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EMPIRICAL NULL AND FALSE DISCOVERY RATE
INFERENCE FOR EXPONENTIAL FAMILIES

BY ARMIN SCHWARTZMAN1

Harvard School of Public Health and Dana-Farber Cancer Institute

In large scale multiple testing, the use of an empirical null distribution
rather than the theoretical null distribution can be critical for correct infer-
ence. This paper proposes a “mode matching” method for fitting an empirical
null when the theoretical null belongs to any exponential family. Based on
the central matching method for z-scores, mode matching estimates the null
density by fitting an appropriate exponential family to the histogram of the
test statistics by Poisson regression in a region surrounding the mode. The
empirical null estimate is then used to estimate local and tail false discovery
rate (FDR) for inference. Delta-method covariance formulas and approximate
asymptotic bias formulas are provided, as well as simulation studies of the ef-
fect of the tuning parameters of the procedure on the bias-variance trade-off.
The standard FDR estimates are found to be biased down at the far tails.
Correlation between test statistics is taken into account in the covariance esti-
mates, providing a generalization of Efron’s “wing function” for exponential
families. Applications with χ2 statistics are shown in a family-based genome-
wide association study from the Framingham Heart Study and an anatomical
brain imaging study of dyslexia in children.

1. Introduction. In large-scale multiple testing problems, the observed dis-
tribution of the test statistics often does not accurately match the theoretical null
distribution [Efron et al. (2001), Efron (2004, 2005b)]. In such cases, the use of an
empirical null distribution, estimated from the data itself, can be critical for making
correct inferences. Previous empirical null methods [Efron (2004, 2007b), Jin and
Cai (2007), Efron (2008)] have focused on situations where the theoretical distribu-
tion of the test statistics is N(0,1) or t , typically found, for example, in two-group
microarray gene expression studies. Other large-scale multiple testing problems
present theoretical null distributions that are not normal or t . For instance, χ2 tests
are commonplace in the analysis of genome-wide association studies based on sin-
gle nucleotide polymorphisms (SNPs) [Van Steen et al. (2005), Kong, Pu and Park
(2006)], while multivariate F tests appear in voxel-based analyses of brain imag-
ing studies [Everitt and Bullmore (1999), Schwartzman, Dougherty and Taylor
(2005), Lee et al. (2007), Schwartzman et al. (2008b, 2008a)].
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This paper extends the scope of the empirical null to distributions that belong
to general exponential families, treating the normal and χ2, as well as their coun-
terparts t and F , as special cases. This extension allows the empirical null to be
flexibly chosen as a parametric exponential family version of the theoretical null.
For example, where the theoretical null N(0,1) may be replaced by an empirical
null N(μ,σ 2) with arbitrary mean μ and variance σ 2, a theoretical null χ2(ν0)

with fixed ν0 degrees of freedom may be replaced by a scaled χ2 density (i.e.,
gamma) with arbitrary scaling factor a and arbitrary number of degrees of free-
dom ν [Schwartzman, Dougherty and Taylor (2008a)].

As a first data example, consider the following family-based study of genome-
wide association between genetic variants and obesity based on the Framingham
Heart Study (FHS) [Herbert et al. (2006)]. Briefly, genetic markers were obtained
by genotyping 1400 probands from the family-plates on an Affymetrix 100K
SNP-chip containing 116,204 SNPs. Each SNP was tested for association with
four body-mass index measurements at exams 1, 2, 3 and 4 using the multivariate
FBAT-GEE statistic [Lange et al. (2003)]. Excluding SNPs for which the num-
ber of informative families was less than 20, a total of 95,810 test statistics were
generated with theoretical null χ2(4). Figure 1(a) shows that the histogram of the
test statistics is not as well matched by the theoretical null χ2(4) (see zoom-in)
as by the empirical null, a scaled χ2 with 4.27 d.f. and scaling factor 0.95. The
mismatch between the histogram and the theoretical null can be seen better in the
p-value scale in Figure 1(b). The histogram of p-values according to the empirical
null is closer to a uniform distribution than that according to the theoretical null.

A second example where the effect is more dramatic is the brain imaging study
analyzed in Schwartzman, Dougherty and Taylor (2008a). In brief, diffusion tensor
imaging (DTI) scans were taken of 6 dyslexic and 6 nondyslexic children. After

FIG. 1. SNP example: (a) Histogram of the test statistics (light gray). Superimposed densities are
the theoretical null χ2(4) (dashed) and the empirical null (solid) with pointwise standard 95% CIs.
The histogram of the estimated alternative component and corresponding upper standard CI are
shown in inverted scale. Inlet plot is a zoom-in. (b) Histogram of p-values according to the theoretical
null (light gray) and the empirical null (black).
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FIG. 2. DTI example: (a) Histogram of the χ2-scores (light gray). Superimposed densities are the
theoretical null χ2(2) (dashed) and the empirical null (solid) with pointwise standard 95% CIs. The
histogram of the estimated alternative component and corresponding upper standard CI are shown
in inverted scale. (b) Histogram of p-values according to the theoretical null (light gray) and the
empirical null (black).

spatial registration, at each of 20,931 voxels a directional test statistic was com-
puted for testing whether the first eigenvector of the mean diffusion tensor has
the same 3D spatial orientation in both groups. The scores for each voxel were
obtained by a quantile transformation from the theoretical null model F(2,20) to
χ2(2). Figure 2(a) shows a histogram of the 20,931 χ2-scores. The data histogram
is not well matched by the theoretical null χ2(2) but is better described by the em-
pirical null, a χ2 with 1.82 d.f. This is better seen in Figure 2(b). For p-values that
are most likely null, say, higher than 0.1, the theoretical null produces a histogram
that can be hardly explained by a uniform distribution. In contrast, the empirical
null produces a histogram that is mostly uniform in that range. Moreover, the num-
ber of voxels with low p-values (less than 0.05) is higher according to the empirical
null, indicating a gain in statistical power. Schwartzman et al. (2008b) show other
examples of voxel-based analyses in brain imaging with normal and χ2 statistics
where the empirical null is necessary for correct inference.

The proposed method for fitting the empirical null, which I call ‘mode match-
ing’, is a generalization of the central matching method for z-scores [Efron et al.
(2001), Efron (2004, 2007b)]. Mode matching consists of fitting the empirical null
to a region of the histogram of the test statistics surrounding the mode, which for
the normal distribution coincides with matching the center. Mode matching is pre-
sented here with a one-step approach, fitting the empirical null to the histogram
directly by Poisson regression. This contrasts with the two-step scheme of Efron
(2007b), where a nonparametric density is first fitted to the histogram by Poisson
regression and then the empirical null is fitted to the nonparametric density esti-
mate by least squares. The one-step fit simplifies the theoretical analysis of bias
and variance and avoids the need to tune additional parameters for nonparamet-
ric density estimation. But, most importantly, it highlights why mode matching is
effective for exponential families: for these the log-link function of the Poisson
regression becomes linear in the regression parameters.
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The empirical null may be used with any multiple testing procedure. Nonethe-
less, mode matching is particularly suited for estimating the false discovery rate
(FDR), a commonly used error measure in multiple testing problems [Benjamini
and Hochberg (1995), Genovese and Wasserman (2004), Storey, Taylor and Sieg-
mund (2004)]. Below I present formulas for calculating the local and tail FDR
estimates and show that, as with central matching [Efron (2005b, 2007b)], these
estimates follow easily from mode matching calculations for general exponential
families.

Delta method covariance formulas are derived for both the empirical null and
FDR estimates. It is shown that these formulas produce variance estimates similar
to those obtained by the bootstrap when the test statistics are independent. Permu-
tations are used to respect the correlation between test statistics when they are not
independent.

