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A CENTRAL LIMIT THEOREM VIA DIFFERENTIAL EQUATIONS

BY TARAL GULDAHL SEIERSTAD1

University of Oslo

In a paper from 1995, Wormald gave general criteria for certain parame-
ters in a family of discrete random processes to converge to the solution of a
system of differential equations. Based on this method, we show that if some
further conditions are satisfied, the parameters converge to a multivariate nor-
mal distribution.

1. Main theorem. In this paper, we consider parameters defined on random
discrete processes. When the parameters change by only a small amount from one
state in the process to the next, one often finds that the parameters satisfy a law of
large numbers, that is, the parameters are sharply concentrated around certain val-
ues. Wormald [6] gives some general criteria which ensure that given parameters
converge in probability to the solution of a system of differential equations.

In fact, such parameters often satisfy not only a law of large numbers, but also
a central limit theorem. Based on the differential equation method described in [6]
and a martingale central limit theorem due to McLeish [3], we show that when
certain general criteria are satisfied, a set of parameters defined on a family of
discrete random processes converges to a multivariate normal distribution.

As examples of processes to which this method can be applied, we consider in
Sections 4 and 5 two random graph processes. In both processes, the initial state
is an empty graph on n vertices, and edges are added one by one according to a
random procedure.

Consider a sequence (�n,Fn,Pn) of probability spaces. Let mn be a se-
quence of numbers such that mn = O(n), and suppose that for each n a filtra-
tion Fn,0 ⊆ Fn,1 ⊆ · · · ⊆ Fn,mn ⊆ Fn is given. Let {Xn,m;m = 0,1, . . . ,mn} be
a sequence of random vectors in R

q , for some q ≥ 1, such that Xn,m is mea-
surable with respect to Fn,m for 0 ≤ m ≤ mn. The kth entry in Xn,m is denoted
by Xn,m,k . For 1 ≤ m ≤ mn and 1 ≤ k ≤ q , we define �Xn,m = Xn,m − Xn,m−1
and �Xn,m,k = Xn,m,k − Xn,m−1,k . If v is a vector, we let v′ be the transpose of v.
If v is a column vector, we use the notation v2 to mean vv′. Thus, if v is a q-di-
mensional vector, v2 is a q × q-matrix. We use the norm ‖v‖ = ‖v‖∞. When we
use the notation O(·) and o(·), we mean that the bounds hold as n → ∞, unless
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stated otherwise; if the notation is used to refer to matrices or vectors, the bounds
are meant to apply to every entry in the matrix or vector.

If D ⊂ R
q , we define the stopping time HD = HD(Xn,m) to be the minimum m

such that n−1Xn,m /∈ D.
The object of this paper is to find criteria which ensure that Xn,�tn� converges to

a multivariate normal distribution, whose mean and covariance matrix are contin-
uous functions of t and can be obtained by solving certain differential equations.
The mean is obtained by applying the following theorem due to Wormald.

THEOREM 1 (Theorem 5.1 in [7]). Assume that there is a constant C0 such
that Xn,m,k ≤ C0n a.s. for all n, 0 ≤ m ≤ mn and 1 ≤ k ≤ q . Let fk : Rq → R,
1 ≤ k ≤ q , be functions and assume that the following three conditions hold, where
D is some bounded connected open set containing the closure of

{(z1, . . . , zq) : P[Xn,0,k = zkn,1 ≤ k ≤ q] 
= 0 for some n}.

(i) For some function β = β(n) ≥ 1, ‖�Xn,m‖ ≤ β , a.s. for 1 ≤ m < HD .
(ii) For some function λ1 = λ1(n) = o(1) and all k with 1 ≤ k ≤ q ,

|E[�Xn,m,k | Fm−1] − fk(n
−1Xn,m−1,1, . . . , n

−1Xn,m−1,q)| ≤ λ1

for 1 ≤ m < HD .
(iii) Each function fk is continuous, and satisfies a Lipschitz condition, on D.

Then the following are true.

(a) For (ẑ1, . . . , ẑq) ∈ D, the system of differential equations

dzk

dt
= fk(z1, . . . , zq), k = 1, . . . , q,(1)

has a unique solution in D for zk : R → R passing through

zk(0) = ẑk, k = 1, . . . , q,

and which extends to points arbitrarily close to the boundary of D.
(b) Let λ > λ1 with λ = o(1) and let η(β,λ) = β

λ
exp(−nλ3

β3 ). For a sufficiently
large constant C, with probability 1 − O(η(β,λ)),

Xn,m,k = nzk(m/n) + O(λn)

uniformly for 0 ≤ m ≤ σn ≤ mn and for each k, where zk(t) is the solution in (a)
with ẑk = n−1Xn,0,k , and σ = σ(n) is the supremum of those m to which the so-
lution can be extended before reaching within L∞-distance Cλ of the boundary
of D.

