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FIRST EXIT TIMES FOR LÉVY-DRIVEN DIFFUSIONS
WITH EXPONENTIALLY LIGHT JUMPS1

BY PETER IMKELLER, ILYA PAVLYUKEVICH AND TORSTEN WETZEL

Humboldt—Universität zu Berlin

We consider a dynamical system described by the differential equation
Ẏt = −U ′(Yt ) with a unique stable point at the origin. We perturb the system
by the Lévy noise of intensity ε to obtain the stochastic differential equation
dXε

t = −U ′(Xε
t−) dt + ε dLt . The process L is a symmetric Lévy process

whose jump measure ν has exponentially light tails, ν([u,∞)) ∼ exp(−uα),
α > 0, u → ∞. We study the first exit problem for the trajectories of the
solutions of the stochastic differential equation from the interval (−1,1). In
the small noise limit ε → 0, the law of the first exit time σx , x ∈ (−1,1), has
exponential tail and the mean value exhibiting an intriguing phase transition
at the critical index α = 1, namely, ln Eσ ∼ ε−α for 0 < α < 1, whereas
ln Eσ ∼ ε−1| ln ε|1−1/α for α > 1.

1. Introduction. In this paper a mathematically rigorous study of the first
exit problem for jump-diffusions driven by small scale Lévy processes with light
big jumps is given. The problem under consideration can be outlined as fol-
lows. Consider a deterministic dynamical system given by a differential equation
Ẏt = −U ′(Yt ) which has a unique asymptotically stable state at the origin 0. We
assume that the interval (−1,1) belongs to the domain of attraction of 0, so that
the solution trajectories of the deterministic part cannot leave this interval.

The situation becomes different if the dynamical system is perturbed by some
noise of small intensity. The stable state becomes meta-stable, and exits from the
interval become possible. The probabilistic characteristics of the first exit time,
such as its law or the mean value, are determined by the nature of the noise and
geometry of the potential U .

Unquestionably, perturbations by Brownian motion are by far the best under-
stood. The first exit problem for small Brownian perturbations was treated in a pi-
oneering work by Kramers [20]. The main mathematical reference on this subject
is the book [14] by Freidlin and Wentzell, in which the theory of large deviations
for dynamical systems with small Brownian perturbations was developed as the
main tool for exit problems. Among many other papers on this subject, we men-
tion a paper by Williams [31], a book [28] by Schuss, and a series of papers by
Day [7–9] and Bovier et al. [3, 4].

Received November 2007; revised April 2008.
1Supported by the Deutsche Forschungsgemeinschaft (DFG).
AMS 2000 subject classifications. 60H15, 60F10, 60G17.
Key words and phrases. Lévy process, jump diffusion, sub-exponential and super-exponential

tail, regular variation, extreme events, first exit time, convex optimization.

530

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/08-AOP412
http://www.imstat.org
http://www.ams.org/msc/


EXIT TIMES AND LIGHT JUMPS 531

In our particular case, the results obtained in very general geometric settings in
the references cited above offer a simple explanation. It turns out that the length
of the mean exit time is asymptotically given by eζ/ε2

, and its logarithmic rate ζ is
determined by the lowest potential barrier a Gaussian particle has to overcome in
order to exit. For instance, if U(−1) < U(1), the exit occurs with an overwhelming
probability at −1, and ζ = 2(U(−1) − U(0)). Moreover, the normalized exit time
has a standard exponential law in the limit of small noise ε → 0.

It is interesting to note that asymptotics of the Gaussian type are also obtained
in a situation in which a random Markov perturbation possesses locally infinitely
divisible laws with exponential moments of any order, while jump intensity in-
creases and jump size decreases simultaneously with an appropriate rate along
with the noise parameter ε tending to 0. A typical example of such a perturbation
is given by a compensated Poisson process with jump size ε, and jump intensity
1/ε, see [14], Chapter 5.

The situation becomes quite different for a dynamical system perturbed by
heavy tailed Lévy noise. There the big jumps begin to play the major role in the
exit time dynamics. If the jump measure of the driving Lévy process has power
tails, the mean exit time turns out to behave like a power function of the small
noise amplitude. Moreover, the leading term of the average first exit time does not
depend on the vertical parameters of the potential’s geometry, the heights of poten-
tial barriers, but rather on horizontal ones such as the distances between the stable
point and the domain boundary. Due to the presence of big jumps, the trajectories
of the perturbed dynamical system leave the interval in one big jump, and do not
climb up the potential barrier as in the Gaussian case.

Rough large deviation estimates and the asymptotics of the mean first exit time
from a domain for a more general class of Markov processes with heavy tailed
jumps were first obtained by Godovanchuk [15], whereas a general large deviations
theory for Markov processes can be found in the book [29] by Wentzell. In [26],
Samorodnitsky and Grigoriu studied the tails of jump-diffusions driven by Lévy
processes with heavy (regularly varying) tails. A lot of information about jump-
diffusions and models with heavy tails can be found in a book [13] by Embrechts,
Klüppelberg and Mikosch and the references therein.

Imkeller and Pavlyukevich [16, 17] recently described the fine asymptotics for
the law and moments of exit times for jump diffusions driven by α-stable Lévy
processes and, more generally, by Lévy processes the jump measure of which has
regularly varying tails. These asymptotic properties were used to show metasta-
bility properties for Lévy-driven jump diffusions in multi-well potentials (see [16,
18]). The techniques were further generalized to study simulated annealing with
time nonhomogeneous jump processes; see [23, 24].

Our recent interest in small noise jump diffusions arose from the acquaintance
with the paper [11] by Ditlevsen. In an attempt to model paleoclimatic time se-
ries from the Greenland ice core by dynamical systems perturbed by noise, the
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author discovers an α-stable noise signal with α ≈ 1.75. In his setting, big jumps
of the α-stable Lévy process are responsible for rapid catastrophic climate changes
(the so-called Dansgaard–Oeschger events) observed in the Earth’s northern hemi-
sphere during the last glaciation. The appearance of a stable Lévy noise signal can
be explained if the observed time series is interpreted as a mesoscopic limit of
some more complicated climate dynamics.

Lévy-driven stochastic dynamics has become a popular research field in
physics, where stable non-Gaussian Lévy processes are often named Lévy flights.
We draw the reader’s attention to the topical review by Metzler and Klafter [22],
where Lévy flights are discussed in detail from a physicists point of view.

The first exit problem (also called Kramers’ or barrier crossing problem) is of
central importance in the physical sciences. Small noise barrier crossing prob-
lems were studied on a physical level of rigor by Ditlevsen [10], Chechkin at al.
[5, 6] and Dybiec, Gudowska-Nowak and Hänggi [12]. In particular, Chechkin at
al. [5] present numerical experiments that strongly support the theoretical findings
of [16, 18].

The relationship between Lévy and Gaussian exit time dynamics circumscribes
another problem that has received a considerable deal of attendance in physics ap-
plications. The problem was first considered by Mantegna and Stanley in [21] and
Koponen [19]. In order to see Gaussian type asymptotic behavior emerge in dy-
namical systems perturbed by Lévy processes, the authors suggest to either elimi-
nate big jumps, or to make their appearance rare by modifying the jump measure
to have exponentially light tails.

In this paper we will study exit times of solutions of the stochastic differential
equation

dXε
t = −U ′(Xε

t−) dt + ε dLt(1.1)

driven by a Lévy process L of (small) intensity ε whose jump measure ν is sym-
metric, and which contains a nontrivial Gaussian component. The argument and re-
sults obtained in [16, 17] for the heavy-tail jump measures when ν([u,∞)) ∼ u−r

with some r > 0 show that the exit occurs due to a single big jump of the order
1/ε and, thus, a mean exit time is of the order ν({|y| ≥ 1/ε})−1 ∼ ε−r , ε → 0.
Moreover, one can see that the argument of [16] would hold also for Lévy mea-
sures with sub-exponential tails ν([u,+∞)) ∼ e−uα

for very small values α 	 1
leading to mean exit times of the order e1/εα

. Recalling that Gaussian exits occur
on time scales of the order e1/ε2

, one may ask the following: a further reduction
of the tail weight can lead to Gaussian dynamics as α ↑ 2, and will Gaussian exit
dynamics dominate after crossing the critical index, that is, for α > 2? This is the
motivating question of this paper.

The result is very surprising. We show that big jumps always dominate, inde-
pendently of how light they are. Looking at the results in more detail, the behavior
of exit times encounters a phase transition at the critical value α = 1 which marks
the transition from sub-exponential to super-exponential dynamics.
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Our arguments leading to the discovery of this transition can be outlined as
follows. As in the case for power type tails in [17], for ε > 0 the process L is
decomposed into a compound Poisson pure jump part ηε with jumps of height
larger than some critical level gε , and a remainder ξε with jumps not exceeding this
bound. The critical threshold gε has to be chosen individually according to whether
the jump law possesses sub- or super-exponential tails. In the crucial estimate, one
has to show that the exit from the interval (−1,1) around the stable fixed point 0
before some finite time T while never returning to a small neighborhood of 0
can occur in two ways. First, the increments of the small jump component ξε

have to exceed certain bounds, and the probability of this scenario can be made
small enough by suitable choice of gε . Second, the sum of large jumps occurring
before time T exceeds the bound 1. Generally, the analysis reveals that large jumps
are responsible for exits irrespective of whether we are in the sub- or the super-
exponential regime.

To see the phase transition at α = 1, consider the big jumps Wi , i ≥ 1, of the
process L. The jumps are independent and have the law β−1

ε ν|[−gε,gε]c (·) with
βε = ν([−gε, gε]c) ≈ 2 exp(−gα

ε ) being the inverse mean time between big jumps.
The essential part of the proof consists in an asymptotic estimate of the tail

probability

P

(
k∑

i=1

|εWi | ≥ 1

)
,(1.2)

which is, roughly speaking, the probability of the exit in no more than k big jumps
of L, the number k := kε being chosen appropriately. Then the following estimate
contributes crucially to the phase transition:

P

(
k∑

i=1

|εWi | ≥ 1

)
≤ ck

ε exp

(
− inf

{
k∑

i=1

xα
i :

k∑
i=1

xi = 1

ε
, xi ≥ 0

})
,(1.3)

cε > 0.

The phase transition emerges when solving the minimization problem in the
exponent of this estimate. Thus, in the case of sub-exponential tails, the infimum
in the exponent is attained on the boundary of the simplex {(x1, . . . , xn) :xi ≥
0,

∑n
i=1 xi = ε−1}, namely, at points xi = ε−1, xj = 0, j �= i.

On the contrary, for super-exponential tails, the infimum is attained in the inner
point of the simplex, namely, at xi = (εk)−1, 1 ≤ i ≤ k.

