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Abstract. Weighted power variations of fractional Brownian motion B are used to compute the exact rate of convergence of some
approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error
between the exact solution and the considered scheme is computed explicitly.

Résumé. On étudie la vitesse exacte de convergence de certains schémas d’approximation associés à des équations différentielles
stochastiques scalaires dirigées par le mouvement brownien fractionnaire B. On utilise le comportement asymptotique des varia-
tions à poids de B, et la limite de l’erreur entre la solution et son approximation est calculée de façon explicite.
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1. Introduction

Let B = (Bt )t∈[0,1] be a fractional Brownian motion with Hurst index H ∈ (0,1). That is, B is a centered Gaussian
process with covariance function given by

Cov(Bs,Bt ) = 1

2

(
s2H + t2H − |t − s|2H

)
, s, t ∈ [0,1].

For H = 1
2 , B is a standard Brownian motion, while for H �= 1

2 , it is neither a semimartingale, nor a Markov process.
Moreover, it holds, for any p > 1:

E|Bt − Bs |p = cp|t − s|pH , s, t ∈ [0,1], with cp = E
(|G|p)

, G ∼ N (0,1),

and, consequently, almost all sample paths of B are Hölder continuous of any order α ∈ (0,H).
The study of stochastic differential equations driven by B has been considered by using several methods. For

instance, in [21] one uses fractional calculus of same type as in [24]; in [2] one uses rough paths theory introduced
in [11], and in [18] one uses regularization method used firstly in [22].

In the present paper, we consider the easiest stochastic differential equation involving fractional Brownian motion,
that is

dXt = σ(Xt )dBt , t ∈ [0,1], X0 = x ∈ R. (1.1)
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Here and in the rest of the paper, σ ∈ C∞(R) stands for a real function which is bounded with bounded derivatives.
Let us denote by φ : R2 → R the flow associated to σ , that is the unique solution to

φ(x, y) = x +
∫ y

0
σ
(
φ(x, z)

)
dz, x, y ∈ R. (1.2)

Assume that the integral with respect to B we consider in (1.1) verifies the following Itô–Stratonovich type formula:

f (Bt ) = f (0) +
∫ t

0
f ′(Bs)dBs, t ∈ [0,1], f : R → R smooth enough. (1.3)

Then, combined with (1.2), one easily checks that

Xx
t = φ(x,Bt ), t ∈ [0,1], (1.4)

is a solution to (1.1).
Approximating schemes for stochastic differential equations of the type

dXt = σ(Xt )dBt + b(Xt )dt, t ∈ [0,1], X0 = x ∈ R, (1.5)

have been considered only in few articles. The first work in that direction is [10]. Precisely, whenever H > 1
2 , it is

shown that the Euler approximation of Eq. (1.5) – but in the particular case where σ(Xt ) is replaced by σ(t), that is the
so-called additive case – converges uniformly in probability. In [17] one introduces (see also [23]) some approximating
schemes for the analogue of (1.5) where B is replaced by any Hölder continuous function. One determines upper error
bounds and, in particular, these results apply almost surely when the driving Hölder continuous function is a single
path of the fractional Brownian motion B , and this for any Hurst index H ∈ (0,1). In [12], upper error bounds for
Euler approximations of solutions of (1.5) are derived whenever H is bigger than 1

2 . The convergence of Euler schemes
has also been studied in [3] in the context of the rough paths theory.

Results on lower error bounds are available only since very recently: see [13] for the additive case, and [15]
for Eq. (1.5) (see also [14] where approximation methods with respect to a mean square error are analysed). More
precisely, it is proved in [15] that the Euler scheme X̃ = {X̃(n)}n∈N associated to (1.5) verifies, under some classical
assumptions on σ and b and whenever H ∈ ( 1

2 ,1), that

n2H−1[X̃(n)
1 − X1

] a.s.−→ −1

2

∫ 1

0
σ ′(Xs)DsX1 ds, as n → ∞. (1.6)

Here, DsX1 denotes the Malliavin derivatives of X1 with respect to B . Observe that the upper and lower error bounds
are obtained from an almost sure convergence, which is somewhat surprising when compared with the case H = 1

2 ,

see below. In [15], it is proved that, for the so-called Crank–Nicholson scheme X = {X(n)}n∈N associated to (1.1) and
defined by{

X
n

0 = x,

X
(n)

(�+1)/n = X
(n)

�/n + 1
2

(
σ
(
X

(n)

�/n

) + σ
(
X

(n)

(�+1)/n

))
(B(�+1)/n − B�/n), � ∈ {0, . . . , n − 1},

(1.7)

the following convergence holds for σ regular enough and whenever H ∈ ( 1
3 , 1

2 ):

nα
[
X

(n)

1 − X1
] Prob−→ 0, ∀α < 3H − 1

2
, as n → ∞. (1.8)

In the particular case where the diffusion coefficient σ verifies σ(x)2 = αx2 + βx + γ , for some α,β, γ ∈ R, one can
derive the exact rate of convergence and one proves that, as n → ∞:

n3H−1/2[X(n)

1 − X1
] Law−→ α

12
σ(X1)G. (1.9)
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Here, G is a centered Gaussian random variable independent of X1, whose variance depends uniquely on H . In
particular, the upper and lower error bounds are obtained here from a convergence in law.