We can now state our main theorem, which is based on Theorem 1. The mul-
tivariate normal distribution with mean 0 and covariance matrix � is denoted by
N (0,�).
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THEOREM 2. Assume that the conditions of Theorem 1 are satisfied, with
β = o(n1/12−ε) for some ε > 0 and λ1 = o(n−1/2). Furthermore, assume that the
functions fk are differentiable, and that each partial derivative of fk is continu-
ous, on D. Let z1(t), . . . , zq(t) be the functions obtained in (b) of Theorem 1. Let
gij : Rq → R, 1 ≤ i, j ≤ q , be functions, and assume that the following conditions
hold.

(ii′) For some function λ2 = λ2(n) = o(1) and all i, j with 1 ≤ i, j ≤ q ,

|E[�Xn,m,i�Xn,m,j | Fm−1] − gij (n
−1Xn,m,1, . . . , n

−1Xn,m,q)| ≤ λ2

for 1 ≤ m < HD .
(iii′) Each function gij is continuous and satisfies a Lipschitz condition on D.

Then there is a continuous matrix-valued function � : R → R
q×q such that

Xn,m − nz(m/n)√
n

d→ N (0,�(m/n)),

where z(t) = [z1(t), . . . , zq(t)]′, for 0 ≤ m ≤ σn.

The proof of Theorem 2 in Section 3 also describes the procedure for calculating
the matrix �(t).

2. A central limit theorem for near-martingales. Our proof of Theorem 2
will be based on a central limit theorem for multidimensional martingales. Let
{Sn,m;m = 0,1, . . . ,mn} be an array of random q-dimensional vectors with
Sn,0 = 0. We denote the kth entry in Sn,m by Sn,m,k and let as before �Sn,m =
Sn,m − Sn,m−1. This theorem is the multidimensional version of Corollary 2.6
in [3].

THEOREM 3. Let Sn,m be an array as above, and let � = {σij }i,j be a
q × q-matrix. Assume that the following conditions are satisfied.

(i) maxm ‖�Sn,m‖ has uniformly bounded second moment.

(ii) maxm ‖�Sn,m‖ p→ 0.

(iii) For all 1 ≤ i, j ≤ q ,
∑mn

m=1 �Sn,m,i�Sn,m,j
p→ σij .

(iv)
∑mn

m=1 E[�Sn,m | Fm−1] p→ 0.

(v)
∑mn

m=1 E[�Sn,m | Fm−1]2 p→ 0.

Then Sn,mn

d→ N (0,�).

PROOF. Corollary 2.6 of McLeish [3] asserts that the theorem is true when
q = 1 and σ11 = 1. It follows easily that the theorem also holds for arbitrary σ11 in
the univariate case.
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Assume that q > 1, and let a = [a1, . . . , aq]′ ∈ R
q be an arbitrary q-dimensional

vector. Let Rn,m = ∑q
k=1 akSn,m,k . Since

�Rn,m =
q∑

k=1

ak�Sn,m,k,

it is easy to see that (i), (ii) and (iv) are satisfied for Rn,m. Assumption (v) means

that
∑

m E[�Sn,m,i | Fm−1]E[�Sn,m,j | Fm−1] p→ 0 for all 1 ≤ i, j ≤ q . Hence,∑
m

E[�Rn,m | Fm−1]2 = ∑
i,j

aiaj

∑
m

E[�Sn,m,i | Fm−1]E[�Sn,m,j | Fm−1]

tends to 0 in probability, so (v) holds also for Rn,m. Finally, we have

∑
m

(�Rn,m)2 = ∑
m

( q∑
k=1

ak�Sn,m,k

)2

= ∑
m

∑
1≤i,j≤q

aiaj�Sn,m,i�Sn,m,j

= ∑
1≤i,j≤q

aiaj

∑
m

�Sn,m,i�Sn,m,j
p→ ∑

1≤i,j≤q

aiajσij ,

so (iii) is satisfied for Rn,mn with parameter a′�a. Hence, by the univariate version

