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DISCUSSION OF: TREELETS—AN ADAPTIVE MULTI-SCALE
BASIS FOR SPARSE UNORDERED DATA

BY XING QIU
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This is a discussion of paper “Treelets—An adaptive multi-scale basis for
sparse unordered data” by Ann B. Lee, Boaz Nadler and Larry Wasserman. In
this paper the authors defined a new type of dimension reduction algorithm,
namely, the treelet algorithm. The treelet method has the merit of being com-
pletely data driven, and its decomposition is easier to interpret as compared
to PCR. It is suitable in some certain situations, but it also has its own limita-
tions. I will discuss both the strength and the weakness of this method when
applied to microarray data analysis.

1. The design of the treelet algorithm. A lot of modern technologies re-
quire analyzing noisy, high-dimensional and unordered data. As an example, in
the field of microarray analysis, researchers are often interested in analyzing gene
expessions sampled from n different subjects. These expression data can be seen
as n independent realizatons of a p-dimensional random vector �x = (x1, . . . , xp)T ,
each xi represents (usually log tranformed) an expression level of a given gene. In
practice, p (number of genes) is measured in thousands or tens of thousands, and n

(sample size) is more than often less than a dozen. Due to this “large p, small n”
nature, dimension reduction such as hierarchical clustering (denoted as HC henth-
forth) is often conducted prior to regression or classification analysis.

The treelet algorithm can be best described as a data driven local PCA (Principal
Component Analysis). It can be summarized in the following steps:

1. Find the two most similar variables (genes) by a well-defined metric of similar-
ity such as covariance. Denote this pair of genes as xα , xβ .

2. Perform a local PCA on this pair to decorrelate them. More specifically,
find a Jacobi rotation matrix J such that x(2) = J T (x) has this property:
cov(x

(2)
α , x

(2)
β ) = 0. Then drop the less important one of them (the one with

smaller variance) and update the similar matrix.
In other words, after this step, a summary variable will be chosen to replace

the two most similar variables from the original data.
3. Update the similarity matrix with this new summary variable and then find the

next most similar pair of variables.
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4. Build up a multi-resolution analysis accordingly. At each step, we have a repre-
sentation of x as the sum of the coarse-grained representation of the signal and
the sum of the residuals.

2. Comparisons to other methods. Dimension reduction is not a new tech-
nique in data analysis. Principal component analysis [Jolliffe (2002)] and hierar-
chical clustering methods [Eisen et al. (1998), Tibshirani et al. (1999)] are among
the most used methods in this arena.

PCA As pointed out by the authors, PCA computes a global representation of
data. The principal components are linear combinations of all variables.
This poses an obstacle for interpreting the results. On the other hand, the
treelet method is a local method by design. For example, when the under-
lying dependence structure of data can be modeled as disjoint groups of
variables which are uncorrelated to each other groupwise, in principle, local
dimension reduction methods should perform better than their global coun-
terpart.

HC In a sense, the treelet can be viewed as yet another way of constructing
the dendrogram from the bottom up. So the treelet method is a legitimate
member of the family of agglomerative hierarchical clustering algorithms.
However, there is a novelty in the treelet method approach. By construc-
tion, at each step only the sum variable (the variable which contributes more
variance) remains as the representative of the pair of closely related vari-
ables. At the end of the day, the dendrogram will reflect the “skeleton” of
the given data rather than the dependence structure of the data themselves.
If in a specific application we have evidence that the unused residual terms
reflect nothing but noise, then the treelet method provides us invaluable in-
formation about hierarchical dependence of the data which is noise resis-
tant.

3. Applicability in the field of microarray data analysis. As mentioned in
Section 1, microarray data analysis is a good example where the treelet method
may shine. It is a well-known biological fact that genes work together instead of
independently. As a consequence, their expressions are highly correlated.

Storey and Tibshirani (2003) hypothesized that most likely the form of inter-
gene dependence is weak dependence, which can be “. . . loosely described as any
form of dependence whose effect becomes negligible as the number of features
increases to infinity.” And their argument is that genes can be grouped into essen-
tially independent pathways.

If this hypothesis is true, then the treelet method would work beautifully, as
illustrated in Chapter 3.2 of Lee, Nadler and Wasserman (2008).