As we said, the convergence in (1.6) is somewhat surprising, since there is no analogue for the case of the standard
Brownian motion. More precisely, when H = 1

2 , it is proved in [8] that the Euler scheme (1.6) verifies (by denoting
XItô the solution of (1.5) in the Itô sense),

√
n
[
X̃

(n)
1 − XItô

1

] Law−→ − 1√
2
Y1

∫ 1

0
σ
(
XIto

s

)
σ ′(XIto

s

)
Y−1

s dWs, as n → ∞. (1.10)

Here, W is a Brownian motion independent of the Brownian motion B and

Yt = exp

(∫ t

0
b′(XIto

s

)
ds − 1

2

∫ t

0
σσ ′(XIto

s

)
ds +

∫ t

0
σ ′(XIto

s

)
dBs

)
, t ∈ [0,1].

On the other hand, it can be proved (see Remark 4.2.2) that, for the Crank–Nicholson scheme (1.7), we have, as
n → ∞:

n
[
X

(n)

1 − XStr
1

] Law−→ 1

24

∫ 1

0

(
σ 2)′′(

XStr
s

)[√
15 dWs + 3 dBs

] + 1

16

∫ 1

0
σ
(
σ 2)′′′(

XStr
s

)
ds, (1.11)

where XStr denotes the solution of (1.1) in the Stratonovich sense.
In the present paper, we are interested in a better understanding of the phenomenons observed in (1.6), (1.9), (1.10)

or (1.11). What type of convergence allows to derive the upper and lower error bounds for some natural scheme of
Milstein’s type? More precisely, let us define, by induction, the family of differential operators (Dj )j∈N∪{0} as

D0f = f, D1f = f ′σ and for j ≥ 2, Dj f = D1(Dj−1f
)
. (1.12)

For instance, the first Dj σ ’s are given by:

D0σ = σ, D1σ = σσ ′, D2σ = σσ ′2 + σ 2σ ′′,

D3σ = σσ ′3 + 4σ 2σ ′σ ′′ + σ 3σ ′′′ etc.

Now, let us consider the following scheme introduced in [17]:{
X̂

(n)
0 = x,

X̂
(n)
(�+1)/n = X̂

(n)
�/n + ∑m

j=0
1

(j+1)!D
j σ

(
X̂

(n)
�/n

)
(�B�/n)

j+1, � ∈ {0, . . . , n − 1}, (1.13)

the integer m ∈ N ∪ {0} being called the size of X̂ = {X̂(n)}n∈N. Here, for j, n ∈ N and � ∈ {0, . . . , n − 1}, we set
�B�/n instead of B(�+1)/n − B�/n for simplicity. The idea of introducing these schemes will be better explained in
Section 3 below. For the moment, just observe that Euler (resp. Milstein) scheme corresponds to m = 0 (resp. m = 1).

The aim of the present paper is to answer the following questions. Does the sequence {X̂(n)
1 }n∈N converge? Is the

limit Xx
1 given by (1.4), as could be reasonably expected? What is the rate of convergence? Are upper and lower error

bounds obtained from a convergence in law or rather from a pathwise type convergence?
The paper is organized as follows: the next section reviews some very recent results concerning the asymptotic

behavior of weighted power variations of fractional Brownian motion. In Section 3, after recalling the definition and
the main properties of the so-called Newton–Cotes integral, we explain how to use it in order to study (1.1). Finally,
in Section 4, we state and prove our results concerning the exact rate of convergence associated to (1.13).

2. Asymptotic behavior of weighted power variations

Let κ ≥ 2 be an integer, and h,g : R → R be two functions belonging to C∞. Assume moreover that h and g are
bounded with bounded derivatives. Denote by μ2n the 2n-moment of a random variable G ∼ N (0,1). The following
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theorem collects some very recent results about the asymptotic behavior of the so-called weighted power variations
of B , defined by

n−1∑
�=0

h(B�/n)(�B�/n)
κ (recall that �B�/n stands for B(�+1)/n − B�/n).

