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Abstract. We study how iterated convolutions of probability measures compare under stochastic domination. We give necessary
and sufficient conditions for the existence of an integer n such that μ∗n is stochastically dominated by ν∗n for two given probability
measures μ and ν. As a consequence we obtain a similar theorem on the majorization order for vectors in Rd . In particular we
prove results about catalysis in quantum information theory.

Résumé. Nous étudions comment les convolutions itérées des mesures de probabilités se comparent pour la domination stochas-
tique. Nous donnons des conditions nécessaires et suffisantes pour l’existence d’un entier n tel que μ∗n soit stochastiquement
dominée par ν∗n, étant données deux mesures de probabilités μ et ν. Nous obtenons en corollaire un théorème similaire pour des
vecteurs de Rd et la relation de Schur-domination. Plus spécifiquement, nous démontrons des résultats sur la catalyse en théorie
quantique de l’information.
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Introduction and notations

This work is a continuation of [1], where we study the phenomenon of catalytic majorization in quantum information
theory. A probabilistic approach to this question involves stochastic domination which we introduce in Section 1 and
its behavior with respect to the convolution of measures. We give in Section 2 a condition on measures μ and ν for
the existence of an integer n such that μ∗n is stochastically dominated by ν∗n. We gather further topological and
geometrical aspects in Section 3. Finally, we apply these results to our original problem of catalytic majorization. In
Section 4 we introduce the background for quantum catalytic majorization and we state our results. Section 5 contains
the proofs and in Section 6 we consider an infinite dimensional version of catalysis.

We introduce now some notation and recall basic facts about probability measures. We write P(R) for the set of
probability measures on R. We denote by δx the Dirac mass at point x. If μ ∈ P(R), we write suppμ for the support
of μ. We write respectively minμ ∈ [−∞,+∞) and maxμ ∈ (−∞,+∞] for min suppμ and max suppμ. We also
write μ(a, b) and μ[a, b] as a shortcut for μ((a, b)) and μ([a, b]). The convolution of two measures μ and ν is
denoted μ ∗ ν. Recall that if X and Y are independent random variables of respective laws μ and ν, the law of X + Y

is given by μ ∗ ν. The results of this paper are stated for convolutions of measures, they admit immediate translations
in the language of sums of independent random variables. For λ ∈ R, the function eλ is defined by eλ(x) = exp(λx).
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1. Stochastic domination

A natural way of comparing two probability measures is given by the following relation.

Definition 1.1. Let μ and ν be two probability measures on the real line. We say that μ is stochastically dominated
by ν and we write μ ≤stν if

∀t ∈ R μ[t,∞) ≤ ν[t,∞). (1)

Stochastic domination is an order relation on P(R) (in particular, μ ≤stν and ν ≤st μ imply μ = ν). The following
result [9,16] provides useful characterizations of stochastic domination.

Theorem. Let μ and ν be probability measures on the real line. The following are equivalent:

(1) μ ≤stν .
(2) Sample path characterization. There exists a probability space (Ω, F ,P) and two random variables X and Y on

Ω with respective laws μ and ν, so that

∀ω ∈ Ω X(ω) ≤ Y(ω).

(3) Functional characterization. For any increasing function f : R → R so that both integrals exist,∫
f dμ ≤

∫
f dν.

It is easily checked that stochastic domination is well behaved with respect to convolution.

Lemma 1.2. Let μ1, μ2, ν1, ν2 be probability measures on the real line. If μ1 ≤stν1 and μ2 ≤stν2 , then μ1 ∗μ2 ≤stν1∗ν2 .

Lemma 1.3. Let μ and ν be two probability measures on the real line such that μ ≤stν . Then, for all n ≥ 2, μ∗n ≤stν∗n .

For fixed μ and ν, it follows from Lemma 1.2 that the set of integers k so that μ∗k ≤stν∗k is stable under addition.
In general μ∗n ≤stν∗n does not imply μ∗(n+1) ≤stν∗(n+1) . Here is a typical example:

Example 1.4. Let μ and ν be the probability measures defined as

μ = 0.4δ0 + 0.6δ2,

ν = 0.8δ1 + 0.2δ3.

It is straightforward to verify (see Fig. 1) that:

• For k = 2, and therefore for all even k, we have μ∗k ≤stν∗k .
• For k odd, we have μ∗k ≤stν∗k only for k ≥ 9.

Other examples show that the minimal n so that μ∗n ≤stν∗n can be arbitrarily large. This is the content of the next
proposition.

Proposition 1.5. For every integer n, there exist compactly supported probability measures μ and ν such that
μ∗n ≤stν∗n and, for all 1 ≤ k ≤ n − 1, μ∗k �stν∗k .
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Fig. 1. Cumulative distribution functions of μ∗k (solid line) and ν∗k (dotted line) from Example 1.4 for k = 1,2,3,9.

Proof. Let μ = εδ−2n + (1 − ε)δ1 and ν be the uniform measure on [0,2], where 0 < ε < 1 will be defined later. For
k ≥ 1,

μ∗k =
k∑

i=0

(
k

i

)
(1 − ε)iεk−iδi−2n(k−i).

Note that supp(ν∗k) ⊂ R+, while for 1 ≤ k ≤ n, the only part of μ∗k charging R+ is the Dirac mass at point k. This
implies that

μ∗k ≤stν∗k⇐⇒μ∗k[k,+∞)≤ν∗k[k,+∞) .

