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STATE-SPACE BASED MASS EVENT-HISTORY MODEL I: MANY
DECISION-MAKING AGENTS WITH ONE TARGET
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A dynamic decision-making system that includes a mass of indistin-
guishable agents could manifest impressive heterogeneity. This kind of non-
homogeneity is postulated to result from macroscopic behavioral tactics
employed by almost all involved agents. A State-Space Based (SSB) mass
event-history model is developed here to explore the potential existence of
such macroscopic behaviors. By imposing an unobserved internal state-space
variable into the system, each individual’s event-history is made into a com-
position of a common state duration and an individual specific time to action.
With the common state modeling of the macroscopic behavior, parametric
statistical inferences are derived under the current-status data structure and
conditional independence assumptions. Identifiability and computation re-
lated problems are also addressed. From the dynamic perspectives of system-
wise heterogeneity, this SSB mass event-history model is shown to be very
distinct from a random effect model via the Principle Component Analysis
(PCA) in a numerical experiment. Real data showing the mass invasion by
two species of parasitic nematode into two species of host larvae are also
analyzed. The analysis results not only are found coherent in the context of
the biology of the nematode as a parasite, but also include new quantitative
interpretations.

1. Introduction. Consider a dynamic decision-making system consisting of
many indistinguishable biological organisms, or agents, within a closed environ-
ment. Typical examples in biology and ecology include cases of a large fixed num-
ber of animals foraging in a common patch, many insect parasites invading a target
host, etc. In such dynamic systems, one particularly interesting and also very fre-
quently encountered phenomenon is the dramatic heterogeneity among the systems
from a sample of presumably identical systems.

The presence of the heterogeneity among systems seems puzzling, as the mass
of agents supposedly behave in an unsupervised fashion, and the massiveness of
agents, that is, the large number of agents per system, should drive all systems into
some sort of homogeneity. On the contrary, great heterogeneities among systems
are often observed. One way to untangle this puzzle is to think of the heterogeneity
as a manifestation of some self-organized macroscopic behavioral patterns. In this
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paper we consider a scenario, explained in Section 2, that gives rise to a particular
type of self-organized macroscopic behavioral pattern.

Although all agents are nearly identical morphologically and very similar in
many key biological constructs that influence the particular decision of interest,
the large number of agents could accommodate a distribution of such constructs
with a sizeable range. That is, every system could contain individuals that represent
both upper and lower extremes that are very far apart from the majority. They are
generically called extremists [Crossan, Paterson and Fenton (2007)] or potential
leaders [Rands et al. (2003)].

We postulate that the system indeed needs to be ignited by the extremists, af-
ter which the remaining majority of followers could quickly perform the event of
interest. In this fashion the heterogeneity among systems will be observed due to
behavioral differences of extremists in each experimental system. This between-
system heterogeneity is then taken as a macroscopic behavioral pattern because
early emergence of extremists will give rise to crowding events much sooner
than a system having late disclosure on a relevant temporal scale. That is, in
general, between-system heterogeneity can be potentially caused by differences
in relatively small extreme components within a system that involves a mass of
agents. We contend that an accurate depiction of between-system heterogeneity
will prove fundamental to understanding the mechanism of a dynamic decision-
making system, especially when considering underlying components of extreme
nature. In order to successfully extract such information, a new way of modeling
this between-system heterogeneity is required, since random effect models per se
are mechanistically and philosophically less fit to describe the scenario considered
above.

Here we address heterogeneity modeling by imposing an internal state-space
structure into the dynamic system when vital configuration information about the
mass of agents under study is completely missing. Instrumentally all individuals’
decisions are correlated because they all share a common system state. For exposi-
tional simplicity, we consider a rather simple internal state-space variable that has
only two states. Each system sets off with the same first state, and then switches
into the other state without recurrence. The first state is termed as the “imper-
missible state” in which the particular action of interest is unlikely to occur for the
majority of agents. Only after this state-space variable changes from the impermis-
sible state into the “permissible state” can a decision leading to an event possibly
occur. The duration of the impermissible state is unknown.

Though the dynamics of this state variable are seemingly strict and simple,
many biological systems can be described accurately using this construct. One
example is the infective juvenile (IJ) of parasitic nematodes invading a host, which
motivated our study. The biology of this system is discussed in detail in the next
section. We will show that such a state-space variable could physically exist and
be reasonably established in an unsupervised fashion.
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Based on the above structural assumption of the internal state-space variable,
each individual’s event-history becomes a composition of a common duration of
the impermissible state, shared by all members of the mass of agents contained in
the closed system, and an individual specific time to action within the permissi-
ble state. We will refer to this composition as the State-Space Based (SSB) mass
event-history model. Within this model, the common random impermissible state
duration variable is intuitively thought of as the time duration needed for the small
group of extremists to work out their pioneering actions which result in the vi-
tal signals that are then detected by the rest of the agents. This common random
time duration is the source of macroscopic correlation. Furthermore, we assume
that given the duration of the impermissible state, random variables of individuals’
times to action within the permissible state are independent. This conditional in-
dependence construct is the foundation for the statistical inferences proposed and
developed here. Its major goal is to decide whether a sample of dynamic decision-
making systems really involves a state-space structural heterogeneity.

To achieve our goal, the statistical inference needs to accommodate several in-
herent data structures. In a study involving a mass of indistinguishable organisms,
two difficulties in data collection are often encountered: first, a single individual
may be too difficult to be reliably marked and directly observed due to smallness
or the lack of proper technology; second, any measurement requires sacrificing the
system in one way or the other. In other words, the system has to be terminated
at the time when a measurement is taken. The second difficulty severely limits
the researchers having only one measurement per system, while the first structure
only allows one discrete count at any time point. To accommodate these two data
situations, we study only parametric inferences here. The particular parametric
version of SSB mass event-history model considered here is a composition of the
Weibull model for the impermissible state duration and Logistic model for time to
action under the permissible state. Potential extensions of this parametric version
are briefly discussed in the Discussion section.

