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MODELING SOCIAL NETWORKS FROM SAMPLED DATA1

BY MARK S. HANDCOCK AND KRISTA J. GILE

University of California–Los Angeles and Nuffield College

Network models are widely used to represent relational information
among interacting units and the structural implications of these relations.
Recently, social network studies have focused a great deal of attention on
random graph models of networks whose nodes represent individual social
actors and whose edges represent a specified relationship between the actors.

Most inference for social network models assumes that the presence or
absence of all possible links is observed, that the information is completely
reliable, and that there are no measurement (e.g., recording) errors. This is
clearly not true in practice, as much network data is collected though sample
surveys. In addition even if a census of a population is attempted, individuals
and links between individuals are missed (i.e., do not appear in the recorded
data).

In this paper we develop the conceptual and computational theory for in-
ference based on sampled network information. We first review forms of net-
work sampling designs used in practice. We consider inference from the like-
lihood framework, and develop a typology of network data that reflects their
treatment within this frame. We then develop inference for social network
models based on information from adaptive network designs.

We motivate and illustrate these ideas by analyzing the effect of link-
tracing sampling designs on a collaboration network.

1. Introduction. Networks are a useful device to represent “relational data,”
that is, data with properties beyond the attributes of the individuals (nodes) in-
volved. Relational data arise in many fields and network models are a natural ap-
proach to representing the patterns of the relations between nodes. Networks can
be used to describe such diverse ideas as the behavior of epidemics, the intercon-
nectedness of corporate boards, and networks of genetic regulatory interactions. In
social network applications, the nodes in a graph typically represent individuals,
and the ties (edges) represent a specified relationship between individuals. Nodes
can also be used to represent larger social units (groups, families, organizations),
objects (airports, servers, locations) or abstract entities (concepts, texts, tasks, ran-
dom variables). We consider here stochastic models for such graphs. These models
attempt to represent the stochastic mechanisms that produce relational ties, and the
complex dependencies thus induced.
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Social network data typically consist of a set of n actors and a relational tie
random variable, Yij , measured on each possible ordered pair of actors, (i, j),
i, j = 1, . . . , n, i �= j . In the most simple cases, Yij is a dichotomous variable,
indicating the presence or absence of some relation of interest, such as friend-
ship, collaboration, transmission of information or disease, etc. The data are of-
ten represented by an n × n sociomatrix Y , with diagonal elements, representing
self-ties, treated as structural zeros. In the case of binary relations, the data can
also be thought of as a graph in which the nodes are actors and the edge set is
{(i, j) :Yij = 1}. For many networks the relations are undirected in the sense that
Yij = Yji, i, j = 1, . . . , n.

In the application in this paper we consider a network formed from the col-
laborative working relations between n = 36 partners in a New England law firm
[Lazega (2001)]. We focus on the undirected relation where a tie is said to exist be-
tween two partners if and only if both indicate that they collaborate with the other.
The scientific objective is to explain the observed structural pattern of collaborative
ties as a function of nodal and relational attributes. The relational data is supple-
mented by four actor attributes: seniority (the rank number of chronological entry
into the firm divided by 36), practice (there are two possible values, litigation = 0
and corporate law = 1), gender (3 of the 36 lawyers are female) and office (there
are three different offices in three different cities each of different size).

For large or hard-to-find populations of actors it is difficult to obtain information
on all actors and all relational ties. As a result, various survey sampling strategies
and methods are applied. Some of these methods make use of network informa-
tion revealed by earlier stages of sampling to guide later sampling. These adaptive
designs allow for more efficient sampling than conventional sampling designs. We
consider such designs in Section 2.

Most of the work presented here considers the network over the set of actors
to be the realization of a stochastic process. We seek to model that process. An
alternative is to view the network as a fixed structure about which we wish to
make inference based on partial observation.

In this paper we develop a theoretical framework for inference from network
data that are partially-observed due to sampling. This work extends the fundamen-
tal work of Thompson and Frank (2000). For purposes of presentation, we focus
on the relational data itself and suppress reference to covariates of the nodes. This
more general situation is dealt with in Handcock and Gile (2007).

In Section 2 we present a conceptual framework for network sampling. We ex-
tend this framework in Section 3 to focus on inference from sampled network data.
We first consider the limitations of design-based inference in this setting, then fo-
cus on likelihood-based inference. Section 4 presents the rich Exponential Family
Random Graph Model (ERGM) family of models that has been applied to com-
plete network data. Section 5 presents a study of the effect of sampling from a
known complete network of law firm collaborations. Finally, in Section 6, we dis-
cuss the overall ramifications for the modeling of social networks with sampled
data and note some extensions.
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2. Network sampling design. In this section we consider the conceptual and
computational theory of network sampling.

There is a substantial literature on network sampling designs. Our development
here follows Thompson and Seber (1996) and Thompson and Frank (2000). Let Y
denote the set of possible networks on the n actors. Note that in most network
samples, the unit of sampling is the actor or node, while the unit of analysis is
typically the dyad. Let D be the n × n random binary matrix indicating if the
corresponding element of Y was sampled or not. The value of the i, j th element is 0
if the (i, j) ordered pair was not sampled and 1 if the element was sampled. Denote
the sample space of D by D. We shall refer to the probability distribution of D as
the sampling design. The sampling design is often related to the structure of the
graph and a parameter ψ ∈ �, so we posit a model for it. Specifically, let P(D =
d|Y = y;ψ) denote the probability of selecting sample d given a network y and
parameter ψ.