We have μ∗k[k,+∞) = (1−ε)k and ν∗k[k,+∞) = 1/2. It remains to choose ε so that (1−ε)n < 1/2 < (1−ε)n−1. �

2. Stochastic domination for iterated convolutions and Cramér’s theorem

In light of previous examples, we are going to study the following extension of stochastic domination:

Definition 2.1. We define a relation ≤∗
st on P(R) as follows:

μ ≤∗
st ν ⇐⇒ ∃n ≥ 1 s.t. μ∗n ≤stν∗n .

In turns that when defined on P(R), this relation is not an order relation due to pathological poorly integrable
measures. Indeed, there exist two probability measures μ and ν so that μ 
= ν and μ ∗ μ = ν ∗ ν (see [7], p. 479).
Therefore, the relation ≤∗

st is not anti-symmetric. For this reason, we restrict ourselves to sufficiently integrable mea-
sures (however, most of what follows generalizes to wider classes of measures). This is quite usual when studying
orderings of probability measures; see [16] for examples of such situations.

Definition 2.2. A measure μ on R is said to be exponentially integrable if
∫

eλ dμ < +∞ for all λ ∈ R [recall that
eλ(x) = exp(λx)]. We write Pexp(R) for the set of exponentially integrable probability measures.

Notice that the space of exponentially integrable measures is stable under convolution.

Proposition 2.3. When restricted to Pexp(R), the relation ≤∗
st is a partial order.

Proof. One has to check only the antisymmetry property, the other two being obvious. Let k and l be two integers
such that μ∗k ≤stν∗k and ν∗l ≤stμ∗l . Then μ∗kl ≤stν∗kl≤stμ∗kl and therefore μ∗kl = ν∗kl . But if μ and ν are exponen-
tially integrable, this implies that μ = ν. One can see this in the following way: if we denote the moments of μ by
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mp(μ) = ∫
xp dμ(x), one checks by induction on p that mp(μ) = mp(ν) for all p ∈ N. On the other hand, exponen-

tial integrability implies that m2p(μ)1/2p ≤ Cp for some constant C, so that Carleman’s condition is satisfied (see [7],
p. 224). Therefore μ is determined by its moments and μ = ν. �

We would like to give a description of the relation ≤∗
st, for example, similar to the functional characterization of ≤st.

We start with the following lemma.

Lemma 2.4. Let μ,ν ∈ Pexp(R) such that μ ≤∗
st ν. Then the following inequalities hold:

(a) ∀λ > 0,
∫

eλ dμ ≤ ∫
eλ dν,

(b) ∀λ < 0,
∫

eλ dμ ≥ ∫
eλ dν,

(c)
∫

x dμ(x) ≤ ∫
x dν(x),

(d) minμ ≤ minν,
(e) maxμ ≤ maxν.

Proof. Let μ ≤∗
st ν and λ > 0. Since μ∗n ≤ ν∗n for some n, we get from the functional characterization of ≤st that∫

eλ dμ∗n ≤
∫

eλ dν∗n.

It remains to notice that∫
eλ dμ∗n =

(∫
eλ dμ

)n

and we get (a). The proof of (b) is completely symmetric, while (c) follows also from the functional characterization.
Conditions (d) and (e) are obvious since min(μ∗n) = nmin(μ) and max(μ∗n) = nmax(μ). �

The following proposition shows that the necessary conditions of Lemma 2.4 are “almost sufficient.”

Proposition 2.5. Let μ,ν ∈ Pexp(R). Assume that the following inequalities hold:

(a) ∀λ > 0,
∫

eλ dμ <
∫

eλ dν,
(b) ∀λ < 0,

∫
eλ dν <

∫
eλ dμ,

(c)
∫

x dμ(x) <
∫

x dν(x),
(d) maxμ < maxν,
(e) minμ < minν.

Then μ ≤∗
st ν, and more precisely there exists an integer N ∈ N such that for any n ≥ N , μ∗n ≤stν∗n .

We give in Proposition 3.6 a counter-example showing that Proposition 2.5 is not true when stated with large
inequalities.

We are going to use Cramér’s theorem on large deviations. The cumulant generating function Λμ of the probability
measure μ is defined for any λ ∈ R by

Λμ(λ) = log
∫

eλ dμ.

It is a convex function taking values in R. Its convex conjugate Λ∗
μ, sometimes called the Cramér transform, is

defined as

Λ∗
μ(t) = sup

λ∈R
λt − Λμ(λ).

Note that Λ∗
μ : R → [0,+∞] is a smooth convex function, which takes the value +∞ on R \ [minμ,maxμ]. More-

over, for t ∈ (minμ,maxμ), the supremum in the definition of Λ∗
μ(t) is attained at a unique point λt . Moreover,
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λt > 0 if t >
∫

x dμ(x) and λt < 0 if t <
∫

x dμ(x). Also, Λ∗
μ(

∫
x dμ(x)) = 0 since Λ′

μ(0) = ∫
x dμ(x). We now

state Cramér’s theorem. The theorem can be equivalently stated in the language of sums of i.i.d. random variables
[5,9].

Theorem (Cramér’s theorem). Let μ ∈ Pexp(R). Then for any t ∈ R,

lim
n→∞

1

n
logμ∗n[tn,+∞) =

{
0 if t ≤ ∫

x dμ(x),

−Λ∗
X(t) otherwise,

(2)

lim
n→∞

1

n
log

(
1 − μ∗n(tn,+∞)

) =
{

0 if t ≥ ∫
x dμ(x),

−Λ∗
X(t) otherwise.

