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POISSON–VORONOI APPROXIMATION

BY MATTHIAS HEVELING1 AND MATTHIAS REITZNER

Vienna University of Technology

Let X be a Poisson point process and K ⊂ R
d a measurable set. Con-

struct the Voronoi cells of all points x ∈ X with respect to X, and denote by
vX(K) the union of all Voronoi cells with nucleus in K . For K a compact
convex set the expectation of the volume difference V (vX(K)) − V (K) and
the symmetric difference V (vX(K)�K) is computed. Precise estimates for
the variance of both quantities are obtained which follow from a new jack-
knife inequality for the variance of functionals of a Poisson point process.
Concentration inequalities for both quantities are proved using Azuma’s in-
equality.

1. Introduction. Let X be a stationary Poisson point process of intensity λ.
Denote by vX(x) the (random) Voronoi cell of x with respect to the point set
X ∪ {x}, that is,

vX(x) = {z ∈ R
d :‖z − x‖ ≤ ‖z − y‖ for all y ∈ X}.

We call x the nucleus of the Voronoi cell vX(x). The set of all Voronoi cells vX(x),
x ∈ X, is the Poisson–Voronoi tessellation of R

d . For a given set A ⊂ R
d we

consider the Poisson–Voronoi approximation vX(A) of A which consists of all
Voronoi cells with nucleus in A,

vX(A) := ⋃
x∈X∩A

vX(x).

The set vX(A) is a random approximation of A. In this paper, we discuss the qual-
ity of this approximation for a convex set A. In particular, we are interested in
the convergence of vX(A) to A when the intensity of the Poisson process tends to
infinity.

The general problem whether vX(A) approximates A for “complicated” sets
A seems to be difficult; only partial answers are available (see Khmaladze and
Toronjadze [7] and Penrose [14]).

Here we concentrate on the case of a compact convex set K with nonempty
interior, and its approximation vX(K), where we derive precise estimates for the
volume V (vX(K)) and the volume of the symmetric difference of K and vX(K).
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THEOREM 1. Let X be a stationary Poisson point process of intensity λ. If K

is a convex set of volume V (K) and surface area S(K), then

EV (vX(K)) = V (K)

and

VarV (vX(K)) ≤ cdλ−1−1/dS(K)

with a constant cd independent of K and λ. Further there are constants
c(K),�(K) such that

P
(|V (vX(K)) − V (K)| ≥ t

√
λ−1−1/dS(K)

)
≤ c(K)e−c′

d t2(k lnλ)−1−1/d + 16
√

dλ−k+1S(K)

with c′
d = 2−43−2dd−d−1/2 for λ ≥ �(K) and k ≥ 2.

Our proof of the theorem relies on the stationarity of the process. Its first part
can be generalized to nonstationary Poisson processes with an absolute continu-
ous intensity measure with density function λf (x) > 0 (with respect to Lebesgue
measure). In that case the volume on the right-hand side of the formula is replaced
by the integral of the density function f of the intensity measure over K . Observe
that if this density vanishes on a set of positive measure, then we do not even have
EV (vX(K)) → V (K) for certain sets K . The second part of the theorem concern-
ing the variance and the tail probability is also subject to generalization and holds
for nonstationary Poisson processes with bounded density function. The present
form of the theorem, however, gives fastest access to our asymptotic results.

Since the expectation of the volume of the Poisson–Voronoi approximation co-
incides with the volume of the convex set itself, it is natural to ask for the volume
of the symmetric difference K�vX(K) = (K \vX(K))∪ (vX(K)\K). It is known
that for any bounded Borel set A ⊂ R

d , one has

V (A�vX(A)) → 0

almost surely as λ → ∞. This was proved for d = 1 in Khmaladze and Toronjadze
[7], and by Einmahl and Khmaladze [3] for any bounded Borel set A ⊂ R

d with
V (Aε) → V (A) for ε → 0, where Aε = A + εBd is the Minkowski sum of A and
the ball εBd . The general case was proved by Penrose [14].

Here we concentrate on rates of convergence for convex sets A. We derive an
asymptotically precise formula for the expectation and estimates for the variance
and the tails. We believe that the estimates for the variance in Theorems 1 and 2
are best possible up to the choice of the constant. Denote by κd the volume of the
unit ball in R

d , and by �(·) the Gamma function.
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THEOREM 2. Let X be a stationary Poisson point process of intensity λ. If K

is a convex set of volume V (K) and surface area S(K), then

EV (K�vX(K)) = cEλ−1/dS(K)
(
1 + O(λ−1/d)

)
(1)

with cE = 2
d
κ

−1/d
d κd−1�( 1

d
). And

VarV (K�vX(K)) ≤ cdλ−1−1/dS(K)

with a constant cd independent of K and λ. Further there are constants
c(K),�(K) such that

P
(|V (K�vX(K)) − EV (K�vX(K))| ≥ t

√
λ−1−1/dS(K)

)
≤ c(K)e−c′

d t2(k lnλ)−1−1/d + 16
√

dλ−k+1S(K)

with c′
d = 2−43−2dd−d−1/2 for λ ≥ �(K) and k ≥ 2.