Under many sampling designs the set of sampled dyads is determined by the set
of sampled nodes. Let S represent a binary random n-vector indicating a subset
of the nodes, where the ith element is 1 if the ith node is part of the set, and is 0
otherwise. We often consider situations where D is determined by some S which is
itself a result of a sample design denoted by P(S|Y,ψ). For example, consider an
undirected network where the set of observed dyads are those that are incident on
at least one of the sampled nodes. In this case D = S ◦ 1+1 ◦ S −S ◦ S, where 1 is
the binary n-vector of 1s. A primary example of this is where people are sampled
and surveyed to determine all their edges.

We introduce further notation to allow us to refer to the observed and un-
observed portions of the relational structures. Denote the observed part of the
complete graph Y by Yobs = {Yij :Dij = 1} and the unobserved part by Ymis =
{Yij :Dij = 0}. The full observed data is then {Yobs,D}, in contrast to the com-
plete data: {Yobs, Ymis,D}. We will write the complete graph Y = {Yobs, Ymis}. In
addition, we make the convention that undefined numbers act as identity elements
in addition and multiplication. So a number x plus or multiplied by an undefined
number y is x, and hence Y = Yobs + Ymis. For a given network y ∈ Y, denote the
corresponding data as {yobs, d} and the other elements by their lower-case versions
y = yobs + ymis. Finally denote Y(yobs) = {v :yobs + v ∈ Y}, that is the set of pos-
sible unobserved elements which together with yobs result in valid network. The
set yobs + Y(yobs) is then the restriction of Y to yobs.

A sampling design is conventional if it does not use information collected dur-
ing the survey to direct subsequent sampling of individuals (e.g., network census
and ego-centric designs). Specifically, a design is conventional if P(D = d|Y =
y;ψ) = P(D = d|ψ) ∀y ∈ Y. A simple example of a conventional sampling de-
sign for networks is an ego-centric design, consisting of a simple random sampling
of a subset of the actors, followed by complete observation of the dyads originat-
ing from those actors. A complete census of the network is another. More com-
plex examples include designs using probability sampling of pairs and auxiliary
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variables. Alternatively, we call a sampling design adaptive if it uses informa-
tion collected during the survey to direct subsequent sampling, but the sampling
design depends only on the observed data. Specifically, a design is adaptive if:
P(D = d|Y = y;ψ) = P(D = d|Yobs = yobs,ψ) ∀y ∈ yobs + Y(yobs). Hence a
design can be adaptive for a given yobs (rather than all possible observed data),
although most common such designs are adaptive for all possible data observed
under them. Conventional designs can be considered to be special cases of adap-
tive designs.

Note that adaptive sampling designs satisfy

P(D = d|Yobs, Ymis,ψ) = P(D = d|Yobs,ψ),(2.1)

a condition called “missing at random” by Rubin (1976) in the context of missing
data. Note that this is a bit misleading—it does not say that the propensity to be
observed is unrelated to the unobserved portions of the network, but that this rela-
tionship can be explained by the data that are observed. The observed part of the
data are often vital to equality (2.1). Hence adaptive designs are essentially those
for which the unobserved dyads are missing at random.

Denote by [a] the vector-valued function that is 1 if the corresponding element
of the vector a is logically true, and 0 otherwise. Let a × b be the elementwise
product of the column vector a and the column vector b and a · b be the scalar
product

∑
j ajbj . Let a ◦ b be the outer product matrix with ij th element aibj .

If y is a matrix and b a vector let y · b be the column vector with ith element∑
j yjibj .

2.1. Some adaptive designs for undirected networks. We now consider several
examples of adaptive designs for undirected networks.

2.1.1. Example: Ego-centric design. Consider a simple ego-centric design:

1. Select individuals at random, each with probability ψ.

2. Observe all dyads involving the selected individuals (i.e., dyads with at least
one of the selected individuals as one of the pair of actors).

The sampling design can be determined for this case. First note that

P(Dij = 1|Y,ψ) = 1 − (1 − ψ)2 ∀i �= j.

This, however, does not give the joint distribution of D. Let S be the binary
n-vector where 1 and 0 indicate that the corresponding individual has been se-
lected, or not, respectively. Within this design, S is determined by D (i.e., S =
[D1 = (n − 1)1]). Then P(S = s|Y,ψ) = ψ1·s(1 − ψ)n−1·s , s ∈ {0,1}n. If the ith
element of S is 1 then all elements in the ith row and column of D are 1. Dij = 0
if and only if both the ith and jth elements of S are both 0. Hence the probability
distribution of D is

P(D = d|Y,ψ) = ψ1·s(1 − ψ)n−1·s
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for

d = 1 ◦ s + s ◦ 1 − s ◦ s, s ∈ {0,1}n.
Note that the distribution does not depend on Y , and is therefore conventional.

2.1.2. Example: One-wave link-tracing design. We refer to any sample in
which subsequent nodes are enrolled based on their observed relations with other
sampled nodes as a link-tracing design. Consider the one-wave link-tracing design
specified as follows:

1. Select individuals at random, each with probability ψ.

2. Observe all dyads involving the selected individuals.
3. Identify all individuals reported to have at least one relation with the initial

sample, and select them with probability 1.
4. Observe all dyads involving the newly selected individuals.