Further, approximate formulas are derived for the bias of both the empirical null
and FDR estimates. It is shown that the bias in the empirical null is driven mainly
by the likelihood ratio between the alternative and null distributions. Simulations
are used to inform the choice of the two tuning parameters of mode matching
(histogram bin width and fitting interval) in terms of the bias-variance trade-off.
For example, in agreement with Efron (2007b), it is found that in the normal case
mode matching is fairly insensitive to the choice of bin width, but in the χ2 case
the choice of bin width is affected by the curvature of the density, which sharply
increases when the number of degrees of freedom is less than 2. The fitting inter-
val plays a more important role, as it controls the bias introduced by the alternative
distribution. In terms of FDR estimation, the bias formulas reveal that both the lo-
cal and tail FDR estimates can be deceptively biased down for very high thresholds
(low p-values), where the number of observed test statistics is low. I argue that this
effect should be carefully taken into account when making inferences in real data
sets.

The effect of dependence in the covariance of the empirical null and FDR es-
timates is explained in terms of the empirical distribution of pairwise correlation
between test statistics in a way similar to Efron (2007a). I show that Efron’s enig-
matic “wing function” is a special case of the large family of Lancaster polynomi-
als of bivariate exponential families, which reduces to the Hermite polynomials in
the normal case and to the Laguerre polynomials in the χ2 case.

Mode matching is both computationally efficient and easy to implement be-
cause it is based on Poisson regression, for which software is widely available.
The analysis is demonstrated in both the DTI and SNP examples introduced above.
The SNP example demonstrates the bias, while the DTI example demonstrates
the effect of correlation. While both examples have χ2 null distributions, I em-
phasize that the methodology is designed for general exponential families. Spe-
cific procedures and simulation results are shown for both the normal and χ2

cases.
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2. Mode matching for exponential families.

2.1. Setup. Let T1, . . . , TN be a large collection of N test statistics. The two-
class mixture model [Efron et al. (2001), Storey (2003), Efron (2004, 2007b) Sun
and Cai (2007)]

f (t) = p0f0(t) + (1 − p0)fA(t)(1)

specifies that a fixed fraction p0 of the test statistics behave according to a com-
mon null distribution with density f0(t). The other test statistics behave according
to alternative densities whose mixture is fA(t). The null density f0(t) is assumed
unimodal. The zero assumption, needed for identifiability of the model, is loosely
defined by Efron as the condition that most of the probability mass near the mode
of f (t) is due to the null term p0f0(t), for example, p0 > 0.9 (the effect of overlap
between the null and alternative components is discussed in Section 4). The objec-
tive of the empirical null methodology is to estimate p0 and f0 from T1, . . . , TN .

Mode matching begins by summarizing the data into a vector of histogram
counts y = (y1, . . . , yK)′ with yk = ∑N

i=1 1{Ti ∈ Bk}, k = 1, . . . ,K , for K bins
Bk centered at t = (t1, . . . , tK)′. For simplicity, I assume all bins have the same
width �, although this is not crucial. If the test statistics are independent, then,
given N , the counts y follow a multinomial distribution with probabilities π =
(π1, . . . , πK)′, πk = P(Ti ∈ Bk). By the Taylor expansion around tk ,

πk =
∫
Bk

f (t) dt = �f (tk) + �3

24
f ′′(tk) + · · · ≈ �f (tk).(2)

The approximation is valid if the bin width � is small and the marginal density
f (t) is smooth (the effect of curvature is discussed in Section 4). Thus, for large N ,
the scaled histogram

f̂ (t) = y

N�
(3)

is a nearly unbiased estimate of f (t) at the bin centers t .
The next step is to choose a closed interval S0 where the zero assumption may

hold. S0 is the union of K0 < K consecutive bins containing the mode of f (t). For
example, for a two-sided test with theoretical null N(0,1), S0 may be of the form
S0 = [tmin, tmax], while for a one-sided test with theoretical null χ2, S0 may be of
the form S0 = [0, tmax]. Within S0, the zero assumption makes (3) an estimate of
the scaled null p0f0(t) in (1), with additional bias (1 − p0)fA(t).

Suppose f0(t) is a parametric density. Instead of maximizing the multinomial
likelihood given y, mode matching uses, almost equivalently, Poisson regres-
sion. The idea, also called Lindsey’s method [Efron and Tibshirani (1996), Efron
(2007b)], is to consider the number of tests N as a Poisson variable N ∼ Po(γ ). If
the test statistics are independent, then the histogram counts become independent
Poisson variables yk ∼ Po(λk) with λk = γπk . If N is large, this is essentially the
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same as the usual Poisson approximation to the multinomial. Using (2), we have
λk = γπk ≈ γ�f (tk). Thus, within S0, the zero assumption leads to the general
Poisson regression model yk ∼ Po(λk) with

λk ≈ γ�p0f0(tk), tk ∈ S0,(4)

where γ is replaced by its MLE, the observed count N .

2.2. Exponential families. Since the link function for Poisson regression is
logarithmic, the precise parametric form of f0(t) needed to make log(λk) in (4)
linear in the parameters is an exponential family. Let

f0(t) = g0(t) exp
(
x(t)′η − ψ(η)

)
,(5)

where g0(t) is the carrier density, η is the vector of canonical parameters, x(t)

is the sufficient vector and ψ(η) is the cumulant generating function. Replacing
in (4) gives the linear Poisson regression model yk ∼ Po(λk) with

log(λk) = x(tk)
′η + C + hk,(6)

where the entries of x(tk) play the role of predictors,

C = C(η) = logp0 − ψ(η)(7)

is a constant intercept, and hk = log(N�g0(tk)) is an offset. It is convenient to
write model (6) in vector form as

log(λ) = Xη+ + h,(8)

where λ = (λ1, . . . , λK)′, η+ = (C,η′)′ is the augmented parameter vector, the de-
sign matrix X has rows (1,x(tk)

′) for k = 1, . . . ,K , and h = (h1, . . . , hK)′. The fit
is restricted to the interval S0 by providing the Poisson regression algorithm with
an external set of weights w = (w1, . . . ,wK)′, where wk is equal to 1 or 0 accord-
ing to whether tk is in S0 or not. For later use, define the diagonal matrix W with
diagonal equal to w (not to be confused with the weighting matrix used internally
in the iterative solving of the Poisson regression).

Solving (8) gives estimates η̂+ = (Ĉ, η̂)′, which include the empirical null pa-
rameter estimates η̂. From these, an estimate of the null probability p0 is also
obtained using (7) as p̂0 = exp(Ĉ + ψ(η̂)). Notice that p̂0 is not constrained to
be less than or equal to 1. The predicted histogram counts λ̂ = N�f̂0(t) = ŷ =
(ŷ1, . . . , ŷK)′ corresponding to the empirical null for all bins (not just within S0)
are

ŷ = exp(Xη̂+ + h).(9)

As a result, the predicted histogram counts corresponding to the alternative com-
ponent in (1) are

N�(1 − p̂0)f̂A(t) = N�
(
f̂ (t) − p̂0f̂0(t)

) = y − ŷ.(10)
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Empirical null densities are more naturally specified using the usual parame-
ters of the distribution rather than the canonical ones. When the theoretical null is
N(0,1), the empirical null is N(μ,σ 2) with θ = (μ,σ 2)′ [Efron (2004, 2007b)]
[t-statistics are handled by a quantile transformation to N(0,1)]. When the theo-
retical null is χ2 with ν0 d.f., an appropriate empirical null is a scaled χ2 with ν

d.f. and scaling factor a, denoted aχ2(ν), with density

f0(t) = 1

(2a)ν/2
(ν/2)
e−t/(2a)tν/2−1,(11)

where θ = (a, ν)′ [Schwartzman, Dougherty and Taylor (2008a)]. This is the same
as a gamma density with shape parameter ν/2 and scaling parameter 2a, but using
the χ2 notation helps keep the connection to the theoretical null. F -statistics are
handled by a quantile transformation to χ2 with the same numerator number of
degrees of freedom.

Let θ = θ(η) denote the vector of usual parameters as in the normal and χ2

examples above. Let θ+ = (logp0, θ
′)′ be the augmented parameter vector. The

MLE of θ+ is θ̂+ = (log p̂0, θ(η̂)′)′. The derivation of these parameter estimates
from the canonical parameter estimates for both the normal and χ2 cases is worked
out in Appendix A.

