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The perennial problem of “how many clusters?” remains an issue of sub-
stantial interest in data mining and machine learning communities, and be-
comes particularly salient in large data sets such as populational genomic data
where the number of clusters needs to be relatively large and open-ended.
This problem gets further complicated in a co-clustering scenario in which
one needs to solve multiple clustering problems simultaneously because of
the presence of common centroids (e.g., ancestors) shared by clusters (e.g.,
possible descents from a certain ancestor) from different multiple-cluster
samples (e.g., different human subpopulations). In this paper we present a
hierarchical nonparametric Bayesian model to address this problem in the
context of multi-population haplotype inference.

Uncovering the haplotypes of single nucleotide polymorphisms is essen-
tial for many biological and medical applications. While it is uncommon
for the genotype data to be pooled from multiple ethnically distinct popu-
lations, few existing programs have explicitly leveraged the individual ethnic
information for haplotype inference. In this paper we present a new haplo-
type inference program, Haploi, which makes use of such information and is
readily applicable to genotype sequences with thousands of SNPs from het-
erogeneous populations, with competent and sometimes superior speed and
accuracy comparing to the state-of-the-art programs. Underlying Haploi is a
new haplotype distribution model based on a nonparametric Bayesian formal-
ism known as the hierarchical Dirichlet process, which represents a tractable
surrogate to the coalescent process. The proposed model is exchangeable, un-
bounded, and capable of coupling demographic information of different pop-
ulations. It offers a well-founded statistical framework for posterior inference
of individual haplotypes, the size and configuration of haplotype ancestor
pools, and other parameters of interest given genotype data.

1. Introduction. Recent experimental advances have led to an explosion of
data that document genetic variations within and between populations. For exam-
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ple, the International SNP Map Working Group (2001) has reported the identifi-
cation and mapping of 1.4 million single nucleotide polymorphisms (SNPs) from
the genomes of four different human populations. These data pose challenging
inference problems whose solutions could shed light on the evolutionary history
of human population and the genetic basis of disease propensities [Chakravarti
(2001), Clark (2003)].

SNPs represent the largest class of individual differences in DNA. A SNP refers
to the existence of two possible nucleotide bases from {A, C, G, T} at a chromo-
somal locus in a population; each variant, denoted as 1 or 0, is called an allele.
A haplotype refers to the joint allelic identities of a contiguous list of polymorphic
loci within a study region on a given chromosome. Diploid organisms such as hu-
man beings have two haplotypes in each individual, one maternal copy and one
paternal copy. When the parental chromosomes come in pairs, two haplotypes go
together and make up a genotype which consists of the list of allele-pairs at every
locus. More precisely, a genotype is resulted from a pair of haplotypes by omitting
the information regarding the specific association of each allele with one of the
two chromosomes—its phase, at every locus. The problem of haplotype inference,
which is the focus of this paper, concerns determining which phase reconstruction
among many alternatives is more plausible. Common biological methods for as-
saying genotypes typically do not provide phase information for individuals with
heterozygous genotypes at multiple loci. Although phase can be obtained at a con-
siderably higher cost via molecular haplotyping [Patil et al. (2001)], or sometimes
from analysis of trios [Hodge, Boehnke and Spence (1999)], it is desirable to de-
velop automatic and robust in silico methods for reconstructing haplotypes from
the inexpensive genotype data.

Key to the inference of individual haplotypes based on a given genotype
sample is the formulation and tractability of the marginal distribution of the
haplotypes of the study population. Consider the set of haplotypes, denoted as
H ={hy,hs,..., hy}, of arandom sample of 2n chromosomes of n individuals.
Under common genetic arguments, the ancestral relationships among the sample
back to its most recent common ancestor (MRCA) can be described by a genealog-
ical tree known as the coalescent; computing the P (H) involves a marginalization
over all possible coalescent trees compatible with the sample, which is widely
known to be intractable. Li and Stephens (2003) suggested to approximate P(H)
by a Product of Approximate Conditionals (PAC). The PAC model tries to incorpo-
rate a desirable evolution assumption known as the parental-dependent-mutation
(PDM) by modeling each h; as the progeny of a randomly-chosen existing haplo-
type, and it forms the basis of the PHASE program, which has set the state-of-the-
art benchmark in haplotype inference. However, the PAC model implicitly assumes
existence of an ordering in the haplotype sample, therefore, the resulting likelihood
is not exchangeable as one would expect for the true P(H). Moreover, since PAC
involves no explicit ancestral genealogy over existing haplotypes, certain latent
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demographic information such as founding haplotypes and their mutation rates are
not directly captured in the model.

The finite mixture models represent another class of haplotype models that rely
very little on demographic and genetic assumptions of the sample [Excoffier and
Slatkin (1995), Niu et al. (2002), Kimmel and Shamir (2004), Zhang, Niu and Liu
(2006)]. Under such a model, haplotypes are treated as latent variables associated
with specific frequencies, and the haplotype inference problem can be viewed as
a missing value inference and parameter estimation problem, for which numerous
statistical inference approaches have been developed, such as the maximum like-
lihood approaches via the EM algorithm [Excoffier and Slatkin (1995), Hawley
and Kidd (1995), Long, Williams and Urbanek (1995), Fallin and Schork (2000)],
and a number of parametric Bayesian inference methods based on Markov chain
Monte Carlo (MCMC) sampling [Niu et al. (2002), Zhang, Niu and Liu (2006)].
However, this class of methods has rather severe computational requirements in
that a probability distribution must be maintained on a (large) set of possible hap-
lotypes. Indeed, the size of the haplotype pool, K, which reflects the diversity of
the genome, is unknown for any given population data and needs to be inferred.
There is a plethora of combinatorial algorithms based on various hypotheses, such
as the “parsimony” principles that offer control over the complexity of the infer-
ence problem [see Gusfield (2004) for an excellent survey]. On the other hand,
most current methods based on statistical inference employ computationally ex-
pensive techniques such as cross validation or model-selection to address the issue
of ancestral-space uncertainty [Scheet and Stephens (2006)].

Indeed, the uncertainty regarding the size of the haplotype pool is an instance
of the perennial problem of “how many clusters?” in the clustering literature.
The problem is particularly salient in large data sets where the number of clus-
ters needs to be relatively large and open-ended—exactly the scenario in popu-
lation genomic analysis. In Xing, Sharan and Jordan (2004) we have proposed a
nonparametric Bayesian model, specifically the Dirichlet process (DP) [Blackwell
and MacQueen (1973), Ferguson (1973)], which provides a prior and posterior
distribution for mixture models with unbounded numbers of mixture components.
Recently, substantial efforts have also been made to speed up haplotype inference
on large scale data. Notable programs include Beagle [Browning and Browning
(2007)], which uses a localized haplotype model based on variable-length Markov
chains, and MACH [Li and Abecasis (2006)], a fast version of PHASE.

These progresses notwithstanding, it is noteworthy that most progresses being
made so far on approximating the P(H) and K, and on dealing with long SNP
sequences, do not explicitly leverage the potentially useful side information such
as the genetic origins of individuals in a population sample. In particular, statistical
models developed so far are inadequate for addressing the multi-population hap-
lotype sharing problems concerned in this paper. Consider, for example, a genetic
demography study, in which one seeks to uncover ethnic- or geographic-specific
genetic patterns based on a sparse census of multiple populations. In particular,
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suppose that we are given a sample that can be divided into a set of subpopulations,
for example, African, Asian and European. When conducting haplotype inference
on such data, we may not only want to discover the sets of haplotypes within each
subpopulation, but also which haplotypes are shared between subpopulations, and
what their frequencies are. Empirical and theoretical evidence suggests that an
early split of an ancestral population following a populational bottleneck (e.g., due
to sudden migration or environmental changes) can lead to subpopulation-specific
genetic diversity, which causes ancient haplotypes (that have higher variability)
to be shared among different subpopulations, and unique modern haplotypes (that
are more strictly conserved) to be instantiated and inherited in different subpopula-
tions [Pritchard (2001)]. This structure is analogous to a co-clustering scenario in
which different groups comprising multiple clusters may share clusters with com-
mon centroids (e.g., different news topics may share some common key words).
The implication of this phenomenon on haplotype reconstruction has not been
thoroughly investigated.