Let S0 denote the indicator vector for the initial sample and S1 the indica-
tor for the added individuals not in the initial sample. Then the whole sample
of individuals is S = S0 + S1. As in the undirected ego-centric design, D =
1 ◦ S + S ◦ 1 − S ◦ S. Note that S1 = [YS0 × (1 − S0) > 0] is derivable from S0
and Y . Hence

P(D = d|Y,ψ) = ∑
s0: s0+[Ys0×(1−s0)>0]=s

ψ1·s0(1 − ψ)n−1·s0

for

d = 1 ◦ s + s ◦ 1 − s ◦ s, s ∈ {0,1}n.

2.1.3. Example: Multi-wave link-tracing design. Consider a multi-wave link-
tracing design in which the complete set of partners of the kth wave are enrolled,
that is, the link-tracing process described above is carried out k times. If k is fixed
in advance this is called k-wave link-tracing.

Let S0 denote the indicator for the initial sample, S1 the indicator for the
added individuals in the first wave not in the initial sample, . . . , Sk the indi-
cator for the added individuals in wave k not in the prior samples. Then the
whole sample of individuals is S = S0 + S1 + · · · + Sk. As in the ego-centric de-
sign D = 1 ◦ S + S ◦ 1 − S ◦ S. Note that Sm = [YSm−1 × (1 − ∑m−1

t=0 St ) > 0],
m = 1, . . . , k is derivable from S0 and Y. Then

P(D = d|Y,ψ) = ∑
s0: s0+s1+···+sk=s

ψ1·s0(1 − ψ)n−1·s0

for d = 1 ◦ s + s ◦ 1 − s ◦ s, s ∈ {0,1}n. Here Sm = [YSm−1 × (1 − ∑m−1
t=0 St ) >

0] = [YobsSm−1×(1−∑m−1
t=0 St ) > 0], m = 1, . . . , k so that the individuals selected

in the successive waves only depend on the observed part of the graph, and not on
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the unobserved portions of the graph. Clearly, this is also true for one-wave link-
tracing as a simple case of k-wave link-tracing. Note that it may be possible that
Sm = ∅ for some m < k, so that subsequent waves do not increase the sample size
(i.e., Sk = ∅). A variant of the k-wave link-tracing design is the saturated link-
tracing design, in which sampling continues until wave m, such that Sm = ∅. We
interpret k as the bound on the number of waves sampled imposed by the sampling
design. Since saturated link-tracing does not restrict the number of waves sampled,
we represent it by setting k = ∞.

2.2. Some adaptive designs for directed networks. We can also consider vari-
ants of these adaptive designs for directed networks.

2.2.1. Example: Ego-centric design. Consider a simple ego-centric design:

1. Select individuals at random, each with probability ψ.

2. Observe all directed dyads originating at the selected individuals.

As before, the sampling design can be determined for this case. Since a directed
dyad is observed only if its tail node is sampled,

P(Dij = 1|Y,ψ) = ψ ∀i �= j

and D = S0 ◦ 1. Hence the probability distribution of D is

P(D = d|Y,ψ) = ψ1·s(1 − ψ)n−1·s

for d = s ◦ 1, s ∈ {0,1}n and the distribution does not depend on Y . As in the
undirected case, this design is therefore conventional.

2.2.2. Example: One-wave link-tracing design. Consider a one-wave link-
tracing design on a directed network specified as follows:

1. Select individuals at random, each with probability ψ.

2. Observe all directed dyads originating at the selected individuals.
3. Identify all individuals receiving an arc from a member of the initial sample,

and select them with probability 1.
4. Observe all directed dyads originating at the newly selected individuals.

Let S0 denote the indicator vector for the initial sample and S1 the indicator for
the added individuals not in the initial sample. Then the whole sample of individ-
uals is S = S0 + S1. As in the ego-centric design D = S ◦ 1 and

P(D = d|Y,ψ) = ∑
s0: s0+[Ys0×(1−s0)>0]=s

ψ1·s0(1 − ψ)n−1·s0

for d = s ◦ 1, s ∈ {0,1}n.
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2.2.3. Example: Multi-wave link-tracing design. Consider a directed version
of the multi-wave link-tracing design in which the complete set of out-partners of
the kth wave are enrolled. The whole sample of individuals is S = S0 + S1 + · · · +
Sk. And Sm = [Y · Sm−1 × (1 − ∑m−1

t=0 St ) > 0], m = 1, . . . , k is derivable from S0
and Y. Then

P(D = d|Y,ψ) = ∑
s0: s0+s1+···+sk=s

ψ1·s0(1 − ψ)n−1·s0

for d = s ◦ 1, s ∈ {0,1}n, where we note that Sm = [Y · Sm−1 × (1 − ∑m−1
t=0 St ) >

0] = [Yobs · Sm−1 × (1 − ∑m−1
t=0 St ) > 0], m = 1, . . . , k so that the individuals se-

lected in successive waves of depend only on the previously observed part of the
graph, and not on the unobserved portions. The saturated link-tracing design is
represented by k = ∞.

3. Inferential frameworks. In this section we consider two frameworks for
inference based on sampled data. In the design-based framework y represents
the fixed population and interest focuses on characterizing y based on partial ob-
servation. The random variation considered is due to the sampling design alone.
A key advantage of this approach is that it does not require a model for the data
themselves, although a model may also be used to guide design-based inference
[Särndal, Swensson and Wretman (1992)]. Under the model-based framework,
Y is stochastic and is a realization from a stochastic process depending on a para-
meter η. Here interest focuses on η which characterizes the mechanism that pro-
duced the complete network Y . We find severe limitations of the design-based
framework for data from link-tracing samples, and focus on likelihood inference
within the model-based framework.

