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ON THE INVERSE FIRST-PASSAGE-TIME PROBLEM
FOR A WIENER PROCESS1,2

BY CRISTINA ZUCCA AND LAURA SACERDOTE

University of Torino

The inverse first-passage problem for a Wiener process (Wt )t≥0 seeks to
determine a function b : R+ → R such that

τ = inf{t > 0|Wt ≥ b(t)}
has a given law. In this paper two methods for approximating the unknown
function b are presented. The errors of the two methods are studied. A set of
examples illustrates the methods. Possible applications are enlighted.

1. Introduction. Many phenomena can be modeled as first passage time of
suitable Markov processes through constant or time varying boundaries. The first-
passage problem has a long history and a large number of applications that range
from finance to engineering and biology [see, e.g., Ricciardi and Sato (1990) for
some references]. Yet explicit solutions to the first-passage problem are known
only in a limited number of special cases (including linear or quadratic bound-
aries).

In modeling generally one describes the dynamics of the involved variables
via a suitable stochastic process {Xt, t ≥ 0} constrained by an assigned bound-
ary b : 〈0,∞〉 → R satisfying b(0+) ≥ 0 and investigates distribution features of
the first passage time (FPT)

τb = inf{t > 0|Wt ≥ b(t)}(1.1)

of Xt over b. This is the direct FPT problem. However, there are also instances
when the underlying stochastic process is assigned, one knows or estimates the
FPT distribution Fb and wishes to determine the corresponding boundary shape.
This is the inverse first passage time (IFPT) problem. Different applications of
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the IFPT problem can be listed. In a reliability context one could compare perfor-
mances of alternative objects, characterized by their lifetime distribution compar-
ing the shapes of the boundaries. In this case one should assume the same underly-
ing stochastic process to describe the evolution toward the crash of the object and
to identify the crash time as an observed FPT of the process through an unknown
boundary. Other interesting applications can arise when the resulting boundary ex-
hibits a periodic behavior. This fact can suggest particular features of the modeled
phenomenon in a finance or in a neurobiological context. Despite its importance
in applications, the literature focuses only on specific problems [cf. Sacerdote and
Zucca (2003a, 2003b) and Sacerdote, Villa and Zucca (2006)] while there is a lack
of mathematical results. Here we try to cover this gap focusing on the inverse first
passage time problem for the Wiener process.

The IFPT problem was brought to our attention by Professor Goran Peskir, who
presented us its first formulation by A. Shiryaev in 1976 (during a Banach center
meeting). The original Shiryaev question considered the case when Fb is an expo-
nential distribution. There exist two early papers dealing with the existence prob-
lem written by Dudley and Gutmann (1977) and Anulova (1980). These papers
provide the existence of some stopping times for given Fb; however, these stop-
ping times are not of the form (1.1) for some function b. Furthermore, in Capocelli
and Ricciardi (1972) the properties characterizing the FPT distribution in the case
of the constant boundary are discussed.

The problem of the existence and uniqueness of b is still open. Through the
paper we do not enter into the question of the existence of b but assume that such
a boundary exists, is unique and sufficiently regular (continuous or C1).

The main aim of the present paper is to propose two algorithms for approximat-
ing the unknown function b when Fb is given. After some preliminaries presented
in Section 2, in Section 3 we introduce a first approach to the IFPT problem. It
is based on the idea to approximate b by a piecewise-linear boundary c for which
the law of τc can be computed. It leads to a Monte Carlo method for determin-
ing c. The second approach (Section 5) is based on the classic idea due to Volterra
(around 1896) on how to approximate an integral equation (of the first kind) by
a system of n equations in n unknowns. Since the integral equation for b is non-
linear, the resulting system is also nonlinear. We propose a numerical method for
approximating b at finitely many points.

Both methods produce an approximation of the boundary value. Hence it is
necessary to evaluate the respective errors, that is, the difference between the exact
unknown value and the computed approximation. We limit the study of the error
at the discretization time knots obtained with constant discretization step h. The
error of the first method is discussed in Section 4. It is due to multiple causes but
it is dominated by the error due to the substitution of the continuous boundary b

with a piecewise-linear boundary c and it is O(h2) . Furthermore, due to the use of
the Monte Carlo method to evaluate some involved integrals, the resulting bound-
ary is estimated with a fixed confidence level α. The error of the second approach
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is evaluated in Section 6 and it is O(h) or O(h2) depending upon the numerical
method used to evaluate the involved integral. In Section 7 we illustrate the good-
ness of the proposed methods by means of a set of examples. Finally, in Section 8
we consider the boundary corresponding to the exponential FPT distribution and
we give a numerical answer to the 1976 Shiryaev question.

2. First passage time: the direct and inverse problem. Given a standard
Wiener process W = (Wt)t≥0 started at zero, and a sufficiently regular function
b : 〈0,∞〉 → R satisfying b(0+) ≥ 0, denote

τb = inf{t > 0|Wt ≥ b(t)}(2.1)

the FPT of W over b, and set

fb(t) = d

dt
P(τb ≤ t)(2.2)

to denote its density function for t > 0. In the sequel we also need to consider
the Wiener process starting in x0 at time t0; in this case we write fb(t |x0, t0) in
spite of fb(t). Throughout we assume that all regularity assumptions ensuring the
existence of the objects introduced and properties imposed are fulfilled.

By pa,b(t, x|s, y), we denote the transition probability density function of W at
t constrained by the absorbing boundary b over [s, t] given that Ws = y, that is,

pa,b(t, x|s, y) = ∂

∂x
P(Wt ≤ x, τb > t |Ws = y)(2.3)

for x ≤ b(t) with t > s ≥ 0 and y < b(s) given and fixed.
Under the hypothesis that the stochastic process (in this case the Wiener

process) is assigned, the direct first-passage time problem seeks to determine Fb

when b is given. The inverse first-passage time problem seeks to determine b when
Fb is given. It is interesting to note that the IFPT problem looks for the boundary
b(t) that is a deterministic time dependent function. Furthermore, as proved by
Strassen (1967), if the boundary b ∈ C1(R+), then the probability distribution of
the FPT is absolutely continuous with continuous density.

In the literature there exist some equations that relate quantities (2.2) and (2.3),
allowing, in a limited number of cases, to solve the direct FPT problem [cf. Ric-
ciardi and Sato (1990)]. In Section 2.1 we list some existing closed form results for
the Wiener process. These results will be used in Sections 3 and 7 to numerically
validate the reliability of the two algorithms proposed. In absence of the analytical
solution, the direct problem can be solved numerically, making use of one of the
algorithms proposed in the literature [Buonocore, Nobile and Ricciardi (1987) and
Zucca (2002)]. In Section 7 we use the algorithm introduced in Buonocore, Nobile
and Ricciardi (1987) to estimate the FPT p.d.f. for a set of assigned boundaries.
These numerical evaluations make it possible to enlarge the test set for the vali-
dation of the IFPT algorithms proposed in this paper. Finally, we briefly recall in
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Section 2.2 some results that will be useful later on [cf. Peskir (2002)], since one
of the two algorithms proposed for the IFPT method requires the knowledge of
b(0).