A naive solution to the aforementioned problem would be to infer haplotypes
separately in the subpopulations. This is clearly suboptimal, however, because
it may unnecessarily fragment the data, and may lead to unrobust estimation of
demographic parameters. In particular, for rare haplotypes that are present in a
small number of individuals (e.g., one or two) in each population but overall
still have many bearers across all populations, the estimation of their founders
(i.e., the centroid) should take into account of these bearers in all populations
jointly, rather than being based on each population separately. Essentially, what
we want is a model to solving multiple clustering problems simultaneously. In
this paper we describe a new haplotype model based on a hierarchical Dirich-
let process (HDP) [Teh et al. (2006), Xing et al. (2006)], which directly ad-
dress this issue. An HDP over a measurable space (®, B) specifies a set of cou-
pled random distributions {@, @>,...,&Q;} on ® = & x A, where & = [0, 1]
and 4 = {0, 1}7 denote the space of the mutation rates and joint allele config-
urations, respectively, of the ancestral haplotypes of T SNP loci. Each @; is
a population-specific Dirichlet process (DP) [Blackwell and MacQueen (1973),
Ferguson (1973)] which defines a nonparametric prior over the ancestral haplo-
types and their frequencies of being inherited within the population, and thereby
induces a Dirichlet process mixture (DPM) model [Antoniak (1974)] for all the
individual haplotypes in that population. As detailed in Section 2, to allow every
ancestral haplotype in a particular population to also have nonzero probability
of being inherited in a different population (albeit with different frequencies),
a hyper-prior @, which is also a Dirichlet process and therefore discrete on &,
is used to define the base measures of each population-specific @ ;, ensuring that
they are all realized on a common set of supports (i.e., ancestors) in . Our model
differs from other methods reviewed earlier in the following ways: (1) Instead of
resorting to empirical assumptions or model selection over the number of popu-
lation haplotypes, we introduce a nonparametric prior over haplotype ancestors,
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which facilitates posterior inference of the haplotypes in an “open” state space
accommodating arbitrary sample size. (2) Our model explicitly exploits the sub-
population labels and potentially latent genetic demographic structures to improve
haplotyping accuracy. (3) Our model captures similar genetic properties as those
emphasized in Stephens, Smith and Donnelly (2001), including the parent-
dependent-mutations, but with an exchangeable likelihood function.

We have developed an efficient MCMC-based software program Haploi, based
on our proposed model, and using a variant of the Partition—Ligation scheme by
Niu et al. (2002) to handle complexity explosion due to long input sequence. It can
be readily applicable to multi-population genotype sequences, at a time—cost often
at least two-orders of magnitude less than that of the state-of-the-art PHASE pro-
gram, with competitive performance. We also show that Haploi can significantly
outperform other popular haplotype inference algorithms on both simulated and
real short SNPs data.

2. The statistical model. Our narration below starts with a basic Dirichlet
process mixture model for a simple demographic scenario, where we ignore indi-
vidual subpopulation labels and assume absence of recombination in the sample.
Then we describe the hierarchical Dirichlet process mixture for haplotypes from
multiple populations in detail. There is an interesting connection of the DPM-based
methods to the Wright—Fisher model and Kingman’s coalescent with an infinitely-
many-alleles (IMA) mutation process for allele evolution, which we will briefly
discuss.

2.1. Dirichlet process mixture for haplotypes. A random probability measure
@ on a measurable space (¥, B) is generated by a Dirichlet process DP(z, Qo)
if for every measurable partition Bi, ..., By of the sample space @, the vector
of random probabilities @(B;) follows a finite dimensional Dirichlet distribu-
tion: (Q(B1),..., Q(By)) ~ Dir(t Qo(B1), ..., TQ0(Bx)), where T > 0 denotes
a scaling parameter and Qg denotes a base measure defined on (®, B) [Ferguson
(1973)].

Samples from a DP tend to cluster around the distinct-valued atoms, which of-
fers a salient way for us to group haplotypes around common ancestors. This prop-
erty is best reflected in the constructive definition of the DP based on the following
Pélya urn scheme [Blackwell and MacQueen (1973)]. Having observed n samples
with values (¢1, ..., ¢,) from DP(z, Qg), the conditional distribution of the value
of the (n + 1)th sample is given by

K
ng T
(1 Gur1lP1, s Pn T, Qo ng i) 40 R e U OF

where ny denotes the number of samples with value ¢;, and K denotes the number
of unique values in the n samples drawn so far. This expression means that each



796 K.-A. SOHN AND E. P. XING

new sample has positive probability of being equal to an existing unique value in
the drawn samples, and, moreover, the probability is proportional to the occupancy
number ny of the unique values, creating a clustering effect. The cluster cardinality
K is a random integer that is only bounded by the sample size, rather than being
pre-specified.

To model a haplotype population H that is genetically homogeneous, one
can assume that H is originated from a size-unknown group of distinct ances-
tral haplotypes (i.e., founders), and associate each unique value ¢; from a DP
with a possible founder and its mutation probability, that is, {ar, 6r}. Relating
every drawn sample ¢; to a modern individual haplotype via a conditional like-
lihood function, we arrive at a DP mixture model [Antoniak (1974), Escobar
and West (1995)] for P(H) as described in Xing, Sharan and Jordan (2004),
which is briefly recapitulated in the sequel for self-containedness and to intro-
duce necessary notation for subsequent exposition of the hierarchical DP mixture
for multi-population data. Specifically, write H;, = [H,, 1, ..., H;, ], where the
sub-subscript e € {0, 1} denotes the two possible parental origins (i.e., paternal
and maternal), for a haplotype over T contiguous SNPs from individual i, and
let G; =[G 1,..., G; 1] denote the genotype of these SNPs of individual i. Let
Ar =[Ak.1, ..., Ag 1] denote an ancestor haplotype and 6 denote the mutation
rate of ancestor k, and let C; denote an inheritance variable that specifies the an-
cestor of haplotype H;. Pn(H|A,0) represents the inheritance model according
to which individual haplotypes are derived from a founder, and P,(G|Hp, Hy)
indicates the genotyping model via which noisy observations of the genotypes
are related to the haplotypes. A DPM defines the following generative scheme:

e Draw first haplotype:
ar, 01|DP(z, Qo) ~ Qo(-),
sample the 1st founder (and its mutation rate);
hy ~ Pyp(-lai, 61),

sample the 1st haplotype from an inheritance model defined on the 1st founder;
o for subsequent haplotypes:
— sample the founder indicator for the ith haplotype:

Ne.
P(c; =cj for some j <i|cl,...,c,-_1)=+,
¢i|IDP(z, Qo) ~ ot
P(Ci;ﬁCj forallj <i|C1,...,C,'_1)=,—,
i— 14+

where n, is the occupancy number of founder a, .
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— sample the founder of haplotype i:

={acj,9Cj}, if ¢; = c; for some j <1,

dc;, 96,- |DP(T7 QO) { ~ QO(a’ 0), if ¢ # cj for auJ <i,
— sample the haplotype according to its founder:
hi |Ci ~ Ph('|aci s GC,‘)'

e sample all genotypes (according to a mapping between haplotype index i and
allele index i.):

gi|hi0’ hi] ~ Pg(‘lhioa hi])'

Here, {ag, 6;} corresponds to the set of mixture components, and the DP is used
as the prior over the components in an unbounded ancestral space. This prior re-
quires no specification of the size of the ancestor pool.

2.2. Hierarchical DP mixture for multi-population haplotypes. Now consider
the case where there exist multiple ethnic or geographic populations. Instead of
modeling these subpopulations independently by unrelated DPMs, we place all
the population-specific DPMs under a common prior, such that the ancestors in
any of the population-specific mixtures can be shared across all the mixtures, but
the weight of an ancestral haplotype in each mixture is unique.

To tie population-specific DP mixtures together in this way, we employ a hier-
archical DP (HDP) mixture model [Teh et al. (2006)], in which the base measures
of the all population-specific DPMs admit a common discrete prior defined by
another Dirichlet process DP(y, F)). An HDP defines a distribution over a set of
dependent random probability measures, {€;, j=1,..., J}, and another master
random probability measure @ that controls all the @;’s. Each @; is a popula-
tion specific DP with common (or population-specific) scaling parameter 7, and
a shared base measure defined by Q. Moreover, @ itself follows a Dirichlet
process DP(y, F). Following a hierarchical Pdlya urn scheme, for m; random
draws ¢j = @j1,....¢jm; from @Q;, we can derive the following conditional
probability for (¢, i |¢_mj) [Xing et al. (2006)], where the subscript —m ; denotes
the index set of all but the m jth sample:

K mjp+tng/(n—1+7y)

¢mj|¢*mj N/; mj— 141 8¢f(¢mj)
@) +—" Y F(¢m))
mi—l+tn—1+y

K
= Z ”j/',k‘sqﬁ}? (¢mj) + n},K+]F(¢mj)7
k=1
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where n; denotes the number of samples under @p drawn from the global measure

F and equal to ¢}/, m j ;. denotes the number of samples in the jth group which are
mj +tng/(n—1+y) 7_[/
m;—1+t Js K+1 = m]—l-‘,-r n— 1+}/

J = (7’ IRL ;.’2, ...) gives the a priori conditional probability of a new sample
in group j. As shown later, this formula will be useful for implementing a Gibbs
sampler for posterior inference under HDP mixtures.