of the theorem, Rn,mn

d→ N (0,a′�a). Since this holds for all vectors a ∈ R
q , it

follows that Sn,mn

d→ N (0,�) (see, e.g., Definition 3.2.5 in [5]). �

3. Proof of main theorem. This section is devoted to the proof of Theorem 2.
We are given a sequence of random q-dimensional vectors Xn,m and functions fk

with 1 ≤ k ≤ q and gij with 1 ≤ i, j ≤ q such that the conditions of Theorem 2 are
satisfied. We will generally suppress n in the subscript, so we write Xm for Xn,m

and so on. It follows from the assumptions of Theorem 2 that we can choose a
function λ = o(n−1/4) such that λ > βn−1/3+ε for some ε > 0. Thus, according to
Theorem 1, there are functions α1(t), . . . , αq(t) such that

Xm,k = nαk(m/n) + o(n3/4)(2)

with probability 1 − O(e−nε
). Let E be the event that (2) holds for 1 ≤ k ≤ q

and 0 ≤ m < mn. Then P[E ] = O(ne−nε
). It is sufficient to prove that the conclu-

sion of the theorem holds conditioned on E . Indeed, let α(t) = [α1(t), . . . , αq(t)]′
and Wm = n−1/2(Xm − nα(m/n)). We have for an arbitrary bounded continuous
function γ ,

E[γ (Wm)] = P[E ]E[γ (Wm) | E ] + P[E ]E[γ (Wm) | E ]
= E[γ (Wm) | E ] + O(ne−nε

).

Thus, if Wm tends to a normal distribution conditioned on E , it also tends to a nor-
mal distribution when not conditioned on anything. In the following, we therefore
assume that E holds.
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Let F : Rq → R
q be the vector-valued function whose kth component is fk ; that

is,

F(z1, . . . , zq) =
⎡
⎢⎣

f1(z1, . . . , zq)
...

fq(z1, . . . , zq)

⎤
⎥⎦ .

By the assumption of Theorem 2, λ1 = o(n−1/2), so condition (ii) of Theorem 1
implies that

E[�Xm | Fm−1] = F(n−1Xm−1) + o(n−1/2).(3)

We write αm = α(m/n). If we let t = m/n, then Taylor’s theorem implies that

αm+1 = α(t + n−1) = α(t) + n−1 dα(t)

dt
+ O(n−2)

(1)= αm + n−1F(αm) + O(n−2),

so

n�αm = F(αm−1) + O(n−1),(4)

analogous to (3). The Jacobian matrix of F is

J (z) =

⎡
⎢⎢⎢⎢⎢⎣

∂f1

∂z1
· · · ∂f1

∂zq

...
. . .

...
∂fq

∂z1
· · · ∂fq

∂zq

⎤
⎥⎥⎥⎥⎥⎦ .

From calculus, we know that if a,y ∈ R
q , then

F(a + y) − F(a) = J (a)y + O(‖y‖2)(5)

as y → 0. We now let Ym = Xm − nαm be the centered version of Xm. By (2),

Ym = o(n3/4).(6)

Thus,

F(n−1Xm) − F(αm) = F(αm + n−1Ym) − F(αm)
(7)

(5)= J (αm)n−1Ym + o(n−1/2),

so

E[�Ym] = E[�Xm] − nE[�αm]
(3,4)= F(n−1Xm−1) − F(αm−1) + o(n−1/2)

(7)= J (αm−1)n
−1Ym−1 + o(n−1/2)

(6)= o(n−1/4).
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Thus, E[�Ym] tends to 0; however, the bound we have obtained is not strong
enough to apply Theorem 3 directly to Ym. We will instead consider a transforma-
tion Zm = TmYm, where Tm is a q × q-matrix chosen so that E[�Zm] = o(n−1/2)

and n−1 ∑
m Zm,iZm,j

p→ ξij (t) for some functions ξij (t). Then we will apply The-
orem 3 to the array n−1/2Zm, showing that it converges to a multivariate normal
distribution. The normality of Xm will then be inferred from the normality of Zm.

For ease of notation, we write A(t) = J (α(t)). Note that A(t) is a continuous
matrix-valued function. Next, we define T (t) to be the q × q-matrix satisfying the
differential equation

d

dt
T (t) = −T (t)A(t), T (0) = I.(8)

LEMMA 1. There is an open interval (t1, t2) containing [0, σ ] such that there
is a unique solution to the differential equation (8) on (t1, t2), which furthermore
satisfies a Lipschitz condition on (t1, t2). If T (t) satisfies (8), then T (t) is invertible
for all t ∈ (t1, t2). Furthermore, let Tm = T (m/n), Am = A(m/n) and

Um = I − n−1Am.(9)

Then

Tm+1 = TmUm + O(n−2)(10)

for 0 ≤ m ≤ σn − 1.