To further enhance our understanding from dynamic perspectives, several dis-
tinctions between the SSB mass event-history model and Logistic model with ran-
dom effects are compiled through a numerical experiment. Via Principle Compo-
nent Analysis (PCA), great differences in their spectral structures are revealed.
Via cross-sectional distribution comparison along the time axis, great differences
in variability of mass event-history are also manifested.

This paper is organized as follows. We briefly describe the biology of nema-
tode invasion in Section 2 as the basis of our model structure. The parametric SSB
mass event-history model and its corresponding likelihood function developments
are discussed in Section 3. Then statistical inferences and the accompanying iden-
tifiability and computations are addressed in Section 4. In Section 5 two numerical
experiments are conducted: one is to compare the mass event-history model with
the random effect model, and the other is a simulation study of the model pro-
posed here. In Section 6 four real data sets of nematode invasion are analyzed.
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Other related issues, including model extension, are addressed in the discussion
section.

2. Motivating example: Mass of nematode invasion. Entomopathogenic
nematodes (EPN) in the genus Steinernema are soil-dwelling obligate parasites
of insects. The infective juvenile stage (IJ) is the only life stage that lives outside
the host and its function is to find, assess and finally infect a suitable host [Lewis et
al. (2006)]. During the IJ stage, the nematodes are arrested in development with no
eating, growth, mating or reproduction; all of these functions take place inside the
host. Within hours of entering the host, the IJ nematodes release symbiotic bacte-
ria that kill the host by septicemia and toxemia within a few days. The nematodes
develop into adults, mate and produce up to 3 generations inside a single host over
the course of about two weeks, when the nutritional value of the host begins to
decline and the next cohort of IJs is produced and leaves the host. Missing in this
description of the life cycle is the importance of a time frame for infection.

Ten to hundreds of IJs infect a single host, so the first few must lead the invasion
and the remaining of the majority follow. This spontaneous emergence of leaders
and followers is generally predicted through a dynamic-game of the foraging group
[Rands et al. (2003)]. Among the invading herd of IJs, there is risk associated with
being the first to invade for two reasons; first, the host can mount an immune re-
sponse to kill the invading nematode [Li, Cowles and Cowles (2007), Wang and
Ganger (1994)] and second, if a single IJ invades and no others follow, mating and
successful reproduction cannot take place. There are also risks to invading the host
late in the infection generally associated with the declining quality of the nutritive
value of the resource. An insect host undergoing infection by entomopathogenic
nematodes is a resource with rapidly changing quality and indications thereof.
Thus, the information on which IJs base their decisions (e.g. chemical cues pro-
duced by the infection) is dynamic. This is evidenced by the observation that IJs’
invasion behavior is not the same toward infected and healthy hosts [Kunkel et al.
(2006); Grewal, Lewis and Gangler (1996); Christen et al. (2007)]. To avoid the
risks associated with being the first to invade a healthy host, we would hypothesize
that all IJs should collectively wait for another to invade, but once the infection is
underway, invasion should be permissible for all and proceed rapidly to avoid the
risks associated with an old infection.

This emergence of leader-follower behavior among a mass of IJs would collec-
tively result in a lead time before most invasions take place that would be shared
by all IJs in the vicinity of the host (or in an individual system). That is, for most
IJs, an individuals’s event time to invading a host is the lead time, or duration of the
impermissible state for invasion, which is a random variable in the nematode ex-
ample, plus a random time to initiate the action after perceiving signals indicating
that the infection has begun. Perception of these signals implies the termination of
the lead time and the beginning of the permissible state for invasions. Hence, the
collection of all IJs’ event times to invasion are indeed related by the sharing of a
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common lead time variable. Behaviorally speaking, this compositional event time
can explain the IJ’s “wait-and-see” invasion strategy.

Available technology does not allow measuring an individual IJ’s invasion event
time because they are less than 1mm in length and live in the soil and are thus too
small to be reliably observed or marked. Our measurements of parasite infection
patterns were conducted with a large number of IJs (300) and a single host con-
tained in a 15 ml centrifuge tube with 2 ml of sand at the bottom. To estimate the
number of IJs that invaded a host, we exposed hosts in this manner for specified
durations, then extracted those IJs remaining in the sand by floating them from the
sand in water [for detailed description of experimental methods, see Christen et al.
(2007) and Lewis et al., unpublished data]. The experimental system is sacrificed
at the time of collection; only one measurement per experiment is possible.

A typical data set consists of a collection of counts from the IJs’ dichotomous
invasion status (invaded or not) from a sample of systems sacrificed at several des-
ignated time points with replication. As analyzed later in Section 6, the particular
evidence sought here is the significant heterogeneities observed among invasion
counts at a time point, especially among counts from experiments in which IJs
have a relatively short exposure duration to a host (less than 12 hours). The reason
behind analyzing heterogeneity is that values of the lead time variable in different
experimental runs should vary to a great degree due to the involvement of a mass
of IJs along with the randomly distributed values for this variable. In nature, the
mass of IJs could consist of hundreds to thousands of individual IJs. Once an in-
fection has begun, many IJs are likely to follow quickly, resulting in large counts
of invaded IJs. This scenario causes the heterogeneity observed in the experiment
described. Table 1 below shows a complete real data set and reveals the typical
heterogeneity in invading event counts.

