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REAL TIME ESTIMATION IN LOCAL POLYNOMIAL
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The paper focuses on the adaptation of local polynomial filters at the end
of the sample period. We show that for real time estimation of signals (i.e.,
exactly at the boundary of the time support) we cannot rely on the automatic
adaptation of the local polynomial smoothers, since the direct real time filter
turns out to be strongly localized, and thereby yields extremely volatile esti-
mates. As an alternative, we evaluate a general family of asymmetric filters
that minimizes the mean square revision error subject to polynomial repro-
duction constraints; in the case of the Henderson filter it nests the well-known
Musgrave’s surrogate filters. The class of filters depends on unknown features
of the series such as the slope and the curvature of the underlying signal,
which can be estimated from the data. Several empirical examples illustrate
the effectiveness of our proposal.

1. Introduction. One of the key issues economists have faced in characteriz-
ing the dynamic behavior of macroeconomic variables, such as output and infla-
tion, is separating the longer-term component from the transitory one. Key mea-
surements such as dating the business cycle turning points and more generally the
assessment of the underlying trend call for signal extraction methods that sepa-
rate the two components. Many methodologies are available for the task, rang-
ing from nonparametric methods based on the notion of a band-pass filter and on
wavelet methods [Percival and Walden (2000)], kernel estimation and local poly-
nomial modeling [see, e.g., Fan and Gijbels (1996)] semiparametric methods based
on spline smoothing and mixed models [see Ruppert, Wand and Carroll (2003)
and Proietti (2007)], and parametric methods based on the state space models or
the Wiener–Kolmogorov signal extraction theory [Whittle (1983)]. An essential
and up to date monograph on measuring trends and cycles in economics is Mills
(2003). A problem that is common to all the methodologies is the reliability of the
trend estimates at the end of the sample period.

The concern of the paper is real time estimation of the underlying trend in a
time series by means of filters that arise from fitting a local polynomial of a given
degree with a constant bandwidth. Real time estimation is of outmost importance
in fields like economics and deals with the estimation of a signal at time t using
the observations available up to and including time t .
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A well-known property of local polynomial estimators is the automatic adapta-
tion at the boundaries. It essentially means that the bias and the variance near the
boundary are of the same order of magnitude as in the interior. See, for instance,
Hastie and Loader (1993), Fan and Gijbels (1996), Section 3.2.5, Simonoff (1996),
Section 5.2.3 and the references therein.

It turns out, however, that for a local cubic fit, such as that arising from the
well-known Henderson filter [Henderson (1916)], the variance inflation resulting
from the one-sided real time direct filter is very high, and that the filter is strongly
localized at the current observations, with a leverage that is close to unity.

The paper documents this basic feature and will be concerned, in particular,
with the evaluation of alternative strategies aiming at the adaptation at the bound-
ary of a given two-sided symmetric local polynomial filter. Our discussion will
mostly refer to the Henderson filter. The latter has a long tradition for trend-cycle
estimation in economic time series. The relevance of Henderson’s contribution to
modern local regression is stressed in the first chapter of Loader (1999). Hender-
son filters are still employed for trend estimation in the X-11 cascade filter, and
as such are an integral part of the X-12-ARIMA procedure, the official seasonal
adjustment procedure in the US, Canada, the UK and many other countries. See
Dagum (1980), Findley et al. (1998) and Ladiray and Quenneville (2001) for more
details.

The plan of the paper is the following. Section 2 motivates the applied problem
of interest, presenting an example dealing with the assessment of recent business
conditions in the US housing markets. After reviewing the constructive principles
presiding the derivation of the two-sided symmetric local polynomial filters, Sec-
tion 3 provides a thorough assessment of the properties of the asymmetric filters
automatically adapted at the boundary, which result from fitting a local polyno-
mial with a fixed bandwidth to the observations available at the current time. The
direct asymmetric filters can be equivalently derived through the reproducing ker-
nel Hilbert space method, as we prove based on the Hankel representation of a
reproducing kernel in the context of weighted least squares estimation. The key
result, as we stressed above, is that the real time filter behaves differently from the
other automatically adapted asymmetric filters inside the boundary.

Section 4 evaluates an alternative class of fixed bandwidth asymmetric filters
that result from minimizing the mean square revision error subject to polyno-
mial reproduction constraints. This class generalizes the well-known Musgrave’s
asymmetric approximation of the Henderson filters [Musgrave (1964), see also
Doherty (2001), Gray and Thomson (2002) and Quenneville, Ladiray and Lefran-
cois (2003)], which is implemented in the seasonal adjustment filter X-11, devel-
oped by the US Census Bureau [see Findley et al. (1998) and Ladiray and Quen-
neville (2001)]. The class of filters depends on the properties of the true underlying
signal, namely, its level, slope, curvature and so forth, which can be estimated from
the data.
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In Section 5 we provide a few illustrations dealing with economic time series.
They address the issue of approximating the Henderson filter in real time and show
that the slope and curvature play a relevant role for the derivation of the optimal
real time approximation. These features can be estimated from the available data.
The two features are, on the contrary, neglected by Musgrave’s asymmetric filters,
which postulate that the true underlying signal is linear but only require that the
approximate filter is capable of reproducing a zero degree polynomial. In Section 6
we draw our conclusions.

2. A motivating example: assessing recent trends in the housing market.
Figure 1 displays the monthly time series of housing starts, for the period Jan-
uary 1959–October 2007. The series, published by the US Census Bureau, con-
cerns the number of privately owned new housing units on which construction
has been started over the reference period. See the US Census Bureau website at
www.census.gov for further documentation.

Housing starts represent an important indicator of the state of the economy. In a
recent paper Leamer (2007) argues that residential investment offers the best early
warning sign of an oncoming recession. It is evident from Figure 1 that housing
starts peaked at the end of 2005, and underwent thenceforth a very steep decline.
The analyst is typically interested in the timely assessment of the turning point
and of the most recent trends, in a noisy environment. The estimation of turning
points typically requires a trend-cycle estimate, before the application of a dating

FIG. 1. New Privately Owned Housing Units Started, US Source: Census Bureau. Original series
and two-sided nonparametric trend estimates obtained by the Henderson filter.

http://www.census.gov
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algorithm, such as a Bry and Boschan (1971) routine, which is widely popular in
economics. This operation is necessary in order to prevent high frequency fluctu-
ations from interfering with the identification of turning points, producing many
false candidates.

The dashed line overlaid to the plot is the nonparametric estimate of the trend-
cycle component produced by local cubic regression using a particular kernel, the
two-sided Henderson kernel, which is discussed in more detail and contextualized
in the next section. The estimates are computed on 21 consecutive monthly obser-
vations: the observation at the time of interest and 10 observations on each side
of it (the bandwidth has been selected by cross-validation). As pointed out in the
introductory remarks, this is only one of the possible solutions to the signal extrac-
tion problem. Another possibility would be to estimate the component of interest
by postulating a (semi)parametric model for it, for example, an integrated random
walk, an ARIMA model or a smoothing spline. Be that as it may, the estimation at
the end of the sample period is a delicate issue for any signal extraction method.
Think, for instance, to wavelet multiresolution analysis: the traditional solution to
the problem of handling boundary conditions, based on the circularity assumption
[see Percival and Walden (2000), pages 197–199], is implausible here due to the
nonstationary nature of the series.