Theorem 2.1. 1. If κ is even and H ∈ (0,1) then, as n → ∞:

nκH−1
n−1∑
�=0

h(B�/n)(�B�/n)
κ Prob−→ μκ

∫ 1

0
h(Bs)ds. (2.1)

2. If κ is odd and H ∈ (0, 1
2 ) then, as n → ∞:

n(κ+1)H−1
n−1∑
�=0

h(B�/n)(�B�/n)
κ Prob−→ −μκ+1

2

∫ 1

0
h′(Bs)ds. (2.2)

3. If κ is odd and H = 1
2 then, as n → ∞,(

B1, n
(κ−1)/2

n−1∑
�=0

g(B�/n)(�B�/n)
κ , n(κ−1)/2

n−1∑
�=0

h(B�/n)(�B�/n)
κ+1

)

Law−→
(

B1,

∫ 1

0
g(Bs)

(√
μ2κ dWs + μκ+1 dBs

)
,μκ+1

∫ 1

0
h(Bs)ds

)
, (2.3)

with W another standard Brownian motion independent of B .
4. If κ is odd and H ∈ ( 1

2 ,1) then, as n → ∞:

n(κ−1)H

n−1∑
�=0

h(B�/n)(�B�/n)
κ Prob−→ μκ+1

∫ B1

0
h(x)ds. (2.4)

Remark 2.2. 1. For sake of conciseness, we omit the proof of Theorem 2.1. We give below some ideas and references
for the proofs.
2. The convergence (2.1) is actually almost sure. Its proof is a classical result when h ≡ 1 (see e.g. [7] when κ = 2).

If h is arbitrary, the proof could be completed along the lines of the proof of Lemma 3.1, p. 7–8 in [4].
3. Proofs of (2.2) and (2.4) can be completed along the lines of [16], Corollary 2.
4. We shall see that, for the standard Brownian motion case, in order to study our Milstein’s type schemes one needs

the behaviour of the triplet (2.3) and not only the behaviour of the second coordinate in (2.3). The proof of (2.3)
can be completed along the lines of [19], Corollary 2.9. More precisely, using the methodology introduced in this
latter reference, we first prove that,1 as n → ∞,(

(Bt )t∈[0,1], nκ−1/2
n−1∑
�=0

g(B�/n)(�B�/n)
κ

)
Law−→

(
(Bt )t∈[0,1],

∫ 1

0
g(Bs)

(√
μ2κ dWs + μκ+1 dBs

))
. (2.5)

1Using the notion of stable convergence for random variables, (2.5) is equivalent to say that

n(κ−1)/2
n−1∑
�=0

g(B�/n)(�B�/n)κ
F B−stably−→

∫ 1

0
g(Bs)

(√
μ2κ dWs + μκ+1 dBs

)
.

Here, F B denotes the σ -field generated by (Bt )t∈[0,1] (see also Theorem 1.1, p. 3 in [6]).
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Then, using the fact that (see (2.1)), as n → ∞,

n(κ−1)/2
n−1∑
�=0

h(B�/n)(�B�/n)
κ+1 Prob−→ μκ+1

∫ 1

0
h(Bs)ds

and that μκ+1
∫ 1

0 h(Bs)ds is a random variable measurable with respect to B , the desired conclusion follows
easily.

5. Other results on weighted variations of fractional Brownian motion (or related processes) can be found in [1]
and [9].

3. Newton–Cotes integral and fractional SDEs

In the sequel, we will use, as integral with respect to B , the so-called Newton–Cotes integral introduced in [5] and
studied further in [18]:

Definition 3.1. Let f : R → R be a continuous function, X,Y be two continuous processes on [0,1] and N ∈ N∪ {0}.
The N-order Newton–Cotes integral of f (Y ) with respect to X is defined by:∫ t

0
f (Ys)dNC,NXs := lim

ε↓0
prob

1

ε

∫ t

0
ds(Xs+ε − Xs)

∫ 1

0
f

(
Ys + α(Ys+ε − Ys)

)
νN(dα), t ∈ [0,1], (3.1)

provided the limit exists. Here ν0 = δ0, ν1 = (δ0 + δ1)/2 and, for N ≥ 2,

νN =
2N−2∑
j=0

(∫ 1

0

∏
k �=j

2(N − 1)u − k

j − k
du

)
δj/(2N−2),

δa being the Dirac measure at point a.

Remark 3.2. 1. The 0- and 1-order Newton–Cotes integrals are nothing but the forward integral and the symmetric
integral in the sense of Russo–Vallois [22], respectively:∫ t

0
f (Ys)dNC,0Xs =

∫ t

0
f (Ys)d−Xs = lim

ε↓0
prob

1

ε

∫ t

0
f (Ys)(Xs+ε − Xs)ds

and ∫ t

0
f (Ys)dNC,1Xs =

∫ t

0
f (Ys)d◦Xs = lim

ε↓0
prob

1

ε

∫ t

0

f (Ys+ε) + f (Ys)

2
(Xs+ε − Xs)ds.

2. Another way to define νN is to view it as the unique discrete signed probability carried by j/(2N − 2) (j =
0, . . . ,2N − 2), which coincides with Lebesgue measure on polynomials of degree smaller than 2N − 1.

