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BAYESIAN MODEL COMPARISON AND MODEL AVERAGING
FOR SMALL-AREA ESTIMATION1

BY MURRAY AITKIN, CHARLES C. LIU AND TOM CHADWICK

University of Melbourne, University of Melbourne and Newcastle University

This paper considers small-area estimation with lung cancer mortality
data, and discusses the choice of upper-level model for the variation over ar-
eas. Inference about the random effects for the areas may depend strongly on
the choice of this model, but this choice is not a straightforward matter. We
give a general methodology for both evaluating the data evidence for different
models and averaging over plausible models to give robust area effect distri-
butions. We reanalyze the data of Tsutakawa [Biometrics 41 (1985) 69–79]
on lung cancer mortality rates in Missouri cities, and show the differences in
conclusions about the city rates from this methodology.

1. The lung cancer data. The data are male lung cancer mortality frequencies
and population sizes for the period 1972–1981 in N = 84 Missouri cities (see
Table 1). The variables, given in Tsutakawa and reproduced below, are the number
r of men aged 45–54 dying from lung cancer in each city over the period 1972–
1981 and the city size n.

Most of the “cities” are small, though three are large. The mortality rates are
poorly defined in small cities; four cities with populations less than 200 have no
deaths at all, so the observed rate is zero. Our aim is to estimate the mortality rates
in each city, using the information from other cities in the most appropriate way.

2. Small-area estimation. Variance component models are widely used in
small-area estimation; the term borrowing strength is commonly used to describe
the improvement in precision of estimation for the parameters of small areas by
relating them through a two-level model. Empirical Bayes methods [Carlin and
Louis (1996)] are widely used to represent the precision of the small-area para-
meters through their estimated posterior distributions, substituting the unknown
variance component and other parameters by their maximum likelihood estimates.
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TABLE 1
Male lung cancer mortality frequency and city size 1972–1981 in 84 Missouri cities

# n r # n r # n r # n r

1 1019 2 22 260 1 43 254 2 64 581 6
2 1512 8 23 371 2 44 28937 251 65 550 6
3 1424 8 24 232 1 45 445 4 66 431 5
4 54155 402 25 228 1 46 447 4 67 399 5
5 447 1 26 343 2 47 329 3 68 286 4
6 1907 12 27 454 3 48 206 2 69 592 7
7 1755 11 28 323 2 49 313 3 70 246 4
8 5756 42 29 311 2 50 314 3 71 547 7
9 509 2 30 784 6 51 314 3 72 438 6

10 350 1 31 426 3 52 202 2 73 202 4
11 473 2 32 184 1 53 198 2 74 790 10
12 329 1 33 181 1 54 183 2 75 648 9
13 7137 55 34 177 1 55 292 3 76 354 6
14 430 2 35 177 1 56 178 2 77 730 10
15 304 1 36 291 2 57 287 3 78 144 4
16 163 0 37 170 1 58 282 3 79 1093 14
17 163 0 38 158 1 59 164 2 80 384 7
18 159 0 39 274 2 60 164 2 81 278 6
19 281 1 40 150 1 61 1923 18 82 596 10
20 154 0 41 265 2 62 3672 34 83 1889 28
21 889 6 42 257 2 63 261 3 84 22514 334

It has long been known [see, e.g., Tsutakawa (1985)] that this is not a satisfac-
tory representation for the information about the small areas because the impre-
cision in the estimation of the variance component and other parameters is not
allowed for. Fully Bayesian methods allow for this correctly, and will be discussed
here.

The upper-level model for the among-area variation is routinely assumed to
be normal on a suitable scale, though other choices, like the conjugate gamma
distribution for Poisson rates, or the beta distribution for binomial proportions,
are possible. With more than one possible model for rates, we need to com-
pare the relative evidence for the competing models; if one is greatly supe-
rior to the others, we can discount the poorer models. A further issue is how
to combine, or average over, the models if several are well supported by the
data.