In the sequel we will assume that t0 = x0 = 0 when this gives no loss of gener-
ality.

2.1. Known boundaries. The first-passage time density fb for a Wiener
process is known explicitly in a few cases. The following three will be of interest
in the sequel:

1. Linear boundary. If the boundary is given by

c(t) = α + βt(2.4)

with α > x0 and β ∈ R, then [cf. Doob (1949), page 397, and Malmquist (1954),
page 526]

fc(t |t0, x0) = α − x0√
2π(t − t0)3

e−(α+β(t−t0)−x0)
2/(2(t−t0))

(2.5)

= α − x0

(t − t0)3/2 ϕ

(
α + β(t − t0) − x0√

(t − t0)

)

for t > 0, where ϕ(x) = (1/
√

2π)e−x2/2 is the standard normal probability density
function. Note that (2.5) is known as the Bachelier–Lévy formula.

2. Daniels boundary. If the boundary is given by

d(t) = α

2
− t

α
log

(
β

2
+

√
β2

4
+ γ e−α2/t

)
,(2.6)

where α > 0, β ≥ 0 and γ > −β2/4, then [cf. Daniels (1969)]

fd(t) = 1√
2πt3

(
e−d(t)2/(2t) − β

2
e−(d(t)−α)2/(2t)

)
(2.7)

= 1

t3/2

(
ϕ

(
d(t)√

t

)
− β

2
ϕ

(
d(t) − α√

t

))
for t > 0.

3. Piecewise-linear boundary. If the boundary is given by

c(t) = αi + βit for t ∈ [ti−1, ti] and i ≥ 1,(2.8)

where ti = t0 + ih, h > 0 and αi, βi ∈ R with t0 ≥ 0. Setting αi+1 = αi + βiti , we
get that t 
→ c(t) is continuous on [t0,∞〉. Let us denote by ci = c(ti) the knots of
c for i ≥ 0.
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The transition density function of W in x1, x2, . . . , xn at t1, t2, . . . , tn con-
strained by the absorbing piecewise-linear boundary c over [t0, tn] given that
Wt0 = x0 < α1 is [recall (2.3) above]

pa,c(t1, x1; t2, x2; . . . ; tn, xn|t0, x0)

=
n∏

i=1

pa,c(ti, xi |ti−1, xi−1)

(2.9)

=
n∏

i=1

(
1 − e−2(ci−xi)(ci−1−xi−1)/(ti−ti−1)

)

× 1√
2π(ti − ti−1)

exp
(
−(xi − xi−1)

2

2(ti − ti−1)

)
for (x1, x2, . . . , xn) ∈ R

n with xi ≤ ci for 1 ≤ i ≤ n and x0 < c0 where t0 < t1 <

t2 < · · · < tn are given and fixed. This implies

P(Wt1 ∈ C1, . . . ,Wtn ∈ Cn, τc > tn|Wt0 = x0)
(2.10)

=
∫
C1

· · ·
∫
Cn

pa,c(t1, x1; . . . ; tn, xn|t0, x0) dx1 · · · dxn

for any Borel set Ci ⊆ 〈−∞, ci] with 1 ≤ i ≤ n.
The identity (2.9) is a well-known fact in the case n = 1 [cf. Doob (1949),

equation (4.2) and Section 5, or Durbin (1971), Lemma 1]. The case of general
n ≥ 2 [cf. Wang and Pötzelberger (1997)] follows readily by induction arguments
using that W has stationary independent increments.

Since there are only a few cases where the FPT density function is known in
closed form, there has been a big effort in the past to find numerical approximation
for it. One of the most used algorithms has been presented in Buonocore, Nobile
and Ricciardi (1987). This method solves a Volterra integral equation of the second
kind derived from the Fortet equation but characterized by a nonsingular kernel. In
Section 7 we apply this method to determine numerically the FPT density function
in the case of a time periodic oscillating boundary.

2.2. Limits at zero. One of the key issues in the numerical treatment of the
inverse first-passage problem is to know b(0+) in terms of fb(0+) and vice versa.
In this section we display some known results on this relation. We will make use
of these facts in Sections 7 and 8 below.

In the notation of Section 2, let W = (Wt)t≥0 be a standard Wiener process
started at zero, let b : 〈0,∞〉 → R be a continuous function satisfying b(0+) ≥ 0,
and let us assume that the first-passage time τb from (2.1) has a continuous density
function fb having a limit fb(0+) in [0,∞]. Then the following facts are known
to hold [cf. Peskir (2002)].
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If there are ε > 0 and δ > 0 such that

b(t) ≥
√

(2 + ε)t log(1/t)(2.11)

for all t ∈ 〈0, δ〉, then fb(0+) = 0. If there is δ > 0 such that

b(t) ≤
√

2t log(1/t)(2.12)

for all t ∈ 〈0, δ〉, then fb(0+) = +∞. Moreover, if we define a boundary g by
setting

g(t) =
√

2t log(1/t) + t log log(1/t) + ct(2.13)

for t ∈ 〈0, δc〉 with c ∈ R given and fixed, then the limit fg(0+) exists and is given
by

fg(0+) = e−c/2
√

4π
.(2.14)

Observe that g from (2.13) locally at zero lies between the two functions appear-
ing on the l.h.s. of (2.11) and (2.12) respectively (where ε > 0 may be as small as
one likes).

3. First approach: a piecewise linear approximation via Monte Carlo simu-
lation. In this section we face the IFPT problem by looking for a piecewise-linear
approximation of the unknown boundary b with an approach that can be consid-
ered analogous to the method used by Durbin (1971) for the direct FPT problem.
Thus, we determine the piecewise-linear boundary c (2.8) that approximates the
exact boundary b corresponding to the given first-passage density fb.

First we consider the inverse problem when fb(0+) = 0 and we assume that
b(0+) > 0 is known. Then, using the notation of Section 2 (with t0 = 0), we set
c0 = b(0+) and, thus, α1 = b(0+) as well. When b(0+) is unknown we can guess
its value, but in this case the error at the initial knot can dominate the final one.
Since the resulting algorithm uses the Monte Carlo approach to estimate involved
integrals, henceforth we call it the PLMC (Piecewise Linear Monte Carlo) method.
In the following we consider a time discretization ti = t0 + ih, i = 1,2, . . . ,

where h is a positive constant. The choice h constant is made to simplify our
notation, but the method can be easily extended to a nonconstant h.