TABLE 1
First 48 hours of exposure: Steinernema feltiae infecting Galleria mellonella. Each number
represents the number of IJs that invaded a single host at the indicated exposure durations

2hrs 4hrs 6hrs 8hrs 10hrs 15hrs 20hrs 24hr 48hr

22 2 3 143 177 184 240 215 211
17 7 70 117 181 206 260 280 260
12 42 37 163 245 216 261 232 255

0 39 72 83 194 226 238 198 282
0 2 86 86 227 163 255 276 295
0 19 22 63 213 238 259 260 281

18 0 25 153 162 159 224 254 283
0 0 51 178 137 155 264 238 260
0 33 39 86 136 151 247 261 279
5 0 34 157 · 158 243 239 286
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To our knowledge, there is no published study that describes such a com-
positional structure of invading event time of parasites. Confirmation of such a
structure of event times would suggest that individual IJs use information of host
infection status to make decisions about invasion. Our goal in this paper is to es-
tablish a compositional structure that describes the pattern of invasion decisions
of infective stage parasites. Such a model will be useful in describing and com-
paring the decision-making processes of animals when observation of individuals
is impractical and the collection of data is destructive to experimental setups. It
will also establish a theoretical framework for asking more sophisticated questions
about how parasites find, assess and infect their hosts.

We postulate that if the distribution of lead times has a mode not equal to zero,
that is, being distinct from the Exponential distribution, then a positive lead time
component in IJ invasion event time is established. A mass event-history model is
developed for extracting the lead time distribution information in the next section.

3. State-space based mass event-history model. Let �(ωM) denote a closed
system (�) containing a mass of M agents (ω’s) and a single target host. A closed
system is defined as having no agents transferring in or out of this system. For the
system as a whole, macroscopically, � denotes the state-space variable that takes
the value “0” for being in the impermissible state and “1” for being in the permis-
sible state at any time point. In the case when each individual agent is equipped
with a microscopic time-independent potential or preference phase variable, then
each ω is a Bernoulli random variable taking symbolic value “+” as in the phase
of being able to invade the target host, while symbolic value “−” indicates being
out of the action phase. It is noted again that only an agent with ω = + phase could
successfully take action upon the target host under the state-space � = 1.

Further, denote U as the random time duration for � = 0, which is not directly
observable. Since the system’s state status is revealed at any time point when the
system is sacrificed, U , in fact, is observable with its current-status, not its value.
Within the system �(ωM), hypothetically each agent would give rise to an event
time T from time origin to the moment its action is successful upon the target
host. Denote the collection of event times as {Tm}Mm=1. Below we prescribe the
SSB mass event-history model on the system �(ωM).

SSB mass event-history model: Each event time Tm has a compositional form
as Tm = U + Sm, with Sm being individual specific time to successful action in
the permissible state � = 1. For an agent in the ωm = − phase, Sm = ∞. Next,
assume the conditional independency for the collection of {Tm}Mm=1:
[Conditional-independence] Given U , Tm is conditionally independent of Tm′ for
all m �= m′. Under the SSB mass event-history model setting, we further consider
parametric distributions for both U and conditional random variable Tm|U,ω as
follows:

A1. Impermissible state duration U is distributed according to the Weibull distri-
bution, denoted by Weibull(λ, γ );
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A2. The conditional survival function of Tm given U,ω is logistic, that is, for all
t > u,

Pr[Tm > t |U = u,ω = +] = 1

1 + eα+β(t−u)
.(3.1)

It is known that originally the Weibull distribution was derived as a distribution
of extreme events from a system consisting of many components in a reliability
context. The logistic regression model assumption for survival times was discussed
in Efron (1988) and is practical and typical for count data. The mass of agents has
variable potential phases satisfying the following:

A3. If agent’s potential phase ω is a Bernoulli random variable with

Pr[ω = +] = η,(3.2)

then this model setting is denoted by the SSB+ mass event-history model.
And the SSB mass event-history model that we will use in Section 4s and 5 is
essentially a sub-model with Pr[ω = +] = η ≡ 1.

Here we develop the likelihood function under the SSB+ mass event-history
model setting. Let N(t) denote an event count from a system �(ωM) at time t .
The conditional probabilities for positive count N(t)(> 0) are:

Pr[N(t)|U = u]
(3.3)

= c(t)

[
ηeα+β(t−u)

1 + eα+β(t−u)

]N(t)[ η

1 + eα+β(t−u)
+ 1 − η

]M−N(t)

,

where c(t) = ( M
N(t)

)
.

Let θ = (α,β,λ, γ, η)′. Under the model assumptions A1, A2 and A3, the
amount of likelihood contributed by one event count N(t)(> 0) is calculated as

L(θ |N(t)) =
∫ t

0
Pr[N(t)|U = u;α,β,η]fU(U = u;λ,γ ) du;

= c(t)

∫ t

0

[
ηeα+β(t−u)

1 + eα+β(t−u)

]N(t)

(3.4)

×
[

η

1 + eα+β(t−u)
+ 1 − η

]M−N(t)

γ λ−γ uγ−1e−(u/λ)γ du.

As for zero count N(t) = 0, the amount of likelihood contributed is equal to

L
(
θ |N(t)(= 0)

)
(3.5)

= e−(t/λ)γ +
∫ t

0

[
η

1 + eα+β(t−u)
+ 1 − η

]M

γλ−γ uγ−1e−(u/λ)γ du.

Suppose that there is a sample of systems {�ij (ω
M), i = 1, . . . , I ; j = 1, . . . , J }.