One can say that from the point of view of the optimization technique, the phase
transition is due to the switching from concavity to convexity of the function

x → xα, x ≥ 0(1.4)

as α increases through 1. So, the surprising behavior of our jump diffusion with
exponentially light jumps of degree α can roughly be summarized by this state-
ment: big jumps of the Lévy process govern the asymptotic behavior in the sub-
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(α < 1) as well as in the super- (α > 1) exponential regimes, but in the latter one
the cumulative action of several large jumps, reminding the climbing of the poten-
tial well in the Gaussian regime, becomes important, while for α < 1 the biggest
jump alone governs the exit.

The material is organized as follows. In Section 2 we explain the setup of the
problem and state our main results about the asymptotics of exit times. Section 3
contains our general strategy of estimating the tails of the law of exit times from the
knowledge of the tails of the jump measure. The concept of ε-dependent separation
of small and large jump parts which already proved to be successful in [17] takes a
central role, and is basic for the proof that, apart from a Gaussian part, small jumps
do not alter the behavior of solution curves of the unperturbed dynamical system
by much. This leaves the role of triggering exits to the large jump part, the con-
tribution of which receives a careful estimation. In the technical Sections 4 and 5
upper and lower bounds for the tails of the exit time laws are derived.

2. Object of study and main result. Let (
,F , (Ft )t≥0,P) be a filtered
probability space. We assume that the filtration satisfies the usual hypotheses in
the sense of [25], that is, it is right-continuous, and F0 contains all the P-null sets
of F .

For ε > 0 we consider solutions Xε = (Xε
t )t≥0 of the one-dimensional stochas-

tic differential equation

Xε
t (x) = x −

∫ t

0
U ′(Xε

s−(x)) ds + εLt , t ≥ 0, x ∈ R,(2.1)

where L is a Lévy process and U is a potential function satisfying assumptions
specified in the following. The principal goal of our investigation is the small noise
behavior of Xε , that is, the behavior of the process as ε → 0. More specifically, our
interest is focused on the exit of Xε from a neighborhood of the stable attracting
point 0 of the real valued potential function U defined on R. For this reason, be-
sides assuming that U be continuously differentiable with derivative U ′, we only
have to fix some minimal conditions on U concerning its properties in a neighbor-
hood of 0. We shall work under the following assumption:

(U) U ′(x) = 0 if x = 0, U ′ is Lipschitz continuous, and U ′(x)x > 0, x ∈ (−1,

1) \ {0}.
In particular, the drift U ′ may vanish at the ends of the interval, U ′(±1) = 0.

In order to state the conditions our Lévy process L is supposed to satisfy, let
us recall that a positive Lebesgue measurable function l is slowly varying at in-
finity if limu→+∞ l(λu)/ l(u) = 1 for any λ > 0. For example, positive constants,
logarithms and iterated logarithms are slowly varying functions:

(L1) L has a generating triplet (d, ν,μ) with a Gaussian variance d ≥ 0, an ar-
bitrary drift μ ∈ R and a symmetric Lévy measure ν satisfying the usual
condition

∫
R\{0}(y2 ∧ 1)ν(dy) < ∞.
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(L2) Let f (u) := − lnν([u,+∞)), u > 0. Then there is α > 0 such that

f (u) = uαl(u), u ≥ 1(2.2)

for some function l slowly varying at +∞.

We say that the Lévy measure ν has sub-exponential or super-exponential tails
with index α if 0 < α < 1 or α > 1 in (L2), respectively. Typical examples of Lévy
processes under consideration are given by symmetric Lévy measures ν with tails

ν([u,∞)) = exp(−uα), α > 0, u ≥ 1.(2.3)

The family of strongly tempered stable processes with the jump measures

ν(dy) = e−λ|y|α |y|−1−β
I{y �= 0}dy,(2.4)

λ > 0, β ∈ (0,2), α > 0, α �= 1,

provides another example.
Since Lévy processes are semimartingales, and due to (U), the stochastic differ-

ential equation (2.1) possesses a strong solution defined for all t ≥ 0. See [1, 25]
for the general theory of stochastic integration and [27] for more information on
Lévy processes. Moreover, the underlying deterministic equation (ε = 0) given by

Yt (x) = x −
∫ t

0
U ′(Ys(x)) ds(2.5)

has a unique solution for any initial value x ∈ R and all t ≥ 0. The position x = 0
of the minimum of U is a stable attractor for the dynamical system Y , that is, for
any x ∈ (−1,1) we have Yt (x) → 0 as t → ∞. It is clear that the deterministic
solution Y(x) does not leave the interval [−1,1] for initial values x ∈ (−1,1). The
main object of study of this paper is the asymptotic law and the mean value of the
first exit time of the jump-diffusion Xε:

σx(ε) = inf{t ≥ 0 : |Xε
t (x)| ≥ 1}, x ∈ R.(2.6)

Our main findings are stated in the following theorems.

THEOREM 2.1 (Sub-exponential tails). Let the jump measure ν of L be sub-
exponential with index 0 < α < 1. Then for any δ > 0 there is ε0 > 0 such that for
all 0 < ε ≤ ε0 the following inequalities hold uniformly for t ≥ 0:

(1 − δ) exp(−C1−δ
ε t) ≤ inf|x|≤1−δ

P
(
σx(ε) > t

) ≤ sup
|x|≤1

P
(
σx(ε) > t

)
(2.7)

≤ exp
(−1

2Cεt
)

with Cε := ν((−1
ε
, 1

ε
)c) = 2 exp(−f (1

ε
)). Consequently, for any |x| < 1 we have

lim
ε→0

f

(
1

ε

)−1
ln Eσx(ε) = 1.(2.8)
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REMARK 2.1. It will be seen from the proof (Section 4.1) that the upper
bound in (2.7) holds not only for small ε but for all ε > 0 and for all symmet-
ric jump measures ν. Moreover, the factor 1/2 in the exponent of the upper bound
(2.7) can be omitted if Cε satisfies Cε = infy∈R ν((

−1−y
ε

,
1−y

ε
)c), which, for in-

stance, holds for unimodal jump measures ν with the mode 0.

THEOREM 2.2 (Super-exponential tails). Let the jump measure ν of L be
super-exponential with index α > 1. Let qε denote its ε-quantile, qε := sup{u >

0 :ν([u,∞)) ≥ ε}. Then for any δ > 0 there is ε0 > 0 such that for all 0 < ε ≤ ε0
the following inequalities hold uniformly for t ≥ 0:

(1 − δ) exp(−D1−δ
ε t) ≤ inf|x|≤1−δ

P
(
σx(ε) > t

) ≤ sup
|x|≤1

P
(
σx(ε) > t

)
(2.9)

≤ (1 + δ) exp(−D1+δ
ε t),

where Dε = exp(−dα
| ln ε|
εqε

) and dα = α(α−1)1/α−1. Consequently, for any |x| < 1
we have

d−1
α lim

ε→0

εqε

| ln ε| ln Eσx(ε) = 1.(2.10)

It is instructive to compare qualitatively the results of Theorems 2.1 and 2.2
with known results for exit times in the case in which L is a pure Brownian mo-
tion, or contains a symmetric jump component with regularly varying tails. We
therefore briefly consider the mean exit times of Lévy-driven diffusions of four
types. Then the following limiting relations hold and are uniform over all initial
points x belonging to a compact subset K ⊂ (−1,1):

1. Power tails. Let L be such that ν([u,∞)) = u−r , u ≥ 1 for some r > 0. Then
as was shown in [17], the mean exit time satisfies

2 lim
ε→0

εrEσx(ε) = 1.(2.11)

2. Sub-exponential tails. Assume that L is such that for some α ∈ (0,1) we have
ν([u,∞)) = exp(−uα), u ≥ 1. Then Theorem 2.1 easily implies that

lim
ε→0

εα ln Eσx(ε) = 1.(2.12)

3. Super-exponential tails. Assume that L is such that ν([u,∞)) = exp(−uα),
u ≥ 1, for some α ∈ (1,∞). Then the ε-quantile qε = | ln ε|1/α and Theorem 2.2
entails that

1

α
(α − 1)1−1/α lim

ε→0
ε| ln ε|1/α−1 ln Eσx(ε) = 1.(2.13)

4. Gaussian diffusion. Assume that L possesses the characteristic triplet
(1,0,0), that is, L is a standard one-dimensional Brownian motion. Then the mean
exit time depends on the height of the potential barrier at the interval ends, and

1
2

(
U(−1) ∧ U(1)

)−1 lim
ε→0

ε2 ln Eσx(ε) = 1.(2.14)
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First we note that cases 1 and 2 mathematically do not differ by much, since the
mean exit time can be expressed by the same formula Eσx(ε) ∼ (2ν([1

ε
,∞)))−1.

The gaps between 2 and 3, and 3 and 4 are much more surprising. The loga-
rithmic rate of the expected first exit time drastically changes its behavior in the
super-exponential case: jump lightness influences the mean exit time in a rather
insignificant way. Even more surprising is the fact that we do not obtain Gaussian
asymptotics even for light tails with α ≥ 2. This is underlined in an intriguing
way through the form of the pre-factors: in the cases of perturbations with jumps
they only depend on the distance between the stable equilibrium 0 and the interval
boundary, whereas in the Gaussian case the heights of the potential barriers come
into play.

To say more, the phase transition between 3 and 4 shows that the transition
to Gaussian dynamics is impossible with Lévy perturbations of the type εL, that
is, by scaling only sizes of jumps and not their intensity. However, as we already
mentioned in the Introduction, Gaussian exit times can be obtained if we couple
the size and intensity of jumps.

Finally, we apply the tools developed for Theorems 2.2 and 2.1 to study an-
other class of perturbations with bounded jumps, which leads to exit times of the
order ν([1

ε
,∞))−a for arbitrary a > 0, ν being a symmetric sub-exponential Lévy

measure with α ∈ (0,1).
For any θ > 0, consider a Lévy process with bounded jumps Lε,θ with a char-

acteristic triplet (d, νε,θ ,μ), where

νε,θ = ν|[−θ/ε,θ/ε], θ > 0,(2.15)

d ≥ 0 and μ ∈ R. The corresponding jump-diffusion Xε,θ is a strong solution
of (2.1) with Lε,θ instead of L. In this setting, the jumps of the process εLε,θ and,
hence, of Xε,θ are bounded by ε-independent value θ , which makes impossible the
exit of Xε,θ from a neighborhood of 0 in a single big jump if θ < 1.