Turning back our attention to our local polynomial approach, it is evident from
the plot that the two-sided estimates of the signal are not available for the last
10 months, which are the most interesting from the point of view of the business
cycle analyst and the policy maker. Actually, a direct solution is readily available:
it arises from the automatic adaptation of a local cubic polynomial to the avail-
able observations at the end of the sample, using the same bandwidth (or a nearest
neighbor bandwidth) and the same kernel. However, we shall argue in the paper
that the corresponding estimates are inherently too volatile. This feature is visi-
ble from the plot of the real time estimates (i.e., the one-sided estimates using the
current observation and 10 past observations) arising from the direct asymmetric
adaptation, which are displayed in the left panel of Figure 2 (solid line) along with
the original time series observations (dots) and the final two-sided Henderson filter
estimates (dashed line). These estimates are very rough; they are close to the orig-
inal observations and far away from the final two-sided estimates. As such, they
potentially give rise to a large number of false candidate turning points. Moreover,
the revision of the estimates as new information becomes available is substantial,
as the comparison with the final Henderson estimates reveals.

The right panel presents the real time estimates produced by our proposed
boundary filter. The plot reveals that they are more stable and more in line with
the final ones. The proposed filter is derived according to the principle of mini-
mizing the mean square revision error (the mean square deviation from the final
Henderson estimates), subject to the condition that the asymmetric filter repro-
duces without distortion a linear trend and making the assumption that outside the
sample period the underlying signal is a quadratic function of time (i.e., is a lower
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FIG. 2. New Privately Owned Housing Units Started, US Source: Census Bureau. End of sample
estimates of the trend-cycle component obtained by two asymmetric adaptations of the Henderson
filter.

order polynomial outside the boundary of the sample space). Full details will be
given in the sequel; it suffices to say at this point that we introduce bias, in order to
reduce the variance of the estimates. This strategy proves effective for a large class
of economic time series considered, as it will be illustrated further in Section 5.

We can draw here an analogy with the natural boundary conditions that are em-
ployed in cubic spline smoothing. Also in that framework, the natural boundary
conditions imply that the underlying signal behaves differently outside the bound-
ary knots. In particular, the cubic spline is linear outside the boundary knots; see,
for example, the discussion in Ruppert, Wand and Carroll (2003), page 72. In our
case the assumption that the trend-cycle component has a lower order representa-
tion outside the sample period has similar statistical rationale, being designed to
optimize the estimation bias-variance trade-off at the end of the sample space.

3. Local polynomial filters and the Henderson filter. Filters that arise from
fitting a local polynomial have a well established tradition in time series analysis
and signal extraction; see Anderson (1971), Chapter 3, Kendall (1973), Kendall,
Stuart and Ord (1983), and the excellent historical review in Cleveland and Loader
(1996). In this section we review the derivation of linear smoothers for trend ex-
traction.

Let us assume that time is discrete and that the series can be decomposed as
yt = μt + εt , where μt is the signal (trend) and εt ∼ NID(0, σ 2) is the noise.
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The signal is approximated locally by a polynomial of degree d , so that in the
neighborhood of time t we can write

yt+j = mt+j + εt+j , mt+j = β0 + β1j + β2j
2 + · · · + βdjd,

j = 0,±1, . . . ,±h.

In matrix notation, the local polynomial approximation can be written as fol-
lows:

y = Xβ + ε, ε ∼ N(0, σ 2I),(1)

where y = [yt−h, . . . , yt , . . . , yt+h]′, ε = [εt−h, . . . , εt , . . . , εt+h]′,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −h h2 ... (−h)d

1 −(h − 1) (h − 1)2 ... [−(h − 1)]d
...

... · · · · · · ...

1 0 0
... 0

...
... · · · · · · ...

1 h − 1 (h − 1)2 ... (h − 1)d

1 h h2 ... hd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡
⎢⎢⎢⎣

β0
β1
...

βd

⎤
⎥⎥⎥⎦ .

Using this design, the value of the trend at time t is simply given by the
intercept, mt = β0. Provided that 2h ≥ d , the d + 1 unknown coefficients βk ,
k = 0, . . . , d , can be estimated by the method of weighted least squares (WLS),
which consists of minimizing with respect to the βk’s the objective function:

S(β̂0, . . . , β̂d) =
h∑

j=−h

κj (yt+j − β̂0 − β̂1j − β̂2j
2 − · · · − β̂djd)2.(2)

Here, κj ≥ 0 is a set of weights that define, either explicitly or implicitly, a kernel
function.

Reverting to the matrix notation, setting K = diag(κ−h, . . . , κ−1, κ0, κ1, . . . , κh),
the WLS estimate of the coefficients is β̂ = (X′KX)−1X′Ky. In order to obtain
m̂t = β̂0, we need to select the first element of the vector β̂ . Hence, denoting by e1
the d + 1 vector e′

1 = [1,0, . . . ,0],

m̂t = e′
1β̂ = e′

1(X
′KX)−1X′Ky = w′y =

h∑
j=−h

wj yt−j ,

which expresses the estimate of the trend as a linear combination of the observa-
tions with coefficients

w = KX(X′KX)−1e1.(3)
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The linear combination yielding the trend estimate is the local polynomial two-
sided filter. It satisfies X′w = e1, or equivalently,

h∑
j=−h

wj = 1,

h∑
j=−h

j rwj = 0, r = 1,2, . . . , d.

As a consequence, the filter w is said to preserve a deterministic polynomial of
order d . Moreover, the filter weights are symmetric (wj = w−j ), which follows
from the symmetry of the kernel weights κj , and the assumption that the available
observations are equally spaced.

The Henderson filter [see Henderson (1916), Kenny and Durbin (1982), Loader
(1999), Ladiray and Quenneville (2001)] arises as the weighted least squares esti-
mator of a local cubic trend at time t using 2h+1 consecutive observations. When
d = 3, the weights in (3) take the form

wj = κj

(S4 − S2j
2)

S0S4 − S2
2

, j = 0,±1, . . . ,±h,

where Sr = ∑h
j=−h κj j

r . This expression makes the dependence on the kernel
weights, κj , explicit. Henderson (1916) addressed the problem of defining a set of
kernel weights that maximize the smoothness of the estimated trend, in the sense
that the variance of its third differences is as small as possible. He showed that
up to a factor of proportionality we must have κj = [(h + 1)2 − j2][(h + 2)2 −
j2][(h + 3)2 − j2]. Hence, the coefficients κj given above define the (unnormal-
ized) Henderson kernel. It can be shown that κj minimize the sum of squared third
order differences of the weights sequence, wj .

3.1. Asymmetric filters and their automatic adaptation at boundary points.
The derivation of the two-sided symmetric filter has assumed the availability of
2h + 1 observations centered at t . Obviously, for a given finite sequence yt ,
t = 1, . . . , n, it is not possible to obtain the estimates of the signal for the (first
and) last h time points, which is inconvenient, since we are typically most inter-
ested at the most recent estimates.

We can envisage three fundamental approaches to the estimation of the signal
at the extremes of the sample period:

1. The construction of asymmetric filters that result from fitting a local polynomial
to the available observations yt , t = n − h + 1, n − h + 2, . . . , n.

2. Apply the symmetric two-sided filter w to the series extended by h forecasts
ŷn+l|n, l = 1, . . . , h (and backcasts ŷ1−l|n).