(3)

Proof of Proposition 2.5. Note that the hypotheses imply that the quantities maxμ and minν are finite. We write
also Mμ = ∫

x dμ(x) and Mν = ∫
x dν(x). For n ≥ 1, define (fn) and (gn) by

fn(t) = μ∗n[tn,+∞),

gn(t) = ν∗n[tn,+∞).

We need to prove that fn ≤ gn on R for n large enough. If t > maxμ, the inequality is trivial since fn(t) = 0. Similarly,
if t < minν we have gn(t) = 1 and there is nothing to prove.

Fix a real number t0 such that Mμ < t0 < Mν . We first work on the interval I = [t0,maxμ]. By Cramér’s theorem,

the sequences (f
1/n
n ) and (g

1/n
n ) converge respectively on I toward f and g defined by

f (t) = exp
(−Λ∗

μ(t)
)
,

g(t) =
{

1 if t0 ≤ t ≤ Mν ,

exp
(−Λ∗

ν(t)
)

if Mν ≤ t ≤ maxμ.

Note that f and g are continuous on I . We claim also that f < g on I . The inequality is clear on [t0,Mν] since
f < 1. If t ∈ (Mν,maxμ], note that the supremum in the definition of Λ∗

ν(t) is attained for some λ > 0 – to show
this we used hypothesis (d). Using (a) and the definition of the convex conjugate, it implies that Λ∗

ν(t) > Λ∗
μ(t). We

now use the following elementary fact: if a sequence of non-increasing functions defined on a compact interval I

converges pointwise toward a continuous limit, then the convergence is actually uniform on I (for a proof see [15],
Part 2, Problem 127; this statement is attributed to Pólya or to Dini depending on authors). We apply this result to both
(f

1/n
n ) and (g

1/n
n ); and since f < g, uniform convergence implies that for n large enough, f

1/n
n < g

1/n
n on I , and thus

fn ≤ gn.
Finally, we apply a similar argument on the interval J = [minν, t0], except that we consider the sequences

(1 − fn)
1/n and (1 − gn)

1/n, and we use (3) to compute the limit. We omit the details since the argument is totally
symmetric.

We eventually showed that for n large enough, fn ≤ gn on I ∪ J , and thus on R. This is exactly the conclusion of
the proposition. �

3. Geometry and topology of ≤∗
st

We investigate here the topology of the relation ≤∗
st. We first need to define an adequate topology on Pexp(R). This

space can be topologized in several ways, an important point for us being that the map μ �→ ∫
eλ dμ should be

continuous.

Definition 3.1. A function f : R → R is said to be subexponential if there exist constants c,C so that for every x ∈ R∣∣f (x)
∣∣ ≤ C exp

(
c|x|).
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Definition 3.2. Let τ be the topology defined on the space of exponentially integrable measures, generated by the
family of seminorms (Nf )

Nf (μ) =
∣∣∣∣
∫

f dμ

∣∣∣∣,
where f belongs to the class of continuous subexponential functions.

The topology τ is a locally convex vector space topology. It can be shown that the relation ≤∗
st is not τ -closed (see

Proposition 3.6). However, we can give a functional characterization of its closure. This is the content of the following
theorem.

Theorem 3.3. Let R ⊂ Pexp(R)2 be the set of couples (μ, ν) of exponentially integrable probability measures so that
μ ≤∗

st ν. Then

R =
{
(μ, ν) ∈ Pexp(R)2 s.t. ∀λ ≥ 0,

∫
eλ dμ ≤

∫
eλ dν and ∀λ ≤ 0,

∫
eλ dμ ≥

∫
eλ dν

}
, (4)

the closure being taken with respect to the topology τ .

Proof. Let us write X for the set on the right-hand side of (4). We get from Lemma 2.4 that R ⊂ X. Moreover, it is
easily checked that X is τ -closed, therefore R ⊂ X. Conversely, we are going to show that the set of couples (μ, ν)

satisfying the hypotheses of Proposition 2.5 is τ -dense in X. Let (μ, ν) ∈ X. We get from the inequalities satisfied by
μ and ν that:

• ∫
x dμ(x) ≤ x dν(x) (taking derivatives at λ = 0),

• minμ ≤ minν (taking λ → −∞),
• maxμ ≤ maxν (taking λ → +∞).

We want to define two sequences (μn, νn) which τ -converge toward (μ, ν), with μn ≤stμ and ν ≤stνn and for which
the above inequalities become strict. Assume for example that maxμ = maxν = +∞ and minμ = minν = −∞.
Then we can define μn and νn as follows: let εn = μ[n,+∞) and ηn = ν(−∞,−n], and set

μn = μ|(−∞,n) + εnδn,

νn = ν|(−n,+∞) + ηnδ−n.

We check using dominated convergence that limμn = μ and limνn = ν with respect to τ , while by Proposition 2.5
we have μn ≤∗

st νn. The other cases are treated in a similar way: we can always play with small Dirac masses to make
all inequalities strict (for example, if maxμ = maxν = M < +∞, replace ν by (1 − ε)ν + εδM+1, and so on). �

A more comfortable way of describing the relation ≤∗
st is given by the following sets:

Definition 3.4. Let ν ∈ Pexp(R). We define D(ν) to be the following set:

D(ν) = {
μ ∈ Pexp(R) s.t. μ ≤∗

st ν
}
.