THEOREM 2.3 (Bounded sub-exponential tails). For α ∈ (0,1) and θ > 0, let
Lε,θ have the jump measure νε,θ . Then for any δ > 0 there is ε0 > 0 such that for
all 0 < ε ≤ ε0 the following inequalities hold uniformly for t ≥ 0:

(1 − δ) exp(−C1−δ
ε,θ t) ≤ inf|x|≤1−δ

P
(
σx(ε) > t

) ≤ sup
|x|≤1

P
(
σx(ε) > t

)
(2.16)

≤ (1 + δ) exp(−C1+δ
ε,θ t)

with Cε,θ := ν([1
ε
,∞))φ(θ) and

φ(θ) :=
[

1

θ

]
θα +

(
1 −

[
1

θ

]
θ

)α

(2.17)

= inf

{
k∑

i=1

xα
i :

k∑
i=1

xi = 1, xi ∈ [0, θ ], k ≥ 1/θ

}
.
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Consequently, for any |x| < 1 we have

lim
ε→0

(
φ(θ)f

(
1

ε

))−1
ln Eσx(ε) = 1.(2.18)

In particular, if ν([u,∞)) = exp(−uα), u ≥ 1 with α ∈ (0,1) and θ = 1
k

, k ≥ 1,
we have φ(θ) = k1−α , and Theorem 2.3 yields

lim
ε→0

εα ln Eσx(ε) = k1−α.(2.19)

Finally, we note that an interested reader can find more details on the cases α =
0 (in particular, slowly varying f (u) = − lnν([u,∞))) and α = +∞ (in particular,
jump measures with bounded support), as well as on the critical exponential case
α = 1 in [30].

3. Main tools for the proof.

3.1. Key elements of the proof. First, the estimates of Theorems 2.1, 2.2
and 2.3 will follow from essentially elementary but very general inequalities
which allow to determine the bounds for the probability distribution function of
the first exit time in terms of the process’s dynamics on the fixed time intervals
(Lemma 3.1). Whereas the upper estimate of the probability P(σx > t), t ≥ 0, in
terms of P(σx ≤ T ), T > 0 fixed, is well known, the lower estimate requires con-
sideration of the event {σ ∗

x ≤ T }, σ ∗
x being a non-Markovian time of the last exit

from some domain.
Next, in Section 3.3 we decompose the driving Levy process into small and

big jump parts. We show that on the event {σ ∗
x ≤ T }, if the exit from the interval

(−1,1) occurs after the kth big jump, then either the small jump part makes a big
deviation on some short time interval, or k big jumps make up a sequence with
short interjump times.

The exponential bound for the probability of big deviation of the small jump
process is obtained in Section 3.4. Further, we derive an exponential tail estimate
for sums of big jumps expressed in terms of a multivariate minimization problem
with constaints.

With these tools, in Sections 4 and 5 we carefully choose the critical ε-depen-
dent threshold to separate big and small jumps, determine the ε-dependent number
of jumps which contribute mainly to the exit, and finally prove the main results of
this paper.

3.2. Estimates on short time intervals. Let X = (Xt(x))t≥0 be a time homoge-
neous Markov process starting in x ∈ R whose sample paths are right-continuous
and have left limits. Consider an interval I ⊂ R, a subinterval J ⊂ I , and con-
sider the (Markovian) first exit time σx := inf{t ≥ 0 :Xt(x) /∈ I }, and the (non-
Markovian) time σ ∗

x := sup{t < σ :Xt(x) ∈ J } which marks the start of the exit.
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The following lemmas allow to estimate the law of σx from the dynamics of the
process X on relatively short time intervals. For the sake of simplicity of notation,
we sometimes omit the subscript x in expressions containing the times σx and σ ∗

x .

LEMMA 3.1. Let C and T be positive real numbers such that CT < 1.
1. If infx∈I P(σx ≤ T ) ≥ CT , the following estimate from above for t ≥ 0 holds:

sup
x∈I

P(σx > t) ≤ (1 − CT )−1 exp(−Ct).(3.1)

2. If supx∈J P(σ ∗
x ≤ T ) ≤ CT , the following estimate from below for t ≥ 0

holds:

inf
x∈J

P(σx > t) ≥ (1 − CT ) exp
(

ln(1 − CT )

T
t

)
.(3.2)

PROOF. The proof of part 1 is a straightforward application of the strong
Markov property and time homogeneity of X. In fact, choose an arbitrary t > 0
and let k := [ t

T
]. Then for any x ∈ I we obtain the following chain of inequalities:

P(σx > t) ≤ P(σx > kT ) ≤
(

sup
x∈I

P(σx > T )

)k

(3.3)
≤ (1 − CT )t/T −1 ≤ (1 − CT )−1 exp(−Ct).

In order to use similar arguments to prove part 2, we need to define a sequence
of stopping times. Let T 0

J := 0 and for any n ≥ 1 let T n
J := inf{t : t ≥ T n−1

J +
T ,Xt(x) ∈ J }. Obviously {σx ≤ T 1

J } = {σ ∗
x ≤ T } holds for any x ∈ J and, more-

over, T n
J ≥ nT for any n ≥ 1. Again choose an arbitrary t > 0 and let k := [ t

T
].

Then for any x ∈ J we have

P(σx > t) ≥ P(σx > T k+1
J ) ≥

(
inf
x∈J

P(σx > T 1
J )

)k+1

(3.4)

≥ (1 − CT )t/T +1 ≥ (1 − CT ) exp
(

ln(1 − CT )

T
t

)
. �

3.3. Decomposition into small and large jump parts. In our separation of the
jump part of the Lévy process L into a component for small and one for large
jumps the latter will turn out to be a compound Poisson process. This makes large
jumps relatively easily amenable to an individual investigation. Suppose that g > 0
is a cutoff height. We shall leave a particular choice of g to later parts of this paper,
and for the moment use the cutoff height to define the g-dependent decomposition

L = ξ + η(3.5)

with jump measures νξ = ν|[−g,g] and νη = ν|[−g,g]c . The resulting independent
Lévy processes η and ξ possess generating triplets (0, νη,0) and (d, νξ ,μ). For
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the compound Poisson part η and k ≥ 1 we denote by Sk the arrival times of jumps
(S0 = 0), by τk = Sk − Sk−1 its interjump periods, and by Wk the respective jump
sizes, and note that β = νη(R) expresses its jump frequency, that is, the inverse ex-
pected interjump time. Finally, we denote by Nt = sup{k ≥ 0 :Sk ≤ t} the number
of jumps until time t, t ≥ 0.

Lemma 3.1 reduces the main task of the proof of Theorems 2.1 and 2.2 to find-
ing an appropriate T > 0 and estimating the probabilities to exit before T and to
start an exit from a subinterval before T . For technical reasons, we have to re-
duce the interval I = (−1,1) a bit, and study exits from this subinterval. So for
some 0 < δ < 1

2 let I−
δ := (−1 + δ,1 − δ), and σ−

x := inf{t :Xε
t (x) /∈ I−

δ }. Now
take Jδ = [−δ, δ] as a subinterval of I−

δ and, according to Lemma 3.1, consider
σ ∗

x := sup{t ≤ σ−
x :Xε

t (x) ∈ Jδ}. The following auxiliary estimates intend to con-
trol the probability of {σ ∗

x < T } through finding a covering by sets of sufficiently
small probability.

LEMMA 3.2. (i) Let 0 < δ < 1
2 and ε > 0 be such that εg < δ, and x ∈ I−

δ .

Let m := infy∈I−
δ \Jδ

|U ′(y)| and T̂ > 1
m

. Then for any T > 0 and t > T + T̂ , the
following estimate holds:

{σ ∗
x < T ,σ−

x ≥ t} ⊆ {t −SNt < T̂ }∪
{

sup
r≤T̂

ε|ξ
t−T̂ +r

− ξ
t−T̂

| ≥ mT̂ −1
}
.(3.6)

(ii) For any x ∈ I and T ∈ [0, σx], we have the following estimate:

|Xε
T (x)| ≤ |x| +

(
sup− inf

t≤T

)
εLt .(3.7)

PROOF. (i) Choose T > 0, T̂ > 1
m

and t ≥ T + T̂ arbitrarily. Consider the

event A := {σ ∗
x < T ,σ−

x ≥ t, t − SNt ≥ T̂ }. It is sufficient to show that on A we
have

sup
r≤T̂

ε|ξ
t−T̂ +r

− ξ
t−T̂

| ≥ mT̂ − 1.(3.8)

First of all, by definition, on A the process εL cannot make jumps larger than εg

during the time period [t − T̂ , t] and does not leave I−
δ \ Jδ during the time period

[T , t]. Further, by choice of T and T̂ , we have [t − T̂ , T̂ ] ⊆ [T , t] and εg ≤ δ. Thus,
Xε(x) does not change its sign during the time period [t − T̂ , T̂ ]. By definition, we
have A ⊆ {Xε

t (x) �= 0}. Hence, it is sufficient to consider the cases A∩{Xε
t (x) > 0}

and A ∩ {Xε
t (x) < 0} separately. On the former we have

0 < Xε
t (x) = Xε

t−T̂
(x) −

∫ t

t−T̂
U ′(Xε

s−(x)) ds + ε(Lt − L
t−T̂

)

(3.9)
≤ 1 − mT̂ + sup

s≤T̂

ε|ξ
t−T̂ +s

− ξ
t−T̂

|.
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Analogously, on A ∩ {Xε
t (x) < 0} we may estimate

0 > −1 + mT̂ − sup
s≤T̂

ε|ξ
t−T̂ +s

− ξ
t−T̂

|.(3.10)

This completes the proof of part (i).
(ii) For x ∈ I , let �x := inf{t ∈ [0, T ] :Xε

s (x) > 0 for all s ∈ [t, T )}. By con-
struction, Xε

t (x) ≥ 0 and U ′(Xε
t (x)) ≥ 0 for any t ∈ (�x, T ). Thus,

Xε
T (x) = Xε

�x
(x) −

∫ T

�x

U ′(Xε
t−(x)) dt + ε(LT − L�x )

≤ Xε
�x

(x) + ε(LT − L�x )(3.11)

≤
{

x + sup
t≤T

εLt , if �x = 0

ε(LT − L�x−), if �x > 0

}
≤ |x| +

(
sup− inf

t≤T

)
εLt .