Based on the HDP described above, we now define an HDP mixture (HDPM)
model for the genotypes in J populations. Elaborating on the notational scheme

used earlier, let G(J ) [GZ(JI),.. G(j%] denote the genotype of T contiguous

The vector

equal to ¢, and 7} =

SNPs of individual i from subpopulation group j, and let H, W) =[H; o ) . H, ) 77l
denote a haplotype of individual i from ethnic group j. The ‘basic generatlve stmc—
ture of multi-population genotypes under an HDPM is as follows, which is also
illustrated graphically in Figure 1:

Qo(o1. ¢2,.. )|y, F ~DP(y, F),

sample a DP of founders for all populations;
(1”85, ..)Ir, Qo ~ DP(z, Qy),
sample the DP of founders for each population;
)
¢;1Q; ~ @,
sample the founder of haplotype i, in population j;
D16 ~ Pa1y)).
sample haplotype i, in population j;

sample genotype i in population j,

where the first three steps of sampling founder haplotypes follow the HDP scheme,
the fourth step describes the mixture formulism, and the last step corresponds to the
noisy genotyping model. Recall that in an HDP the base measure @ is a random
distribution of the pool of haplotype founders and their associated mutation rates.
It ensures that all the population-specific child DPs can be defined on a common
unbounded pool of candidate founder patterns. The child DPs place different mass
distributions, that is, a priori frequencies of haplotype founders, on this common
support, in a population-specific fashion.
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FI1G. 1. The haplotype—genotype generative process under HDPM, illustrated by an example con-
cerning three populations. At the first level, all haplotype founders from different populations are
drawn from a common pool via a Polya urn scheme, which leads to the following effects: 1. the same
Sfounder can be drawn by either multiple populations (e.g., the red founder in population 1 and 2,
and the blue one in population 1 and 3), or only a single population (e.g., the grey founder in pop-
ulation 1); 2. shared founders can have different frequencies of being inherited. Then at the second
level, individual haplotypes were drawn from a population-specific founder pool also via a Pélya urn
scheme, but this time through an inheritance model Py (-|ay) that allows mutations with respect to the
founders, as indicated by the underscores at the mutated loci in the individual haplotypes. Finally,
genotypes are related to the haplotype pairs of every individual via a noisy channel Pg(-|).

The base measure F in the above generative process is defined as a distribution
from which haplotype founders ¢y = {Ak, 6k} are drawn. Thus, it is a joint measure
on both A and 6. We let F(A,60) = p(A)p(0), where p(A) is uniform over all
possible haplotypes and p(6) is a beta distribution introducing a prior belief of
low mutation rate. For generality, we assume Ay ; and H;; of every single locus
take values from an allele set . For other building blocks of the HDPM model,
we propose the following specifications.

2.2.1. Haplotype inheritance model. Omitting all but the locus index ¢, we can
define our inheritance model to be a single-locus mutation model as follows [Xing,
Sharan and Jordan (2004)]:

’

0 I(hi#ar)
|A] — 1)

where I(-) is the indicator function. This model corresponds to a star genealogy
resulting from infrequent mutations over a shared ancestor, and is widely used as
an approximation to a full coalescent genealogy starting from the shared ancestor
[e.g., Liu et al. (2001)].

Given this inheritance model, and under a beta prior Beta(oy,, 8;,) for the muta-
tion rate 6, it can be shown that the marginal conditional distribution of a haplotype

(3) Ph(htlat’ 6) e (1 _ 9)]1(/’!,:510(
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sample h = {h;,:e € {0,1},7i € {1,2, ..., I}} takes the following form resulted
from an integration of € in the joint conditional:

[(en + 10T By + 1) ( 1 >Ii
C(on + Bn+ e+ 1) \|A —1)

K
4 p(hla,¢) = [ ] R(an, Bn)
k=1

where R(ap, Br) = Fr(g’,‘g—% le = Yies lhi s = ax)l(ci, = k) is the num-
ber of alleles which are identical to the ancestral alleles, and [, =Y, ., I(h;, #

ak.1)I(c;, = k) is the total number of mutated alleles.

2.2.2. Genotype observation model. We assume that the genotype at a locus
is determined by the paternal and maternal alleles of this site via the following
genotyping model [Xing, Sharan and Jordan (2004)]:

5)  Pe(glhigss hiysi ) = EF=9[0, (1 — )] F O [y (1 — £)]10F D),

where h £ hj, ; @ hj,; denotes the unordered pair of two actual SNP allele in-
stances at locus ¢; “#£!” denotes set difference by exactly one element; “#£2” de-
notes set difference of both elements, and p; and py are appropriately defined
normalizing constants. Again we place a beta prior Beta(og, B,) on & for smooth-
ing. Under the above model specifications, it is standard to derive the posterior
distribution of each haplotype H;, given all other haplotypes and all genotypes,
and the posterior of any missing genotypes, by integrating out parameters 0 or &
and resorting to the Bayes theorem, which enables a collapsed Gibbs sampling
step where necessary.

2.2.3. Hyperprior for scaling parameters. To capture uncertainty over the
scaling parameters, for example, y, we use a vague inverse Gamma prior:

(6) piy H~g(, 1) = py)oy texp(—1/y).

In general, the probability density function of an inverse Gamma distribution with
shape parameter ¢ and scale parameter « is given as follows:

L —
p(x;t, k)= FK(L)x_t_l exp(%).

Under this prior, the posterior distribution of y depends only on the number of
instances n, and the number of components K, but not on how the samples are
distributed among the components:

y* 2 exp(1/y)T(y)
Cn+y)
The distribution p(log(y)|k,n) is log-concave, so we may efficiently gener-

ate independent samples from this distribution using adaptive rejection sam-
pling [Rasmussen (2000)]. It is noteworthy that in an HDPM we need to define

(N p(ylk, n) «
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vague inverse Gamma priors also for the scaling parameters T of population-
specific DPs at the bottom level. We use a single concentration parameter t for
these DPs; it is also possible to allow separate concentration parameters for each
of the lower-level DPs, possibly tied distributionally via a common hyperparame-
ter.

2.3. Posterior inference via Gibbs sampling. Based on the two-level Pélya
urn implementation of HDPM, an efficient MCMC algorithm, which is similar to
the MCMC algorithms developed for DPM, can be derived to sample from the
posterior associated with HDPM. Specifically, under a collapsed Gibbs sampling

scheme where 6 and & are integrated out, the variables of interest are Cl.(e{ ),, Ak s,
Hi(E{ 2, y,and t, Vi, j, k, t, e. The sampler alternates between three coupled stages.
First, it samples the scaling parameters y and t of the DPs, following the predictive
distribution given by equation (7). Then, it samples the cl(ej )5 and ak;’s given the
current values of the hidden haplotypes and the scaling parameters according to
equations (8) and (9) (Appendix), respectively. Finally, given the current state of

the ancestral pool, the ancestor assignment for each individual and the observed

genotypes, it samples the hl(e’ )

. variables according to equation (10). Details of the
forms and derivations of the predictive distributions used for steps 2 and 3 are

given in the Appendix.

2.4. Population genetic implication of DP-based haplotype models. There
is an interesting connection between the Dirichlet process models and the
well-known coalescent process theory underlying population genetic evolu-
tion [Kingman (1982)]. It can be shown that an infinitely-many-alleles (IMA)
model with rate t/2 on an n-coalescent extends haplotype lineages on the co-
alescent tree according to the following law: with probability t/(n — 1 4 1), it
instantiates a new haplotype, and with probability (n — 1)/(n — 1 + t), it repli-
cates an existing haplotype lineage [Hoppe (1984)]. This is identical to the Pélya
urn scheme described in equation (1) with scaling parameters t and uniform base
distribution over +, a Dirichlet process DP(t, Uniform).

There is a mapping between the distinct founders ¢; = {ay, 6}, Vk arising from
a DP, to the novel haplotypes generated according to IMA on a coalescent tree at
the birth of every new lineage. However, since these founders are independently
draw, from the base measure, a basic DP cannot capture relationships between
different founding haplotypes in a population.

The parental-dependent-mutation model posits that, in a sequential generation
process of haplotypes, if the next haplotype does not match exactly with an existing
haplotype, it will tend to differ by a small number of mutations from an existing
one, rather than be completely different. Under a DP mixture, modern individual
haplotypes h; are marginally dependent, because similar but nonidentical haplo-
types can be grouped around possible founders according to an inheritance model
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Pn(H|A, 0) that permits further changes on top on founders. As discussed later,
this leads to an exchangeable P (H) that captures the effect of parent-dependent
mutations.