3. Derive the best approximating filter which minimizes the revision mean square
error subject to polynomial reproducing constraints.
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The second strategy (using forecast extensions) is safer, provided that we are
capable of producing optimal forecasts according to some parametric or nonpara-
metric device, for example, by fitting a time series model of the ARIMA class. This
idea is embodied in the X-11-ARIMA seasonal adjustment procedure [Dagum
(1982)]. An intuitive and easily established fact is that if the forecasts ŷn+l|n are
optimal in the mean square error sense, then the variance of the revision is a min-
imum; see Wallis (1983). In applied economic time series analysis most often
extrapolations have a local linear nature, such as those obtained from ARIMA
models with integration order equal to 1 or 2 (provided there is no constant term
in the latter case). Recently, Dagum and Luati (2009) derived linear asymmetric
filters based on data independent extrapolations from fixed ARIMA models and
parameter values. When the forecast extensions are exogenous, the filter weights
are adapted to the property of the series, so that the weights wj are not fixed, but
depend also on the ARIMA model for yt .

The trend estimates for the last h data points, m̂n−h+1|n, . . . , m̂n|n, use respec-
tively 2h,2h − 1, . . . , h + 1 observations. It is thus inevitable that the last h esti-
mates of the trend will be subject to revision as new observations become available.
In the sequel we shall denote by q the number of future observations available at
time t (the period which our estimate is referred to), q = 0, . . . , h, and by m̂t |t+q

the estimate of the signal at time t using the information available up to time t +q ,
with 0 ≤ q ≤ h; m̂t |t is usually known as the real time estimate since it uses only
the past and current information.

We now deal with the first strategy, which results from the automatic adaptation
of the local polynomial filter to the available sample; we then interpret the results
in terms of the other two strategies. The approximate model yt+j = mt+j + εt+j is
assumed to hold for j = −h,−h + 1, . . . , q , and the estimators of the coefficients
β̂k , k = 0, . . . , d , minimize

S(β̂0, . . . , β̂d) =
q∑

j=−h

κj (yt+j − β̂0 − β̂1j − β̂2j
2 − · · · − β̂djd)2.

Let us partition the matrices X, K and the vector y as follows:

X =
[

Xp

Xf

]
, y =

[
yp

yf

]
, K =

[
Kp 0
0 Kf

]
,

where yp denotes the set of available observations, whereas yf is missing and
X and K are partitioned accordingly. The direct asymmetric filter (DAF) arising
as the solution to the above weighted least squares problem is written in matrix
notation as

wa = KpXp(X′
pKpXp)−1e1.(4)

The filter resulting from the automatic adaptation of the local polynomial fit
can be equivalently derived using the second strategy, assuming that the future
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observations are generated according to a polynomial function of time of degree d ,
so that the optimal forecasts are generated by the same polynomial model. Under
the local polynomial model the forecasted values of yf are

ŷf = Xf (X′
pKpXp)−1X′

pKpyp.

Applying the two-sided filter w to the observations extended by the forecasts yields

m̂t |t+q = w′
[

yp

ŷf

]
= e′

1(X
′KX)−1X′K

[
yp

ŷf

]
;

using X′K = [X′
pKp,X′

f Kf ],
(X′KX)−1 = (X′

pKpXp + X′
f Kf Xf )−1

= (X′
pKpXp)−1[I + X′

f Kf Xf (X′
pKpXp)−1]−1

and replacing ŷf gives

m̂t |t+q = e′
1(X

′
pKpXp)−1X′

pKpyp,

which is also the estimate of the intercept of the polynomial that uses only the
available information. Hence, the asymmetric filter weights that are automatically
adapted at the boundaries are given by (4).

The explicit expressions for the weights of the DAF, wa , are derived below for
d ≤ 3, based on (4) and on matrix inversion formulae. Setting Sqr = ∑q

j=−h j rκj

for q = 0, . . . , h, the solutions for d = 0,1,2 are, respectively,

wa,j = κj

Sq0
, wa,j = κj

Sq2 − jSq1

Sq0Sq2 − S2
q1

,

wa,j = κj

ζ4,2 − jζ4,1 + j2ζ3,1

Sq0ζ4,2 − Sq1ζ4,1 + Sq2ζ3,1
,

j = −q, . . . , h, where ζm,n = SqmSqn − Sq,m−1Sq,n−1. For d = 3,

wa,j = κj

Z0 − Z1j + Z2j
2 − Z3j

3

Sq0Z0 − Sq1Z1 + Sq2Z2 − Sq3Z3
, j = −q, . . . , h,(5)

where Z0 = Sq2ζ6,4 − Sq3ζ6,3 + Sq4ζ5,3, Z1 = −(Sq1ζ6,4 − Sq2ζ6,3 + Sq3ζ5,3),
Z2 = Sq1ζ6,3 − Sq2ζ6,2 + Sq4ζ4,2, Z3 = −(Sq1ζ5,3 − Sq2ζ5,2 + Sq3ζ4,2).

The real time filters arise when q = 0 in the above expressions. The symmetric
weights of the smoothing filter, w, arise instead when q = h in the above expres-
sions. Replacing Shr = 0 for r odd, we find

wj = κj

Sh0
, wj = κj

Sh4 − j2Sh2

Sh0Sh4 − S2
h2

for d = 0,1, and d = 2,3, respectively.



1532 T. PROIETTI AND A. LUATI

The direct asymmetric filters can be alternatively derived with the reproducing
kernel Hilbert space (RKHS) approach [see Berlinet and Thomas-Agnan (2004)].
In that context, the equivalent kernel of a linear estimator of order d can be ob-
tained as Kd(t) = Rd(t,0)f0(t), where Rd(t,0) is the reproducing kernel of a
Hilbert space of polynomials up to degree d ≥ 1 with inner product defined with
respect to a density function f0(t). The reproducing kernel is so-called because it
reproduces any function in the Hilbert space in the sense that 〈g,Rd(t, ·)〉H = g(t),
∀t ∈ T , g ∈ H , from which many inferential properties can be derived. Once f0(t)

is chosen with finite moments ν0, ν1, . . . , ν2d , one way to obtain the associated
reproducing kernel is by means of Hankel determinants [Berlinet and Thomas-
Agnan (2004), Theorem 80], in that

Kd(t) = det(H0
d [1,xt ])

det(H0
d)

f0(t),

where H0
d is the Hankel matrix whose elements are the moments of f0(t), from ν0

to νd in the first row and from νd to ν2d in the last column, and H0
d [1,xt ] is the ma-

trix obtained replacing the first column of H0
d by the vector xt = [1, t, t2, . . . , td ]′.

In our discrete setting, choosing the (normalized) Henderson kernel κj in place
of the density f0(t), then νr = Sqr for r = 0, . . . ,2d and the matrix H0

d becomes
X′

pKpXp , so that the elements of the filter wa are given by

wa,j = det(X′
pKpXp[1,xj ])

det(X′
pKpXp)

κj ,(6)

where xj = [1, j, j2, . . . , jd ]′. The expression (6) is exactly the same that we
would obtain by solving for β̂0 = m̂t the least squares equation

(X′
pKpXp)β̂ = X′

pKpyp,

using the Cramer rule for the explicit solution of a linear system. In fact, setting
b = X′

pKpyp , the first coordinate of the solution vector is

β̂0 = det(X′
pKpXp[1,b])

det(X′
pKpXp)

.

Given that b = ∑q
j=−h xj κjyt+j , then

det(X′
pKpXp[1,b]) =

q∑
j=−h

det(X′
pKpXp[1,xj ])κjyt+j

and, therefore,

m̂t =
q∑

j=−h

det(X′
pKpXp[1,xj ])

det(X′
pKpXp)

κjyt+j ,
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from which (6) follows.
The above expression also holds for symmetric filters, arising when q = h, and

for any choice of the kernel κj , providing an alternative way to express both the
trend estimate and the equivalent kernel of the linear filter resulting by weighted
linear regression.