Correspondingly, they are sacrificed at time points t̃ = (t1, . . . , tI ) with J repli-
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cations, and result in a sample of counts N (t̃) = {Nij (ti)}. Then the likelihood
function based on data N (t̃) is computed as

L(θ |N (t̃)) =
I∏

i=1

J∏
j=1

L(θ |Nij (ti)),(3.6)

where L(θ |Nij (ti)) is based on (3.4) and (3.5).
Statistical inferences based on L(θ |N (t̃)) will be developed in the next section.

In advance, it is noted that, due to the large value of M , the amount of information
for parameters α,β and η will be significantly larger than that for λ,γ . This fea-
ture becomes a characteristic for the SSB/SSB+ mass event-history model setting,
since it induces a way to simplify and stabilize maximum likelihood computations
involved with numerical integration, as well as high dimensional maximization.

4. Statistical inferences and computations. In this section we first address
the identifiability and then proceed to discuss the MLE computations for statistical
inference of the SSB mass event-history model. For simplicity, we focus on our
discussion on the setting of the SSB, not the SSB+, mass event-history model.

4.1. Identifiability and information content issues. Since U is not observable
in the compositional structure Tm = U + Sm, the issues of identifiability and in-
formation contents of θ = (α,β,λ, γ ) under the SSB mass event-history model
are not entirely obvious and need clarification. The marginal distribution of N(t)

computed as Pr[N(t)|θ ] = L(θ |N(t)) is specified for any given time point t . This
distribution contains the following factor:


(t |θ) =
∫ t

0

[
1

1 + eα+β(t−u)

]M

γλ−γ uγ−1e−(u/λ)γ du,(4.1)

which theoretically and practically plays an important role in deciding the amount
of information content and sheds light on the identifiability issue as well. Its pres-
ence is found through the following two equations:

Pr[U < t |λ,γ ] = Pr[N(t) > 0|θ ] + 
(t |θ),(4.2)

Pr[N(t) = 0|θ ] = Pr[U ≥ t |λ,γ ] + 
(t |θ).(4.3)

It is clear that if θ and M together in (4.1) make 
(t |θ) very small and ignorable
relative to the Weibull survival probability Pr[U ≥ t |λ,γ ] at some time points ti ,
then from (4.2) and (4.3), for all ti ∈ t̃ , we have Pr[U ≥ ti |λ,γ ] ≈ Pr[N(ti) =
0|θ ]. Thus, the parameters (λ, γ ) in the Weibull distribution of U could be ex-
tracted with good precision, and so can logistic parameters (α,β)′. Empirical ev-
idence indicates this is indeed the case when the replicated N(ti) observed at one
time point ti are highly heterogeneous in the fashion that some systems have rather
large numbers of individuals, but some are zeros. This evidence requires that α is
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not too far from zero in negative value. On the other hand, if α is far below zero,
the factor 
(t |θ) can not be too small relative to Pr[U > t |λ,γ ] for most of ti ’s.
Hence, zero counts should be homogeneously seen among replications. Uniform
counts of zero also imply very little information content toward θ .

The above two empirical phenomena, great heterogeneity vs. complete homo-
geneity, in zero counts constitute evidence borne from the fact that the distribution
of U does not mingle with the Logistic distribution, since the latter is in a location-
scale family and the former is not. This is the intuition bearing the identifiability
issue.

For analytical argument on the identifiability issue, we rewrite the marginal dis-
tribution into the following integral form:

Pr[N(t) = k|θ ] =
∫ ∞

0
Gk(t, u|θ)γ λ−γ uγ−1e−(u/λ)γ du,(4.4)

where

Gk(t, u|θ) =
⎧⎨
⎩

[
ηeα+β(t−u)

1 + eα+β(t−u)

]k[ 1

1 + eα+β(t−u)

]M−k

, if u < t ;

0, if u ≥ t ,
(4.5)

with k = 0, . . . ,M .
When β = 0, the parameters α and (λ, γ )′ are completely separated within

the expression of Pr[N(t) = k|θ ]. Therefore, it is known that we need at least
two time points, that is, I ≥ 2, to identify of (λ, γ )′. With I ≥ 2, the above set
of integral equations defined through the collection of bounded and linearly in-
dependent functions {Gk(t, u|θ)}Mk=0 would ensure the identifiability of our SSB
mass event-history model. In other words, the equality of marginal distributions
Pr[N(ti)|θ ] = Pr[N(ti)|θ∗] should imply the equality of θ = θ∗.

4.2. Computations for MLE. For maximum likelihood estimation (MLE)
computations we propose to directly maximize the likelihood function derived
in the previous section. However two kinds of computational difficulties face us.
First, with the state-space structure imposed with the [Conditional-Independence]
assumption, the likelihood function, L(θ |N (t̃)), derived in (3.4)–(3.6) (with η = 1
for the SSB mass event-history model specifically) involves one-dimensional in-
tegration in each of its components. Numerical integration errors resulting from
component-wise approximations could sum up to reach a nonignorable level. It is
this difficulty that restricts us from employing the EM-algorithm, since the integra-
tion error would consequently cause the iteration trajectories in this EM-algorithm
to fall into an oscillating phase without converging to a fixed value.

Second, the aforementioned significant difference in information contents be-
tween (α,β) and (λ, γ ) likely causes the instability of inverting the Hessian matrix
within the maximization for the 4-dimensional parameter θ via the Newton–
Raphson method. For these two difficulties, the grid search method is recom-
mended to robustly compute the MLE of θ , denoted as θ̂ .
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Furthermore, it is interesting and important to make use of unevenness of infor-
mation contents by carrying out a profiled likelihood type of optimization via grid
search. We suggest the following procedure for optimization:

Op1. First, an initial estimate of Weibull parameters (λ, γ )′ could be calculated
based on current status data: zero counts of N(ti) give rise to a right-
censored duration of the impermissible state, while positive counts give rise
to left-censored data. Denote this initial estimate as (λ̂0, γ̂0)

′.
Op2. By plugging (λ̂0, γ̂0)

′ into the full likelihood function L(θ |N (t̃)), the grid
search is performed for an initial estimate of the Logistic parameters α,β .