Using the ideas in the proof of Theorem 3.3, it can easily be showed that for ν ∈ Pexp(R) such that minν > −∞,
one has

D(ν) =
{
μ ∈ Pexp(R) s.t. ∀λ ≥ 0,

∫
eλ dμ ≤

∫
eλ dν and ∀λ ≤ 0,

∫
eλ dμ ≥

∫
eλ dν

}
, (5)

where the closure is taken in the topology τ . However, for measures ν with minν = −∞, the condition (e) of Propo-
sition 2.5 is violated and we do not know if the relation (5) holds.
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Another consequence of Eq. (5) is that the τ -closure of D(ν) is a convex set. It is not clear that the set D(ν) itself
is convex. We shall see in Proposition 3.7 that this is not the case in general for measures ν /∈ Pexp(R). Note also that
for fixed ν ∈ P(R) the set {μ ∈ P(R) s.t. μ ≤stν} is easily checked to be convex.

Remark 3.5. One can analogously define for μ ∈ Pexp(R) the “dual” set

E(μ) = {
ν ∈ Pexp(R) s.t. μ ≤∗

st ν
}
.

Results about D(ν) or E(μ) are equivalent. Indeed, let μ↔ be the measure defined for a Borel set B by μ↔(B) =
μ(−B). We have μ ≤∗

st ν ⇐⇒ ν↔ ≤∗
st μ↔ and therefore E(μ) = D(μ↔)↔.

We now give an example showing that the relation ≤∗
st is not τ -closed.

Proposition 3.6. There exists a probability measure ν ∈ Pexp(R) so that the set D(ν) is not τ -closed. Consequently,
the set R appearing in (4) is not closed either.

Proof. Let us start with a simplified sketch of the proof. By the examples of Section 1, for each positive integer k,
one can find probability measures μk and νk such that μk ∈ D(νk), while μ∗k

k 
≤stν∗k
k

. We sum properly rescaled and
normalized versions of these measures in order to obtain two probability measures μ and ν such that μ /∈ D(ν).
However, successive approximations μ̃n of μ are shown to satisfy μ̃n ≤stν which implies μ ∈ D(ν) and thus D(ν) 
=
D(ν).

We now work out the details. For k ≥ 1, let ak = (k + 2)!, bk = (k + 2)! + 1 and γk = c exp(−kk), where the
constant c is chosen so that

∑
γk = 1. We check that (ak) and (bk) satisfy the following inequalities:

(k − 1)bk + bk−1 < kak, (6)

kbk < ak+1. (7)

It follows from Proposition 1.5 that for each k ∈ N there exist μk and νk , probability measures with compact support
such that μk ∈ D(νk) while μ∗k

k 
≤stν∗k
k

. Moreover, we can assume that supp(μk) ⊂ (ak, bk) and supp(νk) ⊂ (ak, bk).
Indeed, we can apply to both measures a suitable affine transformation (increasing affine transformations preserve
stochastic domination and are compatible with convolution). We now define μ and ν as

μ =
∞∑

k=1

γkμk and ν =
∞∑

k=1

γkνk.

Note that the sequence (γk) has been chosen to tend very quickly to 0 to ensure that μ and ν are exponentially
integrable. We also introduce the following sequences of measures:

μ̃n =
n∑

k=1

γkμk +
( ∞∑

k=n+1

γk

)
δ0,

ν̃n =
n∑

k=1

γkνk +
( ∞∑

k=n+1

γk

)
δ0.

One checks using Lebesgue’s dominated convergence theorem that the sequences (μ̃n) and (ν̃n) converge respectively
toward μ and ν for the topology τ . Note also that these sequences are increasing with respect to stochastic domination,
so that ν̃n ≤stν . For fixed k, μk and νk satisfy the hypotheses of Proposition 2.5 and thus the same holds for μ̃n and ν̃n.
Therefore μ̃n ∈ D(ν̃n) ⊂ D(ν). This proves that μ ∈ D(ν).

We now prove by contradiction that μ /∈ D(ν). Assume that μ ∈ D(ν), i.e., μ∗k ≤stν∗k for some k ≥ 1. Let sk = kak

and tk = kbk . Fix a sequence i1, . . . , ik of non-zero integers. Set m = μi1 ∗ · · · ∗ μik or m = νi1 ∗ · · · ∗ νik . We know
that supp(m) ⊂ (a, b), with a = ∑k

j=1 aij and b = ∑k
j=1 bij . It is possible to locate precisely supp(m) using the

inequalities (6) and (7).
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(a) If ij > k for some j , then a ≥ ak+1 > tk and therefore supp(m) ⊂ (tk,+∞).
(b) If ij = k for all j , then a = sk and b = tk and therefore supp(m) ⊂ (sk, tk).
(c) If ij ≤ k for all j and ij0 < k for some j0, then b ≤ bk−1 + (k − 1)bk < sk and therefore supp(m) ⊂ [0, sk).

Consequently,

μ∗k[tk,+∞) =
∑

i1,...,ik

γi1 . . . γikμi1 ∗ · · · ∗ μik [tk,+∞) =
∑

i1,...,ik satisfying (a)

γi1 · · ·γik = ν∗k[tk,+∞).

Moreover, because of (b) and (c), we get that for sk ≤ t ≤ tk ,

μ∗k[t, tk) = γ k
k μ∗k

k [t, tk) = γ k
k μ∗k

k [t,+∞)

and similarly

ν∗k[t, tk) = γ k
k ν∗k

k [t,+∞).