PROOF. Let A(t) = {aij (t)}ij . If τ i (t) = [τi1(t), . . . , τiq(t)] is the ith row
of T (t), then it is a solution of the system of linear homogenous differential equa-
tions

d

dt
τij (t) = −

q∑
k=1

akj (t)τij (t), τij (0) = δij ,(11)

which can also be written τ i (t) = −τ i (t)A(t), τ i (0) = ei . Thus, every τ i (t) is
actually a solution to the same system of linear differential equations; only the
boundary condition is different.

Let t ′1 = inf{t :α(t ′) ∈ D for t < t ′ < 0} and t ′2 = sup{t :α(t ′) ∈ D for 0 < t ′ <

t}, and choose t1, t2 such that t ′1 < t1 < 0 < σ < t2 < t ′2. By assumption, A(t) is
continuous on (t ′1, t ′2). Hence, according to Theorem 12, Chapter 2 of Hurewicz [1],
there is a unique solution to (11) on (t ′1, t ′2). Moreover, by Theorem 2, Chapter 3
of [1], the solutions τ 1(t), . . . ,τ q(t) are linearly independent for all t ∈ (t ′1, t ′2) if
they are linearly independent for some t ∈ (t ′1, t ′2). Thus, since T (0) = I is invert-
ible, T (t) is invertible for all t ∈ (t ′1, t ′2).

Since A(t) and T (t) are continuous on (t ′1, t ′2), they are bounded on (t1, t2).
Thus, by (8), d

dt
T (t) is bounded on (t1, t2), and so T (t) satisfies a Lipschitz con-

dition on (t1, t2).
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Finally we obtain by Taylor’s theorem that

Tm+1 = T (t + n−1) = T (t) + n−1 d

dt
T (t) + O(n−2)

(8)= Tm − n−1TmAm + O(n−2)
(9)= TmUm + O(n−2). �

The matrices A(t) and T (t) do not depend on n, so we have A(t), T (t) = O(1).
As indicated, we now define Zm = TmYm. The next two lemmas show that Zm has
the properties required in order to apply Theorem 3 to the array n−1/2Zm.

LEMMA 2. For all m,

�Zm = O(β) a.s.,(12)

and

E[�Zm | Fm−1] = o(n−1/2).(13)

PROOF. We have

�Zm = TmYm − Tm−1Ym−1

(10)= (
Tm−1Um−1 + O(n−2)

)
Ym − Tm−1Ym−1(14)

(6)= Tm−1(Um−1Ym − Ym−1) + o(n−1).

By (4), n�αm = O(1), so

‖�Zm‖ = O(‖Um−1Ym − Ym−1‖) (9)= O(‖�Ym‖) + O(n−1‖Am−1Ym‖)
≤ ‖�Xm‖ + ‖n�αm‖ + o(n−1/4) = O(β) + O(1),

implying (12). Then we consider (13), and first show that the conditional expecta-
tion of the term inside the parentheses in (14) is small. We have

E[Um−1Ym − Ym−1 | Fm−1]
= Um−1(E[Xm | Fm−1] − nαm) − Xm−1 + nαm−1

= (I − n−1Am−1)
(
Xm−1 + F(n−1Xm−1) − nαm−1 − F(αm−1)

)
− Xm−1 + nαm−1 + o(n−1/2)

= −n−1Am−1(Xm−1 − nαm−1) + F(n−1Xm−1) − F(αm−1) + o(n−1/2)

(7)= −n−1Am−1Ym−1 + n−1Am−1Ym−1 + o(n−1/2)

= o(n−1/2),
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where we for the second equality have used (3), (4) and (9). Thus,

E[�Zm | Fm−1] (14)= Tm−1E[Um−1Ym − Ym−1 | Fm−1] + o(n−1)

= Tm−1o(n−1/2) + o(n−1) = o(n−1/2). �

We now turn to the quadratic variation.

LEMMA 3. For all m,

(�Zm)2 = O(β2) a.s.(15)

Moreover, for 1 ≤ i, j ≤ q, there is a function ξij : R → R, such that

n−1
m∑

k=1

�Zk,i�Zk,j
p→ ξij (m/n).(16)

PROOF. We have by (14) that

(�Zm)2 = Tm−1(Um−1Ym − Ym−1)
2T ′

m−1 + o(1),(17)

and by (9) that

(Um−1Ym − Ym−1)
2 = (�Ym)2 + o(1).