The comparison of upper-level models is frequently done using the Deviance
Information Criterion DIC [Spiegelhalter et al. (2002)]. In this approach the pos-
terior distribution of the deviance is computed for each model, and the mean (or
sometimes the median) of this distribution is penalized by a function of the number
of model parameters; an important issue in this approach is the need to specify the
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focus of the likelihood, in the sense of identifying the level in the model at which
inference is to be performed.

This requirement was criticized by the paper discussants, and in more detail
by Celeux et al. (2006); see also Trevisani and Gelfand (2003). In their response,
Spiegelhalter et al. [(2002), page 634] said:

“Smith and others ask how the model focus should be chosen in practice. We
argue that the focus is operationalized by the prediction problem of interest. For
example, if the random effects θ in a hierarchical model relate to observation units
such as schools or hospitals or geographical areas, where we might reasonably
want to make future predictions for those same units, then taking p(y|θ) as the
focus is sensible. The prediction problem is then to predict a new Yi,rep conditional
on the posterior estimate of θi for that unit. However, if the random effects relate to
individual people, say, then we are often interested in population-average inference
rather than subject-specific inference, so we may want to predict responses for a
new or ‘typical’ individual rather than an individual who is already in the data set.
In this case, it is appropriate to integrate over the θs and to predict Yrep for a new
individual conditional on [the random effect distribution parameters] ψ , leading
to a model focused on p(y|ψ). A crucial insight is that a predictive probability
statement such as p(Yrep|y) is not uniquely defined without specifying the level
of the hierarchy that is kept fixed in the prediction—this defines the focus of the
model.”

In the context of the lung cancer data, these two cases would correspond to
inferential statements about a given city rate, and inference about an average or
typical city rate.

In this paper we give a general methodology which treats these two cases in
the same way, using the full posterior distribution of the Fisherian observed data
likelihood (rather than a penalized version of its mean or median) and the standard
marginal and conditional arguments for the individual city random effect distribu-
tions and the marginal rate distribution across cities.

We use this methodology to illustrate:

• the differences in conclusions which may arise from different upper-level mod-
els;

• the comparison of upper-level models;
• and the form of model averaging which protects against such differences,

for both individual city and “typical city” rates, with a re-analysis of the Missouri
lung cancer data analyzed by Tsutakawa (1985).

3. The Tsutakawa analysis. Tsutakawa gave empirical Bayes and approxi-
mate fully Bayes analyses of these proportions, and showed a slight increase in
dispersion of the fully Bayes posterior distributions for small cities. He used a
nonconjugate normal model for the logit of the cancer rates which required several
approximations for the computations.
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FIG. 1. Posterior densities for five cities from Tsutakawa.

His Figure 1, reproduced above, shows the empirical Bayes and full Bayes pos-
teriors for the logits of the death rates for five of the cities, numbered 1, 8, 17, 83
and 84 in the data table.

The full Bayes posteriors are slightly more diffuse than the empirical Bayes
posteriors, particularly for city 1 with its small population.

We note for subsequent comparison that Bayes inferences about the city rates
may be based directly on the data from each city, without (apparently) any model-
ing: with a flat prior on the rate pi in the ith city, and the observed death count ri in
the population of ni , the ith city death rate has a posterior Beta(ri + 1, ni − ri + 1)

distribution. (We do not use the Jeffreys or Haldane priors, as these give improper
posteriors for the cities with zero cases.)

These distributions for the same five cities, shown on the logit scale in Figure 2,
are quite different from the empirical or the full Bayes posteriors in Figure 1 for
the small cities, though very similar for the larger cities. This is an example of
“posterior shrinkage” from the normal model assumption for the distribution of
the city random effects on the logit scale.

Other possible models need to be examined for the death rates and compared
to the normal model, since posterior shrinkage may be quite different for differ-
ent models [Aitkin (1999)]. We set out a general methodology for this purpose,
following Dempster (1974, 1997), Aitkin (1997) and Aitkin, Boys and Chadwick
(2005); see also Fox (2005).