Analogously, we have Xε
T (x) ≥ −|x| − (sup− inft≤T )εLt . �

COROLLARY 3.1. (i) Let 0 < δ < 1
2 and ε > 0 be such that εg < δ, and x ∈

I−
δ . Let m := infy∈I−

δ \Jδ
|U ′(y)| and T = 2

m
. Then for any k ≥ 1, the following

inclusions hold:

{σ ∗
x < T ,σ−

x ≥ Sk} ⊆ {σ ∗
x < T ,σ−

x ≥ 2T k ∧ Sk} ⊆ χk ∪
k⋂

i=1

{τi ≤ 2T }(3.12)

with

χk =
k−1⋃
i=0

{
sup
t≤T

ε|ξSi+T +t − ξSi+T | ≥ 1
}
.(3.13)

(ii) For any x ∈ I , k ≥ 1 and T ∈ [0, σx], the following estimate holds:

sup
t<Sk∧T

|Xt | ≤ |x| +
k−1∑
i=1

|εWi | + 2 sup
t≤T

|εξt |.(3.14)

PROOF. (i) Obviously, it suffices to prove the second inclusion in (3.12). We
set T̂ = T = 2

m
, and let χ̂i =: {supt≤T ε|ξSi+T +t − ξSi+T | ≥ 1}, i ≥ 0, and x ∈ I−

δ .
Then we notice that

{σ ∗
x < T ,σ−

x ≥ 2T k ∧ Sk}
(3.15)

⊆ {σ ∗
x < T ,σ−

x ≥ Sk} ∪ {σ ∗
x < T ,σ−

x ≥ 2T k,Sk > 2T k}.
For k ≥ 1, the event {Sk > 2T k} implies that τi > 2T and Si−1 + 2T ≤ 2T k for at
least one i, 1 ≤ i ≤ k, and, therefore, using the equality {τi > 2T } = {NSi−1+2T =
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i − 1} and applying Lemma 3.2(i) with t = Si−1 + 2T , we obtain

{σ ∗
x < T ,σ−

x ≥ 2T k,Sk > 2T k}

⊆
k⋃

i=1

({σ ∗
x < T ,σ−

x ≥ 2T k} ∩ {τi > 2T ,Si−1 + 2T ≤ 2T k})

⊆
k⋃

i=1

({σ ∗
x < T ,σ−

x ≥ Si−1 + 2T } ∩ {τi > 2T })(3.16)

⊆
k⋃

i=1

(
(χ̂i−1 ∪ {Si−1 + 2T − SNSi−1+2T < T }) ∩ {NSi−1+2T = i − 1})

⊆
k⋃

i=1

χ̂i−1 ⊆ χk.

Next we prove the inclusions

{σ ∗
x < T ,σ−

x ≥ Si} ∩ χ̂ c
i−1 ⊆ {τi ≤ 2T }, 1 ≤ i ≤ k,(3.17)

and taking intersections of their right- and left-hand sides over, i we obtain the
proper covering for the set {σ ∗

x < T ,σ−
x ≥ Sk}. Consider the decomposition

{σ ∗
x < T ,σ−

x ≥ Si} ∩ χ̂ c
i−1

(3.18) ⊆ ({σ ∗
x < T ,σ−

x ≥ Si−1 + 2T } ∩ χ̂ c
i−1) ∪ {Si ≤ σ−

x < Si−1 + 2T }.
The second set in the previous formula is obviously contained in {τi ≤ 2T }, while
to study the first one we apply again Lemma 3.2(i) with t = Si−1 + 2T to obtain

{σ ∗
x < T ,σ−

x ≥ Si−1 + 2T } ∩ χ̂ c
i−1

⊆ ({Si−1 + T − SNSi−1+2T
< 0} ∪ χ̂i−1) ∩ χ̂ c

i−1(3.19)

⊆ {NSi−1+2T > i − 1} = {τi ≤ 2T }.
(ii) The second part follows from the estimate(

sup− inf
t<Sk∧T

)
εLt ≤

(
sup− inf

t<Sk

)
εηt +

(
sup− inf

t<T

)
εξt

(3.20)

≤
k−1∑
i=1

|εWi | + 2 sup
t≤T

|εξt |.
�

3.4. Estimates of the small jump process ξ . In this subsection we shall give
some estimates for the tails of the maximal fluctuation of the small jump com-
ponent in the decomposition of noise derived in the previous subsection. In the
statement we intend to keep the dependence on the parameters as general as pos-
sible, and as explicit as necessary later.

LEMMA 3.3. Let ν �= 0 be a symmetric Lévy measure, b ≥ 0 and ρ ∈ R. For
g ≥ 1 let ξ = (ξt )t≥0 denote the Lévy process defined by the characteristic triple



EXIT TIMES AND LIGHT JUMPS 543

(b, ν|[−g,g], ρ). Then for any δ > 0 there exists u0 > 0 such that, for T > 0, g ≥
1, f ≥ g satisfying f

T g
≥ u0, the following estimate holds:

P
(

sup
t≤T

|ξt | > f

)
≤ exp

(
−(1 − δ)

f

g
ln

f

gT

)
.(3.21)

REMARK 3.1. In particular, if we parameterize g = gε , f = fε and T = Tε

and assume that fε

gεTε
→ ∞ as ε → 0, then for every δ > 0 there exists ε0 > 0, such

that (3.21) holds for any 0 < ε ≤ ε0.

PROOF OF LEMMA 3.3. First let us consider the case ρ = 0. In this case, for
any g > 0, the process ξ is a martingale. For any h > 0, the reflection principle for
symmetric Lévy processes and the Chebyshev inequality applied to the exponent
of ξT yield

P
(

sup
t≤T

|ξt | > f

)
≤ 4P(ξT > f ) ≤ 4e−hf EehξT .(3.22)

The Lévy measure of ξ has bounded support. Thus, the analytic extension of
the characteristic function of ξ can be used to estimate EehξT . Denote m := ∫

R
(1∧

y2)ν(dy) < ∞, and let h := 1
g

ln f
gT

. Now recalling that g ≥ 1, we can choose u0

large enough, such that b
2h2 ≤ b

2 (ln f
gT

)2 ≤ m
f
gT

for any f
gT

≥ u0. The extension
of the characteristic function of ξ yields the chain of inequalities

EehξT = exp
[
b

2
h2T + T

∫
|y|≤g

(ehy − 1 − hyI{|y| < 1})ν(dy)

]

= exp

[
b

2
h2T + T

∫
|y|≤g

(
hyI{|y| ≥ 1} +

∞∑
k=2

(hy)k

k!
)
ν(dy)

]

(3.23)

≤ exp

[
b

2
h2T + T

∫
|y|≤g

(
hg(1 ∧ y2) +

∞∑
k=2

(hg)k

k! (1 ∧ y2)

)
ν(dy)

]

≤ exp
[
mf

g
+ T m exp(hg)

]
= exp

[
2mf

g

]
.

The statement of the lemma for ρ = 0 follows immediately from (3.22) for suffi-
ciently large u0, such that (2m + ln 4)/ ln(

f
gT

) < δ for f
gT

≥ u0.
If ρ �= 0, we apply the previous argument to the symmetric martingale (ξt −

ρt)t≥0 and use the estimate

P
(

sup
t≤T

|ξt | > f

)
≤ P

(
sup
t≤T

|ξt − ρt | > f − |ρ|T
)

(3.24)

≤ P
(

sup
t≤T

|ξt − ρt | > (1 − δ′)f
)
,
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which holds for any δ′ > 0 and sufficiently large f
T

≥ f
gT

. �

3.5. Tail estimates for the sum of big jumps of η. In this crucial subsection
we shall give tail estimates for finite sums of jump heights by exponential rates
depending on sums of logarithmic tails of the jump laws. The asymptotics of the
exit times considered will later be seen to depend on the convexity properties of
this sum of logarithmic tails.

Let again ν �= 0 be a symmetric Lévy measure. For g ≥ 1, let η = (ηt )t≥0 be the
Lévy process defined by the characteristic triple (0, ν|[−g,g]c ,0). It is clear that η

is a compound Poisson process. Let Wk , k ≥ 1, denote its jump sizes. The random
variables Wk are i.i.d. and satisfy |Wk| ≥ g.

For u > 0 denote f (u) = − lnν([g ∨ u,∞)), with the convention ln 0 = −∞.
Let β := ν([−g,g]c) = 2 exp(−f (g)).

LEMMA 3.4. For k ≥ 1, let r and g be such that r > kg. Then for any δ ∈
(0,1) such that (1 − δ)r > kg the following estimate holds:

P

(
k∑

i=1

|Wi | > r

)

≤ 2k

βk

(
2 + ln r − lng

ln(1 + δ)

)k

(3.25)

× exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − δ)r, xi ∈ [g, r]
})

.

PROOF. Denote A := {(x1, . . . , xk) ∈ [g, r]k :
∑k

i=1 xi ≥ r}. We have

P

(
k∑

i=1

|Wi | > r

)
≤ kP(|W1| ≥ r) + P

(
(|W1|, . . . , |Wk|) ∈ A

)
.(3.26)

The first summand can be estimated as

P(|W1| ≥ r)

≤ 2β−1 exp(−f (r))
(3.27)

= 2kβ−k exp
(−(

f (r) + (k − 1)f (g)
))

≤ 2kβ−k exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi ≥ (1 − δ)r, xi ∈ [g, r]
})

.

To estimate the second summand, we cover the set A by a union of parallelepipeds
of a special form. Let M := [ ln r−lng

ln(1+δ)
] and consider the set of points

S := {si,0 ≤ i ≤ M}, si = (1 + δ)ig(3.28)
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and note that sM ≤ r and (1 + δ)sM > r . Consider (M + 1)k parallelepipeds of the
type

Pt1,...,tk := [t1, (1 + δ)t1] × · · · × [tk, (1 + δ)tk], t1, . . . , tk ∈ S.(3.29)

Obviously, the union of these (M +1)k parallelepipeds covers the cube [g, r]k , and
thus the set A. Let N denote the smallest covering of A by these parallelepipeds.
If some Pt1,...,tk ∈ N , that is, Pt1,...,tk ∩ A �= ∅, then

r ≤ max
(x1,...,xk)∈Pt1,...,tk

k∑
i=1

xi = (1 + δ)

k∑
i=1

ti(3.30)

and, thus,
∑k

i=1 ti ≥ (1 + δ)−1r ≥ (1 − δ)r . Then

P
(
(|W1|, . . . , |Wk|) ∈ A

)

≤ ∑
Pt1,...,tk

∈N

k∏
j=1

P
(|Wj | ∈ [tj , (1 + δ)tj ])

≤ (M + 1)k max
Pt1,...,tk

∈N

k∏
j=1

P
(|Wj | ∈ [tj , (1 + δ)tj ])

≤ (M + 1)k max
Pt1,...,tk

∈N

k∏
j=1

P(|W1| ≥ tj )(3.31)

≤ 2k(M + 1)kβ−k max
Pt1,...,tk

∈N
exp

(
−

k∑
j=1

f (tj )

)

≤ 2k(1 + M)kβ−k

× exp

(
− inf

{
k∑

j=1

f (xj ) :
k∑

j=1

xi ≥ (1 − δ)r, xj ∈ [g, r]
})

.