REMARK 1. A precise estimate for the error term in (1) is given in Section 5,
Theorem 6.

REMARK 2. In both theorems the estimates for the tail probabilities are stated
for λ ≥ �(K) sufficiently large. Set r = 4

√
d(kλ−1 lnλ)1/d . Then λ is sufficiently

large, if r ≤ 4 and the volume of the parallel set V (∂K + rBd) is bounded by
4rS(K).

REMARK 3. Since in both cases, the results for the expectation and variance
only depend on the volume and surface area of K , they possibly hold for more gen-
eral classes of sets. Yet our methods of proof make essential use of the convexity
of K (in particular Hadwiger’s characterization theorem; see Section 2). In view
of applications it would be of interest to extend our results to sets in the convex
ring.

REMARK 4. Jeulin posed the following interesting problem: Is it better to
approximate V (K) by a single realization vX(K) where X is a Poisson point
process of intensity λ = kλ0, or by the mean value of k realizations of vXi

(K)

where Xi , i = 1, . . . , k, are independent Poisson point processes of intensity
λ0? Both estimates are unbiased. Yet the approximation by a single estimate
should be preferred, since Var(vX(K)) is of order k−1−1/dλ

−1−1/d
0 whereas

Var(1
k

∑k
i=1 vXi

(K)) is of order k−1λ
−1−1/d
0 .

Our results have applications in nonparametric statistics (see Einmahl and
Khmaladze [3], Section 3) and image analysis (reconstructing an image from its
intersection with a Poisson point process; see [7]). Also the connection to quanti-
zation problems is obvious; see, for example, Chapter 9 in the book of Graf and
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Luschgy [4] which gives an excellent introduction into this topic. Quantization
problems are connected to problems of numerical integration: approximate the vol-
ume Vd(A) = ∫

A dx of a set A using its intersection with a point process X ∩ A.
As shown in Theorem 1 the volume of the Poisson–Voronoi approximation vX(A)

is an unbiased estimator for Vd(A), even for Borel sets A which is pointed out in
Section 4. An estimate for the volume of A is also obtained if the number of points
X(A) that fall into A is counted instead of the volume of the Poisson–Voronoi
approximation. By the definition of X one has

EX(A) = VarX(A) = λV (A).

When the variation coefficient is regarded as a measure for the quality of the re-
spective volume estimators, then using Poisson–Voronoi approximation is more
precise than counting points of the Poisson point process—at least for convex sets
A and stationary Poisson point processes. It would be of interest to show that this
is a general principle even for arbitrary point processes, for example for random
lattices X.

An interesting open problem is to measure the quality of approximation of K

by vX(K) using the Hausdorff distance between both sets. We are not aware of
any results in this direction.

For basic facts from integral geometry, stochastic geometry and Voronoi tessel-
lations which are not explained in the following, we refer the reader to [13, 16–18].
The employed notions and results from the theory of convex bodies are found in
[15].

We work in d-dimensional Euclidean vector space R
d , with norm d(x, y) =

‖x − y‖, and for closed sets K ⊂ R
d distance d(x,K) = min(d(x, y); y ∈ K). Its

unit ball, {x ∈ R
d : |x‖ ≤ 1}, is denoted by Bd , and Sd−1 is the unit sphere. The

space of convex bodies (nonempty, compact, convex subsets) in R
d is denoted by

Kd and the space of locally finite point sets in R
d is denoted by N.

For a stationary Poisson point process, as usual, X denotes the simple count-
ing measure as well as its support, that is, X(A) and card(X ∩ A) have the same
meaning. Its intensity measure � = EX(·) (E denotes mathematical expectation)
is given by

EX(·) = λ

∫
Rd

1{x ∈ ·}dx = λV (·).

2. Valuations and Delaunay triangulations. A major tool for proving our
results is valuations. A functional μ :Kd → R is called a valuation, if for every
K,L ∈ Kd with K ∪ L ∈ Kd ,

μ(K ∪ L) + μ(K ∩ L) = μ(K) + μ(L)

holds. A monotone valuation satisfies μ(K) ≤ μ(L) if K ⊂ L. Valuations play an
important role in convex geometry and integral geometry; for further references
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see [9, 11] and [12]. One of the most important results in this field is the following
characterization theorem by Hadwiger [5]:

A functional μ :Kd → R is a monotone and rigid motion-invariant valuation if
and only if there are constants c0, c1, . . . , cd (uniquely determined by μ) such that

μ(K) = cdVd(K) + · · · + c0V0(K)

for every K ∈ Kd .