Op3. Via the profiled likelihood, we iteratively estimate (λ, γ )′ and (α,β, η)′ once
or twice more.

The reason we need only iterate once or twice is that α,β can be very well esti-
mated even in the initial estimation.

With the estimate θ̂ that results from the above iterative procedure, we then
proceed to compute the observed Fisher information matrix i(θ) based on the log-
likelihood function l(θ |N (t̃)) = logL(θ |N (t̃)), as given in the Appendix [Fushing
et al. (2008)]. This observed Fisher information matrix i(θ) could be used for
interval estimation purposes.

5. Simulation: dynamic differences between the mass event-history and the
random effect model. The random effect model per se is the most commonly
used methodology to accommodate observed heterogeneity in real data. Often it
is used by assuming individual differences following a multivariate Normal distri-
bution as the cause of observed nonhomogeneity. This thinking is not universally
applicable, because sometimes, if not most of the time, the observed heterogene-
ity is inherent and mechanistic. Successfully modeling such mechanistic hetero-
geneity would advance our scientific understanding and provide new platforms for
future new discoveries. Thus, from such perspective, it is of great importance for
scientists to be able to discern individual differences from mechanistic heterogene-
ity, and further, to capture the underlying mechanism properly. In this section we
explain this discernment.

One random effect model applicable to our problem setting is the Logistic re-
gression model with a probability of failure given in (3.1), and parameters α, β are
assumed to be random. So the likelihood is calculated as follows:

LRE(θRE|N (t̃))

=
I∏

i=1

J∏
j=1

c(t)

∫
R2

[
ηeα+β(t−u)

1 + eα+β(t−u)

]N(t)

(5.1)

×
[

η

1 + eα+β(t−u)
+ 1 − η

]M−N(t)

f (α,β|θRE) dα dβ.
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Throughout this section we take η = 1 for expositional simplicity.
In the first part of this section a computer experiment is devised and performed

to characterize the dynamic differences between the SSB mass event-history and
the random effect model in generating the mass event count trajectory from in-
dividual systems. In the second part another simulation study is conducted to
evaluate the performance of profiled likelihood computations under the SSB mass
event-history model.

5.1. Computer experiment for dynamics of SSB mass event-history model. The
protocol for the computer experiment is as follows:

1. Under the SSB mass event-history model with a chosen vector value of θ0 =
(α0, β0, λ0, γ0)

′ = (−3,0.15,4,1.5)′ and the number of agents M = 300, there
are 100 independent mass event count trajectories simulated with each replica-
tion governed by the following experimental design:

(a) In the hth experiment, h = 1, . . . ,100, one random lead-time Uh is gen-
erated from the Weibull distribution with parameter (λ0, γ0)

′, and 300 ran-
dom follow-up survival times from the Logistic distribution with parameter
(α0, β0)

′, denoted as {Sh,m}300
m=1.

(b) For the complete data set {Th,m = Uh + Sh,m,h = 1, . . . ,100;m =
1, . . . ,300}, we count the cumulative number, Nh(τ), of events falling into
[0, τ + 1) for time τ = 0,1, . . . ,60 (hrs), and denote the complete trajectory
by Nh = {Nh(τ)}60

τ=0.

2. To mimic the real data that will be discussed in the next section, only one event
count is selected from each of the 100 trajectories. We set I scheduled time
points, and randomly divide the 100 trajectories into I groups with the com-
mon group size being J . With I = 10 and J = 10, we take the scheduled time
points {ti , i = 1, . . . , I } = {2,4,6,8,10,12,24,36,48,60 (hrs)}. Then within
the j th group, the cumulative number of events falling into [0, ti+1) is recorded
as Nij (ti), for i = 1, . . . , I and j = 1, . . . , J . Thereby we simulated the data of
mass event counts denoted as {Nij (ti)|i = 1, . . . , I ; j = 1, . . . , J }. One simu-
lated sample data set is shown in Table 2 for illustration.

3. We then fit the SSB mass event-history model to the above data {Nij (ti)|i =
1, . . . , I ; j = 1, . . . , J }, and computed the MLE θ̂ SSB of θ = (α,β,λ, γ )′ and
the corresponding likelihood value L(θ̂ |N (t̃)). The MLE θ̂ SSB is computed
following the procedure described in Section 4.2.

4. Next we fit the Logistic regression model with Normal random effects on
(α,β)′ assuming (

α

β

)
∼ N

((
μ1

μ2

)
,

(
σ 2

1 ρσ1σ2

ρσ2σ1 σ 2
2

))
.

We denote the parameter vector of this random effect model as θRE =
(μ1,μ2, ρ, σ1, σ2)

′. Compute the MLE θ̂RE and the corresponding likelihood
value as LRE(θ̂RE|N (t̃)).
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TABLE 2
A simulated sample: SSB-MEHM with (α,β,λ, γ )′ = (3.5,0.15,4,1.5)′

2hrs 4hrs 6hrs 8hrs 12hrs 16hrs 20hrs 30hrs 45hrs 60hrs

15 0 26 30 40 87 104 228 283 294
18 23 22 29 58 97 120 225 287 296
22 16 16 24 42 85 132 243 287 299
0 16 17 19 35 110 119 191 277 300
0 0 17 44 57 83 115 197 285 300
0 0 25 33 68 42 119 208 281 295
0 0 0 39 40 97 132 226 289 299
0 13 12 38 42 55 130 236 267 300

27 13 16 29 59 96 67 137 231 300
21 16 22 20 37 80 118 189 293 299

5. With θ̂RE, 100 random samples of (αh,βh)
′ are generated for h = 1, . . . ,100.

For each pair of (αh,βh) and M = 300, a complete logistic mass event count
trajectory is generated and denoted by NRE

h (t).