The Newton–Cotes integral defined by (3.1) is actually a special case of so-called N -order ν-integrals introduced
in [5], p. 789. Moreover, in the same cited paper, p. 795, one proves that the N -order Newton–Cotes integral of f (B)

with respect to B exists for any f ∈ C4N+1 if and only if H ∈ (1/(4N + 2),1). In this case, an Itô’s type change of
variables formula holds: for any antiderivative F of f , we can write

F(Bt ) − F(0) =
∫ t

0
f (Bs)dNC,NBs, t ∈ [0,1]. (3.2)

Moreover, as a consequence of (3.2), let us note that∫ t

0
f (Bs)dNC,NBs =

∫ t

0
f (Bs)dNC,nBs = F(Bt ) − F(0),
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as soon as f ∈ C4N+1, n < N and H ∈ (1/(4n + 2),1). Therefore, for f regular enough, it is possible to define the
Newton–Cotes integral without ambiguity by:∫ t

0
f (Bs)dNCBs :=

∫ t

0
f (Bs)dNC,nBs, if H ∈ (

1/(4n + 2),1
)
. (3.3)

Set n
H

:= inf{n ≥ 1: H > 1/(4n + 2)}. Hence, an immediate consequence of (3.2) and (3.3) is that, for any H ∈ (0,1)

and any f : R → R of class C4n
H

+1, the following Itô’s type change of variables formula holds:

F(Bt ) = F(0) +
∫ t

0
f (Bs)dNCBs, for any antiderivative F of f . (3.4)

Remark 3.3. In the sequel we will only use the fact that the Newton–Cotes integral verifies the classical change
of variable formula (1.3) or (3.4). Consequently, any other stochastic integral verifying (3.4) could be used in the
following.

All along this paper we will work with an ellipticity assumption, and we will also need regularity for the function σ .
More precisely, we suppose

(E) inf
R

|σ | > 0 and σ ∈ C∞(R) is bounded with bounded derivatives.

Under hypothesis (E), the flow φ associated to σ , given by (1.2), is well-defined and verifies the group property:

∀x, y, z ∈ R, φ
(
φ(x, y), z

) = φ(x, y + z). (3.5)

Note that the process Xx given by (1.4) verifies:

Xx
t = x +

∫ t

0
σ
(
Xx

s

)
dNCBs, t ∈ [0,1], (3.6)

as we can see immediately, by applying (3.4).

Remark 3.4. In [18] (see also [20]), one studies a notion of solution for (3.6) and also the existence and the uniqueness
of solution. Note however that, in the present work, we will only use the fact that there exists a natural solution to (3.6)
given by (1.4).

The following result explains the definition (1.13). By using (1.12), the process Xx defined by (1.4) can be ex-
panded as follows:

Lemma 3.5. For any integers m ≥ 0, n ≥ 1 and � ∈ {0, . . . , n − 1}, we have

Xx
(�+1)/n = Xx

�/n +
m∑

j=0

1

(j + 1)!D
j σ

(
Xx

�/n

)
(�Bc�/n)

j+1

+
∫ (�+1)/n

�/n

dNCBt1

∫ t1

�/n

dNCBt2 · · ·
∫ tm

�/n

dNCBtm+1

∫ tm+1

�/n

Dm+1σ
(
Xx

tm+2

)
dNCBtm+2 . (3.7)

Proof. We proceed by induction on m. By applying (3.6), and then using (1.4) and (3.4), we can write:

Xx
(�+1)/n = Xx

�/n + σ
(
Xx

�/n

)
�B�/n +

∫ (�+1)/n

�/n

(
σ
(
Xx

t1

) − σ
(
Xx

�/n

))
dNCBt1

= Xx
�/n + σ

(
Xx

�/n

)
�B�/n +

∫ (�+1)/n

�/n

dNCBt1

∫ t1

�/n

σσ ′(Xx
t2

)
dNCBt2,

which is exactly (3.7) for m = 0.
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Now, let us assume that (3.7) is true for some m ∈ N ∪ {0}. Then we can write

Xx
(�+1)/n = Xx

�/n +
m∑

j=0

1

(j + 1)!D
j σ

(
Xx

�/n

)
(�B�/n)

j+1

+ Dm+1σ
(
Xx

�/n

)∫ (�+1)/n

�/n

dNCBt1 · · ·
∫ tm

�/n

dNCBtm+1

∫ tm+1

�/n

dNCBtm+2

+
∫ (�+1)/n

�/n

dNCBt1 · · ·
∫ tm

�/n

dNCBtm+1

∫ tm+1

�/n

(
Dm+1σ

(
Xx

tm+2

) − Dm+1σ
(
Xx

�/n

))
dNCBtm+2 . (3.8)

On one hand, using (3.4) repeatedly, it is immediate to compute that∫ (�+1)/n

�/n

dNCBt1 · · ·
∫ tm

�/n

dNCBtm+1

∫ tm+1

�/n

dNCBtm+2 = 1

(m + 2)! (�B�/n)
m+2.

On the other hand, using (1.4) and again (3.4), we can write

Dm+1σ
(
Xx

tm+2

) − Dm+1σ
(
Xx

�/n

) =
∫ tm+2

�/n

σ
(
Dm+1σ

)′(
Xx

tm+3

)
dNCBtm+3 .