Here V0(K), . . . , Vd(K) are the quermassintegrals of K . In particular, Vd(K)

equals the volume V (K), 2Vd−1(K) is the surface area S(K), and V0(K) is a
multiple of the Euler characteristic. For a modern proof of this theorem, see Klain
[8].

In the following sections a valuation depending on the Delaunay mosaic of X

turns out to be of importance. To this end denote by EX the edges of the Delaunay
mosaic of X, that is, those segments [x, y] with x, y ∈ X such that vX(x) ∩ vX(y)

is a facet of vX(x) and vX(y). Set

nK [x, y] = 21([x, y] ∩ K �= ∅) − 1(x ∈ K) − 1(y ∈ K),

where 1(·) denotes the indicator function. Observe that for points x, y ∈ X, with
probability 1, nK [x, y] is the number of connected components of [x, y] \ K if
[x, y] meets K , and nK [x, y] = 0 otherwise.

THEOREM 3. Let f : N × R
d → [0,∞) be measurable. Define a functional

μ :Kd → R by μ(K) := E
∑

[x,y]∈EX
(f (X,x) + f (X,y))nK [x, y]. Then

μ(K) = cf (λ)S(K),(2)

where S(K) is the surface area of K . Moreover, if f has the scaling property
f (tϕ, tx) = tαf (ϕ, x), then there is a constant cf such that

cf (λ) = cf λ(d−α−1)/d .

PROOF. First we will show that μ can be expressed as the difference of two
auxiliary monotone valuations. We define

ν1(K) := E

∑
[x,y]∈EX

1([x, y] ∩ K �= ∅)
(
f (X,x) + f (X,y)

)
.

Elementary considerations yield that for any two convex bodies K and L such that
K ∪ L is convex we have

1([x, y] ∩ K �= ∅) + 1([x, y] ∩ L �= ∅)

= 1
([x, y] ∩ (K ∪ L) �= ∅

) + 1
([x, y] ∩ (K ∩ L) �= ∅

)
.
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Hence ν1 is a valuation and it follows directly from the definition that ν1 is also
monotone and rigid motion-invariant. We define a second functional ν2 by

ν2(K) := E

∑
[x,y]∈EX

(
1(x ∈ K) + 1(y ∈ K)

)(
f (X,x) + f (X,y)

)
.

As above for ν1 it is easily seen that ν2 is also a monotone and rigid motion-
invariant valuation. Then Hadwiger’s theorem yields that both ν1 and ν2 can be
written as a linear combination of the Minkowski functionals. Moreover, since
μ = 2ν1 − ν2, we can write μ(K) = ∑d

i=0 ci(λ)Vi(K). If the dimension of K is
less than d − 1, then nK [x, y] = 0 for all [x, y] ∈ EX with probability 1 and thus
c0, . . . , cd−2 are vanishing. Hence

μ(K) = cd−1(λ)Vd−1(K) + cd(λ)Vd(K).

If K is of dimension d − 1, then μ(K) = 2ν1(K) = cd−1(λ)Vd−1(K). Suppose
that P is a polytope with facets F ∈ F (P ) and nonempty interior. Then the valu-
ation μ(·) can be written as

μ(P ) = ∑
F∈F (P )

E

∑
[x,y]∈E ,[x,y]∩F �=∅

(
f (X,x) + f (X,y)

)

= ∑
F∈F (P )

ν1(F )

= cd−1(λ)Vd−1(P )

and thus cd = 0 which proves (2).
For the second claim of the theorem the scaling property of the Poisson process

is used. Write μλ(K) = E
∑

[x,y]∈EX
(f (X,x) + f (X,y))nK [x, y] to emphasize

the dependence on the intensity λ of the point process X. For t > 0 replace x, y by
x/t, y/t . Then

μλ(K) = E

∑
[x,y]∈EtX

t−α(
f (tX,x) + f (tX,y)

)
ntK [x, y] = t−αμt−dλ(tK),

and, together with (2), we obtain

cf (λ) = td−1−αcf (t−dλ) = λ(d−α−1)/dcf (1). �

3. A jackknife estimate for the variance of functionals of a Poisson point
process. To get an estimate for the variance of a function S(X) we rewrite the
Efron–Stein jackknife inequality [2] (see also Efron [1] and Hall [6]). In the form
we are interested in this is possible if there are no far-reaching dependencies. This
is made precise in the following assumptions:

For a locally finite subset Y ∈ R
d we call R(Y ) the radius of influence of a

function S(Y ), if there is a function f : R → R such that for arbitrary locally finite
point sets D ⊂ R

d and D◦ ⊂ (Rd \ R(Y )Bd), we have:
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(A1) S(Y ) = S(Y ∪ D◦);
(A2) |S(Y ) − S(Y ∪ D)| ≤ f (R(Y )).