3.1. Design-based inference for the network. In the design-based frame, the
unobserved data values, or some functions thereof, are analogous to the parameters
of interest in likelihood inference. The population of data values is treated as fixed,
and all uncertainty in the estimates is due to the sampling design, which is typically
assumed to be fully known (not just up to the parameter ψ).

Inference typically focuses on identifying design-unbiased estimators for quan-
tities of interest measured on the complete network. In an undirected network
analysis setting, for example, we can consider estimating τ = ∑

i<j yij , the num-
ber of edges in the network. Note that y is a partially-observed matrix of constants
in this setting. Then τ̂ is design-unbiased for τ if

ED[τ̂ |ψ,y] = τ,

where the expectation is taken over realizations of the sampling process. Specifi-
cally,

ED[τ̂ (Yobs,D)|ψ,y] = ∑
d∈D

τ̂ (yobs(d), d)P (D = d|ψ,y),
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where τ̂ (yobs(d), d) is the estimator expressed as a function of the observed net-
work information. Similarly, the variance of the estimator is computed with respect
to the variation induced by the sampling procedure

VD[τ̂ (Yobs,D)|ψ,y] = ∑
d∈D

(
τ̂ (yobs(d), d) − τ

)2
P(D = d|ψ,y).

The Horvitz–Thompson estimator is a classic tool of design-based inference,
and is based on inverse-probability weighting the sample. In our example, it is

τ̂ (Yobs,D) = ∑
i<j :Dij=1

yij

πij

,

where the dyadic sampling probability πij = P(Dij = 1|ψ,y) is the probability of
observing dyad (i, j).

Consider an estimator of τ based on relations observed through the ego-centric
design of Section 2.1.1. Then

πij = 1 − (1 − ψ)2 ∀i, j.

The classic Horvitz–Thompson estimator τ̂ of τ then weights each observation by
the inverse of its sampling probability

τ̂ = ∑
i<j :Dij=1

yij

πij

= 1

1 − (1 − ψ)2

∑
i<j :Dij=1

yij .

Then

V(τ̂ ) = ∑
i<j

∑
k<l

{[1 − (1 − ψ)2]−2πij,kl − 1}yij ykl,

where πij,kl = P(S0i + S0j > 0, S0k + S0l > 0) or

πij,kl =
⎧⎨
⎩

πij , i = k, j = l,
πijπkl, i /∈ {k, l} and j /∈ {k, l},
ψ3 − 3ψ2, otherwise.

Among the many available estimators for the variance of the Horvitz–Thompson
estimator is the Horvitz–Thompson variance estimator:

V̂(τ̂ ) = ∑
i<j :Dij=1

∑
k<l:Dkl=1

1

πij,kl

{[1 − (1 − ψ)2]−2πij,kl − 1}yij ykl.

Note the importance of the unit sampling probabilities in these estimators. This
is a hallmark of design-based inference: inference relies on full knowledge of the
sampling procedure in order to make unbiased inference without making assump-
tions about the distribution of the unobserved data. This typically requires knowl-
edge of the sampling probability of each unit in the sample. This procedure is com-
plicated in the network context, in that we require the sampling probabilities of the
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TABLE 1
Observable sampling probabilities under various sampling schemes for directed and undirected

networks. Nodal and dyadic sampling probabilities are considered separately. “X” indicates
observable sampling probabilities, while a blank indicates unobservable sampling probabilities

Nodal probabilities πi Dyadic probabilities πijSampling
scheme Undirected Directed Undirected Directed

Ego-centric X X X X
One-wave X
k-wave, 1 < k < ∞
saturated X

units of analysis, dyads, which are different from the units of sampling, nodes. In
fact, for even single-wave link-tracing samples, the dyadic sampling probabilities
are not observable.

To see this, define the nodal neighborhood of a dyad (i, j), N(i, j), where k ∈
N(i, j) ⇐⇒ {S0k = 1 
⇒ Dij = 1}. Then πij = P(∃k :S0k = 1, k ∈ N(i, j)).

For the one-wave link-tracing design of Section 2.1.2, N(i, j) = {k} :yik =
1 or yjk = 1 or k ∈ {i, j}. Then if the initial sample S0 is drawn according to the
design in Section 2.1.2, πij = 1 − (1 − ψ)‖N(i,j)‖. Suppose S0i = 1, and S0j = 0.
Then dyad (i, j) is observed, but ‖N(i, j)‖ is unknown because it is unknown
which k satisfy yjk = 1. The link-tracing sampling structures for which nodal and
dyadic sampling probabilities are observable are summarized in Table 1. For di-
rected networks, we assume sampled nodes provide information on their out-arcs
only, so that D is not symmetric and Dij = 1 ⇐⇒ Si = 1.

Of the designs considered here, dyadic sampling probabilities are observable
only for ego-centric samples, and never for link-tracing designs. Nodal sampling
probabilities are also observable for ego-centric sampling, as well as for one-
wave and saturated link-tracing designs in undirected networks. Overall, this table
presents strong limitations to the applicability of design-based methods requiring
the knowledge of sampling probabilities to link-tracing designs. Note that this lim-
itation is not specific to dyad-based network statistics. Estimation of triad-based
network statistics such as a triad census would be subject to similar limitations.
A Horvitz–Thompson style estimator would rely on a weighted sum of observed
triads, weighted according to sampling probabilities. Sampling probabilities for
triads would be even more complex, as they would typically require sampling of
two of the three nodes involved in an undirected case, and at least two of the three
nodes in an directed case, depending on the triad census. Both of these sampling
probabilities would not be possible to compute for link-tracing samples in which
the degrees or in-degrees of some involved nodes are unobserved.