Other distributions are treated in a similar way. For p-values, whose theoretical
null is uniform, the empirical null may be a beta distribution with fitting interval
S0 = [tmin,1]. If the theoretical null is a discrete exponential family (e.g., binomial,
Poisson, negative binomial), the mode matching procedure is the same as above
except that the bins width � = 1 is automatically set by the discrete nature of the
distribution, making equations (2) and (4) exact rather than approximate.

2.3. Exponential subfamilies. In some cases, one may want to adjust only
some of the parameters in (5) and leave the others fixed as prescribed by the theo-
retical null. For instance, the microarray analysis examples in Efron (2007b) sug-
gest the empirical null N(0, σ 2), while in some fMRI studies involving z-scores,
an appropriate empirical null may be N(μ,1) [Ghahremani and Taylor (2005)]. If
fixing some parameters results in another lower dimensional exponential family,
then the procedure is similar to the one above after the canonical parameters have
been redefined. Let η+ = (C,η′

1,η
′
2)

′, where η1 is the vector of canonical para-
meters to be estimated and η2 is the vector of parameters whose values are fixed.
Let X = (1K,X1,X2) be the corresponding split of the design matrix, where 1K

indicates a column of K ones. The regression equation (8) becomes

log(λ) = 1KC + X1η1 + (X2η2 + h)(12)

and is solved as before, except that the fixed term X2η2 is absorbed into the offset
in parenthesis. The specific exponential subfamilies of the normal and χ2 cases
are worked out in detail in Appendix A.
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The simplest restricted case is where one believes the theoretical null and no
adjustment of parameters is necessary, except for p0 [Efron (2004)]. In that case,
only the intercept C needs to be estimated in (12), treating all the other terms as
offset. The estimate of p0 is then given by p̂0 = exp(Ĉ + ψ(η)). Notice that, for
the regression (12) to remain linear, p0 cannot be fixed a priori.

2.4. Covariance estimates. Covariance estimates for the empirical null para-
meter estimates η̂+ can be obtained by the delta method in a way similar to Efron
(2005b). For this we first need an estimate of the covariance of y. As noted by
Efron and Tibshirani (1996), there are two such estimates. The Poisson regression
regards the observations yk as independent, so its influence function is determined
by the covariance estimate ĉov(y) = V̂ = Diag(ŷ), a K × K diagonal matrix with
diagonal entries ŷk . On the other hand, the true covariance of y depends on the
dependence structure of the test statistics.

Suppose first the test statistics are independent. Then conditional on N , the yk

are multinomial, for which an appropriate covariance estimate is

V̂ N = Diag(ŷ) − ŷŷ′
/N.(13)

PROPOSITION 1. Let ψ̇(η̂) and θ̇(η̂) denote the derivatives of ψ and θ with
respect to η evaluated at η̂. The delta method covariance estimates of η̂+ and θ̂+
are respectively

ĉov(η̂+) = (X′WV̂ X)−1X′WV̂ NWX(X′WV̂ X)−1(14)

ĉov(θ̂+) = D̂ ĉov(η̂+)D̂
′
, D̂ =

(
1 ψ̇(η̂)′
0 θ̇(η̂)′

)
.(15)

PROPOSITION 2. The delta method covariance estimate of the empirical null
fits (9) and the empirical alternative component (10) are respectively ĉov(ŷ) =
(V̂ Dy)V̂ N(V̂ Dy)

′ and ĉov(y − ŷ) = (I − V̂ Dy)V̂ N(I − V̂ Dy)
′, where Dy =

∂(log ŷ)/∂y′ is given by

Dy = X(X′WV̂ X)−1X′W .(16)

The above covariance estimates become more accurate as N increases.
If the test statistics are mildly correlated, the Poisson regression scheme may

still be used to fit the empirical null, but the covariance estimates need to change.
In this case, the delta-method covariance formulas in Propositions 1 and 2 are
applied with V̂ N replaced by a covariance estimate other than (13) that reflects
the correlation between the bin counts. This is illustrated below in the DTI exam-
ple using permutations. Alternatively, one may fit the empirical null including an
overdispersion parameter in the Poisson regression. The overdispersion parameter
φ is estimated by the quasi-likelihood MLE φ̂ = (1/K)

∑K
k=1(yk − λ̂k)/λ̂k . The

Poisson regression fit is the same as before, but the covariance estimates above are
inflated by a factor φ.
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2.5. The SNP data. Recall the SNP data set described in Section 1. The his-
togram in Figure 1(a) was constructed using bins of width � = 0.1 starting from
zero. The empirical null was obtained using χ2 mode matching (Appendix A.2).
The fitting interval was defined as S0 = [0,20], wide enough to use most of the
data without including the far tail region t > 20, where discoveries are likely to be
made. These choices are discussed in Section 4.

The estimated parameters θ+ are listed in Table 1. Assuming independence
of the test statistics, the associated standard errors (SE) were computed as the
square root of the diagonal of (15) using the multinomial covariance (13). For
comparison, I also used the bootstrap as follows. Again assuming independence,
repeated resampling with replacement from {T1, . . . , TN } gave sets {T ∗

1 , . . . , T ∗
N },

each leading to a parameter estimate (θ̂+)∗. The bootstrap covariance estimate of
θ̂+ was computed as the empirical covariance of the (θ̂+)∗ and the SEs as the
square roots of the diagonal elements of this covariance. Notice that the delta-
method SEs are only slightly smaller than the bootstrap SEs.

The CIs for a and ν do not include the theoretical values 1 and 4, indicating
a significant departure from the theoretical null in both scaling and degrees of
freedom. The CI for log(p0) includes 0. This does not prove that there are no sig-
nificant SNPs, but it shows that the study may not have enough power to discover
them. The lower bound of the CI for log(p0) suggests that the fraction of non-null
SNPs may be as high as 1− p̂0 ≈ − log(p̂0) = 3.18×10−5, which is about 3 SNPs
out of N = 95,810. If instead of fitting the full empirical null, p0 is estimated alone
believing the theoretical null, the result is log(p̂0) = 1.24 × 10−4 with standard CI
[1.96 × 10−5,2.28 × 10−4]. The theoretical null does not admit an estimate of p0
that is less than 1, again indicating that the theoretical null is unsuitable for this
data.

The SEs in Table 1 are smaller than they would be if the dependence between
the test statistics were taken into account. I did not take into account the depen-
dence because I did not have access to the original data but only to the FBAT test
statistics. Given the complexity of the FBAT procedure, pairwise correlations be-
tween test statistics would be hard to estimate. It has been claimed that the SNPs in
this dataset are not highly correlated because of their widespread locations on the

TABLE 1
SNP example: Theoretical null parameters (column 2) and empirical null estimates (column 3).
Included are delta-method and bootstrap SE (columns 4 and 5) and standard 95% confidence

intervals based on the delta-method SE (column 6)

θ+ Theory θ̂+ SE (15) Bootstrap SE 95% CI

log(p0) 0 7.49 × 10−5 5.45 × 10−5 5.89×10−5 [−3.18,18.2] × 10−5

a 1 0.9509 0.0046 0.0048 [0.9419,0.9600]
ν 4 4.2675 0.0183 0.0199 [4.2316,4.3034]
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genome [Herbert et al. (2006)]. One indication that the correlation may not have
a large effect is that the estimated overdispersion from fitting the empirical null is
φ̂ = 1.090 (bootstrap SE = 0.066), not significantly larger than 1.

2.6. The DTI data. For the DTI data set, the histogram in Figure 2(a) was
constructed using bins of width � = 0.05 starting from zero and the empirical null
was obtained using χ2 mode matching (Appendix A.2). The fitting interval was
defined as S0 = [0,4.5]. These choices are discussed in Section 4.

The estimated parameters θ+ are listed in Table 2. The associated SEs were
computed as the square root of the diagonal of (15) using two different values for
V̂ N . The naive estimate (column 4) assumes independence of the test statistics and
uses the multinomial covariance (13). The estimate in column 5 replaces V̂ N by
a permutation estimate V̂ P similar to the one used by Efron (2007a), obtained as
follows. In the original data, the group labels of the two groups of 6 subjects were
permuted, for a total of 924/2 = 462 distinct permutations (the test statistics are
symmetric, yielding the same value if the groups are swapped). For each permu-
tation, the 20,931 test statistics T ∗ were recomputed and a vector y∗ of histogram
counts was produced. The permutation covariance estimate V̂ P was computed as
the empirical covariance of the y∗.

