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Comment: The 2005 Neyman Lecture:
Dynamic Indeterminism in Science
Hans R. Künsch

1. INTRODUCTION

Professor Brillinger is to be congratulated on this pa-
per which is both a contribution to the history of sta-
tistics and an introduction to statistical modeling us-
ing stochastic processes, a topic that continues to be
of great relevance in theory and applications. It is in-
teresting to see how many ideas have been formulated
already at an early stage. In particular, I like the idea
of “synthetic data” to judge the adequacy of a fitted
model. With time series or spatial data, one typically
needs only a few replicates to assess visually the dif-
ferences between real and synthetic data, and so this is
really a powerful tool.

2. COMMENTS ON THE DATA EXAMPLES

If I understand the description of the data behind
Figure 4 correctly, the rainfall has been averaged over
53 seeding days. I would expect the wind speeds to
vary from day to day, so I would use a hierarchical
model for the wind speeds vj with a variance compo-
nent within the same day and a variance component
between days. The variation between days would lead
to some variation of the time of the peak, and averaging
would smear it out. Hence the sharp peak in Figure 4
is even more surprising. The only possibility I see for
a model that produces a similar peak as in the actual
data, is to assume a decaying intensity for the process
of rain particles in Ticino.

In the two population dynamics examples, no full
probabilistic model is constructed. Only the condi-
tional mean values and not the distribution of the fluc-
tuations are considered. Least squares methods are
used for fitting. Moreover, the reproduction process is
not part of the model, although the reader is referred to
Guttorp (1980) for a treatment of births in the second
example. From a pragmatic point, it can certainly be
advantageous to focus on those parts that are of pri-
mary concern without making assumptions on other

Professor, Seminar für Statistik, Department of
Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland
(e-mail: kuensch@stat.math.ethz.ch).

processes in the system. If only the population above a
certain threshold age are of interest and if information
about the number of individuals reaching the threshold
age is available, then one does not need to model the
births. On the other hand, as I will argue below, there
is also the point of view that in order to understand a
system, all relevant processes should be included.

As an interesting complement to Example 7, I would
like to mention the paper Jonsen, Mills Flemming and
Myers (2005) which also analyses seal movement data.
They use a discrete-time integrated random walk for
the animal movements, with interpolation to accom-
modate irregular observation times, and t-distributions
for the observation errors. With such a model, they
can use state-space methodology to fit the model to
the data, without having to exclude suspicious obser-
vations. Including a drift component to the integrated
random walk is possible, but would make the analysis
more complicated.

3. DETERMINISM AND INDETERMINISM

Even 50 years after Neyman’s work discussed in this
paper, many fields of science are still dominated by de-
terministic models, at least in the area of environmental
modeling where I have most experience. The reasons
for this dominance are that scientists are interested in
models that

• take as much knowledge about the underlying pro-
cesses into account as possible,

• contribute to the understanding of these processes,
• are transferable to similar systems,
• allow prediction of the same system under different

driving conditions than those observed,
• have parameters with a clear subject matter interpre-

tation.

Some of these reservations can be made against the
analysis of the weather modification experiment de-
scribed in the paper. No attempt is made to connect
the data with physical knowledge about atmospheric
processes in the alpine region on experimental days,
and even if the model gave a satisfactory fit it would not
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be clear how the estimated velocity distribution could
be transfered to a slightly different location.

It is more difficult than one might think to include
all relevant knowledge about the underlying processes
into simple statistical models. One reason is that this
knowledge can be described mathematically only in
continuous time and space, using ordinary or partial
differential equations, whereas statistical models tend
to be in discrete time and space. Another reason is that
physical models typically involve many variables that
are not observed, and this complicates the statistical
analysis.

It is clear, however, that even the best available deter-
ministic models are limited because initial conditions,
boundary conditions or inputs are uncertain and be-
cause the computational complexity of such models re-
quires essential simplifications to make them tractable.
As a result, when fitting ordinary and partial differen-
tial equation models to data by nonlinear least squares,
one often finds that there are systematic deviations be-
tween model outputs and observations that cannot be
explained by measurement errors alone. Hence, in my
view, the challenge for statisticians is to develop meth-
ods which build upon the deterministic models in sci-
ence and at the same time allow to describe uncertain-
ties in realistic ways or even to enhance understanding
or improve model extrapolation.