4. Model comparison via posterior deviances. We have competing models
Mj (j = 1, . . . , J ) for observed data y, with densities fj (y|θj ) under model Mj ,
and prior distributions πj (θj ). Given the data y, we form the likelihoods Lj(θj |y),
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FIG. 2. Posterior densities from each city data only.

and update the priors to the posteriors πj (θj |y). We make T independent draws
(both within and among models) θ

[t]
j from the posteriors, and substitute these into

the likelihoods, to give Lj(θ
[t]
j ). These are T independent draws from the pos-

terior distributions of the likelihoods Lj(θj |y). To compare models j and k, we
compute the likelihood ratio values L

[t]
jk = Lj(θ

[t]
j )/Lk(θ

[t]
k ), which are T inde-

pendent draws from the marginal posterior distribution of Ljk .
A likelihood ratio Ljk of 9, with equal prior probabilities of 0.5 on each model,

would give a posterior probability of 0.9 for model j , which would generally be
regarded as quite strong evidence for model j over model k. Over the T draws
L

[t]
jk , we compute the (empirical) probability that Ljk > 9; if this is 0.9 or more,

we have a high posterior probability of quite strong evidence in favor of model j

over model k.
It is easier to compute and interpret deviances (unfortunately easily confused

with frequentist deviances). The deviance for model Mj is Dj = −2 logLj(θj ).
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For the t th draw θ
[t]
j from the posterior of θj , we obtain the t th draw of the

deviance for model Mj :

D
[t]
j = −2 logLj

(
θ

[t]
j

)
.

A likelihood ratio Ljk of 9 is equivalent to a deviance difference Djk = Dj − Dk

of −2 log 9 = −4.4. If the empirical Pr[Djk < −4.4|data] > 0.9, we have a high
posterior probability of quite strong evidence for Mj against Mk . We extend this
approach to model averaging in Section 5.

A formal analysis follows Spiegelhalter et al. (2002). For large samples from
regular models with flat priors on the parameters θ , a Taylor expansion of D(θ)

about θ̂ shows that the deviance can be expressed [equation (18) of Spiegelhalter
et al. (2002)] as

D(θ) � D(θ̂) + χ2
s ,

where s is the dimensionality of θ , and D(θ̂) is the frequentist deviance. (For
nonnested model comparisons, all integrating constants must be included in the
model likelihood.) If the competing deviance distributions are plotted as cdfs on
the deviance scale, those with more parameters will have lower slopes because of
the increasing variance of the χ2

s distribution with s.
For comparison of nonnested models 1 and 2, the deviance difference

D12 = D1(θ1) − D2(θ2) � D1(θ̂1) − D2(θ̂2) + χ2
s1

− χ2
s2

,

where the χ2 variables are independent. Thus, the distribution of the deviance
difference D12 will be a difference of independent χ2 variables location-shifted by
the frequentist deviance difference FD12. The distribution of a difference between
independent χ2 variables does not have a closed-form density, but is very easily
simulated.

If both s1 and s2 are large,

D12 � s1 − s2 + √
2s1N(0,1) − √

2s2N(0,1) + FD12,

that is,

D12 � s1 − s2 + N(0,2s1 + 2s2) + FD12.

Here the frequentist deviance difference is penalized by the difference in degrees
of freedom, but the uncertainty in the comparison—which increases with increas-
ing numbers of parameters—provides a probabilistic measure of certainty about
the superiority of one model over the other. This is different from the usual penal-
ized LRT approaches which provide only single-number decision criteria without
a probabilistic interpretation.

The likelihoods being compared are the observed-data likelihoods, obtained by
integrating out the random effects. Their computation will in general require nu-
merical integration or MCMC to obtain the parameter posteriors. For the lung
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cancer data there are no covariates, so a direct integration approach is straightfor-
ward. Since there are no individual-level variables, each city population is effec-
tively homogeneous, and the two-level variance component model reduces to an
overdispersion model in the proportions pi . We first adapt the original analysis by
Tsutakawa.