Not surprisingly, most of the work on design-based estimators for link-tracing
samples has focused on the cases where sampling probabilities are observable:
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typically for one-wave or saturated samples used to estimate population means of
nodal covariates. Frank (2005) presents a good overview and extensive citations to
this literature. See also Thompson and Collins (2002); Snijders (1992). Although
examples tend to focus on instances where sampling probabilities are observable,
the limited applicability of classical design-based methods in estimating structural
network features based on link-tracing samples has not been emphasized in the
literature.

In the absence of observable sampling probabilities, design-based inference re-
quires a mechanism for estimating sampling probabilities. This is most often nec-
essary in the context of out-of-design missing data, and addressed with approaches
such as propensity scoring [Rosenbaum and Rubin (1983)], which rely on auxiliary
information available for the full sampling frame to estimate unknown sampling
probabilities. Link-tracing differs from the traditional context of such methods in
that the sampling probabilities are unobserved even when the design is executed
faithfully, and in that the unknown sampling probabilities result directly from the
unobserved variable of interest. In particular, estimating unknown sampling prob-
abilities is equivalent to estimating unobserved relations based on the observed
relations. One approach is to augment the sample with sufficient information to
allow for determination of the sampling probabilities. However in most cases, this
requires a substantial expansion of the sampling design. Therefore, in practice we
must rely on a model relating the observed portions of the network structure to the
unobserved portions. Lack of reliance on an assumed outcome model is a great
advantage of the design-based framework over the model-based framework. By
introducing a model to estimate sampling probabilities based on the outcome of
interest, we reintroduce this reliance on model form, negating much of the advan-
tage of the design-based framework. Furthermore, note that the naive use of this
approach has an ad-hoc flavor, while still requiring complex observation weights
and variance estimators.

In the next section, we describe an alternative more flexible likelihood approach
to network inference based on link-tracing samples.

3.2. Likelihood-based inference. Consider a parametric model for the random
behavior of Y depending on a parameter p-vector η:

Pη(Y = y), η ∈ �.(3.1)

In the model-based framework, if Y is completely observed, inference for η can be
based on the likelihood

L[η|Y = y] ∝ Pη(Y = y).

This situation has been considered in detail in Hunter and Handcock (2006) and
the references therein. In the general case, where Y may be only partially observed,
we can consider using the (so-called) face-value likelihood based solely on Yobs:

L[η|Yobs = yobs] ∝ ∑
v∈Y(yobs)

Pη(Y = yobs + v).(3.2)
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This ignores the additional information about η available in D. Inference for η

and ψ should be based on all the available observed data, including the sampling
design information. This likelihood is any function of η and ψ proportional to
P(D,Yobs|η,ψ):

L[η,ψ |Yobs = yobs,D = dobs]
∝ P(D = dobs, Yobs = yobs|η,ψ)

= ∑
v∈Y(yobs)

P (D = dobs|Y = yobs + v,ψ)Pη(Y = yobs + v).

Thus the correct model is related to the complete data model through the sampling
design as well as the observed nodes and dyads.

In likelihood inference, the sampling parameter ψ is a nuisance parameter, and
modeling the sampling design along with the data structure adds a great deal of
complexity. It is natural to ask when we might consider the simpler face-value
likelihood, (3.2), which ignores the sampling design.

In the context of missing data, Rubin (1976) introduced the concept of ignora-
bility to specify when inference based on the face-value likelihood is efficient. We
introduce the term amenability to represent the notion of ignorability for network
sampling strategies within a likelihood framework.

In many situations where models are used, the parameters η ∈ � and ψ ∈ �

are distinct, in the sense that the joint parameter space of (η,ψ) is � × �. If the
sampling design is adaptive and the parameters η and ψ are distinct,

L[η,ψ |Yobs = yobs,D = dobs]
∝ P(D = dobs|Yobs = yobs,ψ)

∑
v∈Y(yobs)

Pη(Y = yobs + v)

∝ L[ψ |D = dobs, Yobs = yobs]×L[η|Yobs = yobs].
Thus if the sampling design is adaptive and the structural and sampling para-

meters are distinct, then the sampling design is ignorable in the sense that the
resulting likelihoods are proportional. When this condition is satisfied likelihood-
based inference for η, as proposed here, is unaffected by the (possibly unknown)
sampling design. This leads to the following definition and result.

DEFINITION. Consider a sampling design governed by parameter ψ ∈ � and
a stochastic network model Pη(Y = y) governed by parameter η ∈ �. We call the
sampling design amenable to the model if the sampling design is adaptive and the
parameters ψ and η are distinct.

RESULT. Consider networks produced by the stochastic network model
Pη(Y = y) governed by parameter η ∈ � which are observed by a sampling design
with parameter ψ ∈ � amenable to the model. Then the likelihood for η and ψ is

L[η,ψ |Yobs = yobs,D = dobs] ∝ L[ψ |D = dobs, Yobs = yobs]×L[η|Yobs = yobs].
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Thus likelihood-based inference for η from L[η,ψ |Yobs,D] will be the same as
likelihood-based inference for η based on L[η|Yobs].