3.2. Properties of the direct asymmetric filters. Let us partition the weights of
the two-sided symmetric filter in two groups, w = [w′

p,w′
f ]′, where wp contains

the weights attributed to the past and current observations and wf those attached
to the future unavailable observations. Then,

wp = KpXp(X′KX)−1e1

= KpXp(X′
pKpXp + X′

f Kf Xf )−1e1

= [KpXp(X′
pKpXp)−1

− KpXp(X′
pKpXp)−1X′

f Kf Xf (X′
pKpXp + X′

f Kf Xf )−1]e1

= wa − KpXp(X′
pKpXp)−1X′

f wf ,

as wf = Kf Xf (X′
pKpXp + X′

f Kf Xf )−1e1.
Thus, we have the fundamental relationship which states how the asymmetric

filter weights are obtained from the symmetric ones:

wa = wp + KpXp(X′
pKpXp)−1X′

f wf .(7)

Premultiplying both sides by X′
p , we can see that the asymmetric filter weights

satisfy the following polynomial reproduction constraints:

X′
pwa = X′

pwp + X′
f wf = X′w.

If the design of the time points is centered around the current time, then X′w = e1.
Thus, the bias in estimating an unknown function of time has the same order of
magnitude as in the interior of time support.

We now show that the weights wa are the unique minimizers with respect to v
of the following constrained problem:

min
v

(v − wp)′K−1
p (v − wp) s.t. X′

pv = X′w,

where w = [w′
p,w′

f ]′. The first order conditions give v = wp + KpXpl, where l is
a vector of Lagrange multipliers. Premultiplying both sides by X′

p and replacing
X′

pv = X′w gives l = (X′
pKpXp)−1X′

f wf , and replacing into the expression for v
gives v = wa , as given by (7).

Hence, the asymmetric weights wa minimize the weighted distance between
the asymmetric filter coefficients and the symmetric ones, where the weights are
provided by the reciprocal of the kernel weights. This result is useful in order to
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FIG. 3. Gain, phase and weights for the symmetric and asymmetric Henderson filters wa ; q is the
number of future observations available for estimating the signal.

compare the asymmetric direct filter with the class of asymmetric filters derived in
Section 4.

Figure 3 plots the weights of the direct asymmetric Henderson filter for q rang-
ing from 0 (real time filter) to h (symmetric Henderson filter), along with their
gain when the bandwidth takes the value h = 6, producing the Henderson 13 terms
moving average when all the necessary observations are available. The real time
filter uses 7 consecutive observations and it is very much concentrated on the cur-
rent observation. As a consequence, the gain behaves rather poorly, being close to
one also at the high frequencies.
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Hence, our analysis reveals a sort of discontinuity in the behavior of the fil-
ter, when we move from q = 0 (real time filter) to q = 1 (one future observation is
available). The real time filter is unbiased if the series is generated by a cubic poly-
nomial; however, the preservation of the bias properties is done at the expenses of
the variance, which is very high, since most of the contribution to the trend esti-
mate comes from the current observation. This can be explained by means of the
following relation, that gives the leverage of the filter, that is, the weight attached
to the observation taken at the same time we are interested in the trend estimate,

wa,0 = κ0e′
1(X

′
pKpXp)−1e1 = κ0

det(M1,1)

det(X′
pKpXp)

,

where M1,1 is the submatrix obtained by deleting the first row and column of
X′

pKpXp .

(i) For fixed values of d , the leverage decreases as long as the span of the
filter increases. It is maximum for the real time filter (q = 0) and minimum for the
symmetric filter (q = h).

(ii) On the other hand, for fixed values of h or q the leverage exponentially
increases if the degree of the fitting polynomial increases. It is minimum for d = 0
and maximum for d = h.

In particular, wa,0 = 1 for d = h. The latter equality can be proved by noticing
the general fact that the h + 1th row of Xp (last row when real time filters are
considered), whose elements correspond to j r , r = 0, . . . , d , is the vector e′

1 =
[1,0,0, . . . ,0]. Given that Kp is diagonal, it follows from the row-column matrix
product that

M1,1 = X′
h+1,1Kh+1,h+1Xh+1,1,

where Xi,j and Ki,j are submatrices obtained by deleting the ith row and j th
column of Xp and Kp . If d = h, then Xp and Xh+1,1 are square matrices that
have different dimensions but the same determinant, as it is immediate to see by
calculating det(Xp) from the last row of Xp with the Laplace formula. Hence, it
follows from the Binet–Cauchy theorem that

det(M1,1)

det(X′
pKpXp)

= det(X′
h+1,1)det(Kh+1,h+1)det(Xh+1,1)

det(X′
p)det(Kp)det(Xp)

= 1

κ0

and, therefore, wa,0 = 1. Since the filter reproduces polynomials up to the order d ,
wa,j = 0 for j = −h, . . . ,−1. This result holds also for symmetric and nearest
neighbor filters, where the maximum value d can assume is 2h. Proof of (i) and (ii)
is given in the Appendix based on a generalized version of the Binet–Cauchy the-
orem. Note that these relations can be verified by (5), up to d = 3, and by (6).

Table 1 illustrates how wa,0 varies with the length of the asymmetric filters
and the degree of the fitting polynomial. The values are calculated for h = 6 and
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TABLE 1
Values of wa,0 for h = 6, different orders d of the local polynomial and different values of q ranging

from q = 0 (real time) to q = 6 (symmetric filter)

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

q = 0 0.2457 0.5856 0.8356 0.9552 0.9925 0.9994 1.0000
q = 1 0.1991 0.3038 0.3060 0.4560 0.7285 0.9238 0.9908
q = 2 0.1712 0.2008 0.2653 0.4275 0.4493 0.5189 0.7662
q = 3 0.1547 0.1615 0.2652 0.3385 0.3603 0.5144 0.5397
q = 4 0.1456 0.1466 0.2578 0.2776 0.3577 0.4309 0.4594
q = 5 0.1413 0.1414 0.2472 0.2495 0.3516 0.3644 0.4593
q = 6 0.1400 0.1400 0.2400 0.2400 0.3379 0.3379 0.4418

d ranging from d = 0 (constant trend) to d = 6 (six degree polynomial) and q

ranging from q = 0 (real time filter) to q = 6, which gives the symmetric 13 term
Henderson filter. It is evident, and not surprising, that the impact, on the leverage,
of the degree of the fitting polynomial is much greater than that of the span of
the filter. Even for small values of the order of the approximating polynomial, the
leverage of the real time filter results in greater than 0.5.

We have alternatively evaluated the values of Table 1 using different kernels,
such as the Uniform and the Epanechnikov [Epanechnikov (1969)], but the result-
ing real time filters are almost equivalent to those calculated with the Henderson
kernel, and therefore not illustrated here.

4. On a general class of asymmetric filters. We now consider a class of
asymmetric filters approximating a given symmetric two-sided smoothing filter.
The class depends on unknown features of the series, such as slope and curvature,
which can be estimated from the data, and encompasses the so-called Musgrave’s
surrogate filters (1964). The latter, which will be discussed in Section 4.1, approx-
imate the two-sided Henderson filter at the end of the sample and are a component
of the well-known X-11 cascade seasonal adjustment filter.

The minimum mean square revision error strategy which is at the basis of the
criterion (8) was originally proposed by Musgrave (1964). Gray and Thomson
(2002) generalized this idea to the case of a series generated by a local dynamic
model. In this section we propose a different derivation of Gray and Thomson’s
result that is more general and clarifies some issues of the design of asymmetric
filters, among which the connections with the DAF. We also provide an alternative
expression for the asymmetric weights that is directly connected to Musgrave’s
result.