4.1. Normal logit analysis. We depart slightly from Tsutakawa’s analysis by
using the binomial distribution for the number of deaths in each city rather than
the Poisson distribution; since the observed rates are very small, and the city popu-
lations 100 or more, this makes a negligible difference, as we use the same upper-
level normal logit model as Tsutakawa.

The number of deaths ri is modeled by a binomial random variable Ri with true
death proportion pi :

Ri | pi, ni ∼ b(ni,pi).

At the upper level, the logits of the city proportions are modeled by a nonconjugate
normal distribution:

θi = log
[

pi

1 − pi

]
∼ N(μ,σ 2).

To compute the likelihood L1(μ,σ ), we integrate over the unobserved θi us-
ing a (K =)20-point Gaussian quadrature, with masses πk at mass-points zk ,
k = 1, . . . ,K :

L1(μ,σ ) =
N∏

i=1

(
ni

ri

)∫ ∞
−∞

eθiri

(1 + eθi )ni

1√
2πσ

exp
{
−1

2

(θi − μ)2

σ 2

}
dθi

=
N∏

i=1

(
ni

ri

)∫ ∞
−∞

e(μ+σzi)ri

(1 + eμ+σzi )ni

1√
2π

exp
{
−1

2
z2
i

}
dzi

.=
N∏

i=1

(
ni

ri

) K∑
k=1

e(μ+σzk)ri

(1 + eμ+σzk )ni
πk.

We compute the likelihood numerically over an equally spaced grid of G =
100 × 100 values (μ[g], σ[g]) in the region of appreciable likelihood: μ ∈
(−4.56,−4.20), σ ∈ (0.08,0.40), sum the likelihoods over the grid and normalize
to give the posterior mass function π(μ,σ |y) of (μ,σ ) for flat priors on the grid,
as shown in Figure 3.

The maximum likelihood estimates of μ and σ , and the maximized log-
likelihood over the grid are μ̂ = −4.787, σ̂ = 0.2368 and −181.254; the frequen-
tist deviance is 362.51. These discrete MLEs are close, but not identical, to those
reported by Tsutakawa: μ̂ = −4.733, σ̂ = 0.2384. The figure strongly suggests
multi-modality in the distribution, but this causes no difficulty in the subsequent
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FIG. 3. Joint posterior mass function of (μ,σ ).

analysis. Careful inspection shows that Tsutakawa’s estimates are near a saddle
point, and that the likelihood has four local maxima, with values of (μ,σ ) and log-
likelihoods given by (−4.787,0.2368,−181.254), (−4.708,0.2016,−181.397),
(−4.776,0.3072,−181.425), (−4.668,0.2432,−181.612). The log-likelihood at
Tsutakawa’s estimates is −182.059. These small differences have very little effect
on the area posterior densities.

We note for later discussion that, by weighting −2 times the log-likelihoods
�1(μ[g], σ[g]) at each grid point by π(μ[g], σ[g]|y), their posterior probabilities, and
summing, we obtain the posterior mean of the deviance used in the DIC [Spiegel-
halter et al. (2002)]. For the normal model the posterior mean deviance is 364.32.
This may be combined with the maximized log-likelihood to give one version of
the effective number of parameters pD defined by equation (10) of Spiegelhalter
et al. (2002):

pD = D(θ) − D(θ̃);
we use for the second term the deviance at the MLEs rather than at the poste-
rior mean, since the latter is not a grid point in general and would require ad-
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FIG. 4. Deviance distribution for normal model.

ditional computation. Here the second term is 362.51, giving pD = 1.81, and
DIC1 = 366.13.

However, Figure 3 provides much more information, since it gives the exact (up
to the grid resolution) posterior distribution of the deviance, without any Monte
Carlo simulation. Sorting the deviances

D2
(
μ[g], σ[g]

) = −2�2
(
μ[g], σ[g]

)
into increasing order with their corresponding posterior probabilities and cumulat-
ing the latter, we obtain the cdf of the deviance, as shown in Figure 4.