Since n�αm = O(1), it follows from condition (i) of Theorem 1 that

(�Ym)2 = (�Xm − n�αm)(�X′
m − n�α′

m)

= (�Xm)2 − �Xmn�α′
m − n�αm�X′

m + n2(�αm)2(18)

= O(β2).

This implies (15). To show (16), we take the conditional expectation and get

E[(�Ym)2 | Fm−1] (18)= E[(�Xm)2 | Fm−1] − E[�Xm | Fm−1]n�α′
m

− n�αmE[�X′
m | Fm−1] + n2�α2

m

(3,4)= E[(�Xm)2 | Fm−1] − F(n−1Xm−1)F(αm−1)
′

− F(αm−1)F(n−1Xm−1)
′ + F(αm−1)

2 + o(1)

(5)= E[(�Xm)2 | Fm−1] − F(αm−1)
2 + o(1).

Thus, by (17),

E[(�Zm)2 | Fm−1] = Tm−1E[(UmYm − Ym−1)
2 | Fm−1]T ′

m−1 + o(1)
(19)

= Tm−1
(
E[(�Xm)2 | Fm−1] − F(α(t))2)

T ′
m−1 + o(1).
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Let G : Rq → R
q×q be the matrix-valued function such that

G(z1, . . . , zq) = {gij (z1, . . . , zq)}i,j .
Condition (ii′) of Theorem 2 can then be expressed as

E[(�Xm)2 | Fm−1] = G(n−1Xm,1, . . . , n
−1Xm,q) + o(1).(20)

For 1 ≤ i, j ≤ q , let ζm,i,j = ∑m
k=1 �Zk,i�Zk,j , and let Qm = {ζm,i,j }i,j =∑m

k=1(�Zk)
2. Using (19) and (20), we find that if t = m/n, then

E[Qm − Qm−1 | Fm−1] = E[(�Zm)2 | Fm−1]
(21)

= T (t)
(
G(n−1Xm−1) − F(α(t))2)

T (t)′ + o(1).

For 1 ≤ i, j ≤ q , let hij : Rq+1 → R be the functions such that

T (t)
(
G(z1, . . . , zq) − F(α(t))2)

T (t)′ = {hij (t, z1, . . . , zq)}i,j .(22)

Then it follows from (21) that for 1 ≤ i, j ≤ q ,

|E[�ζm,i,j | Fm−1] − hij (m/n,Xm,1/n, . . . ,Xm,q/n)| ≤ λ3,(23)

for some function λ3 = λ3(n) = o(1).
Let Vm be a random variable such that Vm = m a.s. We will now apply Theo-

rem 1 to the random variables in the set {Vm} ∪ {Xm,k}k ∪ {ζm,i,j }i,j .
Since �Vm = 1, the conditions of Theorem 1 are clearly satisfied by Vm. More-

over, we already know by assumption that they are satisfied by Xm,k and fk . Thus,
we only have to check that they are also satisfied by ζm,i,j and hij .

By (15), |�ζm,i,j | ≤ ‖(�Zm)2‖ = O(β2), so condition (i) is satisfied. Condi-
tion (ii) is satisfied because of (23). To see that condition (iii) is satisfied, we have
to show that the functions hij are continuous and satisfy a Lipschitz condition on
some area in R

q+1.
Let t1 and t2 be as in Lemma 1. Let

D′ = {(t, z1, . . . , zq) : t1 < t < t2, (z1, . . . , zq) ∈ D}.
Let us consider F, G and T as functions from R

q+1 to R, such that if t ∈ R

and z ∈ R
q , then F(t, z) = F(z), G(t, z) = G(z) and T (t, z) = T (t). Since D′ is

bounded, the product of two Lipschitz continuous functions on D′ is itself Lip-
schitz continuous on D′. By Lemma 1, T (t, z) satisfies a Lipschitz condition, and
by the assumptions, F(t, z) and G(t, z) do so as well. It then follows from the
definition of hij in (22) that hij satisfies a Lipschitz condition on D′.

Let

ξij (t) =
∫

hij (t) dt, ξij (0) = 0.