The monotonicity of f and (3.27) lead to

P

(
k∑

i=1

|Wi | > r

)

≤ 2k(k + (1 + M)k
)
β−k

× exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi ≥ (1 − δ)r, xi ∈ [g, r]
})

(3.32)

= 2k(k + (1 + M)k
)
β−k

× exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − δ)r, xi ∈ [g, r]
})

.
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Finally, the elementary inequality k+ (1+M)k ≤ (2+M)k , k ≥ 1, M ≥ 0, applied
to the prefactor completes the estimation. �

3.6. A simple minimization problem. Later in Sections 5.2.2 and 5.3.2 we will
apply Lemma 3.4 to estimate the tails of sums of big jumps of the process L. We
shall use the following result. Let k ≥ 1 and a > 0. Then for 0 < α ≤ 1 and θ > 0,
we have

inf

{
k∑

i=1

xα
i :

k∑
i=1

xi = a, xi ∈ [0, θa], k ≥ 1

θ

}

(3.33)

=
[

1

θ

]
(θa)α +

(
a −

[
1

θ

]
θa

)α

and, in particular, for 1 ≤ θ ≤ +∞,

inf

{
k∑

i=1

xα
i :

k∑
i=1

xi = a, xi ∈ [0, θa]
}

= aα.(3.34)

On the other hand, for α ≥ 1, we have

inf

{
k∑

i=1

xα
i :

k∑
i=1

xi = a, xi ≥ 0

}
= k

(
a

k

)α

.(3.35)

A straightforward application of the method of Lagrangian multipliers implies
that the local extremum of the function to minimize is attained for x1 = · · · =
xk = a/k. Since for α ≥ 1 this extremum is a local (and global) minimum, the
equality (3.35) follows.

In the sub-exponential case, the point determined above is a local maximum
and, therefore, the minimum should be looked for on the boundary of the domain.
This leads to the equalities (3.34) and (3.33).

The essentially different solutions to the minimization problems above are due
to convex, respectively, concave behavior of the mapping x → xα for α ∈ (0,1],
respectively, α ≥ 1.

4. The upper bounds. In this section we employ the first part of Lemma 3.1
in order to deduce upper bounds for the law of exit times presented in Theo-
rems 2.1, 2.2 and 2.3. This is done in separate arguments in the sub-, super-
exponential cases and the case of bounded jumps.

4.1. Sub-exponential tails. Proof of Theorem 2.1, upper bound. For the choice
gε := 1

2ε
, ε > 0, let us consider a decomposition L = ξε +ηε as in Section 3.3. Let
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zε(x) be a solution of the corresponding stochastic differential equation driven by
small jumps, namely,

zε
t (x) = x −

∫ t

0
U ′(zε

s−(x)) ds + εξε
t .(4.1)

By construction, we have Xε
τ1

(x) = zε
τ1

(x)+ εW1. Thus, for any ε > 0, T > 0, and
x ∈ I , the following estimate holds:

{σx < T } ⊇ {τ1 < T,Xε
τ1

(x) /∈ I }
(4.2)

= {
τ1 < T,εW1 /∈ (−1 − zε

τ1
(x),1 − zε

τ1
(x)

)}
.

Since τ1, W1 and zε(x) are independent, we get

P(σx < T ) ≥ P(τ1 < T ) inf
y∈R

P
(
εW1 /∈ (−1 − y,1 − y)

)
(4.3)

= (1 − e−βεT )β−1
ε inf

y∈R

νε
η

((−1 − y

ε
,

1 − y

ε

)c)
.

Symmetry of the jump measure implies infy∈R νε
η((

−1−y
ε

,
1−y

ε
)c) ≥ νε

η([1
ε
,∞)) =

1
2Cε . Using the elementary inequality 1 − e−x ≥ x − x2/2, x ≥ 0, yields

P(σx < T ) ≥ T

(
1 − βεT

2

)
Cε

2
.(4.4)

Then we apply Lemma 3.1(1) to obtain for any t ≥ 0, T ∈ (0,2/βε) that

sup
x∈I

P(σx > t) ≤
(

1 − T

(
1 − βεT

2

)
Cε

2

)−1

exp
[
−t

(
1 − βεT

2

)
Cε

2

]
.(4.5)

The upper bound in Theorem 2.1 follows immediately by taking the infimum of
the right-hand side of the latter estimate over T ∈ (0,2/βε).

4.2. Super-exponential tails. Proof of Theorem 2.2, upper bound. We need
to show that for any δ ∈ (0,1] there exists T > 0 and ε0 > 0, such that for any
0 < ε < ε0 the following estimate holds:

inf
x∈I

P(σx ≤ T ) ≥ T D1+δ
ε(4.6)

with Dε defined in Theorem 2.2. Indeed, since (1 −T D1+δ
ε )−1 < 1 + δ for ε small

enough, Lemma 3.1 yields the assertion.
Let δ′ := δ/7, M := supy∈I |U ′(y)|, and let us choose T ∈ (0, δ′

M
∧ 1). Due to

symmetry, it is sufficient to consider x ∈ [0,1). We start by remarking that σx > T
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implies the inequality

1 > Xε
T (x) = x −

∫ T

0
U ′(Xε

s−(x)) ds + εLT ≥ −MT + εLT .(4.7)

Since MT < δ′, we conclude {σx > T } ⊆ {εLT < 1 + δ′} and, thus,

{σx ≤ T } ⊇ {εLT ≥ 1 + δ′}.(4.8)

Recall that qε denotes the ε-quantile of ν([·,∞)), the positive tail of the Lévy
measure, and set

gε := (α − 1)−1/αqε.(4.9)

Since the exponent f (u) := − lnν([u,∞)) is regularly varying at +∞ with index
α > 1, we have gε → ∞ and εgε → 0 as ε → 0.

Consider a decomposition L = ξ + ϕε + ηε , where ξ , ϕε and ηε are Lévy
processes having generating triplets (d, ν|(−∞,1],μ), (0, ν|(1,gε),0) and (0,

ν|[gε,∞),0) accordingly. If N(η) denotes the counting process of ηε and β
(η)
ε =

ν([gε,∞)), we have ϕε
T > 0 and ηε

T ≥ gεN
(η)
T . Inequality (4.8) yields the inclu-

sion

{σx ≤ T } ⊇ {εξT ≥ −δ′} ∩ {εηε
T ≥ 1 + 2δ′}

(4.10)

⊇ {εξT ≥ −δ′} ∩
{
N

(η)
T ≥ 1 + 2δ′

εgε

}
.

The random variables ξT and N
(η)
T are independent and P(εξT ≥ −δ′) ≥ 1 − δ′

for ε small enough. Let kε := [1+2δ′
εgε

] + 1. In particular, this means that kε/β
(η)
ε →

∞ as ε → 0. Thus, with the help of the inequality k! ≤ 1
2kk , k ≥ 2, and the previous

estimate, we get for ε sufficiently small that

P(σx ≤ T ) ≥ (1 − δ′)P
(
N

(η)
T = kε

)

= (1 − δ′) exp
(−β(η)

ε T
)(β(η)

ε T )kε

kε!
(4.11)

≥ 1

2

(β
(η)
ε )(1+δ′)kε

kε!
≥ exp

(−(1 + δ′)kε

(
lnkε + ∣∣lnβ(η)

ε

∣∣)).
Moreover, using the definition of regularly varying functions, and the fact that
qε → ∞ as ε → 0, we estimate for small ε

∣∣lnβ(η)
ε

∣∣ = f (gε) ≤ (1 + δ′)
(

gε

qε

)α

f (qε) ≤ 1 + δ′

α − 1
| ln ε|.(4.12)
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By definition of kε , we have ln kε ≤ | ln ε| and kε ≤ 1+3δ′
εgε

for ε small enough. This
leads to the final estimate

P(σx ≤ T ) ≥ exp
(
−(1 + δ′)2 α

α − 1
kε| ln ε|

)
(4.13)

≥ exp
(
−(1 + δ′)2(1 + 3δ′)dα

| ln ε|
εqε

)
≥ T D1+δ

ε .

4.3. Bounded sub-exponential tails. Proof of Theorem 2.3, upper bound. Here
we proceed as in the case of super-exponential tails. Let α ∈ (0,1) and θ ∈ ( 1

n
, 1

n−1 ]
for some n ≥ 1. Then φ(θ) = (n − 1)θα + ϑα , ϑ = 1 − (n − 1)θ .

Let δ > 0 be fixed and let δ′ be positive and specified later. Let M =
supx∈I |U ′(x)| and let T ∈ (0, δ′

M
∧ 1).

Consider a decomposition Lε,θ = ξε,θ + ηε,θ as in Section 3.3 with big
jumps Wi being distributed with the law β−1

ε,θ νε,θ |[−gε,gε]c , βε,θ = 2ν((gε,
θ
ε
]), and

gε = 1/
√

ε.
For x ∈ [0,1), we obtain similarly to (4.8) that

{σx < T } ⊇ {εLε,θ
T > 1 + δ′}

⊇ {εξε,θ
T ≥ −δ′} ∩

{
n∑

i=1

εWi ≥ 1 + 2δ′
}

∩ {NT = n}
(4.14)

⊇ {εξε,θ
T ≥ −δ′} ∩

n−1⋂
i=1

{εWi ≥ θ − δ′}

∩ {εWn ≥ ϑ + (n + 1)δ′} ∩ {NT = n}.
We will take into account that P(εξ

ε,θ
T ≥ −δ′) ≥ 1/2 for ε small enough. To es-

timate P(εWi > θ − δ′) and P(εWn > ϑ + (n + 1)δ′), the following inequalities
will be used. For any 0 < c < 1, we have from the definition of regularly varying
functions that for c1 < (1 − c)−α − 1 and u big enough

f (u) − f
(
(1 − c)u

) ≥ (
1 − (1 + c1)(1 − c)α

)
f (u) ≥ uα/2(4.15)

and, thus,

ν([(1 − c)u,u])
ν([u,∞))

≥ ν([(1 − c)u,∞))

ν([u,∞))
− 1 = ef (u)−f ((1−c)u) − 1 ≥ 1.(4.16)

Using independence of ξT , Wi and NT , the estimates e−βε,θ T ≥ 1/2 and (4.16),
and choosing δ′ < θ−ϑ

n+2 and small enough such that

f ((ϑ + (n + 2)δ′)/ε)
f (θ/ε)

≤ (1 + δ′)
(

ϑ + (n + 2)δ′

θ

)α

≤ δ

3
+

(
ϑ

θ

)α

,(4.17)



550 P. IMKELLER, I. PAVLYUKEVICH AND T. WETZEL

we get for small ε

P(σx < T )

≥ 1

2
P(NT = n)

(
P(εW1 ≥ θ − δ′)

)n−1P
(
εW1 ≥ ϑ + (n + 1)δ′)

≥ 1

2
e−βε,θ T T n

n! · ν
([

θ − δ′

ε
,
θ

ε

])n−1

· ν
([

ϑ + (n + 1)δ′

ε
,
θ

ε

])

≥ 1

2
e−βε,θ T T n

n! · ν
([

θ

ε
,∞

))n−1

· ν
([

ϑ + (n + 2)δ′

ε
,∞

))
(4.18)

≥ T n

4n! exp
(
−(n − 1)f

(
θ

ε

)
− f

(
ϑ + (n + 2)δ′

ε

))

≥ T exp
(
−

(
1 + δ

2

)(
n − 1 +

(
ϑ

θ

)α)
f

(
θ

ε

))

≥ T exp
(
−(1 + δ)

(
(n − 1)θα + ϑα)

f

(
1

ε

))
= T C1+δ

ε,θ .