The driving idea of our algorithmic approach is to equate the probability of the
FPT of W through c in 〈ti−1, ti] and the analogous probability determined by the
given first-passage density fb in the same interval. The resulting equations allow to
determine the coefficients αi and βi in (2.8) successively on the intervals 〈ti−1, ti]
for i ≥ 1. The algorithm can be divided in two successive steps.
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STEP 1. We determine the value of β1 in (2.8) such that the probability of the
first-passage of W through c in (0, t1] equals the probability of the first-passage
of W through b in (0, t1], that is, we look for the value of β such that∫ t1

0
fc(t) dt =

∫ t1

0
fb(t) dt,(3.1)

where fc(t) is given by (2.5).

STEP 2. Given α1, . . . , αn and β1, . . . , βn with n ≥ 1, we set αn+1 = αn+βntn
and we determine the value of βn+1 such that the probability of the first-passage
time of W through c in (tn, tn+1] equals the probability of the first-passage time
of W through b in (tn, tn+1], that is, we look for the value of β such that∫ tn+1

tn

∫ cn

−∞
· · ·

∫ c1

−∞

(
fc(t |tn, xn)

n∏
i=1

pa,c(ti, xi |ti−1, xi−1)

)
dx1 · · · dxn dt

(3.2)

=
∫ tn+1

tn

fb(t) dt,

where fc(t |tn, xn) is the density function of the first-passage time of W over
αn+1 + βn+1t for t > tn given that Wtn = xn, that is, it is given by (2.5) with
α := cn and β = βn+1, while pa,c(ti, xi; ti−1, xi−1) is given by (2.9) for 1 ≤ i ≤ n

(where t0 = x0 = 0).

REMARK 3.1. The product appearing on the l.h.s. of (3.2) involves the known
functions (2.9) depending upon α1, . . . , αn and β1, . . . , βn determined in the pre-
ceding step. The unknown αn+1 and βn+1 appear in (3.2) only within the function
fc(t |tn, xn). Furthermore, αn+1 can (by continuity of c at tn) be expressed in terms
of βn+1 and the known αn and βn as follows:

αn+1 = αn + (βn − βn+1)tn(3.3)

so that we only need to determine βn+1 from the equation (3.2).

Let us now detail the two steps of the algorithm. In order to solve the equation
(3.1) and (3.2) for the unknown β1 and βn respectively, it is necessary to compute
the integrals involved.

Discretizing the integral of the l.h.s. in (3.1) by a rectangular method [cf. Atkin-
son (1989)], we obtain a nonlinear function of the unknown β1 while the r.h.s. of
(3.1) is easily computable by standard means. Various approximate methods can
then be used to solve the resulting equation. Here we use the middle point method.

In the successive steps, mainly when n becomes large, the multiple integrals of
the l.h.s. of (3.2) cannot be handled by standard numerical methods. To handle the
problem, we adapt the Monte Carlo method proposed by Wang and Pötzelberger
(1997) to our case.
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For this, note that, using expression (2.5) for fc(t |tn, xn) and (3.3), we get

H(βn+1;xn) :=
∫ tn+1

tn

fc(t |tn, xn) dt

=
∫ tn+1

tn

cn − xn

(t − tn)3/2 ϕ

(
cn − xn + βn+1(t − tn)√

t − tn

)
dt

= 1 − �

(
βn+1(tn+1 − tn) + (cn − xn)√

tn+1 − tn

)

+ e−2βn+1(cn−xn)�

(
βn+1(tn+1 − tn) − (cn − xn)√

tn+1 − tn

)
(3.4)

= 1 − �

(
βn+1(tn+1 − tn) + αn + βntn − xn√

tn+1 − tn

)
+ e−2βn+1(αn+βntn−xn)

× �

(
βn+1(tn+1 − tn) − αn − βntn + xn√

tn+1 − tn

)
for each n ≥ 1. Here �(x) = ∫ x

−∞ ϕ(z) dz is the integral of the standard normal
density. It follows by (2.9) and (3.4) that the equation (3.2) can be rewritten as
follows:

E

(
H(βn+1;Xn)

n∏
i=1

I (Xi ≤ ci)e
−2(ci−Xi)(ci−1−Xi−1)/(ti−ti−1)

)
(3.5)

=
∫ tn+1

tn

fb(t) dt,

where Xi ∼ N(0, ti − ti−1), i = 1, . . . , n, are independent random variables (and
X0 ≡ 0). A Monte Carlo method can now be used to estimate the l.h.s. of (3.5).

In order to find an approximation of βn+1, we can use, as in the Step 1 above,
the iterative middle point procedure. Using then (3.3), one obtains αn+1 and thus
determines c on (tn, tn+1].

REMARK 3.2. For each n ≥ 1 given and fixed, the equation (3.5) defines a
nonlinear function of the unknown parameter βn+1 depending on it only through H

from (3.4). Since the l.h.s. of (3.5) is monotone in βn+1, equation (3.5) admits a
unique solution βn+1 ∈ R.

REMARK 3.3. Finally, we modify the algorithm to include the case
fb(0+) > 0. In this case the equation (3.1) cannot be used on (0, t1] since
the piecewise-linear boundary c must satisfy c(0+) > 0, while the condition
fb(0+) > 0 implies c(0+) = 0 (cf. Section 2.2). However, we can use (2.14)
to estimate the boundary in a neighborhood of zero. The use of this expression on
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the first discretization interval allows then the iteration of the previous algorithm
on the successive intervals if we disregard the possible crossing happened in the
neighborhood of zero.

4. PLMC method error estimation. The errors involved in the approxima-
tion of the boundary values via the PLMC method can be classified in three types
according to the causes generating them. The first one is due to the piecewise linear
approximation of the boundary, the second one is due to the Monte Carlo approx-
imation of the integrals on the l.h.s. of (3.2) and the third one is due to the root
method used to compute the zeros of (3.2). The last error can be disregarded since
it depends on a tolerance that can be fixed in advance to make it negligible with
respect to the other errors. In the following subsections we successively focus the
study on the other two errors involved in the method. We explicitly underline how
these two errors have different mathematical natures. Indeed, the first one, as the
root error, is purely numerical, being determined by our approximation of the un-
known function via a piecewise linear one. On the contrary, the second error has a
statistical nature since it is related with the evaluation of an integral via a Monte
Carlo method.