Assume that the observations are generated as y = Uγ + Zδ + ε, ε ∼ N(0,D),
where U, Z are a suitable design matrix. We aim at determining the asymmet-
ric filter v minimizing the mean square revision error subject to constraints. The
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constraints are specified as follows: U′
pv = U′w, where U = [U′

p,U′
f ]′. Assum-

ing that [U,Z] is full column rank (usually, as it will be illustrated later, [U,Z]
is a selection of the columns of X or it is coincident with X), and partitioning
D = diag(Dp,Df ), the set of asymmetric weights minimizes with respect to v the
following objective function:

ϕ(v) = (v − wp)′Dp(v − wp) + w′
f Df wf

(8)
+ [δ′(Z′

pv − Z′w)]2 + 2l′(U′
pv − U′w).

The revision error arising in estimating the signal mt is m̂t |t − m̂t = v′yp −
w′y. Replacing yp = Upγ + Zpδ + εp , and y = Uγ + Zδ + ε, and using
U′

pv = U′w = 0, we obtain m̂t |t − m̂t = (v′Zp − w′Z)δ + v′εp − w′ε, where
ε = [ε′

p,ε′
f ]′. Hence, the first three summands of (8) represent the mean square

revision error, which is broken down into the revision error variance (the first two
terms) and the squared bias term [δ′(Z′

pv − Z′w)]2. The vector l is a vector of
Lagrange multipliers.

Setting

Q = Dp + Zpδδ′Z′
p,

the first order conditions for the minimization problem can be written as follows:

v = wp + Q−1Zpδδ′Z′
f wf − Q−1Upl.

Premultiplying both sides for U′
p and recalling U′

p(v − wp) = U′
f wf ,

U′
f wf = U′

pQ−1Zpδδ′Z′
f wf − U′

pQ−1Upl,

we can express the Lagrange multipliers as a linear combination of the weights wf :

l = −[U′
pQ−1Up]−1[U′

f − U′
pQ−1Zpδδ′Z′

f ]wf .

Replacing into the expression for v yields

v = wp + Q−1Zpδδ′Zf wf + Q−1[U′
pQ−1Up]−1[U′

f − U′
pQ−1Zpδδ′Z′

f ]wf ,

and rearranging,

v = wp + LU′
f wf + MZpδδ′Z′

f wf ,(9)

with

M = Q−1 − Q−1Up[U′
pQ−1Up]−1U′

pQ−1, L = Q−1Up[U′
pQ−1Up]−1.

The matrices M and L have the following properties: U′
pM = 0, U′

pL = I.
Alternatively, the solution can be written as follows:

v = wp + L∗U′
f wf

(10)
+ RZpδδ′[I + Z′

pRZpδδ′]−1[Z′
f − ZpD−1

p Up(U′
pD−1

p Up)−1Uf ]wf ,
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where L∗ = D−1
p Up(U′

pD−1
p Up)−1, R = D−1

p − D−1
p Up(U′

pD−1
p Up)−1U′

pD−1
p , so

that U′
pL∗ = I,U′

pR = 0. The proof of the equivalence is direct.
It should be noticed that the DAF arises in the case D = K−1 and U = X, so that

the bias term is zero. When D = σ 2I and δ′(Z′
pv − Z′w) = 0 (no bias term), an

alternative equivalent derivation of the asymmetric filter approximating the two-
sided local polynomial filter is based on the constrained minimization of the in-
tegrated squared modulus of the difference between the transfer function of the
symmetric filter, denoted w(e−ıω) = ∑h

j=−h wj e
−ıωj , where ı is the imaginary

unit, and that of the asymmetric filter, denoted v(e−ıω) = ∑h
j=−q vj e

−ıωj .
In particular, the asymmetric filter weights solve the following problem:

min
v

{∫ π

−π
|w(e−ıω) − v(e−ıω)|2 dω +

r∑
k=0

λk

(
h∑

j=−q

jkvj −
h∑

j=−h

jkwj

)}
,

where r can be equal to 1,2, . . . , d and λk is a Lagrange multiplier. This approach
has been applied for the construction of a filter approximating an ideal low-pass
filter; see Percival and Walden (1993), Section 5.8 and Baxter and King (1999) for
an application to the measurement of the business cycle.

4.1. Musgrave asymmetric filters. Musgrave’s asymmetric filters [Musgrave
(1964), Doherty (2001), Quenneville, Ladiray and Lefrancois (2003)] are obtained
in the particular case when the original two-sided symmetric filter is the Henderson
filter and U = i, Z = [−h,−h + 1, . . . , h]′, δ = δ1,D = σ 2I, that is, when U and
Z are respectively the first and the second column of the design matrix X.

It is nevertheless convenient for comparison purposes to reset the time origin
and derive the filter under the equivalent design

U = i, Z = [1,2, . . . ,2h + 1]′, δ = δ1, D = σ 2I.

It is assumed that a linear process yt = γ0 + δ1t + εt , t = 1, . . . , n, E(εt ) = 0,
Var(εt ) = σ 2, generates the observations, and that the asymmetric filter has to
preserve a constant signal, that is,

∑
vi = 1.

Then, if M denotes the number of elements of Zp , h < M < 2h + 1, and we let
H = 2h + 1,

L∗U′
f wf = 1

M

H∑
j=M+1

wj ,

I + Z′
pRZpδδ′ = 1 + δ2

1

σ 2

M(M + 1)(M − 1)

12
,

[Z′
f − ZpD−1

p Up(U′
pD−1

p Up)−1Uf ]wf =
H∑

j=M+1

(
j − M + 1

2

)
wj ,

RZpδδ′ = δ2
1

σ 2

(
i − M + 1

2

)
.
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As a result, the usual expression for v[i], the ith element of the vector v, as
presented in Doherty (2001), Findley et al. (1998) and Ladiray and Quenneville
(2001), in terms of the elements of the vector w = {w[j ], j = 1, . . . ,H }, is ob-
tained:

v[i] = w[i] + 1

M

H∑
j=M+1

w[j ]

(11)

+ δ2
1

σ 2

(
i − M + 1

2

) ∑H
j=M+1(j − (M + 1)/2)w[j ]

1 + (δ2
1/σ 2)M(M + 1)(M − 1)/12

,

for i = 1, . . . ,M .

The ratio
δ2

1
σ 2 is related to R = Ī /C̄, as

δ2
1

σ 2 = 4/(πR2), where Ī is the expected

absolute difference of the irregular component and C̄ is the expected absolute dif-
ference of the trend component. Assuming εt ∼ NID(0, σ 2), |εt − εt−1| is half
normal with expected value 4σ/π and C̄ = δ1, if the underlying signal is a linear
trend with slope δ1.

The limit of (11) as (σ 2/δ2
1) → 0 (or, equivalently, δ2

1/σ 2 → ∞) is

v[i] = w[i] + 1

M

N∑
j=M+1

w[j ]

(12)

+
(
i − M + 1

2

)∑N
j=M+1(j − (M + 1)/2)w[j ]
M(M + 1)(M − 1)/12

,

for i = 1, . . . ,M . This expression corresponds to what we would obtain if the un-
available future observations were replaced by linear extrapolations formed from
the available data. See also [Doherty (2001), Section 6].