5. The lower bounds.

5.1. General remarks and reduction of starting values. We will use the second
part of Lemma 3.1 to establish the lower bound estimates for Theorems 2.1, 2.2
and 2.3. Consider σ−

x and σ ∗
x as in Lemma 3.2. In the sub-exponential case in

Section 5.2 we will show that, for some appropriately chosen δ0 > 0, p ≥ 1, T > 0
and any δ ∈ (0, δ0), the following estimate holds for small ε:

sup
|x|≤δ

P(σ ∗
x < T ) ≤ T C1−pδ

ε .(5.1)

In Sections 5.4 and 5.3 we establish the analogous inequalities with Cε,θ and Dε

replacing Cε for the case of bounded and super-exponential jumps, respectively.
The estimate (5.1) established, thus Lemma 3.1 yields

inf|x|≤δ
P(σx > t) ≥ inf|x|≤δ

P(σ−
x > t)

≥ (1 − T C1−pδ
ε ) exp

(
ln(1 − T C

1−pδ
ε )

T
t

)
(5.2)

≥ (1 − δ) exp
(−C1−(p+1)δ

ε t
)

for ε sufficiently small and uniformly over t ≥ 0.
It is left to get rid of the constraint |x| ≤ δ on the initial value. This can be done

with help of the inequality

inf
x∈I−

δ

P(σx > t) ≥ (1 − δ) inf|x|≤δ
P(σx > t),(5.3)
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which will be proven to hold for all δ ∈ (0,1/2] and ε small enough. Indeed, let
δ′ = δ

p+1 ≤ δ
2 . Thus, (5.2) and (5.3) yield

inf
x∈I−

δ

P(σx > t) ≥ inf
x∈I−

δ′
P(σx > t) ≥ (1 − δ′) inf|x|≤δ′ P(σx > t)

(5.4)
≥ (1 − δ′)2 exp

(−C1−(p+1)δ′
ε t

) ≥ (1 − δ) exp(−C1−δ
ε t)

for any t ≥ 0 and ε sufficiently small. This entails the lower bounds of the esti-
mate (2.7). The estimates leading to (2.9) and (2.16) are obtained analogously.

The structures of the proofs providing the lower bounds in Theorems 2.1, 2.2
and 2.3 are similar. As is shown above, it is sufficient to prove that inequalities
(5.1) and (5.3) hold. To do this, we consider a decomposition L = ξε + ηε as in
Section 3.3 with some appropriately chosen gε , such that gε → ∞ and εgε → 0
as ε → 0. In the Sections 5.2.1, respectively, 5.3.1 we will use Lemma 3.2 and
Corollary 3.1 to obtain an embedding of {σ ∗

x < T } in terms of sets described by
the large and small jump parts ξε and ηε . In Sections 5.2.2, respectively, 5.3.2 we
will use Lemmas 3.3 and 3.4 to estimate the probabilities of the covering sets.

PROOF OF INEQUALITY (5.3). Let σ 1
x := inf{t ≥ 0 : |Xε

t (x)| ≤ δ} and σ 2
x :=

inf{t ≥ 0 : |Xε
t (x)| ≥ 1 − δ

2}. The strong Markov property and time homogeneity
of Xε yield for any x ∈ I−

δ that

P(σx > t) ≥ P(σx > σ 1
x + t) ≥ P(σx > σ 1

x ) inf|x|≤δ
P(σx > t)

(5.5)
≥ P(σ 2

x > σ 1
x ) inf|x|≤δ

P(σx > t).

Let m̃ := miny∈I−
δ/2\[−δ,δ] |U ′(y)| and T := 2/m̃. We have

{σ 2
x ≤ σ 1

x } ⊆ {σ 1
x ≥ T ,σ 2

x ≥ T , τ1 > T } ∪ {σ 2
x < T ∧ τ1} ∪ {τ1 ≤ T }.(5.6)

We choose ε sufficiently small such that εgε < δ. For such ε in analogy with (3.9),
we get {σ 1

x ≥ T ,σ 2
x ≥ T , τ1 > T } ⊆ {supt≤T |εξε

t | > m̃T − 1 = 1}, and for any x ∈
I−
δ , the second part of Lemma 3.2 yields {σ 2

x < T ∧τ1} ⊆ {(sup− inft<T ∧τ1
)εLt ≥

δ
2} ⊆ {supt≤T |εξε

t | ≥ δ
4}. Thus, since gε → ∞ and εgε → 0 as ε → 0, we have

sup
x∈I−

δ

P(σ 2
x ≤ σ 1

x ) ≤ P
(

sup
t≤T

|εξε
t | ≥ δ

4

)
+ P(τ1 ≤ T ) ≤ δ(5.7)

for ε small enough, and (5.5) yields the assertion. �

5.2. Sub-exponential tails. Proof of Theorem 2.2, lower bound.

5.2.1. Estimate of beginning of exit. Let Jδ = [−δ, δ], and m = inf{|U ′(y)| :
y ∈ I−

δ \ Jδ} as in Lemma 3.2. The following estimates would hold analogously
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for any choice T > 0 and T̂ > 1
m

. For simplicity, we choose T̂ = 2
m

and T = T̂ ,

such that mT̂ − 1 = 1 and T + T̂ = 2T . Let k ≥ 1 and abbreviate

χk :=
k−1⋃
i=0

{
sup
t≤T

ε|ξε
Si+T +t − ξε

Si+T | ≥ 1
}
.(5.8)

For x ∈ Jδ , we have

{σ ∗
x < T } ⊆ χk ∪ ({σ ∗

x < T ,σ−
x ≥ Sk ∧ 2T k} \ χk)

(5.9)

∪
k−1⋃
j=0

({σ ∗
x < T ,Sj ≤ σ−

x < Sj+1 ∧ 2T k} \ χk).

For 1 ≤ j ≤ k, the first part of Corollary 3.1 yields that

{σ ∗ < T,σ− ≥ Sj } ⊆ χj ∪
j⋂

i=1

{τi ≤ 2T }(5.10)

and for all 1 ≤ j ≤ k − 1 and x ∈ Jδ , we obtain with the help of Corollary 3.1(ii)
and the previous inclusion that

{σ ∗
x < T ,Sj ≤ σ−

x < Sj+1 ∧ 2T k} \ χk

⊆ {σ−
x < Sj+1 ∧ 2T k} ∩ ({σ ∗

x < T ,σ−
x ≥ Sj } \ χj )

(5.11)

⊆
{

sup
t<Sj+1∧2T k

|Xε
t (x)| ≥ 1 − δ

}
∩

j⋂
i=1

{τi ≤ 2T }

⊆
({ j∑

i=1

|εWi | ≥ 1 − 3δ

}
∪

{
sup

t≤2T k

|εξε
t | ≥ δ

2

})
∩

j⋂
i=1

{τi ≤ 2T }.

In the particular case j = 0 we get directly with the help of Corollary 3.1(ii) that

{σ ∗
x < T ,σ−

x ∈ [0, S1 ∧ 2T k)} \ χk ⊆ {σ ∗
x < T ,σ−

x < S1 ∧ 2T k}
(5.12)

⊆
{

sup
t≤2T k

|εξε
t | ≥ δ

2

}
.

Putting all sets in (5.9) together, we obtain

{σ ∗
x < T } ⊆ χk ∪

k⋂
i=1

{τi ≤ 2T } ∪
{

sup
t≤2kT

|εξε
t | ≥ δ

2

}
(5.13)

∪
k−1⋃
j=1

( j⋂
i=1

{τi ≤ 2T } ∩
{ j∑

i=1

|εWi | ≥ 1 − 3δ

})
.
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5.2.2. The lower bound via beginning of exit. Let δ0 := 1
3α(1 − α). Pick δ ∈

(0, δ0) and let

gε := ε−(1−α−δ) and k = kε := [
ε−(α−δ)].(5.14)

Then (5.13) yields

P(σ ∗
x < T ) ≤ P(χkε ) + P(τ1 ≤ 2T )kε + P

(
sup

t≤2kεT

|εξε
t | ≥ δ

2

)
(5.15)

+
kε−1∑
k=1

P(τ1 ≤ 2T )k · P

(
k∑

i=1

|εWi | ≥ 1 − 3δ

)
.

In the next steps we estimate the summands of the previous formula. Recall that
by definition we have εkεgε → 0 as ε → 0.

1. We first apply the strong Markov property of ξε and Lemma 3.3 with 2kεT

instead of T and δ
2ε

instead of f to the first and third term on the right-hand side
of (5.15) to obtain for ε sufficiently small

P(χkε ) + P
(

sup
t≤2kεT

|εξε
t | ≥ δ

2

)

≤ kεP
(

sup
t≤T

|εξε
t | ≥ 1

)
+ P

(
sup

t≤2kεT

|εξε
t | ≥ δ

2

)

≤ (kε + 1)P
(

sup
t≤2kεT

|εξε
t | ≥ δ

2

)
(5.16)

≤ (kε + 1) exp
(
−(1 − δ)

δ

2εgε

ln
δ

4T εkεgε

)

≤ exp
(
− 1

εgε

| ln ε|
)

≤ exp
(−ε−(α+δ/2)) ≤ T Cε.

2. We next deal with the second term on the right-hand side of (5.15). Recall
that the negative logarithm of the Lévy measure’s tail f (u), u > 1, is a regularly
varying function with index α ∈ (0,1). Since gε → ∞ as ε → 0, we can choose ε

sufficiently small, such that f (gε) ≥ gα−δ
ε and the following estimate holds:

P(τ1 ≤ 2T )kε ≤ (2Tβε)
kε = (

4T e−f (gε)
)kε ≤ (4T e−gα−δ

ε )kε

≤ exp
(−(1 − δ)ε−(1−α−δ)(α−δ)−(α−δ))(5.17)

≤ exp
(−(1 − δ)ε−(α+α(1−α)−3δ)).

For the first inequality in the chain (5.17), we hereby use that the law of τ1 is expo-
nential with mean β−1

ε , while α ∈ (0,1) is needed for the last. Thus, the hypothesis
δ < 1

3α(1 − α) yields P(τ1 ≤ 2T )kε < T Cε for ε sufficiently small.
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3. We finally treat a summand of the last term on the right-hand side of (5.15).
By definition, we have εgεkε → 0 as ε → 0. Thus, ε can be chosen sufficiently
small, such that by Lemma 3.4 applied with r = 1−3δ

ε
, to estimate P(

∑k
i=1 |εWi | ≥

1 − 3δ), we get the following inequalities:

max
1≤k≤kε−1

P(τ1 ≤ 2T )k · P

(
k∑

i=1

|εWi | ≥ 1 − 3δ

)

≤ max
1≤k≤kε−1

(2Tβε)
k · P

(
k∑

i=1

|εWi | ≥ 1 − 3δ

)

≤ max
1≤k≤kε−1

(
8T + 4T

| ln ε| − lngε

ln(1 + δ)

)k

× exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − 3δ)(1 − δ)

ε
,

(5.18)

xi ∈
[
gε,

1 − 3δ

ε

]})

≤ | ln ε|2kε

× max
1≤k≤kε−1

exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − 3δ)(1 − δ)

ε
,

xi ∈
[
gε,

1

ε

]})
.