4.1. Error due to the piecewise linear approximation. The PLMC method es-
timates the boundary values through a piecewise linear approximation, but we limit
the study of the error at the knots tn, n = 1,2, . . . . Furthermore, at this step we as-
sume the absence of other causes of error and we define error of the method at
the nth knot the distance between the boundary b and its approximated value c

on the nth knot |εPLMC
n | = |b(tn) − c(tn)|, n = 1,2, . . . . In order to gain an esti-

mate of such error, we first consider in Lemma 4.1 the error due to the boundary
linearization on a single step. In doing this analysis we hypothesize to know the
true value of the boundary on the previous intervals. A second step considered in
Lemma 4.2 studies the propagation of the error, that is, we admit an error δ in the
estimation of the boundary value at node n − 1 and we evaluate its consequences
on the next node n. Finally, in Theorem 4.3 we determine the global error of the
PLMC Method.

LEMMA 4.1. Let (Wt)t≥0 be a Wiener process bounded by a monotone con-
cave (or convex) boundary b ∈ C2([0,∞)). If we approximate in (0, tn] the bound-
ary b(t) with the boundary ĉn(t), for n = 1,2, . . . , defined by

ĉn(t) =
{

b(t), t ∈ (0, tn−1],
b(tn−1) + β̂n(t − tn−1), t ∈ [tn−1,tn],(4.1)

the resulting error at the knot tn, as h → 0, is

|b(tn) − ĉ(tn)| ∼ O(h2).
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FIG. 1. Boundary b(t), its tangent B1(t) in t = 0, the linear boundary c(t) determined by the
PLMC method and the secant B2(t) in t = h.

PROOF. We limit ourself to the case of a concave boundary since the convex
case can be dealt in a similar way. Moreover, we split the proof in two parts, first
taking into account the first discretization step and later a generic step.

STEP 1. Let us consider the following three straight lines (cf. Figure 1) on
(0, h]:
1. B1(t): the tangent to b(t) in t = 0,

y = α1 + b′(0)t.

2. c(t): the linear boundary determined via the PLMC method in the first dis-
cretization interval (0, h],

y = α1 + β1t.

3. B2(t): the secant through (0, α1) and (h, b(h)),

y = α1 + b(h) − α1

h
t.

Due to the concavity and monotonicity hypotheses on the boundary b(t), it
holds for all t ∈ (0, h]

B2(t) ≤ b(t) ≤ B1(t),

that implies [cf. Sacerdote and Smith (2004)]

P
(
τB1 ∈ (0, h]) ≤ P

(
τc ∈ (0, h]) = P

(
τb ∈ (0, h]) ≤ P

(
τB2 ∈ (0, h]).

Hence, we get

B2(t) ≤ c(t) ≤ B1(t),
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that implies the ordering of the slopes

b(h) − α1

h
≤ β1 ≤ b′(0).(4.2)

Note that β1 is a function of h: β1(h). When h → 0, due to the hypothesis
α1 = b(0), the inequality (4.2) implies

β1 = β1(h)−→
h→0

b′(0).(4.3)

On the first knot the distance between b(t) and the linear boundary of the PLMC
method results in∣∣(α1 + β1(h)h

) − b(h)
∣∣ =

∣∣∣∣(b(0) + β1(h)h
) −

(
b(0) + b′(0)h + b′′(ξ)

2! h2
)∣∣∣∣

=
∣∣∣∣(β1(h) − b′(0)

)
h − b′′(ξ)

2! h2
∣∣∣∣

≤ ∣∣(β1(h) − b′(0)
)
h
∣∣ + ∣∣∣∣b′′(ξ)

2! h2
∣∣∣∣

≤ |β ′
1(η)h2| +

∣∣∣∣b′′(ξ)

2! h2
∣∣∣∣

= O(h2) + O(h2) = O(h2),

where we made use of (4.3), of the mean value theorem, of the triangular inequality
and of the McLaurin expansion of b(t) and β1(t). Here ξ ∈ (0, h] and η ∈ (0, h].

STEP n. The boundary (4.1) coincides with the boundary b(t) on (0, tn−1) and
it is determined solving

P(τb ∈ [tn−1, tn]) = P(τĉ ∈ [tn−1, tn])(4.4)

on [tn−1, tn]. Equation (4.4) implies

P{τb ∈ [tn−1, tn]|Xt < b(t), t ≤ tn−1}P{Xt < b(t), t ≤ tn−1}
(4.5)

= P{τĉ ∈ [tn−1, tn]|Xt < ĉn(t), t ≤ tn−1}P{Xt < ĉn(t), t ≤ tn−1}
and, using (4.1), one has

P
(
τb ∈ [tn−1, tn]|Xt < b(t), t ≤ tn−1

)
(4.6)

= P
(
τ
b(tn−1)+β̂n(t−tn−1)

∈ [tn−1, tn]|Xt < b(t), t ≤ tn−1
)
.

The proof of Step 1 can now be repeated to the conditional probabilities in (4.6) in
order to complete the proof. �

Let us denote α̂n the estimate of αn and let β̂n(α̂n) be the corresponding estimate
of the slope βn(αn) obtained with the PLMC method on the interval [tn−1, tn].
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LEMMA 4.2. An error |δ| = |α̂n − αn| propagates on the estimate β̂n(α̂n):

|�βn| = |βn(αn) − β̂n(α̂n)| ∼ O(δ).

PROOF. We separate the proof in two parts; the first one concerning the case
of the first interval and the second one concerning the generic nth interval.

STEP 1. Let us first prove that β1 = β1(α1) is a continuous and differentiable
function. When α1 = b(0) define

F1(α1, β1) := 1 −
∫ α1+β1t1

−∞
(
1 − e−2α1/t1(α1+β1t1−x)) 1√

2πt1
e−x2/(2t1) dx − k1,

where k1 is the r.h.s. of (3.1). Recognizing the first two terms as the l.h.s. of (3.1),
equation (3.1) becomes F1(α1, β1) = 0. This is an implicit equation in β1 and α1
that admits a continuous and differentiable solution β1 = β1(t) if Dini’s theorem
holds. The hypothesis of Dini’s theorem is verified since

∂F1(α1, β1)

∂β1
= −

∫ α1+β1t1

−∞
2α1√
2πt1

e−2α1/t1(α1+β1t1−x)−x2/(2t1) dx

is nonzero for all α1, β1, having for the hypothesis α1 �= 0. Hence, we get that β1 =
β1(α1) is a continuous and differentiable function and the error connected with the
use of α̂1 in spite of α1 is propagated on β1. Hence, β1 becomes β̂1 = β1 + �β1
with

�β1 = β1(α1 + δ) − β1(α1) ∼ O(δ)

since β1(α1) is continuous and differentiable.