Hence the influence on S(·) of additional points can be estimated by the function
f (R(Y )), and additional points outside R(Y )Bd are negligible. This notion is close
to the notion of stabilization used in previous work, for example, in Penrose [14],
where stabilization at the origin refers to condition (A1) whereas here we need in
addition bounds on the costs of adding points close to the origin.

We are interested in the case when Y is the realization of a Poisson point process
X and the moments of f (R(X)) are bounded.

THEOREM 4. Let X (resp. X+), be a Poisson point process of intensity λ,
resp. λ(1 + 1

m
). Let S : N → R be a measurable function on the space of lo-

cally finite point sets in R
d , and let R(X) be a radius of influence of S(X). If

E(f (R(X))2R(X)2d) exists, then

VarS(X) ≤ lim
m→∞ E

∑
x∈X+

(
S(X+ \ {x}) − S(X+)

)2
.

PROOF. We start with recalling the Efron–Stein jackknife inequality in its
usual form. Let Yi be independent identically distributed random variables de-
fined on some probability space, i = 1, . . . ,m+1. We write Y (i) for (Y1, . . . , Yi−1,
Yi+1, . . . , Ym+1). If S(Y1, . . . , Ym) is any real symmetric function of m random
variables, an estimate for the expectation of S(·) is given by

S̄ = 1

m + 1

m+1∑
i=1

S
(
Y (i)).

The Efron–Stein jackknife inequality then says that the natural estimate for the
variance

∑
(S(Y (i)) − S̄)2 overestimates the real variance:

VarS ≤ E

m+1∑
i=1

(
S
(
Y (i)) − S̄

)2
.

Since the right-hand side increases if we replace the mean S̄ by any other function
T = T (Y1, . . . , Ym+1), we also have

VarS ≤ E

m+1∑
i=1

(
S
(
Y (i)) − T

)2
.(3)

Let X1, . . . ,Xm+1 be independent Poisson point processes in R
d of inten-

sity λ/m, set X(i) = ⋃
j=1,...,i−1,i+1,...,m+1 Xj , X = X(m+1), and X+ = ⋃m+1

j=1 Xj

which are Poisson point processes in R
d of intensity λ, or λ(1 + 1

m
) respectively.



726 M. HEVELING AND M. REITZNER

Since by assumption S(X1, . . . ,Xm) = S(X1 ∪ · · · ∪ Xm) is a symmetric function
in the Xi , the Efron–Stein jackknife inequality (3) with T = S(X+) tells us that

VarS(X) ≤ E

m+1∑
i=1

(
S
(
X(i)) − S(X+)

)2

= E

m+1∑
i=1

E
(i)(S(

X(i)) − S(X+)
)2

,

where E
(i)(·) abbreviates E(·|X(i)).

For the next step fix i and denote the radius of influence of S(X(i)) by
R(X(i)) = R. Observe that this implies that R is independent of Xi . So we may
apply conditions (A1) and (A2) with Y = X(i), D◦ = Xi \ RBd , D = Xi .

If m is large, then with high probability at most one point x ∈ Xi is in RBd

and thus may have influence on S(X+). This is made precise in the following. We
decompose the expectation according to the value of Xi(RBd):

E
(i)(S(

X(i)) − S(X+)
)2

=
∞∑

n=0

E
(i)((S(

X(i)) − S(X+)
)2
I
(
Xi(RBd) = n

))
.

For Xi(RBd) ∈ {0,1} we use (A1) with D◦ = Xi \ RBd and obtain

1∑
n=0

E
(i)

( ∑
x∈Xi∩RBd

(
S(X+ \ {x}) − S(X+)

)2
I
(
Xi(RBd) = n

))

≤
∞∑

n=0

E
(i)

( ∑
x∈Xi

(
S(X+ \ {x}) − S(X+)

)2
I
(
Xi(RBd) = n

))

= E
(i)

∑
x∈Xi

(
S(X+ \ {x}) − S(X+)

)2
.

For Xi(RBd) ≥ 2 we use (A2) with D = Xi , the estimate
∑∞

n=2
μn

n! e
−μ ≤ μ2

2 , and
obtain

∞∑
n=2

E
(i)((S(

X(i)) − S(X+)
)2

I
(
Xi(RBd) = n

)) ≤
∞∑

n=2

f (R)2
P

(
Xi(RBd) = n

)

≤ f (R)2 λ2V (RBd)2

2m2

since the intensity of Xi equals λ
m

.
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Combining our results, summing over i = 1, . . . ,m + 1, and using that the radii
of influence R(X(i)) are identically distributed, gives

VarS(X) ≤ E

∑
x∈X+

(
S(X+ \ {x}) − S(X+)

)2 + λ2

m
E(f (R)2V (RBd)2)(4)

and thus proves the theorem. �

In the next section we use Theorem 4 for functionals with moments continuous
in the intensity of X. From (4) we obtain in this case the following corollary.