3. Partition-ligation and the Haploi program. As for most haplotype in-
ference models proposed in the literature, the state space of the proposed HDPM
model scales exponentially with the length of the genotype sequence and, there-
fore, it cannot be directly applied to genotype data containing hundreds or thou-
sands of SNPs. To deal with haplotypes with a large number of linked SNPs,
Niu et al. (2002) proposed a divide-and-conquer heuristic known as Partition—
Ligation (PL), which was adopted by a number of haplotype inference algorithms
including PL-EM [Qin, Niu, and Liu (2002)], PHASE [Stephens, Smith and Don-
nelly (2001), Li and Stephens (2003)] and CHB [Zhang, Niu and Liu (2006)]. We
equipped the HDPM model with a variant of the PL heuristic, and present a new
tool, Haploi for haplotype inference of multiple population genotype data over
long SNPs sequences.

The original PL-scheme in Niu et al. (2002) first divides the entire sequence into
disjoint short blocks and reconstructs haplotypes within each block. Then pairs of
blocks are recursively ligated into larger (nonoverlapping) haplotypes via Gibbs
sampling under a fixed-dimensional Dirichlet prior over the frequencies of the lig-
ated haplotype in the product space (or a subset) of all the “atomistic haplotypes”
of every pair of blocks. This bottom-up approach can recover haplotypes of every
individual either hierarchically or progressively. However, this PL. scheme does
not scale well to long sequences because the number of possible haplotypes in the
product space can quickly become intractable as the size of the nonoverlapping
blocks to be ligated grows multiplicatively during the iteration. Unlike their ap-
proach, our PL-scheme generates partially overlapping intermediate blocks from
smaller blocks phased at the lower level. The pairs of overlapping blocks are re-
cursively merged into larger ones by leveraging the redundancy of information
from overlapping regions, as well as overall parsimonious criteria. Empirically we
found that this strategy can lead to a significant reduction of the size of the hap-
lotype search space for long genotypes, and therefore facilitates a more efficient
inference algorithm.

Figure 2 outlines the PL-procedure adopted by Haploi, which can be divided
into three steps. In step 1 we begin by partitioning given genotype sequences into
L short blocks of length T [e.g., T < 10 as suggested in Niu et al. (2002)]. Then we
phase each atomistic block using the proposed HDPM (Figure 2, step 1). By doing
this, we obtain all the individual haplotypes and also the population haplotype pool
(i.e., founders) for each block. In the next step we ligate every pair of neighboring
blocks. Naively the candidate population haplotype pool for the ligated segment
can be a Cartesian product of the haplotype pools in neighboring blocks. But such
an unconstrained product is in fact unnecessary. Since each individual harbors only
two possible haplotypes within each block, for each pair of adjacent blocks, we
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can impute at most four new stitched haplotypes from an individual, but, in prac-
tice, we get much fewer because an individual can be homozygous on one or both
blocks and the stitched haplotypes may have been imputed already from earlier
individuals; also, not all combinations of haplotypes in the two pools are neces-
sary because some combinations may never exist in any individual. We pool such
stitched haplotypes imputed from all individuals, which usually leads to only a
small subset of the Cartesian product of the two haplotype pools. Then based on a
finite dimensional Dirichlet prior over the candidate pool, we do Gibbs sampling as
in Niu et al.’s PL scheme to obtain individual haplotypes for each overlapping 27
region. Essentially, our procedure produces a more parsimonious set of population
haplotypes by using an individual-based population haplotype imputation scheme.
In addition, comparing to the ligation in Niu et al.’s scheme, we stitch every neigh-
boring pair of blocks [ith with (i + 1)th], whereas they ligate every odd numbered
block with the next even numbered block [i.e., (2i — 1)th with (2i)th]. In step 3
we hierarchically ligate overlapping adjacent blocks from the previous iteration,
until the full sequence is covered (Figure 2, step 3). The ligation strategy is again
different from that of Niu et al.’s due to the haplotype consistency constraints im-
posed by overlapping SNPs, which helps to reduce the candidate haplotype space
of the merged blocks. More details about the entire partition-ligation process can
be found in the Appendix.

As we reduce the search space based on feasible individual haplotype pairs,
there may be possibility of missing some haplotypes in the haplotype space con-
struction if the ligation is only based on disjoint blocks. However, our ligation
process considers two blocks with an overlapping region and takes into account
all the possible inconsistencies for every heterozygous locus. Therefore, the actual
number of haplotypes added to the space can be greater than four in general, ex-
cept for the first pairwise ligation stage in step 2 (see the Appendix for a detailed
example of this). Moreover, even in the pairwise ligation from the nonoverlapping
atomic blocks, this risk can be reduced by considering every neighboring pair, not
every odd-numbered and even-numbered pair as noted above, as the information
in one block can be propagated into both side of neighbors and can be preserved
better. Empirically, this new scheme led to a more accurate result than the original
PL scheme with greatly improved computational cost, as the original PL. scheme
cannot be applied to more than a few hundred of the SNPs.



804 K.-A. SOHN AND E. P. XING

The underlying intuition of our ligation procedure is to allow recombination-like
transition on the overlapping regions for including not only all the necessary new
haplotype configurations, but also to maximally preserve the haplotypes obtained
at previous steps. This heuristic typically results in a population haplotype space
of the merged block that is much smaller than the naive product-space of nonover-
lapping lower-level blocks. Moreover, individuals whose atomistic haplotypes of
the pre-merged blocks have no discrepancy in the overlapping region would not
only contribute very few but high-confidence population haplotypes to the pool,
but also they need not to be phased again in that ligation step. This constitutes the
main source of efficiency and effectiveness of our algorithm.

In summary, comparing to Niu et al.’s PL scheme, our method attempts to build
a more parsimonious set of population haplotypes at each ligation iteration by
using an individual-based population-haplotype imputation scheme that leverages
haplotypic diversity constraints imposed by individual genotypes and overlapping
blocks. However, these modifications only help to better trim the population hap-
lotype space; statistically, it results in a near irreducible (due to restriction on the
search space) but faster mixing Markov chain during haplotype sampling.

4. Results. We evaluated the proposed HDPM model on both simulated geno-
type data and real genotype sequences from the International HapMap database.
The haplotype inference accuracy under HDPM (via the Haploi program) is com-
pared to that of the the baseline DP mixture model, and to PHASE 2.1.1 [Stephens,
Smith and Donnelly (2001), Stephens and Scheet (2005)], fastPHASE [Scheet
and Stephens (2006)], MACH1.0 [Li and Abecasis (2006)] and Beagle 2.1.3
[Browning and Browning (2007)], in their default parameter settings unless oth-
erwise specified. Two different error measures are used: erry, the ratio of incor-
rectly phased SNP sites over all nontrivial heterozygous SNPs, and d,,, the switch
distance, which is the number of phase flips required to correct the predicted hap-
lotypes over all nontrivial cases. For short SNP sequences we primarily use errs,
whereas for long sequences we compare d,, according to common practice. In ad-
dition to haplotype inference, on the simulated data we also estimated other metrics
of interest, such as the haplotype frequencies, the mutation rates 6 of each found-
ing haplotypes and the number of reconstructed haplotype founders K, to assess
the consistency of our model.

4.1. Simulated multi-population SNP data. To simulate multi-population
genotypes, we used a pool of haplotypes taken from the coalescent-based syn-
thetic dataset in Stephens, Smith and Donnelly (2001), each containing 10 SNPs,
as the hypothetical founders; and we drew each individual’s haplotypes and geno-
type by randomly choosing two ancestors from these founders and applying the
mutation and noisy genotyping models described in the methodology section. For
each of our synthetic multi-population data sets, we simulated five populations,
each with 20 individuals. Each population is derived from 5 founders, where two
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of them are shared across all the populations, and the other three are population-
specific. Thus, the total number of founders across the five populations is 17. We
test our algorithm on two data sets with different degrees of sequence diversity. In
the conserved data set we set the mutation rate 9 to be 0.01 for all populations and
all loci in the simulation; in the diverse data set, 6 is set to be 0.05. All populations
and loci are assumed to have the same genotyping error rate. Fifty random samples
were drawn from both the conserved and the diverse data sets.

