is transient [3], Chap-
ter 6.

Recall from (2.2) that the function u defined in (2.1) satisfies Vu - n =0 on
dD N{|x| > po}. If one can choose the function f appearing in the definition of u
such that lims_, oo f(s) = 0o and %Au(x, 7) <0, for (x, z) € D with x sufficiently
large, then one can choose v = u and conclude that the normally reflected Brown-
ian motion is recurrent. Alternatively, if one can choose a bounded, increasing f
such that %Au(x, z) > 0 for (x,z) € D, with x sufficiently large, then one can
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choose v = —u and conclude that the normally reflected Brownian motion is tran-
sient.
From (2.9) it follows that if ['"(s), '™ (s) satisfy

B B
(3.2) ts)> sup —(r ), I (s)< inf —(s)
( ,SH%) A( r<H(s) A

and if we let

S t
3.3 )= [ dt (— r+ d)
(33) FE() f exp f (p)dp

for some sg > 0, then %Au < 0if u is constructed from f*, and %Au >0if u is
constructed from f . Thus, if one can choose '™ so that limy_, o f(s) = oo, then
one will obtain recurrence, while if one can choose I'™ so that f~ is bounded,
then one will obtain transience. The assumptions on H guarantee that, in the cal-
culations that follow below, the denominators of all the fractions as well as the
numerators of the fractions that appear as arguments of logarithms are bounded
away from O for s sufficiently large. We choose 5o above sufficiently large to ac-
commodate this condition.

In order to choose I'* appropriately, we must analyze % from (2.10) and (2.11).
After performing some algebra to isolate terms that do not depend on r, and ar-
ranging certain other terms as logarithmic derivatives, we obtain

(s +1/40/(s) — 1/2r2L'(s))’
s+1/4Q'(s) — 1/2r2L/(s)

B =mlL’ [—1
S =mLs) + (U= 1)

+ lmL/(S)Q”(S)

4
r2(L'()*(1+1/4Q"(5))
1+r2(L(s))?
5—m(1+r3(L'(s))?)
2 14r3(L'(s))?
(14+1/40"(s) — 1/2r>L" (s))’
1+1/4Q"(s) — 1/2r2L"(s)
[—1r2(L()*(1+1/40"(s) — 1/2r’L"(s))
2 s+ 1/4Q'(s) — 1/2r2L/(s) ’
where the prime denotes differentiation with respect to s. For fixed s, as
. . 2077 2y/ 277 "
functions of r € [0, H(s)], the three functions (llirr 2((LL,((1))))2) = 21’+52E5L)/?s)()52),

(417407 ()=1/2r2L"(s)) _ 1/4Q"(s)=1/2r>L"(5) and (s+1/40Q'(s)—1/2r2L(5)) _
14+1/4Q07(s)—1/2r2L"(s) —  14+1/4Q"(s)—1/2r2L"(s) s+1/40Q/(s)—1/2r2L(s) —

14+1/40"(s)=1/2rL"(s) : . o
S+1/407(5) =172 2L7(s) take on their maximum values and their minimum values at

—mL’(s)
(3.4
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the endpoints {0, H (s)}. In particular then, the functions

(1+72(L'(5))%)

+e) —
s = o T+ TR
' _ o A+
E ()= inf )
0<r<H(s) 14r2(L'(s))?
" _ 271 /
F+(S) — sup <_ (1 + 1/4Q//(S) 1/21"2L//(S)) ),
6 0<r<H(s) 1+1/40"(s) — 1/2r=L"(s)
(3.
_ . (1+1/4Q"(s) — 1/2r2L”(s))’
F ()= 1in (— )
0<r<H(s) 14+1/4Q"(s) — 1/2r2L"(s)
and
1 _ 277 1
Gr(s)= sup (s+1/4Q'(s) — 1/2r~L’(s)) ’
0<r<H(s) S+ 1/40Q'(s)—1/2r2L/(s)
(3.7
/ _ 277 /
G (s) = (s +1/40'(s) = 1/2°L'(s5))

OsrlgH(S) s+1/4Q'(s) — 1/2r2L/(s)

are continuous and piecewise continuously differentiable, and
14+ H2 L ()(L'(1))?

1+ Hz. (s0) (L' (50))2

1+1/4Q"(s0) — 1/2H (s0)(L" (50))?
1+1/4Q"(1) = 1/2HE. (1) (L" (1))
1+1/40'(t) = 1/2H} . (1)L (1)

50+ 1/4Q'(s0) — 1/2H+ (s0)L'(s0)

where H,+(s) € {0, H(s)}, forx=E, F,G.

t
/ E*(p)dp = log
S0

/ ' F(p)dp = log
38

t
/ G*(p)dp = log
S0

Since L' = %, Q" =2HH"+2(H')? and 0 < r < H, it follows from Assump-
tion H that, for some Cg > 0, one has

rA(L'(9))*(1 4 1/40"(5)) <C IH/(S)|3.

9 " +2C®?2 |- THG)

L'(s)

Similarly, for some C; > 0, one has

I —17r2(L'(s)*1 4+ 1/4Q"(s) — 1/2r2L" (s)| -c (H'(5))?

(3.10) > s+ 1/40'(s) — 1/2r2L’(s) =+l s
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In light of the above analysis, we define

H' 3 / 2
|H'(s)] e (H'(s))
H(s) s

1
It (s) =mL'(s) + ZmL/(s)Q”(s) + Cy
+ 5_—mE+(s) +FTs)+ 1 - DG ()
2
(3.11)
|H'(s)]? B (H'(s))*
0 H(s) ! s

I~ (s)=mL'(s) + imL/(s)Q”(s) —C
S5—m __ _ _
+TE )+ F (s)+UA—-1)G (s).

These choices of '+ satisfy (3.2). We define f + asin (3.3).
It remains to analyze the behavior of f* as s — oco. By (3.8) and the as-
sumptions on H, exp(— fS’O(S_—mEi(p) + F*(p))dp) is bounded and bounded

from O for large ¢t. By the assumptions on H, exp(:i:f ColH(p)| dp) and

H(p)
exp(£ f S Ci % dp) are bounded and bounded from O for large . We have
" " (H'(p))?
/ L' 0" (p)dp = 2/ (# "0+ S ) do
t / 3
= (H'@)? = (H 0+ [ 0 L 0rdp

and, thus, by the assumptions on H, exp(—— fso L'(p)Q"(p)dp) is bounded and
bounded from O for large ¢.
The assumptions on H also show that
t t+1/40'(t) — 1/2H2, (1)L (1) t
(1= cs0))— < , G < (I+c(s0)—
so  so+ 1/4Q"(s0) — 1/2Hg (so) L' (s0) 50

where 0 < ¢(sg) = 0(1) as 59 — o0.

(3.12)

Thus, from (3.8) one has

1-1 _ 1-1
<M) < exp(— /t(l _ l)Gi(p) d,o) < (M) ,

RY S
(3.13) 0 0

where 0 < ¢(sg) = o0(1) as sg — o0.

eXp(_ K;’"L/(p)dp) - (5(2?))%

Finally, we have
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The calculations of the last two paragraphs along with (3.11) give

(1= C(SO))%)I_Z(:((JO)))_M = e"p(_ /t Fi(p)dp)

G194 =1+ C(SO))@)FI(;II((:O)))_M’

where 0 < C(sg) = o(1) as sg — 00.

We therefore conclude from (3.3) and (3.14) that limy_, o, f T (s) = 00, if foo = x
H™™(t)dt = o0, and f~ is bounded, if [* '~/ H =™ (t) dt < oo.
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