Since β2 = o(n1/6), we can choose a function λ′ = o(1) such that λ′ > λ3 and
η(β2, λ′) = o(1). Then Theorem 1 implies that

ζm,i,j = nξij (m/n) + O(λ′n),
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for 0 ≤ m ≤ σn and 1 ≤ i, j ≤ q , with probability 1 − o(1). Hence, (16) is proved.
�

LEMMA 4. Let Mm = n−1/2Zm and let �(t) = {ξij (t)}i,j . Then

Mm
d→ N (0,�(m/n)).

PROOF. We will show that Mm satisfies the conditions of Theorem 3.

(i) By (15) in Lemma 3,

‖(�Mk)
2‖ = n−1‖(�Zk)

2‖ = O(β2/n) = o(1),

so maxk ‖�Mk‖ has uniformly bounded second moment.
(ii) By (12) in Lemma 2,

max
k

‖�Mk‖ = n−1/2 max
k

‖�Zk‖ = O
(
β/

√
n
) = o(1).

(iii) By (16) in Lemma 3,

m∑
k=1

�Mk,i�Mk,j = n−1
m∑

k=1

�Zk,i�Zk,j
p→ ξij (t).

(iv) By (13) in Lemma 2,

m∑
k=1

E[�Mk | Fk−1] = n−1/2
m∑

k=1

E[�Zk | Fk−1]

= n−1/2m · o(n−1/2) = o(1).

(v) Again by Lemma 2,

m∑
k=1

E[�Mk | Fk−1]2 = n−1
m∑

k=1

E[�Zk | Fk−1]2

= n−1m · o(n−1) = o(1).

The conclusion then follows from Theorem 3. �

PROOF OF THEOREM 2. From Lemma 1, we know that T (t) is invertible, so
we can define �(t) = T (t)−1�(t)(T (t)−1)′. We then conclude from Lemma 4 that

Xn,m − nα(m/n)√
n

d→ N (0,�(m/n)). �



A CENTRAL LIMIT THEOREM VIA DIFFERENTIAL EQUATIONS 671

4. Random graph processes with restricted degrees. For a positive inte-
ger d , the random d-process is a random graph process defined as follows. Begin
with an empty graph on n vertices. Every step in the process consists of choos-
ing two distinct vertices in the graph uniformly at random, and adding an edge
between them if and only if the vertices are not adjacent and both of them have
degree at most d − 1. The process ends when the graph no longer contains a pair
of nonadjacent vertices, both of which have degree smaller than d . It was proved
in [4] that the graph process asymptotically almost surely (i.e., with probability
tending to 1 as n → ∞, abbreviated a.a.s.) produces a graph where at most one
vertex has degree d − 1 while all other vertices have degree d . If dn is even, the
final graph is a.a.s. d-regular.

This process was used in [6] to illustrate the usage of the differential equation
method. Here, we show that the present central limit theorem also can be applied
to the process. Let Gm be the graph after m edges have been added, and let Vm,k be
the random variable denoting the number of vertices of degree k in Gm. We follow
the argument in [6] and note that

E[�Vm,k | Fm−1] = 2δk>0Vm−1,k−1 − 2δk<dVm−1,k

n − Vm−1,d

+ o(1).

Moreover, |�Vm,k| ≤ 2 always, and the domain D is chosen as −ε < zi < 1 + ε

for 0 ≤ k < d and ε < zd < 1 − ε for some ε > 0. All the conditions of Theorem 1
are therefore satisfied, and it follows that there are functions γ0(t), . . . , γd(t) such
that a.a.s.

Vm,k = γk(m/n)n + o(n)

for 0 ≤ k ≤ d . In order to apply Theorem 2, we note that

E[�Vm,i�Vm,j | Fm−1]

=
d−1∑
k=0

d−1∑
l=0

Vm−1,k

n − Vm−1,d

Vm−1,l

n − Vm−1,d

(δk,i−1 − δk,i)(δl,j−1 − δl,j ) + o(1),

so condition (ii′) of Theorem 2 holds for the functions

gij (z1, . . . , zq) =
d−1∑
k=0

d−1∑
l=0

zkzl

(1 − zd)2 (δk,i−1 − δk,i)(δl,j−1 − δl,j ).

We choose D to be the same as earlier, and note that the functions gij satisfy a
Lipschitz condition on D. Theorem 2 then implies the following theorem.