Conditional on the ith area data ri, ni and the parameters μ,σ , the posterior
density of pi has the form

π(θi |μ,σ, ri) = c(μ,σ )

(
ni

ri

)
p

ri
i (1 − pi)

ni−ri exp
{
−1

2

(θi − μ)2

σ 2

}

= c(μ,σ )

(
ni

ri

)
eriθi

(1 + eθi )ni
exp

{
−1

2

(θi − μ)2

σ 2

}
.
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Expanding the log density in θi about θ̂i = log[ri/(ni − ri)] up to second-order
terms, it is easily shown that, to this order of approximation,

θi | ri,μ,σ ∼ N

(
ψiθ̂i + ψμ

ψi + ψ
,

1

ψi + ψ

)
,

where ψi and ψ are the sample and prior precisions of θi :

ψi = nip̂i(1 − p̂i), ψ = 1/σ 2.

This approximation fails if ri = 0; in this case we set ri = 0.5. The level of ap-
proximation is not affected by the distribution of (μ,σ ).

The posterior densities for the area random effects pi are most easily computed
by Gaussian kernel smoothing of T = 10,000 random values p

[t]
i , generated from

the normal distributions obtained by substituting T random draws (μ[t], σ [t]) into
the area posterior distributions:

p
[t]
i = ψiθ̂i + ψ [t]μ[t]

ψi + ψ [t] + z[t]/
√

ψi + ψ [t],

where ψ [t] = 1/σ [t]2 and z[t] is a random draw from N(0,1).
Figure 5 shows the results for the five cities above for T = 10,000.
Comparison with Tsutakawa’s Figure 1 shows close agreement for all five cities,

though the vertical scales are different.
We now re-analyze the data with a beta distribution for the area proportions,

which gives simply computed forms for the likelihood and the posterior distribu-
tions.

4.2. Beta-binomial analysis. At the upper level, the city proportions are mod-
eled by a conjugate beta distribution:

Pi | a, b ∼ Beta(a, b),

with density function

f (p) = pa−1(1 − p)b−1/B(a, b), a, b > 0,

where B(a, b) is the complete beta function

B(a, b) = �(a)�(b)/�(a + b).

The beta-binomial likelihood is denoted by

L2(a, b) =
m∏

i=1

[(
ni

ri

)
B(ri + a,ni − ri + b)/B(a, b)

]
.

The likelihood in this parametrization is very highly correlated in (a, b); we use
instead the (mean, standard deviation) parametrization, with

μβ = a/(a + b), σβ =
√

ab/[(a + b)2(a + b + 1)].
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FIG. 5. Normal model posterior densities for five cities.

The likelihood, shown in Figure 6, is nearly orthogonal in these parameters. We
use this form of the likelihood for subsequent computation.

We compute the likelihood numerically over a grid of G = 100 × 100 values
(μβ[g], σβ[g]) in the region of appreciable likelihood: μβ ∈ (0.007,0.011), σβ ∈
(0.001,0.004), sum the likelihoods over the grid and normalize to give the pos-
terior mass function π(μβ,σβ |y) of (μβ,σβ) on the grid. The maximized log-
likelihood is −181.486, with frequentist deviance 362.97.

As for the normal model, by weighting the log-likelihoods at each grid point by
−2 times their posterior probabilities and summing, we obtain the posterior mean
of the deviance for the beta model, which is 364.99, slightly larger than that for the
normal model, of 364.32. The effective number of parameters is pD = 2.02, and
DIC2 = 367.01.

The full posterior distribution of the beta deviance D2(μβ,σβ) = −2 logL2(μβ,

σβ), computed as for the normal model, is shown (dotted curve) in Figure 7, to-
gether with that of the normal model 1 (solid curve). We discuss the comparison
of these models in the next section.
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FIG. 6. Joint posterior mass function of beta mean and SD.