I concur very much with Professor Brillinger that
statisticians should make more use of SDEs in their
modeling. They are convenient not only because they
can handle observations at irregular time points, but
rather because they allow to introduce uncertainty into
ODEs. However, one should be aware that the noise
term has a profound impact on the behavior of the so-
lutions: They are no longer smooth, but have infinite
variation on any small interval. This is definitely not re-
alistic for the tracks of elks and seals. In fact most nat-
ural systems are believed to evolve smoothly, at least
on the macroscopic scale. This makes it difficult to de-
cide which statistical methods one should use when fit-
ting SDE models to data since we do not really believe
in the fine structure of the model.

Adding a white noise disturbance to an ODE is not
the only way to introduce uncertainty into deterministic
modeling approaches. Kennedy and O’Hagan (2001)
and Bayarri et al. (2007) introduce—in addition to the
measurement error term—a model inadequacy, or bias,
term that is intended to capture the effect of model
deficiencies on model output. It is usually formulated
in a nonparametric form as a Gaussian process with
a suitable covariance function. While this approach is

universally applicable and can lead to more reliable
uncertainty estimates, its use for diagnosing possible
causes for model deficits is limited. An alternative con-
sists in replacing a constant model parameter or a de-
terministic input by a stochastic process model, in the
spirit of the quote from Neyman by David Brillinger
in Section 3.3 “. . . with coefficients that are not con-
stants, but random variables.” Such a time-varying pa-
rameter or input can be estimated jointly with the other
(time-constant) parameters, and from a careful analy-
sis of the estimated trajectory additional insight into
the nature of model deficits can be gained. This ap-
proach has been used in the systems analysis litera-
ture for more than 20 years; see, for example, Beck
(1983) or Kristensen, Madsen and Jørgensen (2004).
These authors use a discrete-time setting and extended
Kalman filter techniques. Tomassini et al. (2007) de-
velop a MCMC algorithm that can be used in continu-
ous time and without any linearization technique.

To illustrate the differences between adding a noise
term to a differential equation and making a parameter
time-varying, consider the simple growth model

dxt = βxt dt.

The solution of the corresponding SDE

dXt = βXt dt + σXt dBt

is Xt = X0 exp((β − σ 2/2)t + σBt). Hence not only
the local, but also the long-time behavior is changed by
the added noise. This SDE can be interpreted as saying
that we add to the growth rate β of the deterministic
model a white noise term. This is hardly plausible bio-
logically, and I thus prefer the version

dβt = −γ (βt − β̄) dt + σ dBt ,

dXt = βtXt dt.

A mean-reverting Ornstein–Uhlenbeck process has
been chosen for the dynamics of βt because of its sim-
plicity. It has the drawback of allowing negative values,
but other choices are possible.

4. TECHNICAL DIFFICULTIES WITH STOCHASTIC
DIFFERENTIAL EQUATIONS

I have discussed reasons to use SDE models in sta-
tistics. David Brillinger has shown some simple and
pragmatic approaches for fitting and analyzing them,
mainly by relying on the Euler (or Euler–Maruyama)
approximation (3). If one wants to refine this approach
and consider, for instance, exact maximum likelihood
estimation, then a number of technical difficulties oc-
cur. I would like to give a brief overview of these diffi-
culties and modern approaches to solve them since this
is a very active area of research at the moment.
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4.1 Exact Observations at Discrete Time Points

Let us consider the SDE

dXt = μ(Xt, θ) dt + σ(Xt , θ) dBt

with known initial condition x0 and unknown parame-
ter θ . If we observe the solution (Xt) at discrete time
points ti , then the log likelihood can be written as

∑
i

logpθ(ti+1 − ti , xti , xti+1).