However, a series of study conducted by Qiu et al. (2005a, 2005b, 2006) on
St. Jude Children’s Research Hospital Database (see sjcrh database on childhood
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leukemia) showed that, on average, the intergene correlation level is too high to
be explained by the within pathway dependence (weak dependence) alone. There
is strong long ranged global dependence between pathways. Whether this global
dependence is due to technical noise or not is up to debate [Klebanov and Yakovlev
(2007)]. If the observed high intergene correlation is due to biological reasons
rather than noise, then the treelet method may be harmful since it will reduce and
distort useful information contained in the dependence structure.

It is also interesting to compare the treelet method with various normalization
methods, such as the global normalization [Yang et al. (2002)]. Apparently, global
normalization (or any other normalization method) is not a dimension reduction
procedure, nor does it give us a dendrogram. However, one similarity can be found
between the global normalization and the treelet method: they both replace data
variables with surrogate variables which are linear combinations of the original
variables. In the case of global normalization (assuming expression levels are log
transformed), the ith variable (gene) xi is replaced by xi − x̄, where x̄ is the sample
average of x over all genes for a given slide. From this point of view, global nor-
malization is a global basis transformation. A hidden assumption in doing global
normalization is that x̄ represents slide-specific noise thus needs to be removed
from the observed signal. While I personally think that technical noise cannot be
removed in such an overly simplistic way, it provides an example where a global
method may better capture the most useful information at a much faster rate.

Another dangerous behavior of the treelet method is that it uses variance as a
means to evaluate which variable should be retained (sum variable), and which one
should be disregarded (difference variable). This approach may look very plausible
mathematically, yet it ignores the possibility that genes with lesser variability may
actually be the important ones. It may very well be the case that in evolution genes
that are responsible for essential functionalities are more likely to have smaller
variation than those less important ones.

One of the major advantage of the treelet method is that the sum variables it
produces use only a subset of variables. This makes it easier to interpret than PCR,
which gives linear combinations of all variables as outcome. However, the sum
variables of the treelet method can also be linear combinations of many variables.
It is a huge leap forward in the right direction, yet it is still hard to find its way into
another important field of microarray analysis: testing differential expressions. Be-
ing hard to interpret is just an apparent disadvantage. A more subtle disadvantage
is that there is no guarantee that the multiple testing procedures designed to work
with original expressions still control the same false positive level when we replace
them with some “noise-free” surrogate variables. Much future work can be done
in this direction.

4. Discussion. Overall, I think the treelet method has the merit of being com-
pletely data driven and being local. I am very impressed by its performance when
data variables are divided into uncorrelated groups.
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However, when talking about its applicability to gene expression data, I think
a lot of careful investigation still needs to be done. This is due to the complexity of
the dependence structure exhibits in this type of data. This complexity is probably
the reason why the treelet method (in its original form) did not outperform other
classification methods on the leukemia data set of Golub et al.

In the future more attention should be paid to the nature of inter-pathway de-
pendence. Should we model pathways as disjoint, uncorrelated “super variables”?
Or should we also model some long range, inter-pathway correlation? I think this
question can be answered only through joint efforts from both statisticians and
biologists.

I also want to point out that I disagree with the authors in that PCA cannot reveal
the underlying noiseless structure of the data while the treelet method can. As
pointed out by numerous researchers [Storey et al. (2007), Barbujani et al. (1997),
Akey et al. (2002), Rosenberg et al. (2002)], most human genetic variation is due
to variation among individuals within a population rather than among populations.
This implies that the majority of “noise” in the data is actually true biological
information. So being too good at removing “noise” may not always be a merit.

In short, I believe there is no one-size-fits-all solution for noisy, high-dimension-
al data. The treelet method provides us a very good solution in some situations, and
it opens many research possibilities in the future.

Possible future improvements:

• The leukemia data set of Golub et al. used for classification of DNA microar-
ray data is not the largest data available. The authors may want to try St. Jude
Children’s Research Hospital Database on childhood leukemia too.

• In the same chapter, the authors claim that they use a novel “two-way treelet
decomposition scheme.” They first compute treelets on the genes, then com-
pute treelets on the samples. It looks very suspicious. I have a feeling that the
gained performance is due to some subtle violation of the principle of external
cross-validation. The authors should definitely provide more details about this
approach.

• A recent paper by Klebanov, Jordan and Yakovlev (2006) proposed a new model
of the long range intergene correlation structure. In a loose way, they hypoth-
esize that there exist “gene drivers” and “gene modulators,” such that the ex-
pression of a “gene-modulator” is stochastically proportional to that of a “gene-
driver” (without log transformation). It would be nice to see if the treelet method
works in this situation.
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