4.2. The properties of the approximate filters. The approximate filters that
minimize (8) raise a controversial point. The symmetric filter was derived from the
assumption that the series behaves locally according to a polynomial of degree d .
We seek to approximate this filter by changing our assumption about how yt is
generated, postulating that it has been possibly generated by a lower order polyno-
mial or that the asymmetric filter is only capable of reproducing a polynomial of
lower degree. In one way or another we are denying the conditions under which the
original smoothing filter was derived. However, it is clear from our previous dis-
cussion that the original motivation for introducing a new class of approximating
filters was the fact that the direct real time filter delivers very volatile estimates;
hence, we had to move away from the direct strategy of fitting the maintained poly-
nomial to the available observations. Second, it is not implausible to assume that
the behavior of the signal at the extremes is different from that in the interior of the
sampling design. An analogy can be drawn with cubic smoothing splines: the so-
called natural boundary condition is such that the spline is a local cubic function of
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time inside the boundary and is linear outside. This is beneficial to the reliability
of the real time estimates and of the forecasts. The strategy that is adopted in the
approximation is very similar since it effectively amounts to reducing the order of
the fitting polynomial.

The merits of the class of filters (10), relative to the DAF, lie in the bias-variance
trade-off. In particular, the bias can be sacrificed for improving the variance prop-
erties of the corresponding asymmetric filter. If U = X, that is, it is asked of the
filter to be capable of reproducing a dth order polynomial, which is also the process
generating the observations, the approximate filter minimizing ϕ(v) will not differ
from wa (in the light of the result in Section 3.2 they will coincide if D = K−1); as
a consequence, the real time filter will be strongly localized, and it will suffer from
the same limitations as the DAF discussed in Section 3.1, namely, its estimates
will be characterized by high variance.

When U is a subset of the columns of X, spanning a polynomial of degree
d∗ < d , then we require that the filter is capable of reproducing a polynomial of
degree d∗; if the observations are generated by a polynomial of degree greater
than d∗, a bias will arise, which depends on the value of δ. However, the weights
of the approximating filter will be more evenly distributed and the variance will be
reduced. Thus, the overall mean square revision error may eventually be reduced
if the actual signal is weakly evolutive.

Figure 4 plots the gain and the phase function of the real time filter when h = 6,
w is the two-sided Henderson filter, and U = i (the asymmetric weights have to sat-
isfy the constraint

∑
vi = 1), Z = [−h,−h+1, . . . , h−1, h]′, δ = δ1,D = σ 2I. As

the filter depends on the slope of the underlying signal through the ratio δ2
1/σ 2, we

plot two limiting cases arising when the slope is negligible and when it is the dom-
inating feature. The intermediate case is the well-known Musgrave surrogate real
time filter for the Henderson with 13 terms, which rises when δ2

1/σ 2 = 4/(3.52π),
with R = 3.5 being the value selected for the Henderson filter with 13 terms. The
filter weights are displayed in the bottom right panel of the same figure.

When the slope is negligible, δ2
1/σ 2 = 0 (or, equivalently, R → ∞, which arises

either when the signal is constant and is devoid of the linear term or the signal is
buried in a heap of noise), the optimal approximation to the Henderson two-sided
filter features weights that are less dispersed and the gain decreases from 1 almost
monotonically, as it ought to be expected. The individual weights of the real time
filter, v0, . . . ,vh, are plotted against the value of δ2

1/σ 2 in the bottom left panel. As
the linear signal is stronger, the dispersion of the weights increases and the gain
becomes higher at each individual frequency, getting greater than one at the low
frequencies.

The class of filters (10) accommodates the case when the two-sided symmetric
filter is the Henderson filter and an approximation is sought such that for a locally
quadratic underlying signal, yt+j = γ0 +γ1j +δ2j

2 +εt+j , εt+j ∼ IID(0, σ 2), and
requiring that the approximating filter preserves a linear signal, which is achieved
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FIG. 4. Gain, phase and weights for the real time filter minimizing the revision mean square error
subject to

∑
vi = 1, when the observations are generated by a linear trend.

by imposing the constraints
∑

vj = 1,
∑h

j=−q vj j = ∑h
j=−h wj j . In (8) we set

U′ =
[

1 1 · · · 1 · · · 1 1
−h −h + 1 · · · 0 · · · h − 1 h

]
,

and

Z = [(−h)2, (−h + 1)2, . . . ,1,0,1, . . . , h2]′, δ = δ2, D = σ 2I.

Hence, U consists of the first two columns of X and Z is the third column, and
the filter weights depend on the curvature of the underlying signal via δ2

2/σ 2. The
filter v will be referred to as the quadratic trend–linear fit (QL) approximation to
the Henderson filter.

The first row of Figure 5 considers the real time QL filter and plots the gain,
the phase and the individual filter weights for different values of δ2

2/σ 2, which
expresses the relative importance of the curvature of the signal. The rationale for
this particular type of asymmetric filter is early detection of turning points, which
are a quadratic feature of the signal; setting δ2/σ

2 to a high value, the optimal
filter would weight more the current observation and detect a turning point more
rapidly. Essentially, with respect to the Musgrave type of filters, the bias is reduced
at the expense of the variance. It should also be noticed that the optimal filter for
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FIG. 5. Gain, phase and weights for the real time filter minimizing the revision mean square error:
QL and CQ filters.

δ2
2/σ 2 = 0 is coincident with the optimal filter derived under a linear trend signal

and using the constraint
∑

i vi = 0 with δ2
1/σ 2 → ∞; compare Figure 4.

Finally, the bottom panels of Figure 5 display the gain, phase and filter weights
of the real time filter approximating the Henderson filter when the series is gener-
ated by a cubic polynomial, yt+j = γ0 +γ1j +γ2j

2 +δ3j
3 +εt+j , and the weights

have to satisfy the quadratic reproduction constraints
∑

vj = 1,
∑h

j=−q vj j =∑h
j=−h wj j and

∑
vj j

2 = ∑h
j=−h wj j

2. These filters will be referred to the cu-
bic trend—quadratic fit (CQ) asymmetric filters. In this case U is a matrix formed
from the first three columns of the X matrix,

U′ =
⎡
⎣ 1 1 · · · 1 · · · 1 1

−h −h + 1 · · · 0 · · · h + 1 h

h2 (−h + 1)2 · · · 0 · · · (h + 1)2 h2

⎤
⎦ ,

and

Z = [(−h)3, (−h + 1)3, . . . ,1,0,1, . . . , h3]′, δ = δ3, D = σ 2I.

In this case the optimal filter depends on the parameter δ2
3/σ 2, which is a mea-

sure of relative inflexion. Again, the optimal filter for δ2
3/σ 2 = 0 is the same as
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the QL filter arising for δ2
2/σ 2 → ∞; compare the top panels of Figure 5. As

δ2
3/σ 2 → ∞, the filter is the same as the direct asymmetric filter of Section 3.1.

5. Illustrations. In this section we provide illustrations concerning the use of
the general expression (9) for the design of real time filters suitable for a particular
time series. The reference two-sided filter is the Henderson filter and we estimate
the bandwidth h by cross-validation.

Let m̂t\t denote the two-sided estimate of the signal at time t which does not
use yt . The latter can be expressed in terms of the Henderson estimate of the trend
using the central filter:

m̂t\t = e′
1(X

′KX − κ0e1e′
1)

−1(X′Ky − κ0yte1)

= e′
1

[
(X′KX)−1 + κ0

1 − κ0e′
1(X

′KX)−1e1
(X′KX)−1e1e′

1(X
′KX)−1

]

× (X′Ky − κ0yte1)

= 1

1 − w0
e′

1(X
′KX)−1(X′Ky − κ0yte1)

= 1

1 − w0
m̂t − w0

1 − w0
yt .