4.1.1. Haplotype accuracy. We compare Haploi (i.e., HDP) and other meth-
ods applied in two modes on synthetic data. Given multi-population genotype data,
to use DP or other extant methods, one can either adopt mode-I, pool all popula-
tions together and jointly solve a single haplotype inference problem that ignores
the population label of each individual, or follow mode-II, apply the algorithm to
each population and solve multiple haplotype inference problems separately. Hap-
loi takes a different approach, by making explicit use of the population labels and
jointly solving multiple coupled haplotype inference problems. Note that when
only a single population is concerned, or no population label is available, Haploi
is still applicable and is equivalent to a baseline DP with one more layer of DP
hyper-prior over the base measure. We compare the overall performance of Haploi
on the whole data with other algorithms run in mode-I, and also the accuracy of
Haploi within each population with those of other methods run in mode-II. Since
fastPHASE can also take account of population labels, we supplied the labels to
fastPHASE in mode-I experiments.

We first test how much HDP can gain by the hierarchical structure on multiple
populations compared to the baseline DP. Figure 3 compares the result of HDP
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FI1G. 3. A comparison of HDP with the baseline DP on the synthetic multi-population data. DP-11:
DP run on each separate population (mode-11). DP-1: DP run on a merged population (mode-I).
The errors measured by site-discrepancies over 50 random samples are presented for (a) conserved
datasets (0 = 0.01) and (b) diverse datasets (0 = 0.05).
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with the baseline-DP in mode-I (denoted by DP-I) and that in mode-II (denoted by
DP-II) on synthetic multiple populations. On both the conserved samples, which
are presumably easier to phase, and the diverse samples, which are more chal-
lenging, HDP significantly outperformed DP in both modes (with p = 0.0336
against DP-II on the conserved samples, and p < 1.83 x 107 in all other com-
parisons, according to a paired z-test). In addition, as a baseline case, we applied
HDP to each single-population separately as DP in mode-II, assuming the sce-
nario of a single population or individuals without population labels. Again, HDP
applied to all populations jointly outperformed this baseline HDP significantly, as
the latter is deprived of the gain by information sharing. Moreover, this baseline
HDP also dominates DP in mode-II significantly, especially on diverse datasets
(p <0.0017). It appears that the hierarchical structure of HDP which introduces a
nonparametric hyper-prior over the base measure of a DPM allows more flexibil-
ity in the model and gives better performance than a plain DPM with fixed base
measure.

Figure 4 shows boxplots for the differences between the error rate of each
benchmark algorithm and that of HDP (i.e., err{ag) — errypp). Note that the re-
gions above the horizontal line y = 0 correspond to the cases where HDP out-
performs others. When other algorithms are run in mode-I [Figure 4(a)], Haploi
outperforms all of them significantly on both the conserved and diverse samples
(p < 8.9 x 107°). Haploi remains competitive in comparison with other methods
when the latter are run in mode-II, that is, on each population separately [Fig-
ure 4(b)]. On the conserved data, PHASE shows the best result, but the differences
between algorithms are not significant (p < 0.11). Whereas on the diverse data,
Haploi outperforms other algorithms significantly (p < 0.0043). Again, all signif-
icant scores were computed according to a paired z-test.
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FI1G. 4. A comparison of HDP with other methods (fPh: fastPHASE, Ph: Phase, Ma: Mach,
Be: Beagle) running in (a) mode-1, and (b) mode-11, on synthetic multi-population data. Boxplots
Jfor the differences between the error rate of each algorithm and that of HDP (i.e., err{a|g) — errupp)
are presented.
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4.1.2. Parameter estimation and sensitivity analysis. Typically, with random
initialization, the Gibbs sampler for Haploi converges within 1000 iterations on
the synthetic data. This contrasts sampling algorithms used in some of the other
haplotype models, which typically need tens of thousands of iterations to reach
convergence. The fast convergence is possibly due to Haploi’s ability to quickly
infer the correct number of founding haplotypes underlying the genotypes samples,
which leads to a model significantly more compact (i.e., parsimonious) than that
derived from other methods.

Estimating K and 6. 'We compared the estimated K—the number of recovered
ancestors via both HDP and DP. Recall that we expect K to be 17. Overall, the
estimated K under both the DP and HDP models turns out to be very close to this
number on the conserved datasets; from the diverse data sets, HDP can still offer
a good estimate of the number of ancestors, whereas DP recovered more ancestors
(around 25 on average) than the true number. This is not surprising since a haplo-
type which appears in more than one population can have different frequencies in
different populations, the baseline DP cannot capture such sub-population struc-
ture, and the higher divergence due to both mutation and population diversification
can make it generate more ancestors to describe the given dataset.

Our Gibbs sampler also provides reasonable estimates of the mutation rates of
each haplotype founder. We observe that for the conserved data sets, HDP yields
highly consistent and low variance estimations of 6, and the quality of the estimates
due to DP is slightly worse. For the diverse data both algorithms tend to slightly
underestimate the mutation rates, and the variance is also higher. It is noteworthy
that, in principal, high haplotype diversity of a population can be explained by
two competing sources: high mutation rate from ancestors to descendants, and
large number of ancestors. Indeed, K and 6 cannot be independently determined,
following a similar argument of the un-identifiability of the evolution time and
population size under the IAM model. But empirically, HDP appears to strike a
reasonable balance between K and 6, and offers plausible estimates of both.

A more thorough sensitivity analysis with respect to the hyper-parameters in our
model is detailed in Table 1. The proposed HDP model has two scale parameters,
y and t, for the upper and lower level DP, which are under inverse Gamma priors
as discussed in Section 2.2.3. To see the sensitivity of the K and 6 estimations
under different priors, we applied various values of hyper parameters ¢ and « (the
same for both y and t) on one of the 50 random conserved datasets. Columns 4-9
in Table 1 show the number of recovered founders within each sub-population (the
correct number is 5 for each), and the total number of distinct founders over all the
populations. Overall, over a wide range of values for the hyper-parameters, Hap-
loi gives low-bias and low-variance estimation of the number of founders of each
sub-population as well as the total number of distinct founders. In columns 10-11,
we show the inferred mutation rate and the haplotyping error. Even when incorrect
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TABLE 1
A sensitivity analysis to the hyper-parameters of HDP on a conserved dataset. Results with different
hyper-parameters t and k for inverse Gamma prior are shown. The number of founders for each
population (K;) and the total number of ancestors across all the populations are shown in
columns 4-9. The estimated mutation rate 6 and the haplotyping errors (errs) are also shown
through columns 10-11. The sensitivity of 0 estimate to the hyper prior is examined over a wide
range of both different magnitudes (0.1 to 1000) and ratios (0.0001 to 10,000) of ¢ and k

K [} Kft Ky K, K3 K4 Kj total K (17) 6 (0.005) erry
0.1 0.1 1 50 50 50 5.0 5.0 17.8 0.005 0.0058
0.5 0.2 50 50 50 50 5.0 17.5 0.004 0.0116
1 0.1 50 50 50 5.0 5.0 18.0 0.004 0.0000
10 0.01 50 50 50 5.0 5.0 18.0 0.004 0.0087
100 0.001 50 40 50 50 4.0 16.0 0.007 0.0029
1000 0.0001 50 50 50 5.0 4.0 17.0 0.004 0.0029
0.5 0.1 5 50 51 50 5.0 5.0 18.1 0.004 0.0087
0.5 1 50 41 50 50 5.0 17.1 0.007 0.0029
1 0.5 50 50 50 5.0 5.0 18.0 0.004 0.0029
10 0.05 50 50 50 5.0 5.0 18.0 0.004 0.0145
100 0.005 50 50 50 50 4.0 17.0 0.004 0.0029
1000 0.0005 50 50 50 5.0 4.0 17.0 0.005 0.0087
1 0.1 10 50 50 50 6.0 5.0 18.0 0.006 0.0116
0.5 2 50 50 50 50 5.0 18.0 0.004 0.0058
1 1 50 50 50 5.0 5.0 18.0 0.004 0.0087
10 0.1 50 50 50 5.0 5.0 18.0 0.004 0.0029
100 0.01 50 40 50 50 4.0 16.0 0.007 0.0087
1000 0001 50 49 50 50 4.0 16.9 0.005 0.0087
10 0.1 100 50 50 50 53 5.0 17.1 0.004 0.0000
0.5 20 50 50 50 50 5.0 18.0 0.004 0.0087
1 10 50 50 50 5.0 5.0 18.1 0.004 0.0029
10 1 50 50 50 5.0 5.0 18.0 0.004 0.0000
100 0.1 50 40 50 50 5.0 17.0 0.007 0.0058
1000 0.01 50 50 50 5.0 4.0 17.0 0.004 0.0087
100 0.1 1000 58 55 56 6.1 6.0 18.2 0.010 0.0116
0.5 200 52 52 52 58 55 18.4 0.008 0.0116
1 100 51 62 54 55 52 17.3 0.006 0.0087
10 10 50 50 51 50 5.1 18.1 0.005 0.0029
100 1 50 50 50 50 5.0 18.0 0.004 0.0000
1000 0.1 50 50 50 5.0 4.0 17.0 0.004 0.0000
1000 0.1 10,000 6.8 63 85 6.0 103 25.6 0.003 0.0087
0.5 2000 71 70 74 6.6 8.5 24.5 0.006 0.0116
1 1000 64 65 77 64 8.4 22.8 0.005 0.0145
10 100 53 65 63 58 7.0 17.8 0.010 0.0260
100 10 51 51 50 50 5.1 18.1 0.005 0.0087

1000 1 50 50 50 50 5.0 18.0 0.004 0.0029
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numbers of founders are recovered, the actual haplotyping errors are not signifi-
cantly affected, which shows the robustness of the proposed approach for ahaplo-
type recovering application. The test on a diverse dataset shows a similar tendency
while the result is slightly less stable (see supplementary material [Sohn and Xing
(2008)] for more details).