This result shows for standard designs such as the ego-centric, single wave and
multi-wave sampling designs in Section 2, likelihood-based inference can be based
on the face-value likelihood L[η|Yobs]. This was first noted in the foundational
paper of Thompson and Frank (2000). Explicitly, this is

L[η|Yobs = yobs] ∝ P(Yobs = yobs|η) = ∑
v∈Y(yobs)

Pη(Y = yobs + v).

Hence we can evaluate the likelihood by just enumerating the full data likelihood
over all possible values for the missing data.

We may also wish to make inference about the design parameter ψ. The like-
lihood for ψ based on the observed data is any function of ψ proportional to
P(D,Yobs|ψ). For designs amenable to the model this is

L[ψ |D = dobs, Yobs = yobs] ∝ P(D = dobs|Yobs = yobs,ψ)

= P(D = dobs|Y = yobs + v,ψ)

for any choice of v in Y(yobs). Hence it can be computed without reference to the
network model.

4. Exponential family models for networks. The models we consider for
the random behavior of Y rely on a p-vector g(Y ) of statistics and a parameter
vector η ∈ Rp . The canonical exponential family model is

Pη(Y = y) = exp{η · g(y) − κ(η)}, y ∈ Y(4.1)

where exp{κ(η)} = ∑
u∈Y exp{η · g(u)} is the familiar normalizing constant as-

sociated with an exponential family of distributions [Barndorff-Nielsen (1978);
Lehmann (1983)].

The range of network statistics that might be included in the g(y) vector is
vast—see Wasserman and Faust (1994) for the most comprehensive treatment of
these statistics—though we will consider only a few in this article. We allow the
vector g(y) to include covariate information about nodes or edges in the graph in
addition to information derived directly from the matrix y itself.

There has been a great deal of work on models of the form (4.1), to which we
refer as exponential family random graph models or ERGMs for short. [We avoid
the lengthier EFRGM, for “exponential family random graph models,” both for the
sake of brevity and because we consider some models in this article that should
technically be called curved exponential families Hunter and Handcock (2006).]

The normalizing constant is usually difficult to compute directly for Y contain-
ing large numbers of networks. Inference for this class of models was considered
in the seminal paper by Geyer and Thompson (1992), building on the methods
of Frank and Strauss (1986) and the above cited papers. Until recently, inference
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for social network models has relied on maximum pseudolikelihood estimation
[Besag (1974); Frank and Strauss (1986); Strauss and Ikeda (1990); Geyer and
Thompson (1992)]. Geyer and Thompson (1992) proposed a stochastic algorithm
to approximate maximum likelihood estimates for model (4.1), among other mod-
els; this Markov chain Monte Carlo (MCMC) approach forms the basis of the
method described in this article. The development of these methods for social net-
work data has been considered by Corander, Dahmström and Dahmström (1998);
Crouch, Wasserman and Trachtenberg (1998); Snijders (2002); Handcock (2002);
Corander, Dahmström and Dahmström (2002); Hunter and Handcock (2006).

4.1. Likelihood-based inference for ERGM. In this section we consider likeli-
hood inference for η in the case where Y = Yobs + Ymis is possibly only partially
observed.

As the direct computation of the likelihood is difficult when the number of net-
works in Y is large, we can approximate the likelihood by using the MCMC ap-
proach of randomly sampling from the space of possible values of the missing data
and taking the mean. Alternatively, consider the conditional distribution of Y given
Yobs:

Pη(Ymis = v|Yobs = yobs) = exp[η · g(v + yobs) − κ(η|yobs)], v ∈ Y(yobs),

where exp[κ(η|yobs)] = ∑
u∈Y(yobs)

exp[η · g(u + yobs)]. This formula gives a sim-
ple way to sample from the conditional distribution and hence produce multiple
imputations of the full data. Specifically, the conditional distribution of Y given
Yobs is an ERGM on a constrained space of networks, and hence one can simulate
from it using a variant of the standard MCMC for ERGM [Hunter and Handcock
(2006); Handcock et al. (2003)] that restricts the proposed networks to the subset
of networks that are concordant to the observed data.

Also note that

L[η|Yobs = yobs] ∝ exp[κ(η|yobs) − κ(η)]
which can then be estimated by MCMC samples: the first term by a chain on the
complete data and the second by a chain conditional on yobs. So the sampled data
situation is only slightly more difficult than the complete data case.

5. Two-wave link-tracing samples from a collaboration network. In this
section we investigate the effect of network sampling on estimation by compar-
ing network samples to the situation where we observe the complete network.
Specifically, we consider the collaborative working relations between 36 partners
in a New England law firm introduced in Section 1. These data have been studied
by many authors including Lazega (2001), Snijders et al. (2006) and Hunter and
Handcock (2006) (whom we follow).
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We consider an ERGM (4.1) with two network statistics for the direct effects of
seniority and practice of the form ∑

1≤i,j≤n

yijXi,

where Xi is the seniority or practice of partner i. We also consider three dyadic
homophily attributes based on practice, gender and office. These are included as
three network statistics indicating matches between the two partners in the dyad
on the given attribute: ∑

1≤i<j≤n

yij I(Xi = Xj),

where I(x) indicates the truth of the condition x and Xi and Xj are the practice,
gender or office attribute of partner i and j, respectively. We also include statis-
tics that are purely functions of the relations y. These are the number of edges
(essentially the density) and the geometrically weighted edgewise shared partner
statistic (denoted by GWESP), a measure of the transitivity structure in the network
[Snijders et al. (2006)]. The model is a slightly reparameterized form of Model 2
in Hunter and Handcock (2006) obtained by replacing the alternating k-triangle
term with the GWESP term. The scale parameter for the GWESP term is fixed at
its optimal value (0.7781). See Hunter and Handcock (2006) for details.