THEOREM 4. Let Vm = [Vm,0, . . . , Vm,d ]′ and γ (t) = [γ0(t), . . . , γd(t)]′. Let
δ > 0 and let mδ be the smallest value for which γd(mδ/n) > 1 − δ. There is a
continuous matrix-valued function �(t) such that

Vm − nγ (m/n)√
n

d→ N (0,�(m/n))

for 0 ≤ m ≤ mδ .
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5. The minimum degree random graph process. Our second application is
the first phase of the minimum-degree graph process, first introduced in [7]. One
complication in this case is that the graph process has a natural random stopping
time, and we will show that the random variables under consideration also have a
jointly normal distribution at the end of the process.

For a fixed n, the minimum degree graph process is a sequence of graphs
{Gmin

m }m≥0 which is constructed as follows. The initial graph Gmin
0 is an empty

graph on n vertices. For m ≥ 1, let vm be a vertex chosen uniformly at random
from the vertices of minimum degree in Gmin

m−1, and let wm be chosen uniformly at
random from the vertices distinct from vm. The graph Gmin

m is obtained from Gmin
m−1

by adding to it the edge (vm,wm). For simplicity, we will allow multi-edges; how-
ever, in the stages of the process we consider, there will a.a.s. be so few multi-edges
that they make no significant difference to the calculations.

Let H be such that Gmin
H does not contain isolated vertices, while Gmin

H−1 con-
tains at least one isolated vertex. In [7], it was proved that a.a.s. H = hn + o(n),
where h = ln 2. In this paper, we will consider the graph only up to the point H ;
that is, we add edges at random until there are no isolated vertices left, and then
we stop. Thus, H is a stopping time of the process, and we consider the process
Gmin

H∧m. It is easy to see that no cycle can be formed before time H , so Gmin
H is a

forest. In [7], it was furthermore proved that the number of vertices of any degree
is sharply concentrated around the expectation. Instead of the vertex degrees, we
will consider the order of the components in Gmin

m , and in particular in Gmin
H . For

k ≥ 1 and m ≥ 0, let Cm,k be the random variable denoting the number of com-
ponents in Gmin

m of order k, and let Ck = CH,k . Let Cm = [Cm,1, . . . ,Cm,q]′ and
C = [C1, . . . ,Cq]′, where q ≥ 1 is some fixed natural number. In [2], it was shown
that Cm,k = βk(m/n)n + o(n) a.a.s., where

βk(t) = 1

k
(1 − e−t )k−1(

(k + 1)e−t − 1
)
.

Let β(t) = [β1(t), . . . , βq(t)]′. We will prove the following theorem.

THEOREM 5. There is a continuous matrix-valued function �(t) such that

Cm − nβ(m/n)√
n

d→ N (0,�(m/n))(24)

for 0 ≤ m
n

< h.
Let μ = { k−1

k2k }qk=1. Then there is matrix � such that

C − nμ√
n

d→ N (0,�).(25)

PROOF. Assume first that m
n

= t < h, where t is a constant. When a new
edge (vm,wm) is added, vm is by definition an isolated vertex, while wm can have
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any degree, and be in a component of any order. Let Vm be the random variable
denoting the order of the component containing wm. Then

�Cm,k = −δk1 − δk,Vm + δk−1,Vm.(26)

The probability of choosing a vertex in a component of order k is

P[Vm = k] = kCm−1,k − δk1

n − 1
,

so the expected change in the number of components of order k is

E[�Cm,k | Fm−1] = fk(n
−1Cm,1, . . . , n

−1Cm,q) + o(n−1/2),

where

fk(z1, . . . , zq) = −δk1 − kzk + (k − 1)zk−1.(27)

Furthermore, it is clear that Cm,k ≤ n and (26) implies that

�Cm,k ≤ 2(28)

for m ≥ 1 and 1 ≤ k ≤ q . The set D can be chosen as ε < z1 < 1 + ε and
−ε < zk < 1 for 2 ≤ k ≤ q for any ε > 0. Then fk satisfy a Lipschitz condition
on D. We obtain a system of differential equations of the form (1), and it can
be shown that it has the solution zk = βk(t), satisfying the boundary conditions
βk(0) = δk1. Let t0 = h − δ. For every δ > 0, we can choose ε so small that the
solution does not leave D until t > t0. It follows that a.a.s.

Cm,k = βk(t)n + o(n)

for 1 ≤ k ≤ q and 0 ≤ t < h, with t fixed. This was already shown in [2].
In order to apply Theorem 2, we need an expression for the conditional expec-

tation of �Cm,i�Cm,j . This is

E[�Cm,i�Cm,j | Fm−1] = gij (n
−1Cm,1, . . . , n

−1Cm,q) + o(1),

where

gij (z1, . . . , zq) = ∑
k≥1

kzk(−δi1 − δki + δk,i−1)(−δj1 − δjk + δk,j−1).(29)

We let D be as earlier. Then the conditions of Theorem 2 are satisfied, and we
conclude that there is a matrix �(t) such that (24) holds.