Estimating haplotype frequencies. Figure 5 summarizes the accuracy of popu-
lation haplotype frequencies estimated by each algorithm. The discrepancy be-
tween the true frequencies and estimated ones is measured by the KL-Divergence
Dx1(pllg) =X, p(x)log 5 83 The top row shows the accuracy of HDP along
with those of DP in mode-II and in mode-I, and the bottom row shows the dif-
ferences between the error rates of benchmark algorithms and those from HDP.
The left column of Figure 5(a) reports Dk, computed on ALL haplotypes frequen-
cies estimated by different algorithms from the conserved data sets and the right
column of Figure 5(a) shows the result when measured only on the frequent haplo-
types (i.e., with frequencies > 0.05). Comparing to the baseline-DP, HDP is as ac-
curate when only frequent haplotypes are considered. When all the frequencies are
considered, however, the margin of HDP over DP becomes significant, especially
on the diverse dataset (p = 0.0009). Overall, Haploi, PHASE and MACH work
equally well without significant difference in performance on conserved datasets.
For more difficult diverse data sets [Figure 5(b)], HDP achieves the lowest discrep-
ancy by a significant margin over all the other algorithms. The runner-up, PHASE,
beats fastPHASE and MACH with a small margin. When measured only on the fre-
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FIG. 5. A comparison of the accuracies of haplotype frequencies. Top: the result from HDP, DP
in mode-11 (DP-11), and DP in mode-1 (DP-1). Bottom: the relative error rates of four benchmark
algorithms with respect to those from HDP. (a) Box-plots of Dxy.’s estimated from the conserved
data sets. Left column shows measurements on all haplotypes, right column shows measurements on
only the frequent haplotypes. (b) Same measurements on the diverse datasets.
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quent haplotypes [i.e., the right column of Figure 5(b)], the discrepancies decrease
significantly, but the relative ordering of all the compared algorithms remains sim-
ilar, except that now fastPHASE outperforms PHASE (p = 0.0036).

4.2. The HapMap data. We also test Haploi on both short SNP segments (i.e.,
~6 SNPs) and long SNP sequences (i.e., ~10?~10° SNPs) available from the In-
ternational HapMap Project. This data contains SNP genotypes from four popu-
lations: Utah residents with ancestry from northern and western Europe (CEU);
Yoruba in Ibadan, Nigeria (YRI); Han Chinese in Beijing (CHB); and Japanese in
Tokyo (JPT), with 60, 60, 45 and 44 unrelated individuals, respectively. Although
haplotype inference can be, and in some test scenarios, was performed on all pop-
ulations, evaluation of the outcome is on only the CEPHs and Yorubas since the
true haplotypes can be almost unambiguously deduced from trios only in these
two populations. The individual genotypes that cannot be unambiguously phased
from the trios were ignored in the scoring. We consider three different population-
composition scenarios in our experiments below: (1) using all the four populations
together for haplotype inference (FourPop); (2) using only CEPH and Yoruba pop-
ulations for inference (TwoPop); and (3) phasing CEPH and Yoruba separately
(OnePop). Essentially, in the FourPop and TwoPop scenarios we solve a bigger
haplotype inference problem on data that contain richer population information.

4.2.1. Short SNP sequences. Phasing short SNPs is the basic operation of
large-scale haplotype inference problems which rely either on partition-ligation
heuristics or on model-based methods, such as recombination process, to integrate
short phased haplotype segments into long haplotypes. Figure 6 shows a compari-
son of the phasing accuracy on 6-SNP segments [following a recommendation in
Niu et al. (2002) on the optimal size-range of basic units for subsequent ligation]
by four algorithms. The test was done on randomly selected 100 sets of 6-SNPs
segment from chromosome 21. For each of the three population-composition sce-
narios, we applied all methods to different population sizes, that is, 60, 30, 20 and
10 individuals per population, to examine the effect of population size on phasing
accuracy.

Several aspects of Haploi’s performance on real data are revealed by Figure 6.
First, comparing the performances of Haploi under the three different population-
composition scenarios, we observe that Haploi improves steadily as more popu-
lations are included in haplotype inference, and the improvements are statistically
significant. The p-values of the differences between FourPop and OnePop scenar-
ios are 0.00024, 0.000038, 0.0016 and 0.000022 for data with 60, 30, 20 and 10 in-
dividuals per population, respectively; and the p-values of the margins of TwoPop
over OnePop are 0.0014, 0.0002, 0.0053 and 0.00047, respectively, in the same
order. The improvement in FourPop over TwoPop is less significant, with p-values
0.35,0.11, 0.16 and 0.023, respectively, suggesting that the possible gain in haplo-
type accuracy enabled by the HDP model via exploring shared information among
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FIG. 6. A comparison of the haplotyping error on the CEPH + Yoruba population over randomly
chosen 100 sets of 6-SNP segments from Chromosome 21. The results were obtained under three
population-composition scenarios: (1) FourPops: when data from all the four populations were used
(blue) for inference; (ii) TwoPops: when data from CEPH and Yoruba populations were used together
(green); (iii) OnePop: when each of the CEPH and Yoruba populations was used separately (gray).
Different sample sizes, with 60, 30, 20 and 10 individuals per each population, were used.

populations can be capitalized the most when we change from single-population
inference to joint-inference in multiple population, whereas the effect of having
more populations in the multi-population scenario appears to be less obvious in
this dataset.

Second, comparing the performances of Haploi under different population sizes,
we observe that the performance-gain through information sharing among popu-
lations tends to be greater when the population sizes decrease. For example, the
performance differences of Haploi in multi-population over single-population be-
come most significant when the number of individuals per population is the small-
est (#Individual per pop = 10). This observation suggests that HDP is especially
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advantageous under data scarcity situations where information from each popula-
tion becomes insufficient to warrant reliable inference within the population.

Third, other methods, such as PHASE, MACH and Beagle, appear not able to
benefit from increased population diversity as indicated by the significant drop of
their accuracies when more populations are involved. The performance of fast-
PHASE (with known population labels) improves substantially when two popula-
tions are used together, while the performance becomes slightly worse in the case
of four populations. Comparing the results from the most preferred scenario of
each algorithm, that is, Haploi under FourPop, fastPHASE under TwoPop, and all
the others under OnePop, Haploi and PHASE worked similarly well when all the
available data were used (i.e., #Individual per pop = 60), with mean error rate of
each algorithm at 0.0174, 0.0198, 0.0173, 0.0229 and 0.0222, respectively (with
p =0.05,0.89,0.10, 0.01 over differences of Haploi with other algorithms). When
the population sizes decrease, Haploi starts to surpass others more substantially,
and works more reliably than others. For example, on 10 individuals per popu-
lation, the mean error rates of the five algorithms were 0.0424, 0.0460, 0.0512,
0.0777 and 0.0945, and the p-values of the margin of Haploi over others are 0.17,
0.02, 1.2 x 10°, 6.7 x 10°, respectively.

4.2.2. Long SNP sequences. Finally we test Haploi on very long genotype
sequences with 10% ~ 10> SNPs. We selected 10 ENCODE regions from the
HapMap DB, each spanning roughly 500 Kb and containing from 254 to 972 com-
mon SNPs across all four populations (see supplementary material [Sohn and Xing
(2008)] for more details). We performed haplotype inference under three different
population-composition scenarios as before, but due to the extremely high cost in
computational time in these experiments, we only worked on the full-size data sets.
Figure 7 shows a comparison of haplotype reconstruction quality, using PHASE,
fastPHASE, MACH, Beagle and Haploi equipped with the PL heuristic. Out of
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FI1G. 7. Performance on the full sequences of the selected ten ENCODE regions. (a) Error rates un-
der four-population scenario. (b) Under the two-population scenario. (c) Under the one-population
scenario. For cases of which the program does not converge (NC) within a tolerable duration (i.e.,
800 hours), we cap the bar with a “~” to indicate that the results are not available (NA).
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the 30 experiments we performed (10 regions and three scenarios), the PHASE
program failed to yield results in 5 experiments after a 31-day runtime, so we omit
the corresponding results in our summary figure.