We assumed that μ∗k ≤stν∗k , i.e., μ∗k[t,+∞) ≤ ν∗k[t,+∞) for all t . If t ≤ tk , since μ∗k(tk,+∞) = ν∗k(tk,+∞),
we get that μ∗k[t, tk) ≤ ν∗k[t, tk). Since γk > 0, this implies that for all t ≥ sk , μ∗k

k [t,+∞) ≤ ν∗k
k [t,+∞). This

contradicts the fact that μ∗k
k 
≤stν∗k

k
. Therefore μ ∈ D(ν) \ D(ν), and so D(ν) is not closed. �

We now give an example of what can happen if we consider measures with poor integrability properties.

Proposition 3.7. There exists a probability measure ν ∈ P(R) such that the set{
μ ∈ P(R) s.t. μ ≤∗

st ν
}

(8)

is not convex.

The difference between Eq. (8) and our definition of D(ν) is that here we do not suppose the measures to be
exponentially integrable.

Proof of Proposition 3.7. We rely on the following fact which we already alluded to (see [7], p. 479): there exist
two distinct real characteristic functions φ1 and φ2 such that φ2

1 = φ2
2 identically. Consider now the measures μ and

ν with respective characteristic functions φ1 and φ2, i.e., φ1(t) = ∫
eit dμ(t) and φ2(t) = ∫

eit dν(t). Obviously, we
have ν ≤∗

st ν and μ ≤∗
st ν since μ∗2 = ν∗2. Let χ = 1

2μ + 1
2ν and let us show that χ 
≤∗

st ν. We have

χ∗2n = 1

22n

2n∑
i=0

(
2n

i

)
μ∗i ∗ ν∗2n−i = 1

22n

[ ∑
i even

(
2n

i

)
ν∗2n +

∑
i odd

(
2n

i

)
ν∗2n−1 ∗ μ

]
.

Thus χ∗2n ≤∗2n
stν , is equivalent to ν∗2n−1 ∗μ ≤∗2n

stν . Let us show that this is impossible. Indeed, the measures ν∗2n−1 ∗μ

and ν∗2n have real characteristic functions and thus they are symmetric probability measures. Note however that two
symmetric probability distributions cannot be compared with ≤st unless they are equal. But it cannot be that ν∗2n−1 ∗
μ = ν∗2n because their characteristic functions are different (φ1(ξ) = φ2(ξ) iff φ1(ξ) = 0). A similar argument holds
for χ∗2n+1 �stν∗2n+1 . �

We conclude this section with few remarks on a relation which is very similar to ≤∗
st. It is the analogue of catalytic

majorization in quantum information theory (see Section 4).

Definition 3.8. Let μ,ν ∈ Pexp(R). We say that μ is catalytically stochastically dominated by ν and write μ ≤C
st ν if

there exists a probability measure π ∈ Pexp(R) such that μ ∗ π ≤stν ∗π .

The following lemma shows a connection between the two relations.
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Lemma 3.9. Let μ,ν ∈ Pexp(R). Assume μ ≤∗
st ν. Then μ ≤C

st ν.

Proof. Assume that μ∗n ≤stν∗n for some n. Let π be the probability measure defined by

π = 1

n

n−1∑
k=0

μ∗k ∗ ν∗(n−1−k).

Let also ρ be the measure defined by

ρ = 1

n

n−1∑
k=1

μ∗k ∗ ν∗(n−k),

then one has μ ∗ π = 1
n
μ∗n + ρ and ν ∗ π = 1

n
ν∗n + ρ, and since μ∗n ≤st ν∗n this implies μ ∗ π ≤stν ∗π . Since

π ∈ Pexp(R), we get μ ≤C
st ν. �

From Theorem 3.3 and Lemma 3.9 one can easily derive

Corollary 3.10. The analogue of Theorem 3.3 is true if we substitute ≤∗
st with ≤C

st.

4. Catalytic majorization

This section is dedicated to the study of the majorization relation, the notion which was the initial motivation of
this work. The majorization relation provides, much as the stochastic domination for probability measures, a partial
order on the set of probability vectors. Originally introduced in linear algebra [3,12], it has found many applications
in quantum information theory with the work of Nielsen [13]. We shall not focus on quantum-theoretical aspects of
majorization; we refer the interested reader to [1] and references therein. Here, we study majorization by adapting
previously obtained results for stochastic domination.

The majorization relation is defined for probability vectors, i.e., vectors x ∈ RN with non-negative components
(xi ≥ 0) which sum up to one (

∑
i xi = 1). Before defining precisely majorization, let us introduce some notation.

For d ∈ N∗, let Pd be the set of d-dimensional probability vectors: Pd = {x ∈ Rd s.t. xi ≥ 0,
∑

xi = 1}. Consider
also the set of finitely supported probability vectors P<∞ = ⋃

d>0 Pd . We equip P<∞ with the �1 norm defined by
‖x‖1 = ∑

i |xi |. For a vector x ∈ P<∞, we write xmax for the largest component of x and xmin for its smallest non-zero
component. In this section we shall consider only finitely supported vectors. For the general case, see Section 6. We
shall identify an element x ∈ Pd with the corresponding element in Pd ′ (d ′ > d) or P<∞ obtained by appending null
components at the end of x.