The steps 2, 4 and 5 in the above protocol are used to facilitate a platform
for meaningfully comparing two generating dynamics of mass event count tra-

jectory. It is observed that the log-likelihood ratio log(
L(θ̂SSB |N (t̃))

LRE(θ̂RE|N (t̃))
) > 60 in this

simulated case. This difference in log-likelihood value is rather significant given
that the number of parameters in the random effect model is 5, while the SSB
mass event-history model involves only 4 parameters. That is, from either AIC
or BIC model selection criteria, mass event count data generated from the SSB
mass event-history model would be unlikely mistaken as being generated from the
Logistic regression model with random effects.

Further, from the dynamic perspectives, this computer experiment is designed
to bring out the following three aspects of characteristic differences between the
SSB mass event-history model and Logistic regression model with random effect:
first, the longitudinal mean curve of mass event counts; second, the cross-sectional
distribution of mass event counts; third, the percentage of total variation explained
by principle eigenvectors through the principle component analysis (PCA).

Longitudinal mean curve: Two main features of the longitudinal mean curve
are informative for dynamics comparison: the event onset and the steepest incre-
ment. As shown in Figure 1, especially for the first 10 hour region, the horizontal
discrepancy is evident between the “the true mean curve” of {Nh}100

h=1 from the
SSB mass event-history model and the mean curve of {NRE

h }100
h=1 from the Logis-

tic regression model with random effect. This difference implies that the Logistic
model tends to predict event onset much earlier than the SSB mass event-history
model does. It is also observed that the steepest increment of the mass event count
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FIG. 1. Comparison of mean curves.

likely occurs ahead of that of the SSB mass event-history model. Ideally, confi-
dence bands should be added onto the mean curves to demonstrate the variation
along the temporal axis. We refrain from doing so because the 9 curves contained
in the resultant figure become indistinguishable and complicate the visualization
of the horizontal difference comparison. As would be understood below and illus-
trated in Figure 2, the confidence band for the Logistic model with random effect
is much narrower than the two related to the SSB mass event-history model.

Cross-sectional distribution: Cross-sectional distribution comparison along
the temporal axis offers an essential aspect in dynamics comparison. It is particu-
larly informative when two dynamics give rise to very different distribution forms,
as seen in Figure 2. We perceive detailed and significant differences in distribu-
tion shapes at all the three considered time points. In the 4th hour, there is 60%
of cases with no infections in the SSB mass event-history model. In contrast, the
Logistic model predicts that all hosts are invaded, and accumulate event counts up
to 40. By the 16th hour, the two distributions are centered at different locations

FIG. 2. Frequency comparison of nematodes’ invasion counts.
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with significant different variations. Further, by the 30th hour, the two distribution
forms continue to change in distinct fashions: the Logistic one becomes highly
concentrated, while the mass event-history one still drags a heavy and long tail in
the left-hand side. These different distribution shapes suggest that the confidence
bands for the mean curves in Figure 1 might not be as meaningful as expected
when involving only bell shape distributions.

It is worth noting that the heterogeneity revealed in the simulated data
{Nij (ti)|i = 1, . . . , I ; j = 1, . . . , J }, or the trajectories {Nh}100

h=1, can be very dras-
tic. In view of the simulated data in Table 2, for example, we see a typical het-
erogeneity in the simulated vector of event counts at ti = 2 hours: {Nij (2)} =
{15,18,22,0,0,0,0,0,27,21}. This kind of heterogeneity is very compatible
with that shown in Table 1 of real data. This kind of heterogeneity is indeed ob-
served in three out of four real data sets analyzed in the next section.

Principle component analysis (PCA): As the covariance function is a key fea-
ture of stochastic processes in general, the temporal covariance matrix provides
a characteristic aspect of the dynamic mechanism. By taking each trajectory as
a 60-dimensional vector, excluding the 0-hour, the three temporal covariance are
computed based on {Nh}100

h=1, {N ′
h}100

h=1 and {NRE
h }100

h=1, respectively. Here we use
PCA analysis to summarize the 60×60 temporal covariance matrix for comparing
dynamics from the temporal variation perspective.

Three curves of cumulative percentages of total variances explained by the prin-
ciple components are plotted in Figure 3; the two curves related to the SSB mass
event-history models overlap each other. Indeed, Figure 3 provides strong evidence
that the Logistic regression model with random effect cannot capture the dynamics

FIG. 3. Comparison of the cumulative sum of the variances.
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governed by the SSB mass event-history model. This conclusion is based on the
following evidence. In the Logistic model, the first principle component interprets
less than 50% of the total variation of its own invasion trajectories and requires
up to the 7th principle component to reach the level achieved by the first principle
component of the original 100 simulated invasion trajectories generated via the
SSB mass event-history model.

Thus, from the above three critically important aspects, we conclude that the
SSB mass event-history model and Logistic model with random effect are very
distinct dynamics for generating mass event count trajectories, or time series. Fur-
ther comparison of these two dynamics through model selection perspective are
carried out in real data analysis reported in the next section. Here we reiterate that
scientific investigations attempting to accommodate heterogeneity in data should
not end at a particular model with random effect. It is essential that models explain
mechanisms beyond individual differences.