This permutation scheme relies on the subjects being independent but preserves
the correlation structure between the test statistics. While validity of the permuta-
tions requires the complete null assumption, removal of the mean effects is difficult
in this case because of the directional nature of the data. Yet, since p0 is close to 1,
the null hypothesis is valid in most voxels and may be enough for the purposes of
estimating global parameters, such as those of the empirical null. Table 2 shows
that taking into account correlation via the permutation scheme about doubles the
naive SEs.

Based on the permutation SEs, the CI for a includes the theoretical value 1,
while the CI for ν does not include the theoretical value 2. This indicates a signifi-
cant departure from the theoretical null in degrees of freedom but not scaling. The
CI for p0 does not include 1 and it is estimated that there are (1 − p0)N = 745
non-null voxels in the data. The estimated overdispersion is φ̂ = 1.332 (permuta-
tion SE = 0.087), significantly larger than 1 as expected from the dependence.

TABLE 2
DTI example: Theoretical null parameters (column 2) and empirical null estimates (column 3).

Included are delta-method SEs assuming independence (column 4) and using permutations
(column 5). The standard 95% confidence intervals are based on the permutation SEs (column 6)

θ+ Theory θ̂+ SE (15), ind SE (15), perm 95% CI, perm

p0 1 0.964 0.0042 0.0080 [0.949,0.981]
a 1 0.961 0.0225 0.0679 [0.828,1.094]
ν 2 1.817 0.0223 0.0377 [1.743,1.891]
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If instead of fitting the full empirical null, p0 is estimated alone believing the
theoretical null (blue curve in Figure 2), the result is p̂0 = 0.989 with naive CI
[0.984,0.994] and permutation CI [0.955,1.024]. The theoretical null not only
provides a poor fit to the data but gives a higher estimate of p0 than the empirical
null, so one may say it is less powerful.

3. FDR inference.

3.1. FDR estimates. Mode matching is particularly convenient for FDR esti-
mation, as FDR estimates follow immediately from the Poisson regression fits (9).
Let F(t) = p0F0(t) + (1 − p0)FA(t) be the cumulative version of (1). Recall that
the local false discovery rate (fdr) and (positive) right-tail FDR are given respec-
tively by

fdr(t) = p0f0(t)

f (t)
, FdrR(t) = p0(1 − F0(t))

1 − F(t)
=

∫ ∞
t fdr(u)f (u)du∫ ∞

t f (u) du
(17)

[Efron et al. (2001), Efron (2004)]. Using (3) and (4), the local fdr at the bin centers
tk is estimated by

f̂dr(tk) = p̂0f̂0(tk)

f̂ (tk)
= λ̂k/(N�)

yk/(N�)
= ŷk

yk

,(18)

defined whenever yk > 0, or in vector form as

log f̂dr = log ŷ − logy,(19)

where ŷ is given by (9). In contrast to Efron (2007b), I estimate FdrR at the bin
centers tk based on the right side of (17) by

F̂drR(tk) = (1/2)f̂dr(tk)f̂ (tk) + ∑K
j=k+1 f̂dr(tj )f̂ (tj )

(1/2)f̂ (tk) + ∑K
j=k+1 f̂ (tj )

(20)

= (1/2)ŷk + ∑K
j=k+1 ŷj

(1/2)yk + ∑K
j=k+1 yj

,

where (3) and (18) were used. This can be written in vector form as

log F̂drR = log(Sŷ) − log(Sy),(21)

where S is an upper triangular matrix with entries 1/2 on the diagonal and 1 above
the diagonal. The estimate (21) is easy to analyze theoretically in terms of bias
(see Section 4). For the left tail FDR, definition (17) is changed to FdrL(t) =
p0F0(t)/F (t) and is estimated similarly by

log F̂drL = log(S′ŷ) − log(S′y),(22)

where S′ is the transpose of S, a lower triangular matrix with entries 1/2 on the
diagonal and 1 below the diagonal.
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FIG. 3. DTI example: Right tail FDR estimates using both the theoretical (blue) and the empirical
null (red). Included are pointwise standard 95% CIs using the naive multinomial covariance estimate
(dashed) and the permutation covariance estimate (dotted).

PROPOSITION 3. (a) The delta method covariance estimate of the local
fdr (19) is ĉov(log f̂dr) = AV̂ NA′, where A = ∂(log f̂dr)/∂y′ = Dy − V −1,
V = Diag(y) and Dy is given by (16).

(b) The delta method covariance estimate of the right tail FDR (21) is

ĉov(log F̂drR) = BV̂ NB ′, where B = ∂(log F̂drR)/∂y′ = Û
−1

SV̂ Dy −U−1 and
U = Diag(Sy), Û = Diag(Sŷ). The formula for the left tail FDR (22) has the same
form with S replaced by S′.

As with the empirical null covariance estimates of Section 2.4, the FDR covari-
ance estimates above become more accurate as N increases.

3.2. The DTI data. Figure 3 shows the right tail FDR for the DTI data, com-
puted by exponentiating (21). The CIs were computed by exponentiating the CIs
for log F̂drR , based on SEs equal to the square roots of the diagonal elements of
the delta-method covariance estimates given by Proposition 3(b). The narrow CIs
correspond to the naive multinomial covariance (13), while the wide CIs corre-
spond to the permutation covariance V̂ P described in Section 2.6. In Schwartzman,
Dougherty and Taylor (2008a) it was claimed that the empirical null was more
powerful because the FDR curve is always below the FDR curve for the theoreti-
cal null, yielding lower thresholds. However, Figure 3 shows that when the depen-
dence is taken into account by using the permutation covariance, the empirical null
FDR curve has too much variance. While the estimate of p0 found before indicates
that there are non-null voxels in this data, the variance of the FDR estimates makes
the results inconclusive.

I defer the FDR analysis of the SNP data to after the following discussion on
bias.

4. Tuning parameters and bias. Mode matching is controlled by two tuning
parameters, the bin width � and the fitting interval S0. Each is connected to a
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different source of bias: the bin width � controls the bias incurred by using a first
order approximation in (2); the fitting interval S0 controls the bias incurred by the
inclusion of the alternative component (1 − p0)fA in the fit of the empirical null.
In what follows, I refer to the following two simulation scenarios of model (1):

Ti
ind∼

{
f0 = N(0.2,1.22), probability p0,
fA = N(3,1.22), probability 1 − p0,

(23)

Ti
ind∼

{
f0 = 0.8χ2(3), probability p0,
fA = noncentralχ2(3, δ = 3), probability 1 − p0,

(24)

where δ = 3 denotes the noncentrality parameter. The fitting interval is set to S0 =
[0.2 − t0,0.2 + t0] in the normal case and S0 = [0, t0] in the χ2 case, so that in
both cases S0 is tuned by the single number t0.

4.1. The bin width. The first and smallest source of bias is the use of a first
order approximation in (2). Under the zero assumption, the error may be approxi-
mated by the next expansion term

πk − f0(tk)� ≈ f ′′
0 (tk)

24
�3, tk ∈ S0.(25)

As in nonparametric density estimation, bias is reduced by thinning the bins. How-
ever, the size of the bias depends also on the curvature of the empirical null. If f0
is N(μ,σ 2), the largest curvature occurs at the mode μ, where f ′′

0 (μ) ≈ −0.4/σ 3.
Thus, the error (25) is bounded by 0.017�3/σ 3. This is about 1.3 × 10−4 if
� = 0.2σ . If f0 is aχ2(ν), the curvature depends strongly on ν. For ν < 6 ex-
cept ν = 2, the curvature is unbounded at t = 0, but it decreases rapidly as t

increases away from 0. For ν ≥ 2, more important is the curvature at the mode,
where most of the probability mass lays. This curvature decreases rapidly as ν in-
creases away from 2. For example, for ν = 3, the curvature at the mode ν − 2 is
f ′′

0 (ν − 2) ≈ −0.12/a3 so the error (25) is bounded by 0.005�3/a3. This is about
4 × 10−5 if � = 0.2a.