Conditional on the ith area data ri, ni and the parameters a, b, the posterior
distribution of pi is again beta:

π(pi | a, b, ri) = p
ri+a−1
i (1 − pi)

ni−ri+b−1/B(ri + a,ni − ri + b).

The posterior densities for the area random effects pi are again computed by
Gaussian kernel smoothing of T = 10,000 random values p

[t]
i , generated from

T random draws (μ
[t]
β , σ

[t]
β ) from their posterior distribution which are converted

to T random values (a[t], b[t]) of (a, b). We finally draw the T random values p
[t]
i

of pi , one each from the T beta distributions with indices ri + a[t], ni − ri + b[t]
for the given i.

The T values of pi are transformed to the logit scale for ease of inspection and
consistency with Tsutakawa’s analysis; posterior densities for individual cities are
then computed using Gaussian kernel densities with bandwidths chosen to give
smooth densities. Figure 8 shows the five beta posteriors (dotted curves) together
with the normal posteriors from Figure 6 (solid curves). The city numbers are
placed at the intersection of the two densities.
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FIG. 7. Beta (dotted) and normal (solid) deviances.

The beta posteriors are slightly less concentrated than the normal posteriors
except for city 84, and show slightly more shrinkage toward the mean.

Since the posterior conclusions from the beta distribution differ somewhat from
those from the normal, we need to decide whether the data support one model over
the other.

5. Model comparisons via deviances. For the comparison of these models,
and of other models for the true proportions, we compare the model deviances
D = −2 logL.

The two models for the pi considered above are not the only possible models.
Following Spiegelhalter et al. (2002), we consider four possible models for the pi :

• Model 1—the normal logit model: logitpi ∼ N(μ,σ 2);
• Model 2—the beta model: pi ∼ B(a, b);
• Model 3—the null model: pi ≡ p;
• Model 4—the saturated model: pi all different and unrelated.



212 M. AITKIN, C. C. LIU AND T. CHADWICK

FIG. 8. Beta (dotted) and normal (solid) posterior densities for five cities.

Models 3 and 4 are different from Models 1 and 2 in that there is no actual para-
metric model for the variation of the pi across the cities—each city has its own
single parameter under Model 4, and all cities have the same single parameter
under Model 3.

We compare directly the deviance distributions under each model. We first ap-
ply this approach to the normal and beta deviance distributions; we show all dis-
tributions in Figure 10. The beta deviance has a lower slope and is consistently
to the right of the normal deviance, so the normal model is preferred, but not
very strongly. To compare the models directly we draw 10,000 random values
D

[t]
1 ,D

[t]
2 from each deviance distribution and compute the deviance differences

D
[t]
12 = D

[t]
2 − D

[t]
1 (beta − normal) from the 10,000 (unordered) values for each

model. The cdf of the deviance difference distribution is shown in Figure 9.
The distribution has its median at 0.505, and the 95% credible interval for the

true difference, computed from the 250th and 9750th ordered differences [Con-
gdon (2005)] is (−5.125,6.378). The estimated probability that the normal de-
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FIG. 9. Beta − normal deviance.

viance is smaller than the beta is 0.6332: we cannot confidently choose between
these models.

The deviance constructions for Models 3 and 4 are different from those for
Models 1 and 2. The null Model 3 likelihood given p is

L3(p) =
m∏

i=1

[(
ni

ri

)
pri (1 − p)ni−ri

]

=
[

m∏
i=1

(
ni

ri

)]
pR(1 − p)N−R,

where R = ∑
i ri ,N = ∑

i ni .
For this one-parameter model, which is effectively a single-sample model, the

prior represents uncertainty about the value of p, not the variability of different
pi across cities. We use a uniform prior for p, giving a Beta(R + 1,N − R + 1)

posterior distribution of p. We draw 10,000 random values p[t] from this posterior,
and for each compute the likelihood L3(p

[t]) and the corresponding deviance D
[t]
3 .
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FIG. 10. Deviances for null (dashed), normal (solid), beta (dotted) and saturated (dot-dashed)
models.