Next, we define x↓, the decreasing rearrangement of a vector x ∈ Pd as the vector which has the same coordinates
as x up to permutation and such that x

↓
i ≥ x

↓
i+1 for all 1 ≤ i < d . We can now define majorization in terms of the

ordered vectors:

Definition 4.1. For x, y ∈ Pd we say that x is majorized by y and we write x ≺ y if for all k ∈ {1, . . . , d}
k∑

i=1

x
↓
i ≤

k∑
i=1

y
↓
i . (9)

Note however that there are several equivalent definitions of majorization which do not use the ordering of the
vectors x and y (see [3] for further details):

Proposition 4.2. The following assertions are equivalent:

(1) x ≺ y,
(2) ∀t ∈ R,

∑d
i=1 |xi − t | ≤ ∑d

i=1 |yi − t |,



620 G. Aubrun and I. Nechita

(3) ∀t ∈ R,
∑d

i=1 (xi − t)+ ≤ ∑d
i=1 (yi − t)+, where z+ = max(z,0),

(4) there is a bistochastic matrix B such that x = By.

There are two operations on probability vectors which are of particular interest to us: the tensor product and the
direct sum. For x = (x1, . . . , xd) ∈ Pd and x′ = (x′

1, . . . , x
′
d ′) ∈ Pd ′ , we define the tensor product x ⊗ x′ as the vector

(xix
′
j )ij ∈ Pdd ′ . We also define the direct sum x ⊕ x′ as the concatenated vector (x1, . . . , xd, x′

1, . . . , x
′
d ′) ∈ Rd+d ′

.
Note that if we take ⊕-convex combinations, we get probability vectors: λx ⊕ (1 − λ)x′ ∈ Pd+d ′ .

The construction which permits us to use tools from stochastic domination in the framework of majorization is the
following (inspired by [11]): to a probability vector z ∈ P<∞ we associate a probability measure μz defined by:

μz =
∑

ziδlog zi
.

These measures behave well with respect to tensor products:

μx⊗y = μx ∗ μy.

The connection between majorization and stochastic domination is provided by the following lemma.

Lemma 4.3. Let x, y ∈ P<∞. Assume that μx ≤stμy . Then x ≺ y.

Proof. We can assume that x = x↓ and y = y↓. Note that

μx[t,∞) =
∑

i:logxi≥t

xi =
∑

i:xi≥exp(t)

xi .

Thus, for all u > 0,
∑

i:xi≥u xi ≤ ∑
i:yi≥u yi . To start, use u = y1 to conclude that x1 ≤ y1. Notice that it suffices to

show that
∑k

i=1 xi ≤ ∑k
i=1 yi only for those k such that xk > yk (indeed, if xk ≤ yk , the (k + 1)th inequality in (9)

can be deduced from the kth inequality). Consider such a k and let xk > u > yk . We get:

k∑
i=1

xi ≤
∑

i:xi≥u

xi ≤
∑

i:yi≥u

yi ≤
k∑

i=1

yi,

which completes the proof of the lemma. �

Remark 4.4. The converse of this lemma does not hold. Indeed, consider x = (0.5,0.5) and y = (0.9,0.1). Obviously,
x ≺ y but 1 = μx[log 0.5,∞) > μy[log 0.5,∞) = 0.9 and thus μx �stμy .

We can describe the majorization relation by the sets:

Sd(y) = {x ∈ Pd s.t. x ≺ y},
where y is a finitely supported probability vector. Mathematically, such a set is characterized by the following lemma,
which is a simple consequence of Birkhoff’s theorem on bistochastic matrices:

Lemma 4.5. For y a d-dimensional probability vector, the set S(y) is a polytope whose extreme points are y and its
permutations.

The initial motivation for our work was the following phenomena discovered in quantum information theory (see
[10] and respectively [2]). It turns out that additional vectors can act as catalysts for the majorization relation: there
are vectors x, y, z ∈ P<∞ such that x ⊀ y but x ⊗z ≺ y ⊗z; in such a situation we say that x is catalytically majorized
(or trumped) by y and we write x ≺T y. Another form of catalysis is provided by multiple copies of vectors: we can
find vectors x and y such that x ⊀ y but still, for some n ≥ 2, x⊗n ≺ y⊗n; in this case we write x ≺M y. We have
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thus two new order relations on probability vectors, analogues of ≤C
st and respectively ≤∗

st. As before, for y ∈ Pd , we
introduce the sets

Td(y) = {x ∈ Pd s.t. x ≺T y}
and

Md(y) = {x ∈ Pd s.t. x ≺M y}.
It turns out that the relations ≺T and ≺M (and thus the sets Td(y) and Md(y)) are not as simple as ≺ and Sd(y).

It is known that the inclusion Md(y) ⊂ Td(y) holds (this is the analogue of Lemma 3.9) and that it can be strict [8].
In general, the sets Td(y) and Md(y) are neither closed nor open, and although Td(y) is known to be convex, nothing
is known about the convexity of Md(y) (such questions have been intensively studied in the physical literature; see
[4,6] and the references therein). As explained in [1] it is natural from a mathematical point of view to introduce the
sets T<∞(y) = ⋃

d∈N Td(y) and M<∞(y) = ⋃
d∈N Md(y). A key notion in characterizing them is Schur-convexity:

Definition 4.6. A function f :Pd → R is said to be

• Schur-convex if f (x) ≤ f (y) whenever x ≺ y,
• Schur-concave if f (x) ≥ f (y) whenever x ≺ y,
• strictly Schur-convex if f (x) < f (y) whenever x � y,
• strictly Schur-concave if f (x) > f (y) whenever x � y,

where x � y means x ≺ y and x↓ 
= y↓.

Examples are provided as follows: if Φ : R → R is a (strictly) convex/concave function, then the following function
h :Pd → R defined by h(x1, . . . , xd) = Φ(x1) + · · · + Φ(xd) is (strictly) Schur-convex/Schur-concave.