Finally, putting these latter two equalities in (3.8) and noting that σ(Dm+1σ)′ = Dm+2σ by definition, we obtain
that (3.7) is true for m + 1. The proof by induction is done. �

Clearly, (1.13) is the natural scheme constructed from (3.7), by considering the (m + 2)th multiple integral in the
right hand side of (3.7) as a remainder.

4. Rate of convergence of the approximating schemes

4.1. Statement of the main result

Recall that we denote by μ2n the 2n-moment of a random variable G ∼ N (0,1). For m ∈ N∪ {0}, let us introduce the
functions gm,hm : R → R given by:

gm = −σ ′hm + hm+1 and hm = − (Dm+1σ)/σ

(m + 2)! . (4.1)

Our main result contains a complete answer to the questions in the introduction and can be stated as follows:

Theorem 4.1. Assume that hypothesis (E) is in order, and let m ∈ N ∪ {0}. Then, for any H ∈ (1/(m + 2),1), the
sequence {X̂(n)

1 }n∈N defined by (1.13) converges almost surely toward Xx
1 = φ(x,B1) as n → ∞. Moreover,

• when m is even and H ∈ (1/(m + 2),1),

n(m+2)H−1[X̂(n)
1 − Xx

1

] Prob−→ μm+2σ
(
Xx

1

)∫ 1

0
hm

(
Xx

s

)
ds; (4.2)

• when m is odd and H ∈ (1/(m + 2), 1
2 ),

n(m+3)H−1[X̂(n)
1 − Xx

1

] Prob−→ μm+3σ
(
Xx

1

)∫ 1

0

(
gm − 1

2
σh′

m

)(
Xx

s

)
ds; (4.3)
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• when m is odd and H = 1
2 ,

n(m+1)/2[X̂(n)
1 − Xx

1

]
Law−→σ

(
Xx

1

)(∫ 1

0
hm

(
Xx

s

)[√
μ2m+4 dWs + μm+3 dBs

] + μm+3

∫ 1

0
gm

(
Xx

s

)
ds

)
, (4.4)

with W a Brownian motion independent of B;
• when m is odd and H ∈ ( 1

2 ,1),

n(m+1)H
[
X̂

(n)
1 − Xx

1

] Prob−→ μm+3σ
(
Xx

1

)∫ B1

0
hm

(
φ(x, y)

)
dy. (4.5)

Remark 4.2. 1. For m = 0 and H > 1
2 , one recovers the convergence (1.6).

2. With the same method used to obtain (4.4), one could prove (1.11) with the help of Lemma 3.4 in [18]. Details are
left to the reader.

3. Actually, we could prove that the convergence is almost sure in (4.2). Also the convergence in (4.3) is certainly
almost sure, but the method of proof we have used here does not allow to deduce it. Thus it remains an open
question.

4. According to Theorem 4.1, whenever H ∈ (1/(m + 2), 1
2 ) the scheme X̂ of size m = 2κ − 1 has the same rate

of convergence than the scheme X̂ of size m = 2κ , namely n(2κ+2)H−1. Thus, it is a priori better to use odd-size
schemes.

5. With the same method (see also Theorems 2 and 4 in [15]), one could also derive the exact rate of convergence for
the global error on the whole interval [0,1].

Observe that, under (E), the convergences (4.2) and (4.3) give the right lower error bound if the probability that the
right-hand side vanishes is strictly less than 1. Due to (1.4) and the fact that Bt has a Gaussian density for any t ∈ (0,1],
it is easy to see that this last fact is equivalent to have that the real function inside the integral, say fm, is not identically
zero. Indeed, if

∫ 1
0 g(Bs)ds = 0 almost surely for a certain g ∈ C1

b(R), then 0 = Du

∫ 1
0 g(Bs)ds = ∫ 1

u
g′(Bs)ds, for

any u ∈ [0,1] (here D denotes the Malliavin derivative with respect to B). We deduce that g′(Bu) = 0, for any
u ∈ [0,1], and, since the support of the law of B1 (for instance) is R, we obtain g′ = 0. The desired conclusion follows
easily.

Except for m = 0, solving fm = 0 seems complicated. Nevertheless, when m = 1, we can state:

Proposition 4.3. Assume that (E) is in order, and moreover that σ does not vanish. Then the function 3σ ′3 +6σσ ′σ ′′+
σ 2σ ′′′ (which is, up to a constant, the function appearing inside the integral of the right-hand side of (4.3) when m = 1)
is not identically zero.

Remark 4.4. 1. When σ(x) = σ is constant, we have X̂
(n)
1 = Xx

1 = x + σB1. Consequently, the study of the rate of
convergence in the case where σ is a constant function is not interesting.

2. A corollary of Theorem 4.1 and Proposition 4.3 is that, under the additional hypothesis that σ ′ does not vanish,
the upper and lower error bounds always come from a convergence in probability whenever H �= 1

2 and m = 1. In
particular, we never observe a phenomenon of the type (1.9).