STEP n. For n = 2,3, . . . , we proceed in analogy with step one showing that
βn = βn(αn) is a continuous and differentiable function. Let us consider the ap-
proximated stepwise linear boundary c(t) in the time interval [0, tn]. Let us define

Fn(αn,βn)

:=
∫ c1

0
· · ·

∫ cn−1

0
dx1 · · · dxn−1

n−1∏
i=0

fa(xi, ti |xi−1, ti−1)

×
[
1 −

∫ αn+βntn

−∞
(
1 − exp

{(−2(cn−1 − xn−1)

× (αn + βntn − xn)
)

/(tn − tn−1)
})

× exp
{
− (xn − xn−1)

2

(2(tn − tn−1))

}/(√
2π(tn − tn−1)

)
dxn

]
− kn,
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so that equation (3.2) reads Fn(αn,βn) = 0. This is an implicit equation in βn

and αn that admits a continuous and differentiable solution βn = βn(t) if Dini’s
theorem holds.

Note that

∂Fn(αn,βn)

∂βn

= −
∫ c1

0
. . .

∫ cn−1

0

n−1∏
i=0

fa(xi, ti |xi−1, ti−1)

×
∫ αn+βntn

−∞
2tn(cn−1 − xn−1)

× e−2(cn−1−xn−1)(αn+βntn−xn)/(tn−tn−1)

× e−(xn−xn−1)
2/(2(tn−tn−1))/(

(tn − tn−1)
√

2π(tn − tn−1)
)
dxn

is nonzero for all αn,βn, since xn−1 < cn−1. Hence, Dini’s theorem holds and we
get that βn = βn(αn) is a continuous and differentiable function. If α̂n = αn + δ,
the error on αn is propagated on βn as

β̂n = βn + �βn,

where

�βn = βn(αn + δ) − βn(αn) ∼ O(δ). �

THEOREM 4.3. The error of the PLMC method at the discretization knots tn,
n = 1,2, . . . , is

|εPLMC
n | = |b(tn) − c(tn)| ∼ O(max(δ, h2))

when α1 is affected by an error of the order of δ ≥ 0.

PROOF. When α1 is affected by an error of the order of δ, by Lemmas 4.1
and 4.2, we get that

|b(t1) − c(t1)| ≤ |b(t1) − ĉ1(t1)| + |̂c1(t1) − c(t1)|
∼ O(h2) + O(δ)

∼ O(max(δ, h2)).

By induction, let |b(tn−1) − c(tn−1)| ∼ O(max(δ, h2)), then

|̂cn(tn) − c(tn)| = |b(tn−1) + β̂n(tn − tn−1) − cn−1 − βn(tn − tn−1)|
= |b(tn−1) − cn−1 + (β̂n − βn)h|
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≤ |b(tn−1) − cn−1| + |(β̂n − βn)h|
∼ O(max(δ, h2)) + O(max(δh,h3))

∼ O(max(δ, h2))

and we obtain

|b(tn) − c(tn)| ≤ |b(tn) − ĉn(tn)| + |̂cn(tn) − c(tn)|
∼ O(h2) + O(max(δ, h2))

∼ O(max(δ, h2)). �

REMARK 4.1. If the boundary b(t) is not monotone nor convex (or concave)
but is sufficiently well behaved, one can proceed with a similar reasoning on each
monotonicity and convexity interval. Hence, choosing h in a suitable way, the step-
wise boundary has still an error |εPLMC

n | ∼ O(max(δ, h2)).

4.2. Error due to the Monte Carlo approximation. Disregarding the error re-
lated to the numerical integration of the l.h.s. of (3.1) at the first step of the algo-
rithm that can be well controlled with a careful use of numerical approximations,
we focus on the next steps when the multiple integrals of the l.h.s. of (3.2),

F(βn+1) =
∫ tn+1

tn

∫ cn

−∞
· · ·

∫ c1

−∞

(
fc(t |tn, xn)

×
n∏

i=1

pa,c(ti , xi |ti−1, xi−1)

)
dx1 · · · dxn dt,

are evaluated via Monte Carlo method. Using the Law of Large Numbers, we ap-
proximate the expectation on the l.h.s. of (3.5) with its sample mean. Hence, for a
fixed confidence level α, we get

P

(∣∣∣∣∣ 1

M

M∑
j=1

H(βn+1;Xn,j )

×
n∏

i=1

I (Xi,j ≤ ci)e
−2(ci−Xi,j )(ci−1−Xi−1,j )/(ti−ti−1)

− F(βn+1)

∣∣∣∣∣ < δα

)
> α,

where Xn,j ∼ N(0, ti − ti−1), i = 1, . . . , n, j = 1, . . . ,M , are independent random
variables. Letting xn,j , i = 1, . . . , n, j = 1, . . . ,M , be a sample of Xn,j , with an
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accuracy δα in the computation of the integral, we obtain a confidence interval for
βn+1 at the same level α:[

F−1

(
1

M

M∑
j=1

H(βn+1;xn,j )

×
n∏

i=1

I (xi,j ≤ ci)e
−2(ci−xi,j )(ci−1−xi−1,j )/(ti−ti−1) ± δα

)]
.

REMARK 4.2. The computations necessary to get the Monte Carlo evalua-
tions are not excessively expensive. Hence, we can choose a very large value
for the size M for the number of simulations involved in the integral estima-
tion. This allows to make this error negligible with respect to the error determined
by the piecewise linear approximation of the boundary, but as a consequence of
the use of the Monte Carlo method, our results are characterized by a reliabil-
ity α.

5. An approximation by the nonlinear Volterra integral equation. The
algorithm discussed in the previous section is reliable and easily implemented,
but it is computationally expensive since the Monte Carlo method requires
long times of computation. In this section we therefore consider an alterna-
tive approach of pure numerical nature which is computationally more attrac-
tive. Since this method is based on the approximation of a non linear Volterra
integral equation, it will be referred to as VIE (Volterra Integral Equation)
method.

Let us consider the integral equation [cf. Peskir (2002)]:

�

(
b(t)√

t

)
=

∫ t

0
�

(
b(t) − b(s)√

t − s

)
fb(s) ds (t > 0),(5.1)

where �(x) = 1 − �(x) and �(x) = ∫ x
−∞ ϕ(z) dz is the standard normal distribu-

tion. Equation (5.1) is a Volterra integral equation of the first kind in fb, but it is a
nonlinear Volterra integral equation of the second kind in b and its kernel is non-
singular in the sense that it is bounded. Moreover the nonlinear functions involved
in the equation are bounded and � is invertible. These features allow the develop-
ment of the following numerical algorithm that approximate (5.1) in a simple and
reliable way.