The effect of � is illustrated in Figure 4. The plotted empirical null estimates
are averages over 100 simulated instances of models (23) and (24) with p0 = 1,
N = 10,000, and fixed t0 = 1 in the normal case and t0 = 4 in the χ2 case. In con-
trast to nonparametric density estimation, the variance is remarkably insensitive
to �. Within the plotted range, the variance is smallest for the smallest value of �.
This is because, for fixed S0, a small � implies a large number of bins K = |S0|/�
and thus a large number of design points for the Poisson regression. Therefore,
one may want the smallest possible � as long as the number of counts yk within
each bin in S0 remains large, say, in the hundreds. Of course, this depends on the
number of tests N . A larger N allows a smaller �. The caveat is computational.
A large number of bins K implies inverting large matrices in the fitting of the em-
pirical null. For N = 10,000, based on Figure 4 and computational considerations,
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FIG. 4. Effect of the bin width �. Top panels: normal simulation. (a) Estimates of p0 (black solid),
μ (lower gray solid) and σ (upper gray solid). The thick dashed lines are simulated ±2 standard
errors, very close to the values predicted by formula (15). The thin dashed lines indicate the true
values p0 = 1, μ0 = 0.2, σ0 = 1.2. (b) Simulated MSE for p0 (black), μ (solid gray) and σ (dashed
gray). Bottom panels: χ2 simulation. (c) Estimates of p0 (black solid), a (lower gray solid) and
ν (upper gray solid). The thick dashed lines indicate simulated ±2 standard errors, very close to the
values predicted by the formula (15). The thin dashed lines indicate the true values p0 = 1, a0 = 0.8,
ν0 = 3. (d) Simulated MSE for p0 (black), a (solid gray) and ν (dashed gray).

� = 0.05 ∼ 0.1 seems a reasonable choice for the normal and χ2(ν) with ν ≥ 2.
If ν < 2, the curvature near t = 0 demands much smaller values of � to avoid sub-
stantial bias. For large ν, the increase in the effective support of the density may
require increasing � in order to reduce computations.

4.2. The fitting interval. The largest source of bias in the estimation of the null
density is the inclusion of the alternative component (1 − p0)fA within S0. The
asymptotic bias for large N is quantified in the following proposition.

PROPOSITION 4. Define the vectors f 0 = f0(t), f A = fA(t), and let η̂+∞ and
θ̂+∞ denote the deterministic limits of the estimators η̂+ and θ̂+ as N → ∞. The
asymptotic biases of η̂+∞ and θ̂+∞ are given approximately by

η̂+∞ − η+ ≈ (1 − p0)
(
X′W Diag(f 0)X

)−1
X′W (f A − f 0)

(26)
− (

log(p0),0′)′
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TABLE 3
Asymptotic bias in the estimation of θ+. The limit θ̂+∞ = θ(η̂+∞) was computed from the solution to

the limiting score equation (38)

Null θ+ θ̂+∞ θ̂+∞ − θ+ Formula (26)

Normal log(p0)=−0.1054 −0.0801 0.0253 0.0289
μ=0.2 0.2265 0.0265 0.0250

σ 2 =1.44 1.4907 0.0507 0.0480

χ2 log(p0)=−0.1054 −0.0331 0.0723 0.0749
a =0.8 0.8449 0.0449 0.0457
ν =3 2.9789 −0.0211 −0.0210

and θ̂+∞ − θ+ ≈ D(η̂+∞ − η+), where D is given by (15).

Roughly, the asymptotic bias (26) is proportional to the likelihood ratio between
fA and f0 within S0, but modified by the Poisson regression. For fixed �, the
fitting interval controls the number of columns of X. Obviously the bias is zero if
p0 = 1. The approximation (26) is valid for p0 close to 1. Its accuracy is shown in
Table 3 for p0 = 0.9.

Figure 5 shows the empirical null parameter estimates averaged over 100 in-
stances of the simulations (23) and (24) with p0 = 0.9 and N = 10,000. The sim-
ulations were repeated for varying t0 and fixed � = 0.1. Increasing t0 increases
the bias due to the inclusion of the alternative component. On the other hand, in-
creasing t0 also increases the number of design points for the Poisson regression,
reducing variance. The bias is worse in the χ2 simulation because the null and the
alternative densities overlap more than in the normal simulation, even though they
have a similar separation in their mean. All parameters except the d.f. ν of the χ2

tend to be biased upward. This implies that the empirical null is conservative, pre-
dicting a smaller contribution of the alternative density in the mixture than there
is.

The choice of t0 is more difficult than that of �. Ideally, one may want the
largest t0 that does not result in a substantial bias. However, the bias depends on
p0 and on the alternative density fA(t), both of which are unknown. The MSE
plots in Figure 5 show that in the normal simulation, the optimal t0 is in the range
1.4 ∼ 1.9, corresponding to about 1.2 ∼ 1.6 standard deviations of the true null
N(0.2,1.22). Notice that the optimal t0 is not the same for all the parameters. In
the χ2 simulation, the optimal t0 is in the range 3.2 ∼ 6, corresponding to the
74 ∼ 94 percentiles of the true null 0.8χ2(3). In the DTI example (Section 2.6),
I chose t0 = 4.5, which corresponds roughly to the 89.5 percentile of the χ2(2)

distribution. In the SNP example (Section 2.5), p0 is extremely close to 1, allowing
t0 to be much larger. There I used t0 = 20, which is the 99.95 percentile of the
χ2(4) distribution.
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FIG. 5. Effect of the fitting interval width t0. Top panels: Normal simulation. (a) Estimates of p0
(black solid), μ (lower gray solid) and σ (upper gray solid). The thick dashed lines indicate simulated
±2 standard errors, very close to the values predicted by the formula (15). The thin dashed lines
indicate the true values p0 = 0.9, μ0 = 0.2, σ0 = 1.2. (b) Simulated MSE for p0 (black), μ (solid
gray) and σ (dashed gray). Bottom panels: χ2 simulation. (c) Estimates of p0 (black solid), a (lower
gray solid) and ν (upper gray solid). The thick dashed lines indicate simulated ±2 standard errors,
very close to the values predicted by the formula (15). The thin dashed lines indicate the true values
p0 = 0.9, a0 = 0.8, ν0 = 3. Notice the vertical scale is different from panel (a). (d) Simulated MSE
for p0 (black), a (solid gray) and ν (dashed gray).

4.3. Bias in FDR estimation. One issue overlooked by Efron (2007b) is that
the local fdr estimate (18) is biased by definition. The bias is given by the following
proposition.

PROPOSITION 5. (a) If p0 and f0 are known, then under the Poisson
model (4), E[f̂drk|yk > 0] = fdrk ζ(λk), where

ζ(λ) = λ

eλ − 1

∫ λ

0

eu − 1

u
du.(27)

(b) If p0 and f0 are estimated by mode matching, then, for large N and tk /∈ S0,
E[f̂drk|yk > 0] ≈ fdrk bkζ(λk), where bk is the kth entry of the asymptotic bias
vector b∞ = exp(X(η̂+∞ − η+)) with the inner parenthesis given by (26).

The bias factor (27) appears because for the local fdr denominator yk ∼ Po(λk),
1/yk is biased for 1/λk . Figure 6(a) shows a plot of the function ζ(λ), closely re-
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FIG. 6. FDR bias in the normal simulation. (a) The proportional FDR bias function ζ(λ). In
plots (b)–(f), the black solid line is the simulated average estimate, the thick dashed lines are 5
and 95 percentiles of the simulation, and the thin dashed line is the true value. (b) Local fdr using
theoretical null. (c) Local fdr using theoretical null (zoom in). (d) Local fdr using empirical null.
(e) Right tail FDR using theoretical null. (f) Right tail FDR using empirical null.

lated to the so-called exponential integral [Abramowitz and Stegun (1966), Chap-
ter 5]. Since λk increases with γ (i.e., N ), most bins fall on the right end of the plot,
making the local fdr estimate in most bins slightly conservatively biased above the
correct value. However, λk is always small in the far tails of the null density f0,
making the FDR estimate biased down. This can be misleading when the true FDR
is close to 1.