The leave-one-out, or deletion, residual can be expressed in terms of the trend
estimate using all the observations:

yt − m̂t\t = 1

1 − w0
(yt − m̂t ).

The cross-validation score is the sum of the squared deletion residuals:

CV =
n−h∑

t=h+1

(yt − m̂t\t )2 =
n−h∑

t=h+1

(yt − m̂t )
2

(1 − w0)2 .

Conditional on the value of h we consider three classes of filters:

ASYMMETRIC LC. The asymmetric LC (Linear-Constant) real time filter
arises as the best approximation to the two-sided Henderson filter, assuming that
yt is linear and imposing the constraint that the weights sum to 1. Hence, U = i,
the unit vector, and the asymmetric filter depends on δ1; see expression (11).

ASYMMETRIC QL. The asymmetric QL (Quadratic-Linear) real time filter
arises as the best approximation to the two-sided Henderson filter, assuming that
yt is quadratic and imposing the constraint that the estimates are capable of repro-
ducing a first degree polynomial (see Section 4.2).
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ASYMMETRIC CQ. The asymmetric CQ (Cubic-Quadratic) real time filter
arises as the best approximation to the two-sided Henderson filter, assuming that
yt is a cubic function of time and imposing the constraint that the estimates are
capable of reproducing a second degree polynomial (see Section 4.2).

The three asymmetric filters depend on a single parameter, δ2
i /σ

2, i = 1,2,3.
For each we compute the value that minimizes the mean square revision error
(MSRE), that is, the value for which

∑n−h
t=h+1(m̂t − m̂t |t )2/(n − 2h − 1) is a mini-

mum.

5.1. Italian index of industrial production. Our first illustration deals with the
Italian index of industrial production for the branch DL (Manufacture of electri-
cal and optical equipment, Nace Rev. 1 classification). The series is produced by
ISTAT, the Italian National Statistical Office, and made available on the website
www.istat.it. The index shows the evolution of gross production in volume terms
and represents a key short term indicator, due also to its timeliness, being made
available with a delay of 43 days after the end of the reference month. The data
are collected monthly through a survey of establishments with at least 20 employ-
ees that make up at least 70% of total production. The volume of production in
month t is compared to the average production of the base year (2000 for the cur-
rent release). This dataset is available as supplementary material [Proietti and Luati
(2008)], along with the other time series used for our illustrations.

The value of the bandwidth selected by cross-validation is h = 15; the two-
sided estimates of the trend are displayed in the right top panel of Figure 6. We
next look for the best approximation to the Henderson filter within the three par-
ticular classes. For this purpose we estimate the values of the parameters δ2

i /σ
2,

i = 1,2,3, using a grid search. The results are presented in the bottom left panel

of Figure 6. The minimizers of the MSRE are ̂(δ2
1/σ 2) = 0.103, ̂(δ2

2/σ 2) = 0.016

and ̂(δ2
3/σ 2) = 0.003, respectively, for the LC, QL and CQ classes. As illustrated

by Figure 6, the best approximation to the original Henderson filter is provided

by the QL filter with ̂(δ2
2/σ 2) = 0.016. We need the real time filter to be capable

of reproducing a linear signal and to react somewhat, although not in full, to the
curvature of the underlying trend.

Figure 7 compares the real time estimates of the trend for the period January
2002–December 2006, m̂t |t , arising from the best LC, QL and CQ approxima-
tions. It it is clear that the LC filter is biased when the slope is substantial: the bias
is positive in a recessionary period and negative in expansion. This is so since the
filter can only preserve a constant, but will distort a local linear trend. The optimal
QL approximation provides the best approximation since the real time estimates
are closer to the final Henderson estimates. The CQ approximation tracks the data
quite well, but the corresponding estimates are affected by higher variance, com-
pared with the QL estimates. Similar considerations apply to the DAF estimates,

http://www.istat.it
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FIG. 6. Selection of a real time filter: Index of Industrial Production, Italy, branch DL. Source:
Istat.

not reported for brevity. For the class of economic time series that are usually con-
sidered, such as industrial production, the evidence definitively points out that the
direct asymmetric filter produces the most inefficient estimates, due to the very
high variance inflation.

5.2. Assessment of order-book levels. Our second illustration deals with the
monthly assessment of order-book levels for the 13 countries constituting the Euro
area. The series is produced by the European Commission, Directorate General for
Economic and Financial Affairs, which conducts a monthly survey of the industrial
sector of the economies in the European Union. The survey is largely qualitative
and is administered to a purposive sample of about 23,000 representative firms.
The main questions refer to an assessment of recent trends in production, of the
current levels of order books and stocks, as well as expectations about produc-
tion, selling prices and employment. The survey question from which our series
originates is whether over the past three months the firm’s orders have increased,
remained unchanged or decreased. Answers obtained from the surveys are aggre-
gated in the form of balances, which are constructed as the difference between
the percentages of respondents giving positive and negative replies. See European
Commission (2007) for more details.
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FIG. 7. Index of Industrial Production, Manufacture of electrical and optical equipment, Italy.
Comparison of the real time estimates arising from three approximating filters and final estimates of
the trend component.

The series is made available on the website http://ec.europa.eu/economy_
finance/db_indicators and is plotted in the second panel of Figure 8. It provides
an interesting case study, since its dynamic behavior is highly cyclical. The sam-
ple period considered is January 1985–September 2006.

As it can be seen from the first panel of Figure 8, the value of the bandwidth
parameter suggested by cross-validation is h = 11. The two-sided estimates of the
trend resulting from the Henderson filter corresponding to the selected h value are
plotted in the right top panel. The mean square revision error for the three filters is
plotted in the bottom left panel against the value of δ2

i /σ
2, i = 1,2,3. The mini-

mizers of the MSRE are ̂(δ2
1/σ 2) = 0.173, ̂(δ2

2/σ 2) = 0.041 and ̂(δ2
3/σ 2) = 0.007,

respectively. Overall, the MSRE is minimized by the QL filter, which again is our
preferred real time filter. The bottom right panel displays the revisions m̂t |t − m̂t

for the optimal filters belonging to each subclass, showing that the latter are par-
ticularly large for the LC filter.

Figure 9 compares the real time estimates of the trend component for the period
January 2002–September 2006, arising from the best LC, QL and CQ approxima-
tions. The series is characterized in this period by the presence of several turning
points and by the rapid alternation of different business cycle phases. The plot il-
lustrates that, due to the asymmetry of the real time filters, all the real time trend
estimates suffer from a displacement of the turning points along the time axis, also

http://ec.europa.eu/economy_finance/db_indicators
http://ec.europa.eu/economy_finance/db_indicators
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FIG. 8. Selection of a real time filter: Assessment of order-book levels, Euro Area. Source: Euro-
pean Commission.

known as a phase shift; the best performance is, however, provided by the QL ap-
proximation. The LC filter can depart quite substantially both from the final trend
estimates and from the actual series values, during the phases of steep recovery
after a lower turning point; on the other hand, the asymmetric CQ estimates are
too responsive to the observations and suffer from excess volatility.

5.3. Housing starts. We conclude with a more detailed treatment of the se-
ries concerning the number of new housing units started in the US, considered in
Section 2 and depicted in Figure 1. The value of the bandwidth estimated by cross-
validation is h = 10 (the cross-validation score is presented in the top left panel of
Figure 10), and, thus, the Henderson estimates of the trend, displayed in the top
right panel, are based on 21 consecutive observations. For the estimation (at the be-
ginning and) at the end of the sample period, the best asymmetric approximation

is provided by the QL filter with ̂(δ2
2/σ 2) = 0.029.