We numerically solve this equation to evaluate the approximate value b∗ of b at
the knots ti = ih for i = 1, . . . , n, where h = t/n (and t > 0 is given and fixed).
To this aim we follow the original idea of Volterra [see, e.g., Linz (1985), Chap-
ter VII], that is, we approximate the integral on the l.h.s. of (5.1) with the Euler
method

�

(
b∗(ti)√

ti

)
=

i∑
j=1

�

(
b∗(ti) − b∗(tj )√

ti − tj

)
fb(tj )h (i = 1, . . . , n),(5.2)
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getting a nonlinear system of n equations in n unknowns b∗(t1), . . . , b∗(tn). The
ith equation of (5.2) for i ≥ 2 makes use of the values b∗(t1), . . . , b∗(ti−1) found
in the preceding steps. Hence, equations (5.2) can be solved iteratively using the
iterative middle point method [cf. Atkinson (1989)], which then gives approximate
values for the unknown boundary b at the points t1, . . . , tn.

We recall that the local consistency error for (5.1) for a generic discretization
method of the integral is [cf. Linz (1985)]

δ(h, ti) =
∫ ti

0
�

(
b(ti) − b(ts)√

ti − s

)
fb(s) ds

(5.3)

− h

i∑
j=0

ωij�

(
b(ti) − b(tj )√

ti − tj

)
fb(tj ),

where ωij are the integration weights of the adopted discretization schema. In (5.2)
we use the Euler method for which we have ωij = 1 and ωi0 = 0, for each j =
1, . . . , i, i = 1, . . . , n. Since max0<i<n δ(h, ti) = O(h), the method is consistent of
order 1.

REMARK 5.1. Note that the system (5.2) is triangular and this makes it espe-
cially efficient if one wishes to compute b∗ at the next knot, when it is known in the
previous ones. Moreover, unlike the PLMC method, here the knowledge of b(0) is
not required since we use the “forward” Euler method, also known as right-hand
rectangular rule [cf. Atkinson (1989)].

REMARK 5.2. In spite of the Euler method, we could use the extended trape-
zoidal formula [cf. Abramowitz and Stegun (1964), page 885, formula 25.4.2]
with weights ωi0 = ωii = 1/2 for each i = 1, . . . , n and ωij = 1 for each j =
1, . . . , i − 1, i = 1, . . . , n, to approximate the integral in (5.1). In this case (5.2) is
replaced by

�

(
b∗(ti)√

ti

)
= 1

2
�

(
b∗(ti) − b∗(0)√

ti

)
fb(0)h

+
i−1∑
j=1

�

(
b∗(ti) − b∗(tj )√

ti − tj

)
fb(tj )h(5.4)

+ 1

4
fb(ti)h (i = 1, . . . , n).

This approximation is consistent of order 2, but in the general case requests the
knowledge of b(0). However, when fb(0) = 0 the first term in the r.h.s. of (5.4)
vanishes and we obtain again a triangular system independent from the knowledge
of b(0).
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REMARK 5.3. The unnecessity of the knowledge of b(0) is a numerical ad-
vantage, but it hides some problems connected with the initial point t1. To illustrate
this, note that the algorithm uses the approximation (5.2) that for i = 1 reads

�

(
b(t1)√

t1

)
= 1

2
fb(t1)t1,(5.5)

using that �(0) = 1/2 (when b is smooth). Recall that t1 = t/n so that t1 → 0
as n → ∞. Taking then b(t) = √

2t log(1/t), for example, it is easily verified
that limn→∞ 2�(b(t1)/

√
t1)/t1 = 0, while the result of Peskir (2002) implies that

fb(0+) = +∞. Thus, the approximation (5.5) in this case fails in a neighborhood
of zero. A closer look shows that it is valid if fb(0+) = 0 (under certain mild
regularity conditions). It follows that the more fb(0+) is away from zero, the less
accurate (5.5) becomes in a neighborhood of zero.

REMARK 5.4. To improve the boundary estimation for small times, we can
consider the flux equation introduced in Ricciardi, Sacerdote and Sato (1984) and
its approximation as t → 0 to get

fb(t) ≈ b(t)√
2πt3

exp
[
−b(t)2

2t

]
, t < ε,(5.6)

where ε is small enough to make it acceptable to approximate the r.h.s. of the flux
equation with its first term. It is an implicit nonlinear equation in terms of b(t)

that can be numerically solved. Since this equation loses reliability as the time t

increases, it is necessary to control the validity of this equation for the value of t

of interest. Substituting the solution b̂(t) of (5.6) in the complete equation (2.8)
in Ricciardi, Sacerdote and Sato (1984), we obtain an estimator f̂b(t) of the FPT
density function. The evaluation of the relative error between this estimator and
the known value of the density function allows to guess the time interval where
this approximation is reliable.

6. VIE method error estimation. Nonlinear integral equations are consid-
ered in Linz (1985), but the integral equation (5.1) differs from nonlinear integral
equations studied there due to the expression on the l.h.s. Indeed, it contains the
unknown function in an implicit way through a further nonlinear function. How-
ever, working in analogy with the methods used in Linz (1985), we can prove the
convergence of the VIE method of Section 5. To this end, we recall a convergence
theorem used by Linz (1985).

THEOREM 6.1. Let the sequence ξ0, ξ1, . . . satisfy

|ξn| ≤ A

n−1∑
i=0

|ξi | + Bn, n = r, r + 1, . . . ,(6.1)
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where A > 0, |Bn| ≤ B and assume that it exists a constant η > 0 such that

r−1∑
i=0

|ξi | ≤ η.(6.2)

Then

|ξn| ≤ (1 + A)n−r (B + Aη), n = r, r + 1, . . . .(6.3)

We now can prove the convergence of the proposed method.

THEOREM 6.2. The error εVIE
n of the VIE method at the discretization knots

tn, n = 1,2, . . . , is

|εVIE
n | = |b(tn) − b∗(tn)| ∼ O(h)(6.4)

if the integral in (5.1) is approximated via the Euler formula.
If fb(0) = 0 and the extended trapezoidal formula is used for the integral in

(5.1), the error becomes

|εVIE
n | = |b(tn) − b∗(tn)| ∼ O(h2).(6.5)

PROOF. We split the proof of (6.4) in two parts, the first one concerning the
first discretization interval and the second one concerning a generic step n.