COROLLARY 5. Let X be a Poisson point process. Let S : N → R be a mea-
surable function on the space of locally finite point sets in R

d , and let R(X) be
a radius of influence of S(X). If ES(X), ES2(X) are continuous in λ, and if
E(f (R(X))2R(X)2d) exists, then

VarS(X) ≤ E

∑
x∈X

(
S(X \ {x}) − S(X)

)2
.

We want to remark that the Slivnyak–Mecke formula for a Poisson point process
allows to rewrite our theorem in the following way:

VarS(X) ≤ λ

∫
Rd

lim
m→∞ E

(
S(X+) − S(X+ ∪ {x}))2

dx.

We conjecture that the following more general theorem holds:

CONJECTURE. Let X be a Poisson point process. For any measurable function
S : N → R on the space of locally finite point sets in R

d we have

VarS(X) ≤ E

∑
x∈X

(
S(X \ {x}) − S(X)

)2
.

4. Volume difference. In this section we are interested in the difference of
the volume of vX(K) and K . We state the mean value and prove an estimate for
the variance. The large deviation inequality is proved in Section 6.

It can easily be shown that

EV (vX(K)) = V (K).(5)

This follows either from Campbell’s theorem (see, e.g., the book by Schneider
and Weil [17], page 128) or using Hadwiger’s characterization theorem and an
argument similar to that of Theorem 3. Formula (5) holds for all Borel sets without
any convexity assumptions.

To get a bound on the variance of V (vX(K)) we use the Efron–Stein jackknife
inequality in Corollary 5. This states that

VarV (vX(K)) ≤ E

∑
x∈X

(
V

(
vX\{x}(K)

) − V (vX(K))
)2
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if for some radius R(X) of influence the moment E(f (R(X))2R(X)2d) exists.
(Observe that the moments of the functional we are interested in are continuous
in λ.)

Thus we have to estimate the volume of those Voronoi cells with centers x ∈ X,
which partly may change from exterior points to interior points or vice versa if x

is removed. Assume that X ∩ ∂K is empty which happens with probability 1.
If for x ∈ X ∩ K all neighbors of the Voronoi cell vX(x) are also contained

in K , that is, if for all [x, y] ∈ EX we have y ∈ K , then vX\{x}(K) = vX(K). The
same argument applies if the point x and all its neighbors are outside K . Hence
of interest are those points x ∈ X such that there exists an edge [x, y] ∈ EX with
[x, y] ∩ ∂K �= ∅ in which case∣∣V (

vX\{x}(K)
) − V (vX(K))

∣∣ ≤ V (vX(x)).

Defining nK [x, y] as in Section 2 and noting that nK [x, y] ≥ 1([x, y] ∩ ∂K �= ∅)

we thus see that

VarV (vX(K)) ≤ E

∑
[x,y]∈EX

nK [x, y](V (vX(x))2 + V (vX(y))2)
.

By Theorem 3 with α = 2d we immediately obtain

VarV (vX(K)) ≤ cdλ−1−1/dS(K)

which is the variance estimate of Theorem 1.
It remains to define the radius of influence R(X), and to show that

E(f (R(X))2R(X)2d) exists. Define a (random) number R′ = R′(X) as the small-
est number fulfilling ⋃

z∈K

vX(z) ⊂ R′Bd(6)

and let R(X) = 3R′. [Recall that vX(K) is the union of all Voronoi cells vX(x)

with nucleus x ∈ X ∩ K , whereas here we estimate the influence of all z ∈ K .]
As for assumption (A1) we have to show that any point set D◦ which does not

meet 3R′Bd has no influence. Indeed, if vX(K) �= vX∪D◦(K), then there are points
x ∈ X ∩ K and y ∈ D◦ with [x, y] ∈ EX∪D◦ . Hence the Voronoi cells of x and y

would have points in common. This is impossible since by the definition of R′
we have vX(x) ⊂ R′Bd , but the midplane between x and y does not meet the ball
R′Bd .

As for assumption (A2), it follows from (6) that for any point set D

vX∪D(K) ⊂ vX∪(D∩K)(K) ⊂ R′Bd.

Thus the difference between vX(K) and vX∪D(K) is bounded by the volume of
R′Bd and assumption (A2) is fulfilled with f (R(X)) = V (R′Bd).
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Finally we have to show that E(R′4d) is finite. Denote by RK the smallest radius
such that K ⊂ RKBd . By definition, if R′ ≥ r for some r ≥ RK + √

d , then there
is a point y ∈ rSd−1 with d(y, ∂K) ≤ d(y,X), that is, X(B(y, (r − RK))) = 0.
We cover the ball rBd by 2drd disjoint cubes Ci of sidelength 1 with center zi and
obtain

P(R′ ≥ r) ≤
2d rd∑
i=1

P
(∃y ∈ rSd−1 ∩ Ci :X

(
B

(
y, (r − RK)

)) = 0
)

≤
2d rd∑
i=1

P
(∃y ∈ Ci : X

(
B

(
zi,

(
r − √

d − RK

))) = 0
)

≤ 2drde−λκd(r−√
d−RK)d .