For x ∈ Pd and p ∈ R, we define Np(x) as

Np(x) =
∑

1≤i≤d

xi>0

x
p
i .

We will also use the Shannon entropy H

H(x) = −
d∑

i=1

xi logxi.

Note that −H(x) is the derivative of p �→ Np(x) at p = 1 and that N0(x) is the number of non-zero components of
the vector x. These functions satisfy the following properties:

(1) If p > 1, Np is strictly Schur-convex on P<∞.
(2) If 0 < p < 1, Np is strictly Schur-concave on P<∞.
(3) If p < 0, Np is strictly Schur-convex on Pd for any d . However, for p < 0, it is not possible to compare vectors

with a different number of non-zero components.
(4) H is strictly Schur-concave on P<∞.

One possible way of describing the relations ≺M and ≺T is to find a family (the smallest possible) of Schur-convex
functions which characterizes them. In this direction, Nielsen conjectured the following result:

Conjecture 4.7. Fix a vector y ∈ Pd, with non-zero coordinates. Then Td(y) = Md(y) and they both are equal to the
set of x ∈ Pd satisfying:

(C1) For p ≥ 1, Np(x) ≤ Np(y).
(C2) For 0 < p ≤ 1, Np(x) ≥ Np(y).
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(C3) For p < 0, Np(x) ≤ Np(y).

Here, the closures are taken in Rd (recall that neither Md(y) nor Td(y) is closed). By the previous remarks, any
vector in Td(y) or Md(y) (and by continuity, also in the closures) must satisfy conditions (C1)–(C3). Recently, Turgut
[17] provided a complete characterization of the set Td(y), which implies in particular that Nielsen’s conjecture is true
for Td(y). His method, completely different from ours, consists in solving a discrete approximation of the problem
using elementary algebraic techniques. Note however that the inclusion Md(y) ⊂ Td(y) is strict in general, and thus
the characterization of Md(y) is still open. We shall now focus on the set Md(y). Conjecture 4.7 can be reformulated
as follows: if x, y ∈ Pd and satisfy (C1)–(C3), then there exists a sequence (xn) in Md(y) such that (xn) converges to
x. If we relax the condition that xn and y have the same dimension, we can prove the following two theorems.

Theorem 4.8. If x, y ∈ Pd and satisfy (C1), then there exists a sequence (xn) in M<∞(y) such that (xn) converges to
x in �1-norm.

Theorem 4.9. If x, y ∈ Pd and satisfy (C1)–(C2), then there exists a sequence (xn) in Md+1(y) such that (xn) con-
verges to x.

Since Md(y) ⊂ Td(y), both theorems have direct analogues for T<∞(y) and respectively Td+1(y). Theorem 4.8
restates the authors’ previous result in [1]; however, the proof presented in the next section is more transparent than
the previous one. Theorem 4.9 answers a question of [1]. It is an intermediate result between Theorem 4.8 and Con-
jecture 4.7.

5. Proof of the theorems

We show here how to derive Theorems 4.8 and 4.9. We first state a proposition which is the translation of Proposi-
tion 2.5 in terms of majorization.

Proposition 5.1. Let x, y ∈ P<∞. Assume that x and y have non-zero coordinates, and respective dimensions dx

and dy . Assume that:

(1) xmin < ymin.
(2) xmax < ymax.
(3) H(x) > H(y).
(4) Np(x) < Np(y) for all p ∈]1,+∞[.
(5) Np(x) > Np(y) for all p ∈] − ∞,1[.
Then there exists an integer N such that for all n ≥ N , we have x⊗n ≺ y⊗n.

It is important to notice that since N0(x) = dx and N0(y) = dy , the conditions of the proposition can be satisfied
only when dx > dy . This is the main reason why our approach fails to prove Conjecture 4.7.

Proof. One checks that the probability measures μx and μy associated to the vectors x and y satisfy the hypotheses
of Proposition 2.5. Indeed, for p ∈ R, one has

Np(x) =
∫

eλ dμx, with λ = p − 1.

As μ∗n
x = μx⊗n , there exists a integer N such that for n ≥ N , we have μx⊗n ≤st μy⊗n . It remains to apply the

Lemma 4.3 in order to complete the proof. �

The main idea used in the following proofs is to slightly modify the vector x so that the couple (x, y) satisfies the
hypotheses of Proposition 5.1.
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Proof of Theorem 4.8. Let x, y ∈ Pd satisfying Np(x) ≤ Np(y) for all p ≥ 1. Since N1(x) = N1(y) = 1 and −H =
dNp

dp
|p=1, we also have −H(x) ≤ −H(y). For 0 < ε < d

d+1xmin, define xε ∈ Pd+1 by

xε =
(

x1 − ε

d
, . . . , xd − ε

d
, ε

)
.

One checks that xε � x and therefore Np(xε) < Np(x) ≤ Np(y) for any p > 1, and −H(xε) < −H(x) ≤ −H(y).

Since −H = dNp

dp
|p=1 and the function p �→ Np(·) is continuous, this means that there exists some 0 < pε < 1 such

that Np(xε) ≥ Np(y) for any p ∈ [pε,1]. Choose an integer k ≥ 2, depending on ε, such that

k > max

{
d1/(1−pε)ε−pε/(1−pε),

ε

ymin
, d

}

and define xε,k ∈ P<∞ as

xε,k =
(

x1 − ε

d
, . . . , xd − ε

d
,
ε

k
, . . . ,

ε

k︸ ︷︷ ︸
k times

)
.