Proof of Proposition 4.3. Since σ ′ does not vanish, we have either σ ′ > 0 or σ ′ < 0. Suppose for instance that σ ′ > 0,
the proof for the other situation being similar. Assume for a moment that f := 3σ ′3 + 6σσ ′σ ′′ + σ 2σ ′′′ is identically
zero. We then have 3σ ′(σ 2)′′ = −σ(σ 2)′′′. We deduce that the derivative of σ 3(σ 2)′′ is zero and then (σ 2)′′ = ασ−3

on R, for some α �= 0. Set h = σ 2; we have h′′h′ = αh′h−3/2 or, equivalently, h′2 = −4αh−1/2 + β for some β ∈ R.
In particular, we have β − 4αy−1/2 > 0, for any y ∈ h(R). Let F be defined on h(R) by

F(y) =
∫ y

h(0)

dz√
β − 4αz−1/2

.
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For all x ∈ R, we have

F
(
σ(x)2) = F

(
h(x)

) = x + γ for some γ ∈ R. (4.6)

The function σ 2 being bounded, we necessarily have h(x) → (4α/β)2 (in particular β �= 0) as x → ∞. Then, since
h′′ = αh−3/2, this implies that h′′(x) → β3/(43α2) as x → ∞, which is in contradiction with the fact that h = σ 2 is
bounded. The proof of the proposition is done. �

4.2. Proof of Theorem 4.1

Here, and for the rest of the paper, we assume that H belongs to (1/(m + 2),1) and we denote �n =
maxk=0,...,n−1 |�Bk/n|. We split the proof of Theorem 4.1 into several steps.

1. General computations. The following lemma can be shown by using the same method as in the proof of
Lemma 3.5, but with Lebesgue integral instead of Newton–Cotes integral (and by taking into account that σ ∈ C∞(R)

is bounded with bounded derivatives, in order to have uniform estimates):

Lemma 4.5. As y → 0, we have, uniformly in x ∈ R,

φ(x, y) = x +
m+2∑
j=0

1

(j + 1)!D
j σ (x)yj+1 + O

(
ym+4).

By applying this lemma to x = X̂
(n)
k/n and y = �Bk/n, we obtain, using the definition of X̂

(n)
(k+1)/n,

X̂
(n)
(k+1)/n = φ

(
X̂

(n)
k/n,�Bk/n

) − Dm+1σ
(
X̂

(n)
k/n

) (�Bk/n)
m+2

(m + 2)! − Dm+2σ
(
X̂

(n)
k/n

) (�Bk/n)
m+3

(m + 3)! + O
(
�m+4

n

)
.

By straightforward computations we get2

X̂
(n)
(k+1)/n = φ

(
X̂

(n)
k/n,�Bk/n + hm

(
X̂

(n)
k/n

)
(�Bk/n)

m+2 + gm

(
X̂

(n)
k/n

)
(�Bk/n)

m+3 + O
(
�m+4

n

))
, (4.7)

with gm and hm given by (4.1). By applying the group property (3.5) repeatedly, we finally obtain that, for any
� ∈ {1, . . . , n}:

X̂
(n)
�/n = φ

(
x,B�/n +

�−1∑
k=0

hm

(
X̂

(n)
k/n

)
(�Bk/n)

m+2 +
�−1∑
k=0

gm

(
X̂

(n)
k/n

)
(�Bk/n)

m+3 + O
(
n�m+4

n

))
. (4.8)

Since ∂φ/∂y = σ ◦ φ is bounded and (E) is in order, we deduce, as n → ∞,

sup
�∈{1,...,n}

∣∣X̂(n)
�/n − Xx

�/n

∣∣ = sup
�∈{1,...,n}

∣∣X̂(n)
�/n − φ(x,B�/n)

∣∣ = O
(
n�m+2

n

)
. (4.9)

In particular, X̂
(n)
1 converges almost surely to Xx

1 as n → ∞, since H > 1/(m + 2).

2In fact, we rather obtain

X̂
(n)
(k+1)/n

= φ
(
X̂

(n)
k/n

,�Bk/n + hm

(
X̂

(n)
k/n

)
(�Bk/n)m+2 + gm

(
X̂

(n)
k/n

)
(�Bk/n)m+3) + O

(
�m+4

n

)
,

which is not exactly (4.7). But, in order to introduce O(�m+4
n (B)) in the argument of φ, we proceed as follows, by using the ellipticity property in

hypothesis (E ):

φ(x, z) + O(δ) = φ
(
x,φ−1(

x,φ(x, z) + O(δ)
)) = φ

(
x, z + O(δ)

)
.
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2. Proof of (4.2). Let m be an even integer. As a consequence of (4.8) and (4.9), we can write

X̂
(n)
1 = φ

(
x,B1 +

n−1∑
k=0

hm

(
Xx

k/n

)
(�Bk/n)

m+2 + O
(
n�m+3

n

) + O
(
n2�2m+4

n

))
. (4.10)

(Observe that the main difference between (4.8) and the previous identity is that the argument of hm is here Xx
k/n.) By

using (2.1) with κ = m + 2, and due to the fact that Xx
t = φ(x,Bt ) and ∂φ/∂y = σ ◦ φ, we finally obtain (4.2).