For the saturated Model 4, the prior specification is similar. Each city has its
own pi , unrelated to the others, so the uniform prior is used for each city inde-
pendently, giving the set of Beta(ri + 1, ni − ri + 1) posterior distributions of pi .
We draw 10,000 random values p

[t]
i from each posterior, and for each m and each

i compute the likelihood contribution L4i (p
[t]
i ) and the corresponding deviance

D
[t]
4 = −2

∑
i logL4i (p

[t]
i ).

The cdfs of all four deviance distributions are shown in Figure 10.
Model 3 is nearly 40 deviance units to the right of the normal and beta—it is

immediately clear that the null model is untenable. We exclude it from further con-
sideration. The deviance distribution for the saturated model crosses those for the
normal and beta models, indicating no strong preference for the saturated model
over the parametric models. For the better-fitting normal model, the distribution of
the deviance difference (normal deviance − saturated deviance) is shown in Fig-
ure 11.
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FIG. 11. Deviance difference normal − saturated model.

Of the 10,000 differences, 2216 are positive, so the estimated probability that the
saturated deviance is smaller is 0.7784. This is not compelling evidence against the
normal model; since the saturated model allows no “borrowing of strength” across
cities, we retain both the normal and beta models as candidates for the upper-level
distribution, in addition to the saturated model.

6. Posterior model averaging. Model averaging is frequently proposed [see,
e.g., Hoeting et al. (1999)] for posterior inference about a common parameter (like
the mean) across several competing models. The posterior densities under each
model are averaged with respect to the posterior probabilities of each model, based
on their marginal likelihoods integrated over the prior distributions of the parame-
ters.

This process uses the integrated likelihoods; as with model choice, we use the
posterior distributions of the likelihoods to provide an averaged posterior density,
but with respect to posterior probabilities of each model which are themselves
random variables rather than fixed constants. The model comparison approach of
Section 3 is simply extended to deal with this.
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As before, θj are the model parameters for model Mj , θ [t]
j are the T draws from

the posterior distribution of θj given the data y, L[t]
j are the corresponding T draws

from the posterior distribution of Lj , and p
[t]
ij are the corresponding T values of

the random effect pi for area i under Mj .
Let πj be the prior probability of Model j ; the t th draw π [t](Mj |y) from the

posterior probability of Model j is then

π [t](Mj |y) = πjL
[t]
j

/∑
k

πkL
[t]
k .

The averaged density pave,i for pi is then defined through the T simulated val-
ues p

[t]
ave,i produced by the algorithm: for each i and each m:

1. compute π [t](Mj |y);
2. with probability π [t](Mj |y), set p

[t]
ave,i = p

[t]
ij .

This looks complicated notationally but is quite simple: the likelihoods for each
draw define the posterior probabilities for each model for this draw, and we simply
choose the model j random effect draw with the model j posterior probability
draw [Congdon (2005, 2006)].

In the computation of the averaged density we exclude the null model, and in-
clude the other three. Prior probabilities for the three distributions are taken as
equal, though as described above it is a simple matter to change them. We show
below several graphs of the city posterior rate densities on the logit scale for the
five cities shown earlier. Figure 12 shows the averaged densities, Figure 13 shows
the averaged (solid) and local area (dot-dashed) densities from Figure 2, and Fig-
ure 14 shows the averaged (solid) and normal (dot-dashed) densities.

The sharpness of the normal area posteriors is damped by the averaging process,
because in the 10,000 draws from each posterior deviance distribution, the satu-
rated model likelihood is generally superior to the normal or beta likelihood. For
the large city 84 there is little difference in the posteriors because of the very large
city size; this city “lends strength” to the small cities in the normal model which
are substantially shrunk toward the posterior mean. The generally superior likeli-
hood for the saturated model shows that neither the normal nor the beta provides
a convincing representation of the random effect distribution, and so conclusions
about individual random effects need to be based substantially on the local area
rate.