For any 0 ≤ p ≤ pε we have

Np(xε,k) ≥ k

(
ε

k

)p

> d ≥ Np(y),

and for any p < 0 we have

Np(xε,k) ≥ k

(
ε

k

)p

> dy
p

min ≥ Np(y).

We also have xε,k � xε and therefore Np(xε,k) > Np(xε) ≥ Np(y) for pε ≤ p < 1. Similarly, Np(xε,k) < Np(xε) ≤
Np(y) for p > 1. This means that xε,k and y satisfy the hypotheses of Proposition 5.1, and therefore xε,k ∈ M<∞(y).
Since ‖xε,k − x‖1 ≤ 2ε and ε can be chosen arbitrarily small, this completes the proof of the theorem. �

Proof of Theorem 4.9. Let x, y ∈ Pd satisfying Np(x) ≤ Np(y) for p ≥ 1 and Np(x) ≥ Np(y) for 0 ≤ p ≤ 1. As in
the previous proof, we consider for 0 < ε < d

d+1xmin the vector xε defined as

xε =
(

x1 − ε

d
, . . . , xd − ε

d
, ε

)
.

We are going to show using Proposition 5.1 that for ε small enough, xε is in Md+1(y). Note that xε � x, and therefore
Np(xε) < Np(x) ≤ Np(y) for p > 1, and Np(xε) > Np(x) ≥ Np(y) for 0 < p < 1. Also, since N0(xε) = d + 1
and N0(y) = d , there exists by continuity a number p0 < 0 (not depending on ε) such that Np(y) < d + 1 for all
p ∈ [p0,0]. Thus for p ∈ [p0,0] we have

Np(xε) ≥ N0(xε) = d + 1 > Np(y).

It remains to notice that for ε < d1/p0ymin, we have for any p ≤ p0

Np(xε) ≥ εp > dy
p

min ≥ Np(y).

We checked that xε and y satisfy the hypotheses of Proposition 5.1, and therefore xε ∈ Md+1(y). Since ‖xε −y‖1 ≤ 2ε

and ε can be chosen arbitrarily small, this completes the proof of the theorem. �
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6. Infinite dimensional catalysis

In light of the recent paper [14], we investigate the majorization relation and its generalizations for infinitely-supported
probability vectors. Let us start by adapting the key tools used in the previous section to this non-finite setting.

First, note that when defining the decreasing rearrangement x↓ of a vector x, we shall ask that only the non-zero
components of x and x↓ should be the same up to permutation. The majorization relation ≺ extends trivially to P∞,
the set of (possibly infinite) probability vectors. The same holds for the relations ≺M and ≺T (note however that for
≺T , we allow now infinite-dimensional catalysts).

Note that for a general probability vector, there is no reason that Np for p ∈ (0,1) or H should be finite. We have
thus to replace the hypothesis (C1) by the following one:

(C1′) For p ≥ 1, Np(x) ≤ Np(y) and H(x) < ∞.

Notice however that the inequalities Np(x) ≤ Np(y) for p → 1+ imply that H(y) ≤ H(x) < ∞ and thus both
entropies are finite.

Theorem 6.1. If x, y ∈ P∞ and satisfy (C1′), then, for all ε > 0 there exist finitely supported vectors xε, yε ∈ P<∞
and n ∈ N such that ‖x − xε‖1 ≤ ε, ‖y − yε‖1 ≤ ε and x⊗n

ε ≺ y⊗n
ε .

Proof. Fix ε > 0 small enough. If y has infinite support, consider the truncated vector yε = (y1 +R(ε), y2, . . . , yN(ε)),
where N(ε) and R(ε) are such that R(ε) = ∑∞

i=N(ε)+1 yi ≤ ε; otherwise put yε = y. Clearly, we have ‖y − yε‖1 ≤ 2ε

and Np(yε) ≥ Np(y) for all p > 1. If the vector x is finite, use Theorem 4.8 with xε = x and yε to conclude. Otherwise,
consider M(ε) such that S(ε) = ∑∞

i=M(ε)+1 xi ≤ ε and define the vector

xε =
(

x1, x2, . . . , xM(ε),
S(ε)

k
,
S(ε)

k
, . . . ,

S(ε)

k︸ ︷︷ ︸
k times

)
,

where k is a constant depending on ε which will be chosen later. For all k ≥ 1, xε is a finite vector of size M(ε) + k

and we have ‖x − xε‖1 ≤ 2ε. Let us now show that we can chose k such that Np(xε) ≤ Np(x) for all p ≥ 1. In order
to do this, consider the function φ : (1,∞) → R+

φ(p) =
[

S(ε)p∑∞
i=M(ε)+1 x

p
i

]1/(p−1)

.

The function φ takes finite values on (1,∞) and limp→∞ φ(p) = S(ε)
xM(ε)+1

< ∞. Moreover, as the Shannon entropy of
x is finite, one can also show that limp→1+ φ(p) < ∞. Thus, the function φ is bounded and we can choose k ∈ N such
that k ≥ φ(p) for all p ≥ 1. This implies that

Np(xε) − Np(x) = k

(
S(ε)

k

)p

−
∞∑

i=M(ε)+1

x
p
i ≤ 0.

In conclusion, we have found two finitely supported vectors xε and yε such that ‖x − xε‖1 ≤ 2ε, ‖y − yε‖1 ≤ 2ε and
Np(xε) ≤ Np(yε) for all p ≥ 1. To conclude, it suffices to apply Theorem 4.8 to xε and yε . �
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