Figure 6(b) shows the local fdr estimates for 100 instances of the normal simu-
lation (23) with known p0 = 0.9 and N = 10,000. Because the alternative density
sits on the right side of the plot, the true local fdr at the left tail is 1. The local fdr
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estimate, however, follows the graph of ζ(λ), as the bin counts get smaller toward
the left, with the variance proportional to that graph. Any particular realization of
the FDR curve here may give the impression that there is something to discover
at the left tail, while in reality there is not. The zoom-in in panel c shows that the
phenomenon still occurs in the right tail, as the average FDR estimate is first bi-
ased up with higher variance and then dips below the truth as the bin counts get
very small. This is not noticeable in panel b because, by Proposition 5, the bias is
proportional to the true FDR, which is low in this region. When the empirical null
is used, the additional bias and variance are visible in panel d. The additional bias
is captured by the factor bk of Proposition 5(b), where the approximation is the
result of using the asymptotic bias for large N derived from Proposition 4. Notice
in Figure 6(d) that the bias is up, so the FDR estimates are conservative.

The tail FDR also suffers from a similar bias phenomenon, being sensi-
tive to small cumulative bin counts in the far tails. Following a similar argu-
ment as in Proposition 5(a), when p0 and f0 are known, (20) says F̂drk =
(Sλ0)k/(Sy)k , where the cumulative denominator yk/2 +∑K

l=k+1 yl behaves sim-
ilarly to a Poisson random variable with mean (Sλ)k = λk/2 + ∑K

l=k+1 λl . There-
fore, E[F̂drk|yk > 0] = Fdrk ·E[(Sλ)k/(Sy)k|(Sy)k > 0], where the conditional
expectation behaves approximately like ζ [(Sλ)k]. A simulation using p0 = 1 (not
shown) gives FDR curves that are very similar to those on the left end of panels b
and d. In Figure 6(e) (zoom-in not shown), the bias is visible but small because the
FDR itself is low in the right tail. Panel f shows the increase in bias and variance
when the empirical null is used.

The bias phenomenon does not contradict the results of Storey, Taylor and Sieg-
mund (2004), which claim asymptotic unbiasedness of the tail FDR estimator.
Consider a fixed bin k. As N increases, the expected bin count λk increases and
the operating point in Figure 6(a) moves to the right, making the FDR estimate
asymptotically unbiased. The ζ(λ) phenomenon appeals to practical cases where
N is large but finite, so that the bin counts at the tails are still small.

Efron (2004, 2007b) circumvented the bias problem by smoothing the histogram
with a spline fit. This helps because the compounding of data at each bin pushes the
operating point in the ζ(λ) graph [Figure 6(a)] to the right. However, smoothing
introduces a bias of its own. Simulations using smoothing show that the resulting
estimates at the far tails, especially when p0 = 1, are not reliable, as they are very
sensitive to the choice of knots or smoothing bandwidth.

4.4. The SNP data. The FDR analysis is summarized in Figure 7. Here I focus
on the local fdr, which in this case is more powerful than the tail FDR. The ob-
served local fdr estimates (18) are compared to their expected value under the com-
plete null, computed by replacing λk for λ̂k in Proposition 5 and setting fdrk = 1
and bk = 1. In agreement with Proposition 5, the expected local fdr estimate goes
down at the far tails where the number of counts is small. Three bins stand out
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FIG. 7. SNP example: local fdr estimates using the empirical null. Top panel: full range. Bottom
panel: zoom-in including standard 95% CIs. In both panels the dashed line is the expectation of the
local fdr estimate under the complete null.

with observed local fdr estimates significantly below the dashed line. The results
for these bins are reported in Table 4. While the observed local fdr values are rela-
tively low, they turn out to be not as low when their bias is taken into account. The
adjusted local fdr values in Table 4 are not precise at correcting the bias, but they
hint that about 50% of the 8 SNPs contained in these 3 bins might be associated
with obesity. This result agrees with the assessment of Section 2.5 that the nonnull
distribution may contain about 3 SNPs.

5. The effect of correlation. When the theoretical null is N(0,1), Efron
(2007a) showed that the overdispersion in the covariance of the empirical null with
respect to the multinomial covariance can be described as a multiple of a “wing
function,” where the multiplying factor captures the variance of the pairwise cor-
relations between the test statistics. This result extends to exponential families as
follows.

Suppose the theoretical null f0 is one of the Lancaster distributions, that is,
the exponential families normal, gamma, Poisson or negative binomial [Koudou
(1998)]. Given two random variables Ti and Tj with correlation ρ, these distribu-
tions admit a bivariate model where both Ti and Tj have the same marginal density

TABLE 4
SNP example: Bins with local fdr significantly below the expected local fdr under the complete null.
Column 3 contains standard 95% CIs based on the delta-method SE. Column 4 is the observed local
fdr from column 2 divided by the expected local fdr for the complete null at that bin. Column 5 is the

number of SNPs in the bin

tk
̂fdrk 95% CI Adjusted ̂fdrk # SNPs

21.65 0.2831 [0.1546,0.5184] 0.4169 3
21.85 0.2575 [0.1445,0.4587] 0.4082 3
24.35 0.1173 [0.0726,0.1896] 0.5310 2
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f0 and their joint density is given by

f0(ti, tj ;ρ) = f0(ti)f0(ti)

∞∑
n=0

ρn

n! Ln(ti)Ln(tj ),(28)

where Ln(t) are the Lancaster orthogonal polynomials with respect to f0: Hermite
if f0 is normal, generalized Laguerre if f0 is gamma, Charlier if f0 is Poisson, and
normalized Meixner if f0 is negative binomial. In particular, when f0 is normal,
the expansion (28) is known as Mehler’s formula [Patel and Read (1996), Kotz,
Balakrishnan and Johnson (2000)] and is equal to the standard bivariate normal
with correlation coefficient ρ.

THEOREM 1. Let f0 be one of the Lancaster distributions and assume that
under the complete null every pair of test statistics (Ti, Tj ) has a bivariate density
given by (28) with marginals f0(t) and corr(Ti, Tj ) = ρij . Let E(ρn), n = 1,2, . . . ,

denote the empirical moments of the N(N − 1) correlations ρij , i < j . Then the
covariance of the vector of bin counts y is

cov(y) =
[
Diag(λ) − λλ′

N

]
+

(
1 − 1

N

)
Diag(λ)δ Diag(λ),(29)

where

δ =
∞∑

n=1

E(ρn)

n! Ln(t)Ln(t)
′(30)

and Ln(t) denote the Lancaster polynomials evaluated at the vector t .

When f0(t) is N(μ,σ 2) then (30) becomes

δ =
∞∑

n=1

E(ρn)

n! Hn

(
t − μ1

σ

)
Hn

(
t − μ1

σ

)′
,

where Hn(t) are the Hermite polynomials: H0(t) = 1, H1(t) = t , H2(t) = t2 − 1,
and so on. In particular, setting μ = 0, σ = 1, E(ρ) = 0, and truncating the series
at n = 2 gives precisely the result of Efron (2007a), Theorem 1:

cov(y) =
[
Diag(λ) − λλ′

N

]
+

(
1 − 1

N

)
E(ρ2)w2w

′
2,(31)

where w2 = Diag(λ)H2(t)/
√

2 is the “wing function” vector with components
w2,k = N�f0(tk)(t

2
k − 1)/

√
2. The above extension to other Hermite polynomial

orders is recognized in Remark E of Efron (2007a) but not precisely formulated.
When f0(t) is the aχ2(ν) density (11) then (30) becomes

δ =
∞∑

n=1

E(ρn)

n!