STEP 1. Choosing t = t1 and subtracting (5.2) from (5.1), we get

�

(
b(t1)√

t1

)
= �

(
b∗(t1)√

t1

)
+ δ(h, t1).(6.6)

Using the inverse function �−1, we obtain

b(t1)√
t1

= �−1
[
�

(
b∗(t1)√

t1

)
+ δ(h, t1)

]
.(6.7)

Substituting the Taylor expansion of �−1 around y = �(b∗(t1)√
t1

) in this last equa-
tion, we get

b(t1)√
t1

= b∗(t1)√
t1

+ δ(h, t1)
d�−1(y)

dy

∣∣∣∣
y=�(b∗(t1)/

√
t1)+θδ(h,t1)

(6.8)

= b∗(t1)√
t1

+ √
2πδ(h, t1)e

ẑ2/2,

where θ ∈ (0,1) [cf. Abramowitz and Stegun (1964)] and

ẑ = �−1
[
�

(
b∗(t1)√

t1

)
+ θδ(h, t1)

]
< L(6.9)
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with L < ∞.
To prove (6.9), note that if δ(h, t1) ≥ 0, one has

�

(
b∗(t1)√

t1

)
+ θδ(h, t1) ≥ �

(
b∗(t1)√

t1

)
(6.10)

and, due to the decreasing monotonicity of �−1, one gets

ẑ ≤ b∗(t1)√
t1

< L1.(6.11)

Elsewhere, when δ(h, t1) ≤ 0 one has

�

(
b∗(t1)√

t1

)
+ θδ(h, t1) ≥ �

(
b∗(t1)√

t1

)
+ δ(h, t1) = �

(
b(t1)√

t1

)
,(6.12)

hence,

ẑ ≤ b(t1)√
t1

< L2.(6.13)

Choosing L = max(L1,L2), we get (6.9). Hence from (6.8) and (6.9) we get

|εVIE
1 | = |b(t1) − b∗(t1)| ≤

∣∣√2πt1δ(h, t1)e
L2/2∣∣ < k|δ(h, t1)| = O(h),

since the Euler method is consistent of order 1.

STEP n. Choosing t = tn and subtracting (5.2) from (5.1), we get

�

(
b(tn)√

tn

)
= �

(
b∗(tn)√

tn

)
+ γn, n = 2,3, . . . ,(6.14)

where

γn = γn(h, t1, . . . , tn)

= h

n∑
j=1

fb(tj )

{
�

(
b(tn) − b(tj )√

tn − tj

)
− �

(
b∗(tn) − b∗(tj )√

tn − tj

)}
(6.15)

+ δ(h, tn), n = 2,3, . . . .

Mimicking the procedure used for case n = 1, we apply the inverse function �−1

to (6.14) and we expand in Taylor series the resulting r.h.s. around y = �(b∗(t1)√
t1

).
Thus, we get

b(tn)√
tn

= b∗(tn)√
tn

+ γn

d�−1(y)

dy

∣∣∣∣
y=�(b∗(tn)/

√
tn)+θγn

(6.16)

= b∗(tn)√
tn

+ √
2πγne

v̂2
n/2,
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where θ ∈ (0,1) [cf. Abramowitz and Stegun (1964)] and

v̂n = �−1
[
�

(
b∗(tn)√

tn

)
+ θγn

]
< Mn(6.17)

with Mn < ∞ for each n = 1,2, . . . .

The last inequality can be proved analogously to (6.11) and (6.13) in Step 1.
Hence, from (6.16) we get

|εVIE
n | = |b(tn) − b∗(tn)| ≤

∣∣√2πtnγne
M2

n/2∣∣ < k|γn|.(6.18)

Let us now split the term γn as the sum of a contribution of the accumulated
error due to the previous steps and a contribution due to the consistency of the
numerical approximation of the integral in (5.1). To this goal, we bound the module
of γn using the triangular inequality to get

|γn| ≤ h

n∑
j=1

fb(tj )

∣∣∣∣�(
b(tn) − b(tj )√

tn − tj

)
− �

(
b∗(tn) − b∗(tj )√

tn − tj

)∣∣∣∣
+ |δ(h, tn)|

(6.19)

= h

n−1∑
j=1

fb(tj )

∣∣∣∣ 1√
2π(tn − tj )

∫ b(tn)−b(tj )

b∗(tn)−b∗(tj )
e−u2/(2(tn−tj )) du

∣∣∣∣
+ |δ(h, tn)|,

where the last equality uses the definition of � and the fact that the last term in the
sum is zero. Bounding the integrand in (6.19) with 1, we get

|γn| < h

n−1∑
j=1

fb(tj )√
2π(tn − tj )

(|εVIE
n | − |εVIE

j |) + |δ(h, tn)|(6.20)

and (6.18) becomes

|εVIE
n | ≤ √

2πtnMh

n−1∑
j=1

fb(tj )√
2π(tn − tj )

|εVIE
n |

(6.21)

+ √
2πtnMh

n−1∑
j=1

fb(tj )√
2π(tn − tj )

|εVIE
j | + √

2πtnM|δ(h, tn)|,

where M = maxn{exp(Mn)} and, hence,

|εVIE
n |

(
1 − Mh

n−1∑
j=1

fb(tj )√
tn − tj

)
(6.22)

≤ Mh

n−1∑
j=1

fb(tj )√
tn − tj

|εVIE
j | + √

2πM|δ(h, tn)|.
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If

h <
1

M
∑n−1

j=1 fb(tj )/
√

tn − tj
= 1

k
,(6.23)

we get

|εVIE
n | ≤ MhF

1 − hk

n−1∑
j=1

|εVIE
j | +

√
2πM

1 − hk
|δ(h, tn)|,(6.24)

where F = supj,n
fb(tj )√

2π(tn−tj )
.

Applying the convergence Theorem 6.1 with

An = MhF

1 − hk
< A,(6.25)

Bn = 2πM

1 − hk
|δ(h, tn)| < B(6.26)

and noting that by inductive argument one has

n−1∑
j=1

|εVIE
j | ≤ η,(6.27)

we finally obtain

|εVIE
n | ≤

(
max |δ(h, tn)|2πM + MhF

n−1∑
j=1

|εVIE
j |

)
1

1 − hk
etnMF/(1−hk).(6.28)

Recalling that the method is consistent of order 1, part 1 of the theorem is
proved. Using equation (6.21) in the case of the extended trapezoidal scheme, one
easily proves formula (6.5). �

REMARK 6.1. Note that the error of the method is dominated by the consis-
tency error.

REMARK 6.2. To prove Theorem 6.2, we simply use the monotonicity prop-
erties of the function � . Hence, the method can be easily extended to different
diffusion processes, simply substituting � in (5.1) with the survival function of
the considered process.

7. Examples. In this section we check the stability of the algorithms pre-
sented in Sections 3 and 5 by means of some examples where a closed form solu-
tion is available. We also show other examples where the solution is numerically
evaluated. First we apply the algorithms of Sections 3 and 5 for a Daniels bound-
ary b for two sets of parameters (Section 2). Later we apply them to the case of an
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oscillating boundary with different parameters. In these later cases the FPT density
function has been numerically estimated via the Buonocore, Nobile and Ricciardi
algorithm (1987). We consider the mean square deviation as an index of the good-
ness of the two methods

σ (i)
n = 1

n

n∑
j=0

(
b(tj ) − b̂(i)(tj )

)2
, i = 1,2,(7.1)

where b̂(1) denotes the approximating boundary determined by the PLMC algo-
rithm of Section 3 and b̂(2) denotes the approximating boundary determined by the
VIE algorithm of Section 5.