Thus all moments of R′ exist and are finite.

5. Symmetric difference metric. In this section we investigate the volume of
the symmetric difference of vX(K) and K ,

V (K�vX(K)) = V
(
K \ vX(K)

) + V
(
vX(K) \ K

)
.

We determine the expectation (Theorem 6), and prove an estimate for the variance.
The large deviation inequality is proved in Section 6.

First we show that

V (K�vX(K)) = c′
d−1S(K)λ−1/d + o(λ−1/d).

We start with the volume of vX(K) \ K . The Slivnyak–Mecke formula gives for
x ∈ R

d \ K

P
(
x ∈ vX(K)

) = P
(∃y ∈ X ∩ K :x ∈ vX(y)

)
= E

∑
y∈X∩K

1
(
x ∈ vX(y)

)
(7)

= λ

∫
K

P
(
x ∈ vX∪{y}(y)

)
dy

= λ

∫
K

e−λV (B(x,d(x,y))) dy

since x ∈ vX∪{y}(y) if the intersection of X with the ball of radius d(x, y) centered
at x is empty. Precisely the same argument shows that for x ∈ K

P
(
x /∈ vX(K)

) = E

∑
y∈X\K

1
(
x ∈ vX(y)

) = λ

∫
Rd\K

e−λV (B(x,d(x,y))) dy.(8)
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Combining (7) and (8) we obtain

EV (K�vX(K)) = E

∫
Rd

1
(
x ∈ K�vX(K)

)
dx

=
∫

Rd\K
P

(
x ∈ vX(K)

)
dx +

∫
K

P
(
x /∈ vX(K)

)
dx

= 2λ

∫
Rd\K

∫
K

e−λκd‖y−x‖d

dy dx.

We use the Blaschke–Petkantschin formula (see, e.g., [16]) which transforms the
integration of the tuple (x, y) with respect to Lebesgue measure into integration
of (x, y) with respect to the (one-dimensional) Lebesgue measure on the line E

which is the affine hull of the two points, and then integrate with respect to the set
Ed

1 of all lines in R
d using the normalized Haar measure ν on the set of all lines:

EV (K�vX(K)) = dλκd

∫
Ed

1

∫
E\K

∫
E∩K

e−λκd‖y−x‖d ‖y − x‖d−1 dy dx dν(E).

Identify E with R and E ∩K with the interval [0, l] of length l = l(E). If l > 0,
we obtain for the inner integrations∫

R\[0,l]

∫ l

0
e−λκd |x−y|d |x − y|d−1 dy dx = 2

∫ l

0

∫ ∞
l

e−λκd(x−y)d (x − y)d−1 dx dy

= 2

d
(λκd)−1

∫ l

0
e−λκdyd

dy

= 2

d2 (λκd)−1−1/d
∫ λκd ld

0
e−ss1/d−1 ds

= 2

d2 (λκd)−1−1/d�

(
1

d

)(
1 − δ(λ,E)

)
,

where

0 ≤ �

(
1

d

)
δ(λ,E) =

∫ ∞
λκd ld

e−ss(1/d)−1 ds ≤ �

(
1

d

)
e−λκd ld

since 1
d

− 1 < 0. Thus we have

EV (K�vX(K)) = 2

d
(λκd)−1/d�

(
1

d

)∫
Ed

1

1(E ∩ K �= ∅)
(
1 − δ(λ,E)

)
dν(E).

For the main term we obtain by Cauchy’s surface area formula

2

d
(λκd)−1/d�

(
1

d

)∫
Ed

1

1(E ∩ K �= ∅) dν(E)

= 2

d
(λκd)−1/dκd−1�

(
1

d

)
S(K).
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To estimate the error term
∫

δ(λ,E)dν(E) assume that the origin of the coordinate
system is chosen in such a way that

r(K)Bd ⊂ K,

where r(K) is the inradius of K . Parametrize the line E by E = tu + y, t ∈ R,
where u ∈ Sd−1 is the direction of E and y ∈ u⊥. The measure ν decomposes into
the uniform distribution ω on the sphere Sd−1, and for u ∈ Sd−1, into Lebesgue
measure in the hyperplane u⊥. If the line E meets K , then the point y is contained
in the projection K|u⊥ of the set K onto u⊥:∫

Ed
1

1(E ∩ K �= ∅)δ(λ,E)dν(E) =
∫
Sd−1

∫
K|

u⊥
δ(λ,E)dy dω(u).