5.2. Simulation study for SSB mass event-history model. A simulation study
according to step 3 of the computer experiment in Section 5.1 is performed to eval-
uate the profiled likelihood computations under the SSB mass event-history model.
That is, based on the above simulated data {Nij (ti)|i = 1, . . . , I ; j = 1, . . . , J },
the MLE θ̂ SSB of θ = (α,β,λ, γ )′ is computed via the maximizing profiled like-
lihood iteration under the likelihood function L(θ̂ |N (t̃)). The procedure follows
Op1–Op3 described in Section 4.2. The results of 300 replications of MLE θ̂ SSB

estimations are summarized in Table 3 below. The simulation results confirm that
the information content of α,β is very different from that of λ,γ , and computa-
tions via the profiled likelihood approach work rather well.

6. Real data analysis and its biological implications. In this section we ana-
lyze four data sets collected from the experimental setup described in Section 2 for
two IJs species of nematode (S. carpocapsae and S. feltiae) vs. two host species (G.
mellonella and T. molitor). In addition to the background provided there, we sum-
marize some biological information regarding interactions between IJs and hosts

TABLE 3
Summary of parameter estimation based on SSB-MEHM from 300 simulations

Parameter True value Mean Standard deviation

λ̂0 4 3.9909 0.6235
γ̂0 1.5 1.7394 0.6445
α̂ −3 −3.0050 0.0992
β̂ 0.15 0.1503 0.0051
λ̂ 4 4.6101 0.6343
γ̂ 1.5 1.6414 0.3830
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[for further details, see Lewis et al. (2006)]. This brief summary helps put our data
analysis into context.

Once an IJ invades a host, it resumes development which makes the decision
to invade the host irreversible. Consequently, the decision directly influences its
own fitness plus the environment to be experienced by its offspring. The forag-
ing behaviors of IJs of various species of EPNs differ significantly [Lewis et al.
(2006)]: S. carpocapsae ambushes hosts by standing on its tail waiting for a pass-
ing host; in contrast, S. feltiae IJs move through the soil searching for a potential
host. The two hosts also differ with respect to their acceptability to each EPN
species; G. mellonella is the preferred host by both nematode species [Lewis et al.
(1996)]. Further, the degrees of interactions between these two IJ species and two
host species are not at all uniform: S. carpocapsae has poorer performance than
S. feltiae in T. molitor, but has better performance in G. mellonella.

Four data sets corresponding to four combinations of IJ and host species with
exposure time durations (2, 4, 6, 8, 12, 18, 24, 48)(hrs) are presented here. Interest-
ingly, three of the four data sets contain very heterogeneous mass event count data
similar to the data generated from the SBB model in Table 2, the exception being
S. carpocapsae with the host G. mellonella. These four data sets are individually
analyzed based on 5 statistical models: (1) Logistic regression model with fixed
effect (LRM); (2) Logistic regression model with fixed effect and agent’s infectiv-
ity phase (LRM+); (3) Logistic regression model with random effect(LRMRE);
(4) SSB mass event-history model (SSB-MEHM); (5) and SSB+ mass event-
history model (SSB+-MEHM).

Consider the Logistic regression model with fixed effect (LRM) as the base-
line model. We compare among the five models via the application of Schwarz’
(1978) information criterion (BIC). In this application, differences of BIC cri-
terion values between four models and LRM are computed through the formula
(−2)[l(θmodel|N (t̃)) − l(θLRM|N (t̃))] + (p − 2) × log(N), as reported in Table 4,
where p = dim(θmodel) is the parameter dimension in a “model” among the four
models other than LRM (2 = dim(θLRM)), and N (t̃) = N is the sample size.

Based on the BIC criterion, the SSB+ mass event-history model (SSB+-
MEHM) is the model choice for three settings: S. feltiae in two hosts species
G. mellonella and T. molitor and S. carpocapsae in T. molitor. In one setting,
S. carpocapsae in G. mellonella, the BIC selects the Logistic regression model
with random effect(LRMRE). These results agree with the real data set regarding
the presence of heterogeneity in mass event counts like that shown in Table 2.
Thus, we can statistically infer that the SSB+-MEHM can best capture the inter-
action of IJs’ behaviors toward host species which give rise to heterogeneous mass
event counts.

Biologically, the results reported in Table 4 support the current understanding
of behavioral traits. The majority of individual S. feltiae IJs when encountering
either species of host are likely adopting a “wait and see” policy. Many risk-averse
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TABLE 4
Differences of BIC criterion values from LRM

Host
Infective Juvenile

G. mellonella T. molitor

S. carpocapsae S. feltiae S. carpocapsae S. feltiae

LRM+ −19.98 −2727.86 −1724.24 −1050.10
LRMRE −555.96 −4477.60 −4418.74 −2380.30
SSB-MEHM −471.98 −4525.74 −4500.50 −2422.20
SSB+-MEHM −459.96 −4551.60 −4552.74 −2446.30

individuals collectively wait until very few extremists, risk-prone individuals, in-
vade. These features are somehow reflected through having γ estimates being sig-
nificantly different from 1 in Table 5, in which all parameter estimations on all
five models are reported. In sharp contrast, the individual infection decisions of
S. carpocapsae IJs when encountering its favored host, G. mellonella, are likely
independent from each other. The capability of making a behavioral adjustment
for adapting to host differences may not be new, but could be new as a computa-

TABLE 5
Estimation comparison

Host G. mellonella T. molitor

Infective Juvenile S. carpocapsae S. feltiae S. carpocapsae S. feltiae

LRM α̂ −0.4652 −2.0360 −1.3312 −2.5218
β̂ 0.0870 0.1694 0.0341 0.0839

LRM+ α̂ −0.5353 −4.9465 −3.9497 −3.5473
β̂ 0.1019 0.6124 0.7279 0.2054
η̂ 0.9734 0.8477 0.4494 0.6901