7. Model averaging for a “typical” city. The analysis above assumes that
our inferential interest is in the individual city rates. This is the most common use
of the two-level model. If, however, (or in addition) we wish to draw conclusions
about a “typical” city, this is done using the among-city model—either normal
or beta. The saturated model does not provide information about a “typical” city,
because the city rates are unrelated under this model.
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FIG. 12. Averaged posteriors, five cities.

The definition of a “typical” city is unclear; we take for illustration a random
city, in the sense of a random draw from the among-city model. Under the normal
model, the random logit rate will be μ + σZ, where Z ∼ N(0,1), while under the
beta model for p, it will be a random draw from the transformed beta density

f (θ) = eθa

(1 + eθ )a+b
.

So the posterior distribution of the random city rate under the normal model is
given by the empirical distribution of the T random draws μ[t] + σ [t]Z[t], while
that for the beta model is that of the T random draws θ [t] from Beta(a[t], b[t]). To
model average these, we draw the normal μ[t] +σ [t]Z[t] with posterior probability
π [t](N |y), and the beta θ [t] with posterior probability 1 − π [t](N |y), where only
these two models have positive posterior probability.

8. Discussion. These conclusions may seem surprising. The idea of “borrow-
ing strength” is well established in the Bayesian and non-Bayesian literature for
random effect models. The difficulty with the lung cancer data is that the “strong”
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FIG. 13. Averaged (solid) and local (dot-dashed) posteriors, five cities.

cities from which strength may be borrowed have essentially only two support
points, since cities 4 and 44 have observed rates (0.00742 and 0.00867) which are
very similar and near the median observed rate (though nearly the smallest of the
normal posterior mean rates), while city 84 has almost the highest observed rate
(0.01484), and has the highest normal posterior mean rate.

The small cities with limited data cannot shrink effectively toward either sup-
port point, since their rates are not well identified with these points, and the gen-
erally higher likelihood for the saturated model accentuates this effect. The model
averaged rate distributions remain diffuse, though less so than the single city rates.

What has been missing in the use of these models is a direct and straightforward
assessment of the appropriateness, or goodness of fit, of the upper-level model.
This has been done in Bayesian analysis mostly through Bayes factors, with their
attendant prior sensitivity difficulties, or through the DIC, with its definitional “fo-
cus” difficulties and ambiguous penalty.

The comparison of models through their posterior likelihood or deviance distri-
butions provides a straightforward way, not only to compare different parametric
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FIG. 14. Averaged (solid) and normal (dot-dashed) posteriors, five cities.

models, but also to evaluate the quality of reproduction of the local area rates by
the parametric models.

It is not, however, necessary to “pick the best model”: the posterior likelihood
model comparison extends directly to Bayesian model averaging, and provides a
compromise among the well-supported competing models. In this approach we
treat inference about the “typical” city rate and about the individual city rates in
the same way, though the relevant distributions are marginal instead of conditional.

9. Conclusion. The comparison of deviance distributions allows the expres-
sion of model comparisons through likelihood ratios, as for simple null and alter-
native hypotheses, while allowing automatically for the complexity of the model:
unnecessarily complex models have more diffuse likelihoods and so the approach
of explicit penalization of the maximized likelihood through some function of the
number of model parameters is not necessary. Incorporation of informative para-
meter or model priors is simple and straightforward. A further example of deviance
distribution comparisons on the galaxy data of Roeder (1990) is given in the dis-
cussion of Ridall et al. [(2007), pages 264–265] by Aitkin.



220 M. AITKIN, C. C. LIU AND T. CHADWICK

The choice of a suitable upper-level model for this example is informed by Tsu-
takawa’s original analysis of the data; for this simple data set the beta distribution
provides an alternative model which performs nearly as well as the normal model,
but both these models are (nonsignificantly) inferior to the saturated model, despite
the diffuseness of its deviance distribution from the 84 cities.

This analysis is simply adapted to provide model-averaged posterior shrink-
age when several upper-level models are well supported by the data; these model-
averaged posteriors provide a compromise reflecting the uncertainty about the ap-
propriate model.
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