3. Proof of (4.3) for H ∈ (2/(2m + 3), 1
2 ). Let m be an odd integer and assume that H ∈ (2/(2m + 3), 1

2 ). Thanks
to (4.9), identity (4.8) can be transformed into

X̂
(n)
�/n = φ

(
x,B�/n +

�−1∑
k=0

hm

(
X̂

(n)
k/n

)
(�Bk/n)

m+2

+
�−1∑
k=0

gm

(
Xx

k/n

)
(�Bk/n)

m+3 + O
(
n�m+4

n

) + O
(
n2�2m+5

n

))
. (4.11)

On the other hand, due to (E), we have, for any fixed M ≥ 1 and uniformly in x ∈ R,

φ(x, y2) = φ(x, y1) +
M∑

j=1

1

j !
∂jφ

∂yj
(x, y1)(y2 − y1)

j + O
(
(y2 − y1)

M+1).
Combined with (4.8), it yields

X̂
(n)
k/n = Xx

k/n +
M∑

j=1

1

j !
∂jφ

∂yj
(x,Bk/n)

(
k−1∑
k1=0

hm

(
X̂

(n)
k1/n

)
(�Bk1/n)

m+2 + O
(
n�m+3

n

))j

+ O
(
nM+1�(m+2)(M+1)

n

)
. (4.12)

By using (4.12) with M = 1 as well as the equality ∂φ/∂y = σ ◦ φ, we get

X̂
(n)
k/n = Xx

k/n + σ
(
Xx

k/n

) k−1∑
k1=0

hm

(
X̂

(n)
k1/n

)
(�Bk1/n)

m+2 + O
(
n2�2m+4

n

) + O
(
n�m+3

n

)
and then, by (4.9),

X̂
(n)
k/n = Xx

k/n + σ
(
Xx

k/n

) k−1∑
k1=0

hm

(
Xx

k1/n

)
(�Bk1/n)

m+2 + O
(
n2�2m+4

n

) + O
(
n�m+3

n

)
.

By inserting the previous equality in (4.11) with � = n, we obtain

X̂
(n)
1 = φ

(
x,B1 +

n−1∑
k=0

hm

(
Xx

k/n

)
(�Bk/n)

m+2 +
n−1∑
k=0

gm

(
Xx

k/n

)
(�Bk/n)

m+3

+
n−1∑
k=0

σh′
m

(
Xx

k/n

)
(�Bk/n)

m+2
k−1∑
j=0

hm

(
Xx

j/n

)
(�Bj/n)

m+2

+ O
(
n3�3m+6

n

) + O
(
n2�2m+5

n

) + O
(
n�m+4

n

))
. (4.13)
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Due to (2.2) with κ = m + 2 we have, as n → ∞,

n(m+3)H−1
n−1∑
k=0

hm

(
Xx

k/n

)
(�Bk/n)

m+2 Prob−→ −μm+3

2

∫ 1

0
σh′

m

(
Xx

s

)
ds

and also, due this time to (2.1) with κ = m + 3, as n → ∞,

n(m+3)H−1
n−1∑
k=0

gm

(
Xx

k/n

)
(�Bk/n)

m+3 Prob−→ μm+3

∫ 1

0
gm

(
Xx

s

)
ds.

Moreover, since we assume in this step that H > 2/(2m + 3), we have, as n → ∞,

n(m+3)H �m+4
n

Prob−→ 0, n(m+3)H+1�2m+5
n

Prob−→ 0 and

n(m+3)H+2�3m+6
n

Prob−→ 0.

At this level, we need the following result which is contained in [16], Proposition 7:

Lemma 4.6. Fix an integer q ≥ 2 and denote by Hq the qth Hermite polynomial. Let f ∈ C2q(R) be bounded with
bounded derivatives and, for k ∈ {1, . . . , n}, denote

S
(q)
k (f ) :=

k−1∑
j=0

f (Bj/n)Hq

(
nH �Bj/n

)
.

Then

E
∣∣S(q)

k (f )
∣∣2 = O

(
n1∨(2−2Hq)

)
as n → ∞,uniformly in k. (4.14)

Recall also that, since m + 2 is odd, the monomial xm+2 may be expanded in terms of the Hermite polynomials as
follows:

xm+2 − μm+3x =
(m+1)/2∑

q=1

am+2,2q+1H2q+1(x) for some universal constants am+2,2q+1. (4.15)

Therefore, for k ∈ {1, . . . , n},

n(m+3)H−1
k−1∑
j=0

hm

(
Xx

j/n

)
(�Bj/n)

m+2 − μm+3n
2H−1

k−1∑
j=0

hm

(
Xx

j/n

)
�Bj/n

= nH−1
(m+1)/2∑

q=1

am+2,2q+1S
(2q+1)
k

(
hm

(
φ(x, ·)))

and, by (4.14),

E

∣∣∣∣∣n(m+3)H−1
k−1∑
j=0

hm

(
Xx

j/n

)
(�Bj/n)

m+2 − μm+3n
2H−1

k−1∑
j=0

hm

(
Xx

j/n

)
�Bj/n

∣∣∣∣∣
2

= O
(
n(2H−1)∨(−4H)