LRMRE μ̂1 −0.4764 −3.5563 −2.9760 −3.6238
μ̂2 0.0911 0.2438 0.0649 0.1092
σ̂1 0.7385 0.9970 0.9997 0.9992
σ̂2 0.0451 0.0648 0.0738 0.0123
ρ̂ −0.8570 0.6176 0.9966 0.8337

SSB-MEHM α̂ −1.3973 −3.7067 −3.0608 −3.2272
β̂ 0.3223 0.5538 0.8603 0.3821
λ̂ 243.3073 212.2950 54.9325 80.1841
γ̂ 0.9362 1.0196 2.0094 1.8068

SSB+-MEHM α̂ −1.4321 −3.8171 −2.8765 −3.0832
β̂ 0.3342 0.5716 1.1390 0.5141
η̂ 0.9998 0.9659 0.7251 0.7700
λ̂ 98.0942 95.1340 60.1455 72.6600
γ̂ 1.0011 0.7598 1.9859 1.8790
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tional outcome: when encountering a less favorable host, such as T. molitor, IJs of
S. carpocapsae adopt the “wait and see” policy similar to S. feltiae IJs, and have a
very different policy when they encounter a favorable host, such as G. mellonella.
These results indeed lead to interesting hypothesis for the biology and distribu-
tion of EPNs: when nematodes are associated with more susceptible hosts, then
distribution should be less aggregated.

7. Discussion. We developed the SSB mass event-history model for model-
ing potentially self-organized decision-making data obtained from a system con-
stituted of many biological organisms or agents. Such self-organized behaviors
in general create macroscopically correlated patterns that underly a large num-
ber of event times within the same system, and render tremendous heterogeneity
between replicated systems. This type of manifestation is beyond what general
individual-difference based random effect models could accommodate. Our mass
event-history models are built with simple internal state-space dynamics for the
“wait-and-see” behavioral tactics: the impermissible state represents the behav-
ior of waiting by the extremist or leader to take the first action; the permissible
state models the cascade of many followers’ decision-making. With this dynamic
structure, our mass event-history models shed light on biological and behavioral
patterns of decision-making pertaining to many agents sharing a common environ-
ment.

From the perspective of statistical merit, our SSB mass event-history models
provide a simple and instrumental methodology for accommodating heterogeneity
observed among independently and identically designed systems. This capability
is distinct from the random effect model per se. A random effect model in general
maintains a static device for handling heterogeneity stemming from independent,
but possibly different individuals within a system. As we demonstrated through
simulated as well as real data analysis, the random effect model works well when
all involved systems of many agents are rather homogeneous. In contrast, when
a system of many agents has the potential to build up system-wise self-organized
behaviors, it would be worth modeling the system dynamics by properly capturing
the underlying mechanism. Therefore, our mass event-history model is not only an
alternative to the random effect model, but an important modeling technique on its
own.

From the perspective of dynamic differences, we lay out three temporally ori-
ented aspects in Section 5. Through these aspects, we point out the fundamental
differences between the two dynamics governed by the SSB mass event-history
model and Logistic regression model with random effect. Although the resultant
dynamic differences are informative, we believe that other important and essential
perspectives could have been missed in our discussion. Given that this topic of
comparing two dynamic systems is not yet well established, research is needed in
this direction in statistics.
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In the nematode IJ invasion example discussed here, the unobserved state-space
variable could be thought of as a physical existence as well as being created in
an unsupervised fashion. It may exist as a physiological state that keeps the ma-
jority of IJs from making their invading decisions. Only after a few risk-prone
extremists or leaders have invaded the host will the rest of the risk-averse major-
ity follow. This type of behavior is indeed seen in finance and many other social
sciences. How to properly model the macroscopic correlation resulting from in-
formation cascading to the majority is an important issue. Certainly, our internal
state-space with impermissible and permissible states would not be sophisticated
enough to cope with complexity generated from more intricate decision making
systems. Even for IJs, we expect that our simple state-space model structure would
become too simple to be suitable when much more informative event-history data
than the current-status data are collected. Such a possibility is likely to be seen if
advances in experimental and data collection technologies are made possible in the
near future.

For current status data collected by sacrificing each experimental system at a
time point, the dimensions of model extensions of the SSB mass event-history
model could be rather limited. The limitations stem from the compositional and
missing data structures involved. The presence of integration in the likelihood
function, or marginal probability Pr[N(t) = k|θ ], from time 0 up to several sacri-
ficing time points ti , i = 1, . . . , I , imposes a limit on the number of parameters that
are identifiable and estimable. Thus, we need to employ parametric distributions
in this setting. Further, as one condition of the SSB mass event-history model, the
two compositional distributions involved must not belong to the same family.

However, when the above possibility becomes reality and we could construct a
setting where complete individual event-history data are available, the identifiabil-
ity issue can be alleviated, even while the internal state variable information is still
missing. Thus, a modeling extension with one semi-parametric model for time
to action in the permissible state and one parametric model for durations under
the impermissible state become feasible. Furthermore, the 0-1 internal state-space
variable used in the dynamic systems here certainly can be expanded to properly
accommodate further complexity of data structure.

SUPPLEMENTARY MATERIAL

Score and information (DOI: 10.1214/08-AOAS189SUPP; .pdf). Here we give
the gradient and second derivative of the log-likelihood for constructing the score
and information, which can be used in numerical estimation of the parameter θ =
(α,β,λ, γ )′ in the SSB mass event-history model.
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