The conclusion from Figure 7 is less clear than the ones from previous sections
from experiments on short SNP sequences and on simulation data. Overall, Beagle
dominates all the algorithms with a small margin, PHASE also shows comparable
result to Beagle when converged, but all the other algorithms work comparably
in most cases across different datasets and different scenarios. In terms of com-
putational cost, Beagle was the fastest, it took less than a minute for each task;
fastPHASE and MACH mostly took less than 1 hour for each task, Haploi took
from 1-10 hours, depending on the length of the sequence, whereas PHASE took
one to two orders of magnitude longer, and was indeed impractical for phasing
very long sequence.

In summary, our result shows that Haploi is competent and robust for phasing
long SNP sequences from diverse genetic origins at reasonable time cost, even
though it has not yet employed any sophisticated way for processing long se-
quences, such as the recombination process. Since Haploi appeared to outperform
other methods over short SNPs, we believe that the competence of Haploi on long
SNPs is due to a better inference power endowed by the HDP model for multi-
population haplotypes, and we expect that an upgrade that incorporates explicit
recombination models in conjunction with HDP for long SNPs is likely to lead to
more accurate haplotype reconstructions.

5. Discussion. We have proposed a new Bayesian approach to haplotype in-
ference for multiple populations using a hierarchical Dirichlet process mixture. By
incorporating an HDP prior which couples multiple heterogeneous populations and
facilitates sharing of mixture components (i.e., haplotype founders) across multi-
ple Dirichlet process mixtures, the proposed method can infer the true haplotypes
in a multi-subpopulation dataset with an accuracy superior to the state-of-the-art
haplotype inference algorithms.

Recently, there emerged new models related to our HDP model, the closest be-
ing the nested Dirichlet process (NDP) by Rodriguez, Dunson and Gelfand (2006).
In an NDP, instead of using a hyper-DP as a common base measure as in HDP to
allow sharing of founders across populations, the population-specific DPs are di-
rectly drawn from a prior DP, so that not only the founders, but also their frequen-
cies can be shared across populations. Although this model can be more expressive
in many applications, it may be less appropriate than HDP for multi-population
haplotype problems where excessive structural sharing across populations are not
warranted, especially when different populations bear very distinct demography
and genetic prototypes. Another strategy proposed by Muller, Quintana and Rosner
(2004) employs an explicit stochastic convex combination of a population-specific
prior and a universal prior for each founder. Under such a model, once a founder is
destined to be shared across populations, it will appear with equal frequency in all
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populations. HDP subsumes this scenario, but also allows more flexible sharing of
the founders.

The proposed model achieves the desirable properties of PAC regarding mu-
tation dynamics [Li and Stephens (2003)], including the parental-dependent-
mutation effect, albeit in a very different way. For example, to see the PDM prop-
erty, note that when the next haplotype is to be sampled according to equation (1),
we pick an ancestor of some previously drawn haplotypes, and apply a mutation
process to the ANCESTOR (rather than to one of the previously drawn haplo-
types as in PAC). This operation implicitly results in a PDM effect among haplo-
types by relating them to their corresponding founder via a tractable star genealogy
equipped with a common mutation process Py (-|founder). A new haplotype gen-
erated from this process will bear mutations over its corresponding founders rather
than being completely random. Above these founders, we model their genealogy
and type history by a coalescent-with-IMA model, whose resulting marginal is
equivalent to that of the Dirichlet process. Here a new founder can be sampled
independently of the type-history in the coalescent from the base measure, rather
than according to a PDM, with probability proportional to the IMA mutation rate.
Putting everything together, the DP mixture model essentially implements a com-
bination of IMA and PDM: it models the genealogy and type history of hypo-
thetical ancestors presumably corresponding to a bottleneck with a coalescent-
with-IMA model; below the bottleneck, it uses multiple (indeed, can be countably
infinite many) star genealogies rooted at the ancestors present in the bottleneck
and equipped with ancestor-dependent Poisson mutation process, to approximate
the coalescent-with-PDM model. The time of the bottleneck depends on the value
of the scaling parameter « of the DP. One can introduce a prior to this parameter
so that it can be estimated a posteriori from data.

It is well known that under Kingman’s n-coalescent, a dominant portion of the
depth of the coalescent tree is spent waiting for the earliest few lineages to coa-
lesce to the MRCA and the majority of lineages of even a very large population
can actually coalesce very rapidly into a few ancestors, which means that the net
mutation rates from each of these ancestors to their descendants in a modern haplo-
type sample do not vary dramatically among the descendants. Thus, qualitatively,
a star genealogy provides a reasonable approximation to the actual (heavily time-
compressed) genealogy of a modern haplotype sample up to these ancestors. As
a reward of such approximation, a well-known property of DP mixture is that it
defines an exchangeable distribution of the samples. Furthermore, the Pélya urn
construction of DP enables simple and efficient Monte Carlo for posterior infer-
ence of haplotypes and other parameters of interest, and the DPM formalism offers
a convenient path for extensions that capture more complex demographic and ge-
netic scenarios of the sample, such as the multi-population haplotype distribution
as we explored in this paper.

Unlike the models underlying PHASE and fastPhase, the PL heuristic used
in the Haploi program does not explicitly model the recombination process that
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shapes the LD patterns of long SNP sequences. Since an HDP model without the
aid of PL-scheme dominates PHASE and fastPhase over short SNPs, we believe
that an upgrade that incorporates an explicit recombination model in conjunction
with HDP is likely to lead to more accurate reconstruction of long haplotypes.
The hidden Markov Dirichlet process recently developed by us to model recombi-
nation in open ancestral space offers a promising path for such an upgrade [Xing
and Sohn (2007)]. Under the proposed statistical framework for modeling haplo-
type and genotype distribution, it is also straightforward to handle various missing
value problems in a principled way. In another possible extension, although in the
present study we have assumed that the subpopulations’ labels of individuals are
known, it is straightforward to generalize our method to situations in which the
subpopulations’ labels are unknown and to be inferred. This opens the door to ap-
plications of our method to large-scale genetic studies involving joint inference
over markers and demography. The HDP model is also a natural formalism for ap-
plications outside of population genetics, such as in text modeling, where one can
use an HDPM to model co-clustering of documents from different journals (anal-
ogous to different populations here) according to both shared and unique topics
defined by, for example, a latent Dirichlet allocation model [Blei, Ng and Jordan
(2003)], and also in network modeling, where the neighbor profiles of every node
can be modeled by a low-level DPM whose likelihood function is defined by, for
example, a mixed membership stochastic block model [Airoldi et al. (2006)], and
the entire network corresponds to an HDP over all nodes. Due to space limits,
a detailed description of our work in these applications is beyond the scope of this

paper.

APPENDIX A: MARKOV CHAIN MONTE CARLO FOR HDP

In this section we describe a Gibbs sampling algorithm for posterior inference
of haplotypes under the HDPM model. We start with a brief description of the HDP
formalism in terms of Pélya urn models. Imagine we set up a single “stock’ urn at
the top level, which contains balls of colors that are represented by at least one ball
in one or multiple urns at the bottom level. At the bottom level, we have a set of
distinct urns which are used to define the DP mixture for each population. Now let
us suppose that upon drawing the m jth ball for urn j at the bottom, the stock urn
contains n balls of K distinct colors indexed by an integer set C = {1, 2, ..., K}.
Now we either draw a ball randomly from urn j, and place back two balls both of
that color, or with some probability we return to the top level. From the stock urn,
we can either draw a ball randomly and put back two balls of that color in the stock
urn and one in j, or obtain a ball of a new color K + 1 with probability n_’{ =y
and put back a ball of this color in both the stock urn and urn j of the lower level.
Essentially, we have a master DP (the top urn) that serves as a source of atoms
for J child DPs (bottom urns).
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Associating each color k£ with a random variable ¢; whose values are drawn
from the base measure I, we know that draws from the stock urn can be viewed as
marginals from a random measure distributed as a Dirichlet Process Qq with para-
meter (y, F). From equation (1), for n random draws ¢ = {¢1, ..., ¢,} from Qy,
the conditional prior for (¢, |¢_,,), where the subscript “—n” denotes the index set
of all but the nth ball, is

K
Nk 14
~ LT Y ——F(¢;),
Pnld_y ]; T SO0 T F @)
where ¢,k =1, ..., K, denotes the K distinct values (i.e., colors) of ¢ (i.e., all

the balls in the stock urn), and n; denotes the number of balls of color k in the top
urn.