As discussed in Hunter and Handcock (2006), this model provides an adequate
fit to the data, and we will use it here to assess the effect of sampling on model
fit. A summary of the MLE parameters used is given in the complete data value
column of Table 2. Note that we are taking these parameters as “truth” and consid-
ering data produced by sampling from this network.

TABLE 2
Bias and Root Mean Squared Error (RMSE) of natural parameter MLE based on
two-wave samples as percentages of true parameter values and efficiency losses

Natural Complete Bias RMSE Efficiency
parameter data value (%) (%) loss (%)

Structural
Edges −6.51 0.2 1.2 1.7
GWESP 0.90 0.8 3.7 5.1

Nodal
Seniority 0.85 0.3 3.1 1.3
Practice 0.41 0.4 5.3 3.5

Homophily
Practice 0.76 0.8 4.3 2.9
Gender 0.70 0.9 4.7 1.7
Office 1.15 0.7 2.9 2.8
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FIG. 1. Schematic depiction of sampled and unobserved arc data when the sampling is over an
undirected network.

We construct all possible datasets produced by a two-wave link-tracing design
starting from two randomly chosen nodes (the “seeds”). This adaptive design is
amenable to the model. As there are 36 partners and the sample is deterministic
given the seeds, there are

(36
2

) = 630 possible data sets. The number of actors in
each dataset varies from just 2 to all 36 depending on the degree of connected-
ness of the seeds. The data pattern is shown in Figure 1. Consider a partition of
the sampled from the nonsampled and the corresponding 2 × 2 blocking of the so-
ciomatrix, with the four blocks representing dyads from sampled and nonsampled
to sampled and nonsampled. The complete data consists of the full sociomatrix.
The first three blocks contain the observed data, the dyads involving at least one
sampled node, and the last block contains the unobserved data, those between the
nonsampled.

For each of these samples we use the methods of Section 4.1 to estimate the
parameters. We can then compare them to the MLE for the complete dataset. For
these networks, the MLEs are obtained using statnet [Handcock et al. (2003)],
both for the natural parametrization and for the mean value parameterization [see
Handcock (2003)].

The mean value parameters are a function of the natural parameters, specifi-
cally the expected values of the sufficient statistics given the values of the natural
parameters.

There are two isolates, that is nodes with no relations. If these two are selected as
the two seeds, only 69 of the 630 dyads are observed, and no edges are observed.
Therefore, the MLE associated with this sample includes (negative) infinite val-
ues, on the boundary of the convex hull. For this reason, we exclude this sample
from our analyses. Practically, this exclusion is reasonable in that it is unlikely any
researcher drawing a link-tracing sample including only two isolated nodes will
proceed with analysis of that sample.
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One way to assess the effect of the link-tracing design is to compare the esti-
mates from the sampled data to that of the complete data. As a measure of the
difference between the estimates in the metric of the model, we use the Kullback–
Leibler divergence from the model implied by the complete data estimate to that
of the sampled data estimate. Recall that the Kullback–Leibler divergence of a dis-
tribution with probability mass function p from the distribution with probability
mass function q is

Eq[log(q) − log(p)].
Let η and ξ be alternative parameters for the model (4.1). The Kullback–Leibler
divergence, KL(ξ, η), of the ERGM with parameter η from the ERGM with para-
meter ξ is

Eξ

[
log

(
Pξ (Y = y)

Pη(Y = y)

)]
= ∑

y∈Y
log

(
Pξ (Y = y)

Pη(Y = y)

)
Pξ (Y = y)

= ∑
y∈Y

(ξ − η) · yPξ (Y = y) + κ(η) − κ(ξ)

= (ξ − η) · Eξ [g(Y )] + κ(η) − κ(ξ).

If ξ is the complete data MLE then Eξ [g(Y )] = g(Yobs) are the observed statistics
(given in the complete data value column of Table 3). The divergence can be easily
computed using the MCMC algorithms of Section 4.1.

Figure 2 plots the Kullback–Leibler divergence of the MLEs based on the
629 samples from the complete data MLE. The Kullback–Leibler divergence of
the two smallest samples, including only 5 nodes (165 dyads), are about 14 and

TABLE 3
Bias and Root Mean Squared Error (RMSE) of mean value parameter MLE based on two-wave

samples as percentages of true parameter values and efficiencies

Natural Complete Bias RMSE Efficiency
parameter data value (%) (%) loss (%)

Structural
Edges 115.00 0.4 2.0 1.8
GWESP 190.31 0.4 2.8 1.9

Nodal
Seniority 130.19 0.3 1.8 1.4
Practice 129.00 0.2 2.6 3.4

Homophily
Practice 72.00 0.1 2.0 1.7
Gender 99.00 0.5 2.1 1.8
Office 85.00 0.7 2.7 3.0
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FIG. 2. Kullback–Leibler divergence of the MLEs based on the samples compared to the complete
data MLE. As the number of dyads sampled increases, the information content of the samples ap-
proaches that of the complete data. The information loss for the majority of samples is modest.

have not been plotted to reduce the vertical scale. The horizontal axis is the num-
ber of observed dyads in the sample. The plot indicates how the information in
the data about the complete data MLE approaches that of the complete data as
the number of sampled dyads approaches the full number. The key feature of this
figure is the variation in information content among samples of the same size es-
pecially for the smaller sample sizes. Different seeds lead to samples that tell us
different things about the model even when the numbers of partners surveyed is
the same.