We apply the two algorithms to the following two cases:

1. Daniels boundary with parameters α = 1, β = 0.5, γ = 0.5 and α = 1, β =
1, γ = 0.5. We first apply the PLMC algorithm in the interval [0,2] with a dis-
cretization step h = 0.2 and we compute the integrals by a Monte Carlo method
using 104 simulations. Under these conditions we estimate the mean square devi-
ation, obtaining σ

(1)
n = 9.4 · 10−5 and σ

(1)
n = 3.4 · 10−5 respectively.

We also apply to these examples the VIE algorithm of Section 5 with discretiza-
tion step h = 0.01 and the resulting mean square deviations are σ

(2)
n = 4.3 · 10−5

and σ
(2)
n = 4.6 · 10−5 respectively.

2. Oscillating boundary

b(t) = α + β cos(γ t)(7.2)

with parameters α = 1, β = 0.5, γ = 2 and α = 1, β = 1, γ = 2 respectively. Re-
peating the PLMC algorithm under exactly the same conditions as above, we get
the following mean square deviations: σ

(1)
n = 6.6 · 10−4 and σ

(1)
n = 6.4 · 10−3 re-

spectively. The application of the VIE algorithm to the two sets of parameters gives
σ

(2)
n = 4.9 · 10−3 and σ

(2)
n = 3.4 · 10−3.

These results confirm the reliability of the methods. The four cases are illus-
trated in Figures 2, 3, 5 and 6 where the exact boundary shape (left) is compared
with the approximating ones obtained by means of the algorithms of Section 3
(center) and Section 5 (right).

REMARK 7.1. With reference to the PLMC method, we underline that the
goodness of the approximation does not depend only on the discretization step h,
but also on the probability mass for the boundary to be crossed in the discretiza-
tion subinterval of length h. It is thus recommendable to avoid excessively small
discretization steps. However, as shown in our examples, quite large values of h

give small value for the mean square deviation.
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FIG. 2. Daniels boundary with parameters α = 1, β = 0.5, γ = 0.5 (left) compared with the ap-
proximating ones obtained by means of the PLMC method (center) and the VIE method (right).

REMARK 7.2. A comparison between the exact and the approximating bound-
ary obtained from the PLMC algorithm in Figures 2 and 3 with the first-passage
density function in Figure 4 shows the rise of larger oscillations as t increases. This
fact can be explained by observing that as t increases the probability of crossing
the boundary on each discretized interval becomes smaller and the Monte Carlo
method is subject to a larger relative error. A further improvement of the method
could be to use an adaptive step built on a constant probability mass of the first-
passage density function on each interval.

REMARK 7.3. In Figures 2 and 3 we observe that the approximating boundary
obtained from the VIE algorithm of Section 5 has a large error for short times.
This result can be explained by the rough approximation in the first steps of the
present method and is related to the use of the Euler method. In Remark 5.4 we
introduced an improvement of the method for small times. In Figure 7 we compare
the approximation obtained via the VIE method (dash dot line) and two different
corrections via (5.6) in a special case of Daniels boundary (full line). The stars
indicate the values of the boundary solution of (5.6), while the two other curves

FIG. 3. Daniels boundary with parameters α = 1, β = 1, γ = 0.5 (left) compared with the approx-
imating ones obtained by means of the PLMC method (center) and the VIE method (right).
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FIG. 4. The first-passage density function through a Daniels boundary with parameters
α = 1, β = 0.5, γ = 0.5 (left) and with parameters α = 1, β = 1, γ = 0.5 (right).

substitute the first one or two values of b(t) with the solution of (5.6). We observe
that the new boundary estimates are more reliable.

REMARK 7.4. The evaluation of the difference between the exact boundary
and the approximating one, obtained with the PLMC method, shows that the ap-
proximating boundary oscillates around the real one.

8. The exponential case. Let us apply our algorithms to numerically solve the
original Shiryaev’s problem, that is, to approximate the boundary corresponding
to an exponential first-passage density function.

Let us thus consider a first-passage density function fb(t) = e−t for t > 0 cor-
responding to the exponential distribution with parameter λ = 1. In order to apply
the PLMC method, we note that this particular choice of distribution requires to

FIG. 5. Oscillating boundary with parameters α = 1, β = 0.5, γ = 2 (left) compared with the ap-
proximating ones obtained by means of the PLMC method (center) and the VIE method (right).
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FIG. 6. Oscillating boundary with parameters α = 1, β = 1, γ = 2 (left) compared with the ap-
proximating ones obtained by means of the PLMC method (center) and the VIE method (right).

study a first-passage time τb such that fb(0+) > 0. As indicated in Section 2.2,
this implies that the boundary b should be an upper function for W that vanishes
at zero so that b′(0+) = +∞.

Making use of (2.14) and introducing more generally the following notation:

κ = fb(0+) > 0,(8.1)

we obtain an approximation of the boundary b in the neighborhood of zero by
choosing

c = −2 log
(√

4πκ
)
.(8.2)

FIG. 7. Daniels boundary with parameters α = 1, β = 0.5, γ = 0.5 (full line) compared with the
approximating ones obtained by means of the VIE method (dash dot line) and by means of the VIE
method modified for small times (dashed lines) substituting the first one or two values of b(t) with
the solution of (5.6). The stars indicate the values of the boundary obtained as a solution of (5.6).
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FIG. 8. Numerical evaluations of the approximating boundaries for an exponential first-passage
density function with parameter λ = 1 obtained by means of the PLMC method (left) and the VIE
method (right) with a discretization step h = 0.01.

On the first interval we approximate the boundary b by (2.13), where c is given by
(8.2). On the successive intervals we simply apply the algorithm with

c2 = g(t1) =
√

2t1 log(1/t1) + t1 log log(1/t1) + ct1.(8.3)

In Figure 8 we plot the boundaries corresponding to an exponential first-passage
density function with λ = 1 obtained by the two different algorithms described in
the previous sections; the plot on the r.h.s. is obtained applying the PLMC method
with the step h = 0.01 and with a number of simulations for the Monte Carlo
method equal to 104, while the plot on the l.h.s. is obtained applying the VIE
method with discretization step h = 0.01.

A heuristic confirmation of the stability of the algorithms is given by the near-
ness of the two curves. Furthermore, an intuitive reasoning about the shape of the
boundary confirms our result. To obtain an exponential first-passage density func-
tion, a large part of the sample paths should cross the boundary very soon but,
as the time goes on, other sample paths, that have not yet reached the boundary,
should be able to cross it too. This makes intuitive the fact that the boundary must
decrease in order to be reachable by the sample paths whose initial trend was neg-
ative.
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