(ν/2)


(ν/2 + n)
L(ν/2−1)

n

(
t

2a

)
L(ν/2−1)

n

(
t

2a

)′
,
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where L
(ν/2−1)
n (t) are the generalized Laguerre polynomials of degree ν/2 − 1:

L
(ν/2−1)
0 (t) = 1

L
(ν/2−1)
1 (t) = −t + ν/2

L
(ν/2−1)
2 (t) = t2 − 2(ν/2 + 1)t + (ν/2)(ν/2 + 1)

and so on. Here there is no reason to assume E(ρ) = 0. A similar approximation
to (31) to the first order is

cov(y) =
[
Diag(λ) − λλ′

N

]
+

(
1 − 1

N

)
E(ρ)w1w

′
1,(32)

where

w1 = Diag(λ)

√

(ν/2)


(ν/2 + 1)
L

(ν/2−1)
1

(
t

2a

)
(33)

is the corresponding first order “wing function” vector with components w1,k =
N�

√

(ν/2)/
(ν/2 + 1)f0(tk)[tk/(2a) − ν/2].

5.1. The DTI data. Recall the permutation estimate V̂ P of the covariance ma-
trix cov(y) obtained in Section 2.6. For this dataset, the largest eigenvalue of
V N = Diag(λ) − λλ′/N is only 4.1% of the largest eigenvalue d̂1 of V̂ P , while
the second eigenvalue d̂2 of V̂ P is only 6.6% of d̂1. Thus, using (32), we can
approximate

V̂ P ≈ E(ρ)ŵ1ŵ
′
1,(34)

where ŵ1 is the first-order “wing function” (33) evaluated using the empirical null
estimates λ̂, ν̂ and â from Section 2.5. Figure 8 shows the first eigenvector of V̂ P

superimposed with ŵ1 normalized to unit norm, that is, ŵ1/‖ŵ1‖ with ‖ŵ1‖2 =

FIG. 8. DTI example: First eigenvector of the permutation covariance estimate (blue) and
first-order χ2 “wing function” (green).
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k=1 ŵ2

1,k . The similarity between the two is akin to the similarity between the
1st eigenvector of the permutation covariance estimate and the 2nd order wing
function in the normal example described in Efron (2007a).

Given the equivalence (34), one might be tempted to estimate the average pair-
wise correlation between the test statistics as Ê(ρ) = d̂1‖ŵ1‖2 = 0.0057, where
d̂1 is the largest eigenvalue of V̂ P . This is a strongly conservative estimate, as it
suffers from the upward sorting bias of d̂1. The true average pairwise correlation
is probably much lower. This is reassuring as the correlation is presumably mostly
local in the image domain.

6. Summary and discussion. In this article I have extended the central
matching method for estimating the null density in large-scale multiple testing to a
mode matching method, applicable when the theoretical null belongs to any expo-
nential family or a related distribution such as t or F . The empirical null estimate
is accompanied by an estimate of p0, the proportion of true null tests in the data.
Further, the empirical null estimates can be used directly to estimate local and tail
FDR curves for FDR inference. Delta method covariance estimates and bias for-
mulas have been derived. We have seen that FDR estimates are biased down at the
far tails and should be taken cautiously whenever the corresponding observed bin
counts are small. The effect of correlation has been explained by a generalization
of Efron’s “wing function.”

Efron (2005b, 2007b) discusses several reasons why the empirical null may not
match exactly the theoretical null in observational studies. It should be emphasized
that mode matching does not necessarily increase power with respect to the the-
oretical null [Efron (2004) provides counterexamples]. Instead, the empirical null
answers a question of model validity.

In the normal case, another empirical null method called MLE fitting [Efron
(2007b)] has been reported to give similar empirical null estimates with slightly
lower variance. Mode matching is easier to analyze and is appealing because of
its application to exponential families. It is also easier to implement in practice
because of available software and computational efficiency. But, in principle, just
like mode matching, MLE fitting could be extended to other distributions beyond
the normal too.

At least two aspects of mode matching may benefit from further study beyond
this paper. One aspect is the possibility of choosing data-dependent limits for the
fitting interval S0. Fixed limits based on the theoretical null are inappropriate pre-
cisely because the empirical null is expected to be displaced or scaled with re-
spect the theoretical null. For instance, in an analysis of χ2-scores, Schwartzman,
Dougherty and Taylor (2008a) used as upper limit the 90th percentile of the em-
pirical test statistic distribution. In the SNP data example above, a bootstrap analy-
sis showed that setting the upper limit to the 99.95th percentile of the test statis-
tic distribution, rather than the 99.95th percentile of the theoretical χ2(4) density
(the value 20 used previously), results in empirical null variance estimates that are
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about 50% higher than those obtained when the limit was fixed. This suggests that
the cost of a data-dependent limit might not be too high. Unfortunately, as shown
in Section 4 above, the choice of the limit depends very much on the alternative
distribution and the null proportion, both of which are unknown.

Another aspect is the possibility of using the two-step approach of Efron
(2007b) of estimating the mixture density nonparametrically before fitting the em-
pirical null by mode matching. As noted above, the most crucial issue is the bias in
the tails of the density. Future exploration may yield an answer to what is the best
way to estimate the mixture density for mode matching. For example, different bin
widths � could be used inside and outside the fitting interval S0 since they serve
different purposes. Inside S0 one could optimize � for empirical null estimation,
while outside S0 one could optimize � for FDR estimation.

Matlab functions implementing the methods described in this paper are avail-
able at http://biowww.dfci.harvard.edu/~armin/software.html.

APPENDIX A: SPECIAL CASES

A.1. Normal family. The empirical null N(μ,σ 2) with θ = (μ,σ 2) has ex-
ponential family form

x(t) = (t, t2)′, ψ(η) = − η2
1

4η2
− 1

2
log(−2η2)

η = (η1, η2)
′ =

(
μ

σ 2 ,− 1

2σ 2

)′
, g0(t) = 1√

2π
.

The Poisson regression (8) using t and t2 as predictors and log(N�/
√

2π) as
offset gives estimates η̂1, η̂2 and Ĉ. From these we obtain

μ̂ = − η̂1

2η̂2
, σ̂ 2 = − 1

2η̂2
, log p̂0 = Ĉ + ψ(η̂).

The parameter derivative matrix D̂ required for computing the covariance (15) of
θ̂+ = (log p̂0, μ̂, σ̂ 2)′ is

D̂ = ∂ θ̂+

∂(η̂+)′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 − η̂1

2η̂2

η̂2
1

4η̂2
2

− 1

2η̂2

0 − 1

2η̂2

η̂1

2η̂2
2

0 0
1

2η̂2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ 1 μ̂ μ̂2 + σ̂ 2

0 σ̂ 2 2μ̂σ̂ 2

0 0 2σ̂ 4

⎞⎠ .

The normal family N(μ,σ 2) lends itself to two exponential subfamilies.

http://biowww.dfci.harvard.edu/~armin/software.html
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A.1.1. Estimate θ = μ. The empirical null N(μ,σ 2
0 ) with fixed σ 2

0 has
the exponential family form x(t) = t , η = μ/σ 2

0 , ψ(η) = σ 2
0 η2/2 and g0(t) =

e−t2/(2σ 2
0 )/

√
2πσ 2

0 . Poisson regression using t as predictor and log(N�g0(t)) as

offset gives estimates η̂ and Ĉ. From these we obtain

μ̂ = σ 2
0 η̂, log p̂0 = Ĉ + σ 2

0 η̂2

2
, D̂ =

(
1 μ̂

0 σ 2
0

)
.

A.1.2. Estimate θ = σ 2. The empirical null N(μ0, σ
2) with fixed μ0 has the

exponential family form x(t) = (t − μ0)
2, η = −1/(2σ 2), ψ(η) = (−1/2) ×

log(−2η) and g0(t) = 1/
√

2π . Poisson regression using (t − μ0)
2 as predictor

and log(N�/
√

2π) as offset gives estimates η̂ and Ĉ. From these we obtain

σ̂ 2 = − 1

2η̂
, log p̂0 = Ĉ − 1

2 log(−2η̂), D̂ =
(

1 σ̂ 2

0 2σ̂ 4

)
.