For more specific information on the individual estimates, we can compute
the bias of the estimates based on the samples as the mean difference between
the parameter estimates from the samples and that of the complete network. The
root mean squared error (RMSE) is the square-root of the mean of the squared
difference between the parameter estimates from each sample and the complete
data estimates. The efficiency loss of the sampled estimate is the ratio of the
mean squared error and the variance of the sampling distribution of the estimate
based on the full data. This standardizes the error in the sampled estimates by
the variation in the complete data estimates.We also complete a similar compari-
son of the estimates under the alternative mean value parametrization [Handcock
(2003)].

The properties of the natural parameter estimates are summarized in Table 2.
The bias and root mean squared error are presented in percentages of the complete
data parameter estimates.
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The bias is very small and the RMSE is modest. The efficiency loss is 2%–3%
on average. Note that these population-average figures obscure the variation in loss
over individual samples apparent in Figure 2.

Table 3 is the mean value parameterization analog of Table 2. As these are on
the same measurement scale as the statistics they are easier to interpret. Again we
see that the estimates are approximately unbiased and the RMSE and efficiency
losses are small.

6. Discussion. In this paper we give a concise and systematic statistical
framework for dealing with partially observed network data resulting from a de-
signed sample. The framework includes, but is not restricted to, adaptive network
sampling designs. We present a definition of a network design which is amenable
to a given model and a result on likelihood-based inference under such designs.

An important simple result of this framework is that sampled networks are not
“biased” but can be representative if analyzed correctly. Many authors have con-
fused the ideas of simple random sampling of the dyads with representative de-
signs. The results of this paper indicate that simple random sampling is not nec-
essary for valid inference. In fact, the most commonly used designs can be easily
taken into account. Hence, despite their form, inference from adaptive network
samples is tractable.

It is illustrative to compare our approach to that of Stumpf, Wiuf and May
(2005). These authors highlight the difference between the structure of a network
and that of a sub-network induced by Bernoulli sampling of its nodes. The frame-
work in this paper allows valid inference for the properties of the network based on
its partial observation. This is because we fit a broad class of models compatible
with an arbitrary set of network statistics (e.g., ERGM) for the complete network
and use a method of inference that does not rely on equality between the struc-
ture of the full and sub-networks. As illustrated by the work of Stumpf, Wiuf and
May (2005), treating the observed portion as if it were the full network may lead
to invalid inference about characteristics of the full network such as the degree
distribution.

We have also shown that likelihood-based inference from an adaptive network
sample can be conducted using a complete network model. We have shown that
such inference is both principled and practical. The likelihood framework natu-
rally accommodates standard sampling designs. Note that in a design-based frame,
principled inference would require a great deal of effort to precisely characterize
the sampling designs. The result that link-tracing designs are adaptive and can be
analyzed with complex likelihood based methods is very valuable in practice as
these designs have previously not been analyzed with general exponential fam-
ily random graph (or similar) models. The only prior work appears to be that of
Thompson and Frank (2000) who applied a less complex model class.

In our application we show that an adaptive network sampling of a collabora-
tion network can lead to effective estimates of the model parameters in the vast
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majority of cases. We find that the MLEs from the samples have only modest bias
(compared to the complete data estimate) and an error that only increases slowly
with the number of unobserved dyads. We also show that the information content
of the sample (with respect to the model), varies greatly even for samples of the
same size. For conventional samples of i.i.d. random variables, the Fisher infor-
mation is simply proportional to the sample size. In the network setting with de-
pendence terms, however, the Fisher information will depend on the specific set of
nodes and dyads sampled. For example, the information component corresponding
to the GWESP term in the example will be larger for samples in which more pairs
of nodes joined by edges are sampled, as GWESP applies only to pairs of nodes
joined by edges. If no such dyads were sampled, there would be no information
in the sample about the propensity for nodes joined by edges to have relations in
common.

In practice the sample is a result of a combination of the sampling design and
an out-of-design mechanism. The sampling design is the part of the observation
process under the control of the surveyor. When adaptive designs are executed
faithfully, the unknown dyads are assumed to be intentionally unobserved, or miss-
ing by design. Note that the definition of control may be extended to nonamenable
sampling designs, for example by allowing the design to depend on unknown fac-
tors, such as the unrecorded values of variables used for stratification. The out-
of-design mechanism is the nonintentional nonobservation of network information
(e.g., due to the failure to report links, incomplete measurement of links and at-
trition from longitudinal surveys). This is also referred to, in general, as the non-
response mechanism. We consider the joint effect of sampling and missing data in
a companion paper [Handcock and Gile (2007)].
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SUPPLEMENTARY MATERIAL

Supplement: Software used in the simulation study (DOI: 10.1214/08-
AOAS221SUPP; .zip). The code used to perform this study is written in the R sta-
tistical language [R Development Core Team (2007)] and is based on statnet,
an open-source software suite for network modeling [Handcock et al. (2003)]. We
provide the code and documentation for it with links to the statnet website.
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