Conditioning on Qg (i.e., using Q¢ as an atomic base measure of each of the
DPs corresponding to the bottom-level urns), the m ;th draws from the jth bottom-
level urn are also distributed as marginals under a Dirichlet measure which leads
to the distribution shown in equation (2).

This nested Pélya urn scheme motivates an efficient and easy-to-implement
MCMC algorithm to sample from the posterior associated with HDPM. Recall
that the mixture components ¢ correspond to the ancestral haplotypes with their
mutation rates, and the samples correspond to individual haplotypes. Therefore,

the variables of interest are ay;, hl(J )t, l(J )t, y and 7, and gl (the only ob-
served variables). We may assume that the represented mixture components are
indexed by 1,..., K, the weights of the founders at the top level DP is g =

ni nK Y . . .
(n_1+y, s ATy i 1er) where n=TEy 18 th.e total weight corresponding to
some unrepresented founder K + 1, and the weights of founders at the bottom-

level DP for, say, the jth population, are ( m'/i1+r’ SO _’fﬁrr T —H—r) where

corresponds to the probability of consultmg the top -level DP The Gibbs

1+r
sampler alternates between three coupled stages. First, we sample the scaling pa-

rameters ¥ and t of the DPs according to equation (7).

)

Then, we sample the ¢;’" and ai, given the current values of the hidden

G ), we first erase its

contribution to the sufficient statistics of the model. If the old c(j ) was k’, set
m jr =mj — 1. If it was sampled from the top level DP, we also set ny =nyp — 1.

Note that cl(L] )

haplotypes and the scaling parameters Before sampling c;

< K + 1 (i.e., indicating existing founders, plus a new one to be

instantiated). Now we can sample cl(: ) from the following conditional distribution:
ple? = e 1)
(8) o p(e” =kl =) m n) p(h|ag, ¢, hl =T ie))

o O+ 2B e K fork= 1, K1
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0))
il)

[—J.ie]

where m, """ represents the number of ¢ li’ " in

that are equal to k, except ¢

group j,and mj g1 = 0; l,[:j el denotes the sufficient statistics associated with

all haplotype instances originating from ancestor k, except hl(ej ), If, as a result of
sampling cl(ej ), a formerly represented founder is left with no haplotype associated
with it, we remove it from the represented list of founders. If, on the other hand, the
selected value £ is not equal to any other existing index cl(ej ) , that is, cl(gj ) =K + 1,
we increment K by 1, set ng 41 = 1, update 8 accordingly, and sample a1 from
its base measure F.

Now, from equation (4), we can use the following posterior distribution to sam-

ple ax:

pademoc [T plrlilac i)
Jriele) =k
T(ap + e )D By + 1, )
— k,t l, R(ah, ﬁh),
C(ap + Br + mp)(|A] — 1)k
where [ ; is the number of allelic instances originating from ancestor k at locus

t across the groups that are identical to the ancestor, when the ancestor has the
pattern ay ;. If kK was not represented previously, we can just use zero values of I ;,

®

which is equivalent to using the probability p(a |h§ej )).

We now proceed to the third sampling stage, in which we sample the haplo-
types hl(cj ), given the current state of the ancestral pool and the ancestral haplotype
assignment for each individual, according to the following conditional distribution:

) 11D WD, G ) ) ()
p(hiZ,t|h[j—ig,t]’ ¢ a,g) x p(gi,jz ’hie,t’ hig],t’ u[—ie,t])p(hig,z |ag lk{,[—ie,t])
C(ag + ) (B + (u' +u"))

[(ag + B +1J)

(o + 10 DT B+ 1) )
0y
C(@h + B +ni) (A — 1)K ies

where k' = ci(ej), l/gi)e,z = l[(i)ie,z] +]I(h§ej’)t =ag,),and “Ei)ie,r] are the set of sufficient
statistics recording the inconsistencies between the haplotypes and genotypes in

population j.

mara

(10) =R,

X Ry,

APPENDIX B: DETAILS OF THE PL PROCEDURE

This section describes the detailed procedure of partition-ligation algorithm
used in Haploi, which can be divided into three steps: (1) atomic block typing;
(2) bottom-level pairwise ligation to generate overlapping blocks; and (3) hierar-
chical ligation of overlapping blocks until only one block is left. In step 1, we
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partition given genotype sequences into L short blocks of length 7' and phase each
atomistic block using the proposed HDPM. From this step, we obtain all the in-
dividual haplotypes and also the population haplotype pool for each block. Let
,A)l.T ={Axi-npr+1:iTlk=1,..., Kl-T} denote the population haplotype pool for
T SNPs in the ith block which ranges from locus (i — 1)T + 1toiT.

In the next step, we ligate every pair of neighboring blocks: A! &A! | —
A?T, i=1,...,L—1.Specifically, for each pair of neighboring blocks i and i + 1,
given AiT and AiT 41> We can impute at most four new stitched haplotypes from
an individual since each individual has only two possible haplotypes within each
block. In practice, we often have fewer because an individual can be homozygous
or the stitched haplotype may already have been imputed from earlier individuals.
We pool such stitched haplotypes from all the individuals to form AI.ZT , which usu-
ally leads to only a small subset of AiT X ‘AiT+1-
Dirichlet prior over AI-ZT, we do Gibbs sampling as in Niu et al.’s PL scheme to
obtain individual haplotypes for each overlapping 27 region. To compensate possi-
ble ill-ligated blocks, we can redo the direct haplotype inference based on HDPM
on those merged blocks whose entropy of haplotype distribution is above some
threshold (Figure 2, step 2—1). This is computationally affordable since the length
of the ligated block at this stage is not yet too big and we can start with better
initialization than random assignment. The output from step 2 is L — 1 sets of
length 27" population haplotypes, {AI.ZT :i=1,...,L — 1}, overlapping on T loci
for each adjacent pair, and all individual haplotypes in these length 27 overlapping
segments.

In step 3, we hierarchically ligate overlapping adjacent blocks from the previous
iteration, until the full sequence is covered (Figure 2, step 3). Specifically, as in
step 2, we build the candidate population haplotype pool by adding every unique
stitched-haplotype resulted from ligating the haplotypes of the two shorter blocks
in every individual. When the overlapping regions of a pair of atomistic haplotypes
in an individual are consistent, ligation to a longer haplotype is trivially a merging
of the two overlapping haplotypes, and this avoids generating all combinations of
the atomistic haplotypes from each block. Only when the overlapping regions in an
individual are inconsistent, we grow the haplotype space of the merged blocks by
including all possible ligations consistent with the atomistic haplotypes and the in-
dividual genotype. For example, suppose a particular individual’s haplotypes were
recovered as 000100,/100010 at loci 1 to 6 for the first block, and 110000/000100
at loci 4 to 9 for the next block, and three SNPs are overlapping in the two blocks.
Then to accommodate the discrepancy on the 4th and 5th SNPs, we have four
possible haplotypes, 10, 01, 00, 11, for these two loci; for the remaining parts of
the region covered by these two blocks, that is, loci 1-3 and loci 6-9, we have
two haplotypes (which are from the atomistic haplotypes determined in the pre-
vious iteration) for each of them. So a combination of all these possibilities will
add the following sixteen haplotypes to the population haplotype space for the

Then based on a finite dimensional
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ligated segment:

000100000,/010010100, 000110000/100000100, 000010000,/100100100,
000000000,/100110100, 000100100/100010000, 000110100,/100000000,
000010100/100100000, 000000100/100110000.

Under the newly formed population haplotype space at each ligation iteration,
we again apply a Gibbs sampler as in step 2 to determine the individual haplo-
types of all remaining unphased individuals over the ligated block under a fixed-
dimensional Dirichlet prior of the haplotype frequencies in this trimmed haplotype
space. We continue this process hierarchically until there is only one block left.
Since each time we only employ overlapping regions of size 7, the number of
steps needed to complete the ligation of a whole sequence is comparable to Niu et
al. (2002)’s hierarchical PL scheme.
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SUPPLEMENTARY MATERIAL

More results on sensitivity analysis and description of real data (DOI:
10.1214/08-A0AS225SUPPB; .pdf). We provide the sensitivity analysis result to
the hyper-parameters of HDP on diverse dataset (6 = 0.05), and the details of the
real data from 10 HapMap ENCODE regions used in Figure 7.
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