We then turn to (25). Let m0 = �t0n�. By (28), |CH,k −Cm0,k| ≤ 2δn. By letting
δ go to 0, we can conclude that

n−1CH,k
p→ βk(h) = k − 1

k2k
.

Unfortunately, we cannot obtain the matrix � simply by setting t = h in �(t),
since the stopping time H is a random variable. Instead, we define new random
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variables C◦
m,1, . . . ,C

◦
m,q which behave like Cm,k up to m = H , but which we can

analyze even after H . Let V ◦
m for m ≥ 1 be defined as follows. If Cm−1,1 > 0, let

V ◦
m = Vm. Otherwise, let V ◦

m = k with probability
kC◦

m,k

n
for 2 ≤ k ≤ q and q + 1

with probability 1 − ∑q
k=2

kC◦
m,k

n
. Let C◦

0,k = nδk1 and define

C◦
m,k = C◦

m−1,k − δk1 − δk,V ◦
m

+ δk−1,V ◦
m
.

Clearly, C◦
m,k = Cm,k for 0 ≤ m ≤ H . We observe that

E[�C◦
m,k | Fm−1] = fk(n

−1C◦
m,1, . . . , n

−1C◦
m,q) + o(n−1/2)

and

E[�C◦
m,i�C◦

m,j | Fm−1] = gij (n
−1C◦

m,1, . . . , n
−1C◦

m,q) + o(1)

when m ≤ hn + o(n), where fk and gij are defined by (27) and (29), respectively.
Let D◦ ⊂ R

q be the defined by −ε < zk < 1 + ε for 1 ≤ k ≤ q . Then the require-
ments of Theorem 2 are satisfied, and we can conclude that

C◦
hn − nμ√

n

d→ N (0,�(h)).

However, we are interested in the distribution of CH = C◦
H , so we have to find

the difference between C◦
H and C◦

hn. For 1 ≤ k ≤ q , let W ◦
k be random variables

such that [W ◦
1 , . . . ,W ◦

q ]′ ∼ N (0,�(h)). Thus, for example, n−1/2C◦
hn,1

d→ W ◦
1 .

Let ηn = H−hn√
n

. Then writing m′ = m − hn,

ηn >
m − hn√

n
⇔ H > m ⇔ C′

m,1 > 0

⇔ W ◦
1

(
m

n

)
> −2e−m/n − 1√

n
= −e−m′/n − 1√

n

⇔ W ◦
1

(
m

n

)
>

(
1 + o(1)

)m − hn√
n

,

so ηn
d→ W ◦

1 .
When m = hn + o(n), P[V ◦

m = k] = k−1
2k + o(1) for 1 ≤ k ≤ q . Let

Bk = sgn(H − hn)

H∨hn∑
H∧hn

δVm,k.

Thus, |Bk| is the number of times a vertex in a component of order k is chosen
between H and hn. Then E[Bk] = (H − hn)( k−1

2k−1 + o(1)) and one easily sees
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that E[|Bk|(|Bk| − 1)] = (1 + o(1))E[|Bk|]2, so by Chebyshev’s inequality, Bk ∼
(H − hn) k−1

2k−1 . Hence, n−1/2Bk
d→ k−1

2k−1 ηn, and we can conclude that

Ck − n(k − 1)/(k2k)√
n

d→ Wk,

where Wk = W ◦
k + W ◦

1
k−1
2k−1 for 1 ≤ k ≤ q . Since {W1, . . . ,Wq} are linear combi-

nations of {W ◦
1 , . . . ,W ◦

q }, they are jointly normal random variables. �

When the functions fk are linear, as in this section, it becomes easier to calculate
�(t) explicitly, than in the nonlinear case. The matrix A is then a constant matrix
and the solution of (8) is T (t) = e−tA, where the matrix exponential is defined as

etA = ∑
i≥0

(tA)i

i! .
In our example, the Jacobian matrix is J = {jδi,j+1 − jδij }ij , and A = J , so

T (t) = {δj≤i (−1)i+j ejt (et − 1)i−j }ij .
The covariance matrix is then given by

�(t) = etA
∫

e−tA(
G(β(t)) − F(β(t))2)

e−tA′
dtetA′

,

which can be used as a general formula for the linear case.
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