A.2. Scaled χ2 family (Gamma). The empirical null aχ2(ν) (11) with θ =
(a, ν)′ has exponential family form

x(t) = (t, log t)′, ψ(η) = log
(


(η2 + 1)

(−η1)η2+1

)

η = (η1, η2)
′ =

(
− 1

2a
,
ν

2
− 1

)′
, g0(t) = 1.

The Poisson regression (8) using t and log t as predictors gives estimates η̂1, η̂2
and Ĉ. From these we obtain

â = − 1

2η̂1
, ν̂ = 2(η̂2 + 1), log p̂0 = Ĉ + ψ(η̂).

The parameter derivative matrix D̂ required for computing the covariance (15) of
θ̂+ = (log p̂0, â, ν̂)′ is

D̂ =

⎛⎜⎜⎜⎜⎝
1 − η̂2 + 1

η̂1
�(η̂2 + 1) − log(−η̂1)

0
1

2η̂2
1

0

0 0 2

⎞⎟⎟⎟⎟⎠

=
⎛⎝ 1 âν̂ �(ν̂/2) + log(2â)

0 2â2 0
0 0 2

⎞⎠ ,

where �(z) = (d/dz) log
(z) is the Digamma function. The scaled χ2 family
lends itself to two exponential subfamilies.
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A.2.1. Estimate θ = a. The empirical null aχ2(ν0) with fixed ν0 has expo-
nential family form x(t) = t , η = −1/(2a), ψ(η) = −(ν0/2) log(−η) and g0(t) =
tν0/2−1/
(ν0/2). Poisson regression using t as a predictor and log(N�g0(t)) as
offset gives estimates η̂ and Ĉ. From these we obtain

â = − 1

2η̂
, log p̂0 = Ĉ − ν0

2
log(−η̂), D̂ =

(
1 âν0
0 2â2

)
.

A.2.2. Estimate θ = ν. The empirical null a0χ
2(ν) with fixed a0 has ex-

ponential family form x(t) = log t , η = ν/2 − 1, ψ(η) = log
(η + 1) + (η +
1) log(2a0) and g0(t) = e−t/(2a0). Poisson regression using log t as a predictor and
log(N�g0(t)) as offset gives estimates η̂ and Ĉ. From these we obtain

ν̂ = 2(η̂ + 1), log p̂0 = Ĉ + ψ(η̂), D̂ =
(

1 �(ν̂/2) + log(2a0)

0 2

)
.

APPENDIX B: PROOFS

PROOF OF PROPOSITION 1. The score equation for the Poisson regression (8)
including the external weights W is

X′W [y − exp(Xη̂+ + h)] = 0.(35)

The rate of change of the MLE vector η̂+ with respect to the count vector y,
considered as continuous, is

∂ η̂+

∂y′ = (X′WV̂ X)−1X′W ,(36)

obtained by differentiating (35) with respect to y and replacing (9). Conditional
on N , the covariance estimate of y is V̂ N . Thus, the delta method covariance
estimate of η̂+ is (∂ η̂+/∂y′)V̂ N(∂ η̂+/∂y′)′, yielding (14).

The rate of change of θ+ with respect to η+ is

D = ∂θ+

∂(η+)′
= ∂(logp0, θ(η)′)′

∂(C,η′)
=

(
1 ψ̇(η)′
0 θ̇(η)′

)
,(37)

so the rate of change of θ̂+ with respect to η̂+ at η̂ is D̂ = D(η̂). The delta method
covariance estimate of θ̂+ is (∂ θ̂+/∂(η̂+)′) ĉov(η̂+)(∂ θ̂+/∂(η̂+)′)′, yielding (15).

�

PROOF OF PROPOSITION 2. The rate of change (16) of the vector log ŷ =
Xη̂+ with respect to y follows directly by (36). By the chain rule, ∂ ŷ/∂y′ =
[∂ ŷ/∂(logy)′][∂(logy)/∂y′] = V̂ Dy , and similarly, ∂(y − ŷ)/∂y′ = I − V̂ Dy .
The result follows by the delta method. �
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PROOF OF PROPOSITION 3. (a) Follows immediately by the delta method and
the definition of A.

(b) To evaluate the rate of change of the vector log(Sŷ) with respect to y, com-
pute

∂(log(Sŷ))k

∂yl

= ∂

∂yl

log

(
1

2
ŷk +

K∑
j=k+1

ŷj

)
=

1
2

∂ŷk

∂yl
+ ∑K

j=k+1
∂ŷj

∂yl

1
2 ŷk + ∑K

j=k+1 ŷj

.

Thus,
∂(log(Sŷ))

∂y′ = Û
−1

S
∂ ŷ

∂y′ = Û
−1

S · V̂ ∂(log ŷ)

∂y′ = Û
−1

SV̂ Dy,

where we have used the fact that ∂(log ŷk)/∂yl = (1/ŷk)∂ŷk/∂yl . The result now
follows by the delta method and the definition of B . �

PROOF OF PROPOSITION 4. Dividing the score equation (35) by γ� and ap-
plying the law of large numbers as γ → ∞ gives that η̂+ converges to the solution
η̂+

∞ of the equation

X′W [p0f 0 + (1 − p0)f A − Diag(g0(t)) exp(Xη̂+∞)] = 0.(38)

In particular, if p0 = 1, we have that η̂+ is asymptotically unbiased, that is,
η̂+∞ = (0,η′)′. The idea is to find a first order expansion of η̂+ near p0 = 1.
Differentiating (38) with respect to p0, we obtain that, at p0 = 1, dη̂+∞/dp0 =
(X′W Diag(f 0)X)−1X′W (f 0 − f A). The bias in the estimation of η+ is approx-
imately

η̂+∞ − η+ = η̂+∞ − (0,η′)′ − (log(p0),0′)′

≈ dη̂+∞
dp0

∣∣∣∣
p0=1

(p0 − 1) − (log(p0),0′)′,

yielding (26). Similarly, the bias in the estimation of θ+ is a first order expansion
of θ+ with respect to η+ near p0 = 1. �

PROOF OF PROPOSITION 5. (a) For known p0 and f0, (18) says f̂drk =
λk,0/yk , where yk ∼ Po(λk), λk = γ�f (tk) and λk,0 = γ�p0f0(tk). Thus,

E[f̂drk|yk > 0] = E
(

λk,0

yk

∣∣∣yk > 0
)

= λk,0

λk

E
(

λk

yk

∣∣∣yk > 0
)

= fdrk ·ζ(λk),

where ζ(λ) is defined for a generic y ∼ Po(λ) as ζ(λ) = E(λ/y|y > 0). By direct
evaluation,

ζ(λ) = 1

1 − e−λ

∞∑
j=1

λ

j

e−λλj

j ! = λ

eλ − 1

∫ λ

0

∞∑
j=1

uj−1

j ! du

= λ

eλ − 1

∫ λ

0

du

u

∞∑
j=1

uj

j ! ,
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which is equal to (27).
(b) When the empirical null is used, the local fdr estimate (18) is f̂drk = ŷk/yk ,

where ŷk = N�p̂0f̂0(tk). Notice that when evaluated at tk /∈ S0, the numerator ŷk

is independent of the denominator yk . Thus,

E[f̂drk|yk > 0] = E
(

ŷk

yk

∣∣∣yk > 0
)

= λk,0

λk

E(ŷk)

λk,0
E

(
λk

yk

∣∣∣yk > 0
)

≈ fdrk bkζ(λk),

where the vector b∞ is obtained as follows. By (8) and (9), λ0 = exp(Xη+ + h)

and E(ŷ) = E[exp(Xη̂+ + h)] → exp(Xη̂+∞ + h) as N → ∞. Dividing entry by
entry gives b∞ = exp(X(η̂+∞ − η+)). �

PROOF OF THEOREM 1. The form of expression (29) follows from Efron
(2007a), Lemma 1. A similar argument as in Efron (2007a), Lemma 2, gives that
the entries of δ are

δkl ≈
∫ 1

−1
Rkl(ρ) dG(ρ), Rkl(ρ) = f0(tk, tl;ρ)

f0(tk)f0(tl)
− 1.(39)

Replacing (28) in (39) gives (30). �
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