We introduce polar coordinates y = rv, where v is integrated with respect to
Lebesgue measure σ on Sd−1 ∩ u⊥. Denote by ρ(v) = ρK|

u⊥ (v) the radial func-
tion of K|u⊥ in direction v. Because K is a convex set, we have that for fixed u

and v the chord length l(rv, u) is a concave function in r which vanishes at the
boundary of K|u⊥ . Hence

l(rv, u) ≥ l(0, u)

(
1 − r

ρ(v)

)
≥ 2r(K)

(
1 − r

ρ(v)

)

for 0 ≤ r ≤ ρ(v). This yields
∫
K|

u⊥
e−λκd ld dy ≤

∫
Sd−1∩u⊥

∫ ρ(v)

0
e−λκd2d r(K)d(1−r/ρ(v))d rd−2 dr dσ(v)

≤ 1

2d
(λκd)−1/dr(K)−1

∫
Sd−1∩u⊥

ρ(v)d−1 dσ(v)

∫ ∞
0

e−ss1/d−1 ds

≤ d − 1

2d
(λκd)−1/d�

(
1

d

)
r(K)−1Vd−1(K|u⊥).

Using Cauchy’s surface area formula again gives∫
ED

1

1(E ∩ K �= ∅)δ(λ,E)dν(E) ≤ d − 1

2d
(λκd)−1/d�

(
1

d

)
r(K)−1κd−1S(K).

We summarize our results:

THEOREM 6. If K ∈ Kd , then

EV (K�vX(K)) = 2

d
(λκd)−1/dκd−1�

(
1

d

)
S(K)(1 − λ−1/d�),

where 0 ≤ � ≤ d−1
2d

κ
−1/d
d �( 1

d
)r(K)−1.
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The same arguments which led to the bound on the variance of V (vX(K)) will
yield a bound on the variance of V (K�vX(K)). We use again the Efron–Stein
jackknife inequality proved in Theorem 4 showing that

VarV (K�vX(K)) ≤ E

∑
x∈X

(
V

(
vX\{x}(K)�K

) − V (vX(K)�K)
)2

where the radius of influence R(X) is defined precisely as in (6). Hence we already
know that E(f (R(X))2R(X)2d) exists.

As in Section 4, of interest are those points x ∈ X for which there exists an edge
[x, y] ∈ EX with [x, y] ∩ ∂K �= ∅. In this case∣∣V (

vX\{x}(K)�K
) − V (vX(K)�K)

∣∣ ≤ V (vX(x)).

Thus we obtain

VarV (K�vX(K)) ≤ E

∑
[x,y]∈EX

nK [x, y](V (vX(x))2 + V (vX(y))2)

≤ cf λ−1−1/dS(K)

which is the variance estimate of Theorem 2.

6. Large deviation inequalities. In this section we prove the large deviation
inequalities of Theorems 1 and 2. The essential tool is Azuma’s inequality, in par-
ticular the method of uniformly difference-bounded functions used by McDiarmid
[10].

A function f :�1 × · · · × �m → R is called uniformly difference-bounded by b

if the following holds: for any (y1, . . . , ym) ∈ �1 × · · · × �m, and for any k and
any y′

k ∈ �k we have

|f (y1, . . . , yk, . . . , ym) − f (y1, . . . , y
′
k, . . . , ym)| ≤ b.

Let Y1, . . . , Ym be independent random variables with Yk ∈ �k . Set ζ = f (Y1, . . . ,

Ym) with f uniformly difference-bounded by b. Then McDiarmid’s bounded dif-
ference inequality says that, for any t ,

P(|ζ − Eζ | ≥ t) ≤ 2e−2t2/(mb2).

To define the random variables Y1, . . . , Ym we need some preparations. Dissect
R

d into cubes Ci of diameter δ having pairwise disjoint interior. Define δ such that

V (Ci) = d−d/2δd = kλ−1 lnλ

with k ≥ 2. Assume that the cubes are numbered in such a way that for i =
1, . . . ,mδ the cubes Ci have nonempty intersection with ∂K + 3δBd , and that
Ci is disjoint from ∂K + 3δBd for i > mδ . Since for i = 1, . . . ,mδ the cubes Ci

are contained in ∂K + 4δBd , we see that
mδ∑
i=1

V (Ci) = d−d/2δdmδ ≤ V (∂K + 4δBd).
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Note that there is a �(K) ∈ (0,1] such that for ε ≤ �(K) we have

V (∂K + εBd) ≤ 4εS(K).(9)

Thus for 4δ ≤ �(K) we obtain

mδ ≤ 16dd/2S(K)δ−d+1.(10)

For λ large, in each of the cubes Ci at least one point of the Poisson point
process is contained with high probability. To make this precise denote by A the
event that for all i = 1, . . . ,mδ we have X(Ci) ≥ 1. Since X ∩ Ci is Poisson dis-
tributed we have

P(Ac) = 1 − (
1 − e−λV (Ci)

)mδ ≤ mδe
−λV (Ci) = mδλ

−k.(11)

We assume in the following that each cube Ci , i = 1, . . . ,mδ , contains at least
one point. This implies that if x ∈ X has distance at most δ to ∂K , then

vX(x) ⊂ B(x, δ).(12)

To prove this inclusion observe that for any point y ∈ Ci , i = 1, . . . ,mδ , the dis-
tance of y to one of the points X ∩ Ci is at most δ, the diameter of the cube Ci .
Thus if y is contained in some Voronoi cell vX(x̃) with x̃ ∈ X, then x̃ is the nearest
point of X to y, and we have

‖y − x̃‖ ≤ δ.(13)

Now let x ∈ X have distance at most δ to the boundary of K . Assume

y ∈ B(x,2δ) \ B(x, δ).