Note that for the last inequality, the minimizer on the intervals [gε,
1
ε
] is smaller, so

it gives an upper estimate. For the crucial estimate of the exponential rate, we call
upon Potter’s bound for the regularly varying function f (see [2], Theorem 1.5.6).
Since gε → ∞ as ε → 0, it provides the following estimate for all x ∈ [gε,

1
ε
] and ε

sufficiently small:

f (x) ≥ (1 − δ)f (ε−1)(εx)α+δ.(5.19)

Therefore, we get

inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − 3δ)(1 − δ)ε−1, xi ∈ [gε, ε
−1]

}

≥ (1 − δ)f (ε−1)εα+δ

(5.20)

× inf

{
k∑

i=1

xα+δ
i :

k∑
i=1

xi = (1 − 3δ)(1 − δ)ε−1, xi ∈ [gε, ε
−1]

}

≥ (1 − δ)f (ε−1)εα+δ((1 − 3δ)(1 − δ)ε−1)α+δ ≥ (1 − 5δ)f (ε−1).
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For obtaining the second inequality in the preceding chain, we have to recall that
α + δ < 1, and use the inequality (3.34). So the estimation in (5.18) may be com-
pleted by

max
1≤k≤kε−1

P(τ1 ≤ 2T )k · P

(
k∑

i=1

|εWi | ≥ 1 − 3δ

)

≤ exp
(−(1 − 5δ)f (ε−1) + 2kε ln | ln ε|)(5.21)

≤ exp
(−(1 − 6δ)f (ε−1)

) ≤ T C1−7δ
ε ,

which again holds for ε small enough. Collecting the bounds we obtained for the
terms in (5.15), we finally get for ε small enough

P(σ ∗
x < T ) ≤ 2T Cε + (kε − 1)T C1−7δ

ε ≤ T C1−8δ
ε .(5.22)

Thus, we obtain the desired upper bound, and complete the proof of Theorem 2.1.

5.3. Super-exponential tails. Proof of Theorem 2.2, lower bound.

5.3.1. Estimate of beginning of exit. Again, we start by covering the crucial
set {σ ∗

x < T }, x ∈ Jδ , by sets described in terms of the small and large jump parts.
Let k ≥ 1. Let m, T̂ , T and χk be defined as in Section 5.2.1. Then with help of
Corollary 3.1(i), we obtain

{σ ∗
x < T } = {σ ∗

x < T ,σ−
x < 2T k ∧ Sk} ∪ {σ ∗

x < T ,σ−
x ≥ 2T k ∧ Sk}

(5.23)

⊆ {σ ∗
x < T ,σ−

x < 2T k ∧ Sk} ∪ χk ∪
k⋂

i=1

{τi ≤ 2T }.

Define the set

χ̄k :=
k−1⋃
i=1

{εWi ≥ δ}.(5.24)

We notice that on the event {σ ∗
x < T ,σ−

x < 2T k ∧ Sk} ∩ χ̄ c
k the estimate

(
sup− inf

t≤σ−
x

)
εLt ≥ m(σ−

x − σ ∗
x )(5.25)

holds. To see this, we use similar arguments as in the proof of Lemma 3.2(i).
Indeed, on the event {σ ∗

x < T ,σ−
x < 2T k ∧ Sk} ∩ χ̄ c

k the process Xε(x) does not
change its sign during the time interval [σ ∗

x , σ−
x ], and for any t ∈ (σ ∗

x , σ−
x ) we

have |U ′(Xt−(x))| ≥ m. Further, we have that if 0 < Xσ ∗
x −(x) ≤ δ, then Xσ−

x
(x) ≥
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1 − δ, and Xσ−
x
(x) = Xσ ∗

x −(x) + ∫ σ−
x

σ ∗
x

U ′(Xt−(x)) dt + ε(Lσ−
x

− Lσ ∗
x −), and, thus,

(
sup− inf

t≤σ−
x

)
εLt ≥ (1 − 2δ) + m(σ−

x − σ ∗
x ) ≥ m(σ−

x − σ ∗
x ).(5.26)

The case of negative values Xσ ∗
x −(x) is considered analogously.

This and Lemma 3.2(ii) lead to the following estimate for k ≥ 1 and x ∈ Jδ

(recall mT = 2):

{σ ∗
x < T ,σ−

x < 2T k ∧ Sk} ∩ χ̄ c
k

⊆ {σ−
x < 4T }

∪
k−1⋃
i=2

({σ ∗
x < T ,σ−

x ∈ [2iT ,2(i + 1)T ], σ−
x < Sk} ∩ χ̄ c

k

)

⊆
{(

sup− inf
t<4T

)
εLt ≥ 1 − 2δ

}
(5.27)

∪
k−1⋃
i=2

{(
sup− inf
t<2(i+1)T

)
εLt ≥ (2i − 1)T m

}

⊆
{(

sup− inf
t<4T

)
εLt ≥ 1 − 2δ

}

∪
k−1⋃
i=2

{
i∑

j=0

(
sup− inf

t<2T

)
ε(L2jT +t − L2jT ) ≥ i + 1

}

⊆
k−1⋃
i=0

{(
sup− inf

t<4T

)
ε(L2iT +t − L2iT ) ≥ 1 − 2δ

}
.

In particular, this entails

{σ ∗
x < T } ⊆ χk ∪ χ̄k ∪

k⋂
i=1

{τi ≤ 2T }
(5.28)

∪
k−1⋃
i=0

{(
sup− inf

t≤4T

)
ε(L2iT +t − L2iT ) ≥ 1 − 2δ

}
.

5.3.2. The lower bound via beginning of exit. Let δ ∈ (0, 1
6 ∧ (α−1)) be fixed,

let qε := sup{u > 0 :ν([u,∞)) ≥ ε} denote the ε-quantile of the Lévy measure ν,
and set

gε := qε

3
and kε :=

[ | ln ε|
ε

]
.(5.29)
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In particular, since the tails of ν are super-exponential, εgε → 0 as ε → 0.
We shall also use a simple estimate of dα := infy>0(y

−α+1 + y) = α(α −
1)1/α−1. It is easy to see that

1 = inf
y>0

(y−α+1 ∨ y) < dα ≤ (y−α+1 + y)|y=1 = 2.(5.30)

Next, we estimate the probabilities of the events in (5.28).
1. We use the inequality dα ≤ 2 ≤ 3(1 − 2δ) and Lemma 3.3 with f = 1

ε
to

obtain for ε small that

P(χk) ≤ kεP
(

sup
t≤2T

|εξε
t | ≥ 1

)
≤ kε exp

(
−1 − δ

εgε

ln
1

2T εgε

)
(5.31)

≤ kε exp
(−3(1 − 2δ)ε−1q−1

ε | ln ε|) < T Dε.

2. To deal with the second term, recall that f (u) = − lnν([u,∞)) is regularly
varying with α > 1 at infinity, gε < qε and, thus, βε > ε. Then we have

P(χ̄kε ) ≤ kεP(|εW1| ≥ δ) ≤ 2kεβ
−1
ε e−f (δ/ε)

(5.32)
≤ exp

(−(δ/ε)α−δ + 2| ln ε| + lnkε

) ≤ T Dε.

3. Since βε → 0 as ε → 0, we have for sufficiently small ε > 0

P

(
kε⋂

i=1

{τi ≤ 2T }
)

= P(τ1 ≤ 2T )kε ≤ (2Tβε)
kε ≤ exp(−kε) < T Dε.(5.33)

4. The estimate for the last union in (5.28) is the most important part of the
proof. Since for any 0 ≤ i ≤ k −1 the processes (L2iT +t −L2iT )t≥0 have the same
law as L = (Lt )t≥0, its enough to work with the original process L. We prove the
following lemma.

LEMMA 5.1. Let the jump measure ν of L be symmetric and super-exponen-
tial with index α > 1. Then for any T > 0, a > 0, and δ > 0, there exists ε0 > 0
such that for all 0 < ε ≤ ε0 the following estimate holds:

P
((

sup− inf
t≤T

)
εLt > a

)
≤ D(1−δ)a

ε .(5.34)

Applying Lemma 5.1 with a = 1 − 2δ to the last event in (5.28), we get

kεP
((

sup− inf
t≤4T

)
εLt ≥ 1 − 2δ

)
≤ kεD

1−3δ
ε ≤ T D1−4δ

ε(5.35)

for sufficiently small ε. This completes the proof of Theorem 2.2.

PROOF OF LEMMA 5.1. Due to monotonicity, it is sufficient to consider δ ∈
(0, 1

21α
∧ a). Let p := 9α. We shall prove that for any such δ there exists ε0 > 0,
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such that for every 0 < ε < ε0 the estimate P((sup− inft≤T )εLt > a) ≤ D
(1−pδ)a
ε

holds. This entails the asserted inequality.
Consider a decomposition L = ξε + ηε as in Section 3.3 with the threshold

gε := δqε

6
.(5.36)

Note that this gε is different from its counterpart defined in (5.29) at the beginning
of this subsection, and will be only used in the proof of the lemma.

Since (sup− inft≤T )εξε
t ≤ 2 supt≤T |εξε

t |, we have for any n ≥ 1{(
sup− inf

t≤T

)
εLt ≥ a

}

⊆
{(

sup− inf
t≤T

)
εξε

t ≥ δa

}
∪

{(
sup− inf

t≤T

)
εηε

t ≥ (1 − δ)a

}
(5.37)

⊆
{

sup
t≤T

|εξε
t | ≥ 1

2
δa

}
∪ {NT > n}

∪
n⋃

k=1

{
NT = k,

k∑
i=1

|εWi | > (1 − δ)a

}
.