The transition densities pθ(t, x, y) are, however, not
available in closed form, and the Euler approximation
implied by (3) is often not accurate enough (the result-
ing estimator is usually not consistent if the distances
ti+1 − ti remain fixed). Numerical computation is diffi-
cult because one has to solve a partial differential equa-
tion (Fokker–Planck). This can be done in one dimen-
sion (see Lindström, 2007), but in higher dimensions
it is not practical. Estimating equations other than the
MLE have been considered, but for them one also has
to compute conditional expectations of the form

Eθ [ψ(Xs,Xt , θ) | Xs]
for s < t which often cannot be done in closed form.

The emphasis in much of the recent work has been
on Monte Carlo methods. In the framework of estimat-
ing equations, this has been developed by Kessler and
Paredes (2002). The nice feature of their approach is
that if one estimates the conditional expectation by J

replicates, the asymptotic variance of the correspond-
ing estimator increases by a factor (1 + 1/J ). This
means that a small number of replicates is sufficient
for all practical purposes.

Monte Carlo methods can also be used for likelihood
inference. A natural approach is to consider the values
of the process (Xt) on a fine grid between observation
times as latent variables and to use the Euler approxi-
mation for these smaller time steps. The latent values
can then be integrated out using importance sampling,
or one can apply the EM-algorithm. Since the E-step
rarely can be done analytically, one has to use a Monte
Carlo method instead. For integrating the latent vari-
ables out, Durham and Gallant (2002) have proposed
clever importance distributions which are crucial for
the method to become useful. As discussed by Roberts
and Stramer (2001), the EM-algorithm suffers from
poor convergence if the diffusion coefficient σ depends
on unknown parameters. The reason for this is that the
precision for estimating the diffusion coefficient σ of

an SDE goes to infinity as the observation points be-
come dense in an interval, or in other words, the distri-
butions of the solution of two SDEs with different σ are
mutually singular. To overcome this problem, Roberts
and Stramer (2001) propose a transformation of the la-
tent variables that reduces the information they contain
about σ . The same problem affects also the first ap-
proach: One cannot use the same importance distribu-
tion for parameter values that correspond to different
values of σ . Hence one cannot estimate the whole like-
lihood function by a single simulation experiment.

An entirely different approach has been used by
Beskos, Papaspiliopoulos, Roberts and Fearnhead
(2006). Based on exact simulation methods for dif-
fusions, they propose several unbiased estimators of
the likelihood function and a stochastic EM-algorithm.
The ideas in this paper are most interesting, but unfor-
tunately they cannot be used for arbitrary SDEs. It must
be possible to transform the variables so that the diffu-
sion coefficient is constant, and the drift coefficient b

must be derived from a potential function.

4.2 Partial and Noisy Observations

In many cases, we do not observe Xti exactly, but
only random variables Yi which are conditionally in-
dependent and such that Yi depends on Xti only:

Yi | Xti ∼ f (y | xti ) dy.

We are then in the setup of state-space models. Particle
filter methods (see, e.g., Doucet, de Freitas and Gor-
don, 2001) can be used to estimate both the likelihood
function and the unobserved path (Xt). Again, the un-
availability of the transition densities creates additional
problems. One can either extend the state variables by
adding the values of (Xt) on a fine grid between ob-
servation times, or one can use again ideas from exact
sampling of diffusions; see Fearnhead, Papaspiliopou-
los and Roberts (2008). The issue of efficient computa-
tions for estimating parameters remains an open prob-
lem.

Ramsay, Hooker, Campbell and Cao (2007) have
considered an approach to estimate simultaneously an
approximate solution of an ODE together with un-
known parameters θ by minimizing

−∑
i

logf (yi | xti ) + λ

∫ T

0

∥∥∥∥ d

dt
xt − μ(xt , θ)

∥∥∥∥
2

dt.

Numerically, this minimization problem is solved by
approximating (xt ) in a spline basis. The approach can
be viewed as MAP estimation in an SDE model with
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drift μ and constant diffusion coefficient 1/
√

2λ. In the
case of a more general diffusion coefficient, one can
replace the second term by

∫ T

0

∥∥∥∥σ(xt , θ)−1
(

d

dt
xt − μ(xt , θ)

)∥∥∥∥
2

dt.

I think that for estimating parameters, this approach is
potentially simpler than those based on the particle fil-
ter.
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