Then the distance of y to the boundary of K is at most 3δ and thus y is contained in
some Ci , i = 1, . . . ,mδ . By (13) the distance from y to the nearest point of X ∩Ci

is at most δ and hence ‖y − x‖ > δ implies that y /∈ vX(x). This proves (12) since
the Voronoi cell vX(x) does not meet B(x,2δ) \ B(x, δ) and is connected.

Since all Voronoi cells meeting the boundary of K have circumradius at most δ,
they are contained in ∂K + 2δBd . By (13) the centers of neighbors cells, having
boundary points y in common with these cells, have distance at most 3δ to ∂K

and thus are contained in Ci , i = 1, . . . ,mδ . In other words, the set of all Voronoi
cells meeting the boundary of K only depends on X ∩ Ci , i = 1, . . . ,mδ , and is
independent of all points of X outside the cubes Ci , i = 1, . . . ,mδ .

For i = 1, . . . ,mδ define the random points Yi by Yi = X ∩Ci . If ζ = f (X) is a
function depending only on those Voronoi cells meeting the boundary of K , then
ζ depends only on Yi , ζ = f (X) = f (Y1, . . . , Ymδ ). In the cases we are interested
in, we have either

ζ = f (Y1, . . . , Ymδ ) = V (vX(K)) − V (K)

=
mδ∑
i=1

( ∑
x∈Yi∩K

V
(
vX(x) \ K

) − ∑
x∈Yi\K

V
(
vX(x) ∩ K

))
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or

ζ = f (Y1, . . . , Ymδ ) = V (K�vX(K))

=
mδ∑
i=1

( ∑
x∈Yi∩K

V
(
vX(x) \ K

) + ∑
x∈Yi\K

V
(
vX(x) ∩ K

))
.

In both cases it follows from (12) that, replacing Yi by some nonempty finite subset
Y ′

i ⊂ Ci , we have

|f (. . . , Yi, . . .) − f (. . . , Y ′
i , . . .)| ≤ V (Ci + δBd)

≤ 3dδd

and thus b = 3dδd is the required difference bound. Now McDiarmid’s theorem
tells us that

P
(|ζ − E(ζ |A)| ≥ t |A) ≤ 2e−2t2/(mδb

2).

It follows from P(·) ≤ P(·|A) + P(Ac) and from (11) that

P
(|ζ − E(ζ |A)| ≥ t

) ≤ 2e−2t2/(mδb
2) + mδλ

−k.

In the last step we replace E(ζ |A) by Eζ . We use the elementary inequality

|Eζ − E(ζ |A)| ≤ |E(ζ1(A)) − E(ζ |A)| + E(ζ1(Ac))

≤ E(ζ |A)P(Ac) +
√

E(ζ 2)P(Ac)

≤ (
E(ζ |A) +

√
E(ζ 2)

)√
P(Ac),

where the second line follows from Hölder’s inequality. Since, conditioning on A,
all Voronoi cells meeting the boundary of K are contained in ∂K +2δBd , we have
by (9)

E(ζ |A) ≤ 8δS(K).

And for Eζ 2 the bounds on the expectation and variance yield immediately that

Eζ 2 ≤ c2(K)λ−2/d

for λ ≥ 1 (which follows from δ ≤ 1). Thus

2|Eζ − E(ζ |A)|2 m−1
δ b−2 ≤ c3(K)k2λ−k−2/dδ−2d

≤ c4(K)λ−2/d

since δ ≤ 1 and k ≥ 2.
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Define x+ = max(0, x). Using the inequality 2(t − s)2+ ≥ t2 − 2s2 and (10) we
obtain

P(|ζ − Eζ | ≥ t) ≤ 2e−2(t−|Eζ−E(ζ |A)|)2+/(mδb
2) + mδλ

−k

≤ 2ec4(K)λ−2/d

e−t2/(mδb
2) + mδλ

−k

≤ c5(K)e−cd t2(k lnλ)−1−1/dλ1+1/dS(K)−1 + 16
√

dS(K)λ−k+1

with cd = 2−43−2dd−d−1/2 for 4
√

d(kλ−1 lnλ)1/d ≤ �(K) and any k ≥ 2.
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