The goal of the next steps consists in estimating the probabilities of the events
figuring in the second line of (5.37) with an appropriately chosen n, namely, with

n := nε =
[

3a

qεε

]
.(5.38)

1. Recall that dα ≤ 2 and apply Lemma 3.3 with f = δa
2ε

to get

P
(

sup
t≤T

|εξε
t | ≥ δa

2

)
≤ exp

(
−(1 − δ)

3a

εqε

ln
3a

T εqε

)
(5.39)

≤ exp
(
−(1 − 2δ)

3a

εqε

| ln ε|
)

< Da
ε

for ε small enough.
2. To estimate P(NT > nε), we will use Stirling’s formula. By choice of gε

and nε we have εgε → 0, lnnε| ln ε| → 1, and βεT ≤ 1 as ε → 0. Thus, for ε sufficiently
small, the estimate nε! ≥ exp(nε(lnnε − 1)) ≥ exp((1 − δ)nε| ln ε|) holds, and we
get

P(NT > nε) ≤
∞∑

k=nε

(βεT )k

k! ≤ (βεT )nε

nε!
∞∑

k=0

(
βεT

nε

)k

≤ (1 + δ)
(βεT )nε

nε!
≤ exp

(−(1 − δ)nε| ln ε|)(5.40)

≤ exp
(
−(1 − 2δ)

3a

εqε

| ln ε|
)

< Da
ε .
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3. As in Section 5.2, the crucial ingredient which produces the phase transition
at α = 1 comes from the following estimate for the exponential rate of sums of
large jumps. Recall that f (u) = − lnν([u,+∞)), u > 0, is regularly varying with
index α > 1. By choice of parameters, we have εgεnε → δ

2 < (1 − δ)2a as ε → 0.

Thus, Lemma 3.4 with r = (1−δ)a
ε

can be used to estimate P(
∑k

i=1 |εWi | ≥ (1 −
δ)a) for 1 ≤ k ≤ nε − 1. Hence, for ε sufficiently small, the following estimate
holds uniformly for all 1 ≤ k < nε:

P

(
k∑

i=1

|εWi | ≥ (1 − δ)a

)

≤ β−k
ε | ln ε|2k exp

(
− inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − δ)2a

ε
,(5.41)

xi ∈
[
gε,

(1 − δ)a

ε

]})
.

Again we invoke Potter’s bound to estimate the negative of the exponential rate.
Choose δ̃ sufficiently small, such that α − δ̃ > 1 and ( δ

2)δ̃ > 1 − δ. For sufficiently

small ε, the estimate f (x) ≥ (1−δ)f (gε)(
x
gε

)α−δ̃ then holds for any x ≥ gε . Thus,
for any 1 ≤ k < nε , we get

inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − δ)2a

ε
, xi ∈

[
gε,

(1 − δ)a

ε

]}

≥ (1 − δ)
f (gε)

gα−δ̃
ε

inf

{
k∑

i=1

xα−δ̃
i :

k∑
i=1

xi = (1 − δ)2a

ε
, xi > 0

}

= (1 − δ)
f (gε)

gα−δ̃
ε

k

(
(1 − δ)2a

εk

)α−δ̃

(5.42)

≥ (1 − 3αδ)f (gε)k

(
a

εgεk

)α−δ̃

≥ (1 − 3αδ)f (gε)nε

(
a

εgεnε

)α−δ̃(nε

k

)α−δ̃−1

≥ (1 − 5αδ)3−α| ln ε|nε

(
nε

k

)α−δ̃−1

.

In the crucial step from the second to the third line of the inequality chain we
use that the relation α − δ̃ > 1 imposes that the function x → xα−δ̃ is convex,

and, therefore, the minimum is taken for the choice xi = (1−δ)2a
kε

, 0 ≤ i ≤ k, due
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to (3.35). The same conditions imply the following inequalities which are used in
the last line of the chain. In fact, for sufficiently small ε, we obtain

f (gε) ≥ (1 − δ)

(
gε

qε

)α

f (qε) ≥ (1 − δ)

(
δ

6

)α

| ln ε|(5.43)

and (
a

εgεnε

)α−δ̃

≥
(

2

δ

)α−δ̃

≥ (1 − δ)

(
2

δ

)α

.(5.44)

Summarizing our conclusions, we may continue the estimate in (5.41) by the in-
equality

P

(
k∑

i=1

|εWi | ≥ (1 − δ)a

)

≤ β−k
ε exp

(
−(1 − 5αδ)3−α| ln ε|nε

(
nε

k

)α−δ̃−1

+ 2nε ln | ln ε|
)

(5.45)

≤ β−k
ε exp

(
−(1 − 6αδ)3−α| ln ε|nε

(
nε

k

)α−δ̃−1)
,

again valid for ε small enough uniformly over 1 ≤ k ≤ nε .
It remains to include the probabilities P(NT = k) for 1 ≤ k < nε into our esti-

mates. For this purpose, we shall estimate max1≤k<nε P(NT = k)P(
∑k

i=1 |εWi | >

(1 − δ)a). This will be done by looking separately at the cases k ∈ A and k ∈ B ,
where

A :=
{

1 ≤ k < nε :
(

nε

k

)α−δ̃−1

> 3α

}
,

(5.46)

B :=
{

1 ≤ k < nε :
(

nε

k

)α−δ̃−1

≤ 3α

}
.

The estimate P(NT = k) ≤ P(τ1 ≤ T )k ≤ (βεT )k is valid for any k ≥ 1. So we
obtain for small enough ε

max
k∈A

P(NT = k)P

(
k∑

i=1

|εWi | > (1 − δ)a

)

≤ T nε exp
(−(1 − 6αδ)| ln ε|nε

)
(5.47)

≤ exp
(
−(1 − 7αδ)3a

| ln ε|
εqε

)
< Da

ε .

Finally, we consider k ∈ B . By choice of parameters and definition of B , we have
infk∈B lnk ≥ (1 − δ)| ln ε| for sufficiently small ε. Hence, for ε small, again by
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means of Stirling’s formula,

P(NT = k) ≤ (βεT )k

k! ≤ βk
ε exp

(−k(ln k − 1 − lnT )
)

≤ βk
ε exp

(−(1 − 2δ)k| ln ε|)(5.48)

≤ βk
ε exp

(
−(1 − 2δ)nε| ln ε| k

nε

)
.

This combines with our estimate for the rate of sums of big jumps to the inequality

max
k∈B

P(NT = k)P

(
k∑

i=1

|εWi | > (1 − δ)a

)

≤ exp
(
−(1 − 6αδ)| ln ε|nε

[
3−α

(
nε

k

)α−δ̃−1

+ k

nε

])
(5.49)

≤ exp
(
−(1 − 6αδ)| ln ε|nε inf

y>0

[
3−αy−(α−δ̃−1) + y

])
.

It is easy to see that infy>0[3−ρy−(ρ−1) + y] = 1
3ρ(ρ − 1)−(1−1/ρ) holds for any

ρ > 1. The mapping ρ → 1
3ρ(ρ − 1)−(1−1/ρ) is continuous on (1,∞). Thus, δ̃ can

be chosen sufficiently small for the following estimate to hold:

inf
y>0

[
3−αy−(α−δ̃−1) + y

] ≥ 3−δ̃ inf
y>0

[
3−(α−δ̃)y−(α−δ̃−1) + y

]
(5.50)

≥ (1 − δ) inf
y>0

[
3−αy−(α−1) + y

] = 1 − δ

3
dα.

So we finally get the inequality

max
k∈B

P(NT = k)P

(
k∑

i=1

|εWi | > (1 − δ)a

)

≤ exp
(
−(1 − 7αδ)

dα

3
| ln ε|nε

)
(5.51)

≤ exp
(
−(1 − 8αδ)adα

| ln ε|
εqε

)

≤ D(1−8αδ)a
ε .

Now combine this with our estimate on A, and take into account that we have nε

summands of the two types. But by its choice, the factor nε being a power func-
tion of ε does not change the exponential asymptotics in the limit ε → 0. This
completes the proof of both Lemma 5.1 and Theorem 2.2. �
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5.4. Bounded sub-exponential tails. Proof of Theorem 2.3, lower bound. Here
we essentially proceed as in Section 5.2. Let θ ∈ ( 1

n
, 1

n−1 ] for some n ≥ 1, and

ϑ := 1 − (n − 1)θ . Let 0 < δ < 1
3α(1 − α) and choose δ′ ∈ (0, δ] small enough

such that (1 − δ′)(ϑ−4δ′+3(δ′)2

ϑ
)α+δ′ ≥ 1 − δ.

Consider the decomposition of the process Lε,θ into a sum of small and big
jump parts with the threshold gε defined in (5.14). Accordingly define

fε,θ (u) := − lnνε,θ ([u,∞)).(5.52)

Clearly, fε,θ (u) ≥ f (u) for 0 < u ≤ θ
ε

, and fε,θ (u) = +∞ otherwise.
With k = kε from (5.14), we use the covering (5.13) and the estimate (5.15). One

can easily see that only the estimate of the probability of the event {∑k
i=1 |εWi | ≥

1 − 3δ′} should be revisited. First we note that this set is empty for k < n and δ

small enough. For ε small enough, we get (under convention that infimum over the
empty set equals +∞) that

inf

{
k∑

i=1

fε,θ (xi) :
k∑

i=1

xi = (1 − 3δ′)(1 − δ′)ε−1, xi ∈ [gε, ε
−1]

}

≥ inf

{
k∑

i=1

fε,θ (xi) :
k∑

i=1

xi = (1 − 3δ′)(1 − δ′)ε−1, xi ∈ [gε, θε−1]
}

(5.53)

≥ inf

{
k∑

i=1

f (xi) :
k∑

i=1

xi = (1 − 3δ′)(1 − δ′)ε−1, xi ∈ [gε, θε−1]
}
.

These inequalities are trivial for θ ≥ 1. Otherwise we note that fε,θ (y) = +∞
for y > θ/ε. Further, using Potter’s bound f (x) ≥ (1 − δ′)( θε−1

x
)α+δ′

f (θε−1) for
gε ≤ x ≤ θε−1, the estimate (3.33) and the inequality

(
ϑ − 4δ′ + 3(δ′)2

θ

)α+δ′
f (θ/ε)

f (ϑ/ε)
f (ϑ/ε)

≥ (1 − δ′)
(

ϑ − 4δ′ + 3(δ′)2

ϑ

)α+δ′
f (ϑ/ε)(5.54)

≥ (1 − δ)f (ϑ/ε)

and the definition of regularly varying functions, we continue the chain of estimate
to obtain that the last expression in (5.53) is bigger than

(1 − δ′)f (θε−1)(θ−1ε)α+δ′

× inf

{
k∑

i=1

xα+δ′
i :

k∑
i=1

xi = (1 − 3δ)(1 − δ′)ε−1, xi ∈ [gε, θε−1]
}

(5.55)
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≥ (1 − δ′)f (θε−1)(θ−1ε)α+δ′(
(n − 1)(θε−1)α+δ′

+ ((
ϑ − 4δ′ + 3(δ′)2)

ε−1)α+δ′)
≥ (1 − δ)

(
(n − 1)f (θε−1) + f (ϑε−1)

) ≥ (1 − 2δ)φ(θ)f (ε−1).

Thus, the estimate similar to (5.20) of the previous section is established, and the
statement of the theorem follows.
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