Figure 11 compares the three real time estimates of the trend component. Those
yielded by the QL asymmetric filter provide the best compromise between flexi-
bility and smoothness: they are indeed more flexible than the LC estimates, which
is particularly advantageous during the last steep recession initiated in 2006, but
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FIG. 9. Assessment of order-book levels, Euro Area. Comparison of the real time estimates arising
from three approximating filters and final estimates of the trend component.

FIG. 10. Selection of a real time filter: US Housing Starts. Source: European Commission.
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FIG. 11. US Housing Starts. Comparison of the real time estimates arising from three approximat-
ing filters and final estimates of the trend component.

far less volatile than the CQ estimates, which, on the contrary, are too sensitive to
the influence exerted by the current observations.

In conclusion, the evidence presented in this section illustrates that the proposal
of designing asymmetric filters in a more general and flexible way helps estimating
the underlying signal with greater accuracy.

6. Conclusions. The paper has considered the problem of estimating the trend
of a time series in real time by means of local polynomial filters; we showed that
automatic adaptation at the boundary fails due to the high volatility of the esti-
mates. We thus evaluated the strategy of approximating a given symmetric local
polynomial filter by minimizing the mean square revision error subject to differ-
ent order polynomial reproducing constraints and by making certain assumptions
concerning the nature of the underlying signals. Restricting our attention to three
families of real time filters that depend on certain key features of the unknown
signal, such as its slope and curvature, we proposed to estimate these key features
from the available data, rather than taking a fixed filter.

Our empirical illustrations concerned the minimum mean square revision er-
ror approximation of the Henderson filter, a very popular local cubic smoother.
They enable us to conclude that we can improve upon the well-known Musgrave
asymmetric filters, which for the series considered suffer from very large revisions,
especially in steep recessions and recoveries and around turning points. This evi-
dence arises as a consequence of the fact that the filter is not designed to deal with
signals characterized by strong slope and curvature.
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We also considered the strategy of building either direct or minimum revision
mean square approximations using the same fixed number of observations (nearest
neighbor bandwidth), rather than a fixed bandwidth. The nearest neighbor band-
width, proposed by Cleveland (1979), has certain advantages over the fixed band-
width, and, in particular, when the observations become sparse. In fact, it can be
shown that the minimum mean square asymmetric approximation has better the-
oretical properties than the fixed bandwidth counterpart, but its effectiveness in
ameliorating the approximation to the Henderson filter was not proven by our em-
pirical applications.

APPENDIX

When d < h (or d < 2h in the nearest neighbor case, where q = h + 1 is fixed)
and h+q +1 is the asymmetric filter length varying with q = 0, . . . , h−1, the gen-
eralized Binet–Cauchy formula can be used to determine how the leverage varies
with d or h:

det(M1,1)

det(X′
pKpXp)

=
∑(h+q

d )
πj det(X′

h+1,1·πj
)det(Kh+1,h+1πj

)det(Xh+1,1πj ·)

∑(h+q+1
d+1 )

πj det(X′·πj
)det(Kπj

)det(Xπj ·)
,(13)

where X′·πj
denotes a square submbatrix of X′

p obtained taking all its rows and
d + 1 columns chosen on the set πj of the h + q + 1 columns of X′

p and the

summation
∑(h+q+1

d+1 )
πj is extended to the

(h+q+1
d+1

)
subsets of 1, . . . , h + q + 1 with

d+1 elements; Kπj
is the square submatrix of Kp whose d+1 columns (and rows)

correspond to those chosen for X′·πj
. The matrices X′

h+1,1·πj
and Kh+1,h+1πj

are

of dimension d × d .
It is immediate to verify that, for q = d = 0, the ratio is equal to (

∑h
j=0 κj )

−1 =
S−1

00 . On the other extreme, for q = 0, d = h, we find the classical Binet–Cauchy
formula for square matrices giving ratio equal to κ−1

0 . In the interior 0 < d < h the
ratio (13) becomes

det(M1,1)

det(X′
pKpXp)

=
(h+q

d )∑
πj

det(X′
h+1,1·πj

)2 det(Kh+1,h+1πj
)

×
[(h+q

d )∑
πj

det
(
X′·πj(h+1)

)2 det
(
Kπj(h+1)

)

+
(h+q+1

d+1 )−(h+q
d )∑

πj

det
(
X′·πj/(h+1)

)2 det
(
Kπj/(h+1)

)]−1

,
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where πj(h+1) indicates that only the submatrices of X′
p or Kp with the col-

umn h + 1 are considered, while πj/(h+1) indicates that the column h + 1
is not included. Since det(X′·πj(h+1)

) = ±det(X′
h+1,1·πj

), for even or odd val-

ues of d + 2, respectively, and det(Kπj(h+1)
) = κ0 det(Kh+1,h+1πj

), then
∑(h+q

d )
πj

det(X′·πj(h+1)
)2 det(Kπj(h+1)

) = κ0
∑(h+q

d )
πj det(X′

h+1,1·πj
)2det(Kh+1,h+1πj

), so that

wa
0 =

(h+q
d )∑
πj

det
(
X′·πj(h+1)

)2det
(
Kπj(h+1)

)

×
[(h+q

d )∑
πj

det
(
X′·πj(h+1)

)2 det
(
Kπj(h+1)

)

+
(h+q+1

d+1 )−(h+q
d )∑

πj

det
(
X′·πj/(h+1)

)2 det
(
Kπj/(h+1)

)]−1

.

The above expression enables to write (13) and, consequently, wa
0 as a func-

tion of determinants which are positive and refer to matrices having the same di-
mensions, d + 1 × d + 1. Hence, it follows that wa

0 increases (decreases) if the

value
∑(h+q+1

d+1 )−(h+q
d )

πj det(X′·πj/(h+1)
)2 det(Kπj/(h+1)

) decreases (increases). The lat-

ter is made of
(h+q
d+1

)
positive terms, so that it is sufficient to evaluate how this num-

ber of terms varies by varying d, q,h to determine how wa
0 varies accordingly.

Given that d < h and q > 0, then h + q ≥ d + 1 and, therefore:

(i) for fixed d , an increase in q or h implies an increase in
(h+q
d+1

)
, that is,

a decrease in wa
0;

(ii) for fixed h, an increase in d implies a decrease in
(h+q
d+1

)
, that is, an increase

in wa
0.

Acknowledgments. This paper has been presented at the International Work-
shop on Computational and Financial Econometrics, Geneva, Switzerland, April
20–22, 2007, and at the 56th Session of the ISI 2007 Lisbon, August 22–29, 2007.
We are especially grateful to Estela Bee Dagum, David Findley, Domenique Ladi-
ray, Gianluigi Mazzi, Benoit Quenneville and an Associate Editor for their very
competent comments. Financial support from MIUR (Ministero dell’Università e
della Ricerca), Prin 2004, is gratefully acknowledged.

SUPPLEMENTARY MATERIAL

Datasets (DOI: 10.1214/08-AOAS195SUPP; .zip). The supplementary material
contains the time series used to illustrate the methods. The series are the follow-
ing: assessment of order-book levels, housing starts: total: new privately owned

http://dx.doi.org/10.1214/08-AOAS195SUPP
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housing units started, and index of industrial production, branch DL, manufacture
of electrical and optical equipment
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