)
.
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Hence

E

∣∣∣∣∣n(m+3)H−1
n−1∑
k=0

σh′
m

(
Xx

k/n

)
(�Bk/n)

m+2
k−1∑
j=0

hm

(
Xx

j/n

)
(�Bj/n)

m+2

−μm+3n
2H−1

n−1∑
k=0

σh′
m

(
Xx

k/n

)
(�Bk/n)

m+2
k−1∑
j=0

hm

(
Xx

j/n

)
�Bj/n

∣∣∣∣∣
= O

(
n(1/2−H−mH)∨(1−4H−mH)

)
which tends to zero as n → ∞, because H > 2/(2m + 3) implying H > 1/(2m + 2) and H > 1/(m + 4). Moreover,
by the mean value theorem:

k−1∑
j=0

hm

(
Xx

j/n

)
�Bj/n =

∫ Bk/n

0
hm

(
φ(x, z)

)
dz − 1

2

k−1∑
j=0

σh′
m

(
Xx

θj/n

)
(�Bj/n)

2,

for some θj/n between j/n and (j + 1)/n. Consequently, since H < 1
2 , we have

E

∣∣∣∣∣
k−1∑
j=0

hm

(
Xx

j/n

)
�Bj/n

∣∣∣∣∣
2

= O
(
n2−4H

)
so that

E

∣∣∣∣∣n2H−1
n−1∑
k=0

σh′
m

(
Xx

k/n

)
(�Bk/n)

m+2
k−1∑
j=0

hm

(
Xx

j/n

)
�Bj/n

∣∣∣∣∣ = O
(
n−(m+2)H

) −→ 0.

Finally, by combining all these convergences to zero together, we get

n(m+3)H−1
n−1∑
k=0

σh′
m

(
Xx

k/n

)
(�Bk/n)

m+2
k−1∑
j=0

hm

(
Xx

j/n

)
(�Bj/n)

m+2 Prob−→ 0,

so that the proof of (4.3) is done in the case where H > 2/(2m + 3).
4. Proof of (4.3) for H ∈ (1/(m + 2),2/(2m + 3)]. It suffices to use (4.12) with the appropriate M for the con-

sidered H and then to proceed as in the previous step. The remaining details are left to the reader.
5. Proof of (4.4). By going one step further in (4.11) using (4.9), we get

X̂
(n)
1 = φ

(
x,B1 +

n−1∑
k=0

hm

(
Xx

k/n

)
(�Bk/n)

m+2 +
n−1∑
k=0

gm

(
Xx

k/n

)
(�Bk/n)

m+3 + O
(
n2�2m+4

n

) + O
(
n�m+4

n

))
.

Whenever m ≥ 3 and since H = 1
2 , we have, as n → ∞:

n(m+1)/2+1�m+4
n

Prob−→ 0 and n(m+1)/2+2�2m+4
n

Prob−→ 0.

Hence, for m ≥ 3, (4.4) is an immediate consequence of (2.3) and of the previous two relations. If m = 1, we rather
need to use (4.13). Since H = 1

2 , we have, as n → ∞:

n2�5
n

Prob−→ 0, n3�7
n

Prob−→ 0 and n4�9
n

Prob−→ 0.



Milstein’s type schemes for fractional SDEs 1097

Finally, combining these convergences with (2.1) (for H = 1
2 ), (2.3) and the fact that

E

∣∣∣∣∣n
n−1∑
k=0

σh′
1

(
Xx

k/n

)
(�Bk/n)

3
k−1∑
j=0

h1
(
Xx

j/n

)
(�Bj/n)

3

∣∣∣∣∣
2

= n2
n−1∑
k=0

k−1∑
j=0

E
∣∣σh′

1

(
Xx

k/n

)
(�Bk/n)

3h1
(
Xx

j/n

)
(�Bj/n)

3
∣∣2 = O

(
n−2) −→ 0 as n → ∞,

we obtain (4.4) also for m = 1.
6. Proof of (4.5). By combining (4.10) with the fact that Xx

t = φ(x,Bt ) and ∂φ/∂y = σ ◦ φ, we get

X̂
(n)
1 = Xx

1 + σ
(
Xx

1

) n−1∑
k=0

hm

(
Xx

k/n

)
(�Bk/n)

m+2 + O
(
n�m+3

n

) + O
(
n2�2m+4

n

)
.

Since H > 1
2 , we have, as n → ∞,

n(m+1)H+1�m+3
n

Prob−→ 0 and n(m+1)H+2�2m+4
n

Prob−→ 0.

Hence (4.5) is an immediate consequence of (2.4).
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