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The 2005 Neyman Lecture: Dynamic
Indeterminism in Science1

David R. Brillinger

Abstract. Jerzy Neyman’s life history and some of his contributions to ap-
plied statistics are reviewed. In a 1960 article he wrote: “Currently in the
period of dynamic indeterminism in science, there is hardly a serious piece
of research which, if treated realistically, does not involve operations on sto-
chastic processes. The time has arrived for the theory of stochastic processes
to become an item of usual equipment of every applied statistician.” The
emphasis in this article is on stochastic processes and on stochastic process
data analysis. A number of data sets and corresponding substantive questions
are addressed. The data sets concern sardine depletion, blowfly dynamics,
weather modification, elk movement and seal journeying. Three of the ex-
amples are from Neyman’s work and four from the author’s joint work with
collaborators.
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1. INTRODUCTION

This paper is meant to be a tribute to Jerzy Neyman’s
substantive work with data sets. There is an emphasis
on scientific questions, statistical modeling and infer-
ence for stochastic processes.

The title of this work comes from Neyman (1960)
where one finds,

“The essence of dynamic indeterminism
in science consists in an effort to invent
a hypothetical chance mechanism, called
a ‘stochastic model,’ operating on various
clearly defined hypothetical entities, such
that the resulting frequencies of various pos-
sible outcomes correspond approximately
to those actually observed.”

Here and elsewhere Neyman appeared to use the ad-
jective “indeterministic” where others would use “sto-
chastic,” “statistical” or “nondeterministic”; see, for
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example, Neyman and Scott (1959). Perhaps Neyman
had some deeper or historical context in mind, but that
is not clear. In this paper the emphasis is on the word
“dynamic.”

Jerzy Neyman (JN) led a full life. Reid (1998) con-
tains many details and anecdotes, a lot of them in
Neyman’s own words. Other sources include the pa-
pers: Neyman (1970), Le Cam and Lehmann (1974),
Kendall, Bartlett and Page (1982), Scott (1985),
Lehmann (1994) and Le Cam (1995).

The article has six sections: 1. Introduction, 2. Jerzy
Neyman, 3. Some formal methods, 4. Three examples
of JN’s applied statistics work, 5. Four examples of
random process data analysis, 6. Conclusion. The fo-
cus is on applied work in the environmental sciences
and phenomena. This last is a word that Neyman often
employed.

In particular the examples show how random process
modeling can prove both helpful and not all that dif-
ficult to implement. The thought driving this paper
is that by examining a number of examples, unify-
ing methods and principles may become apparent. One
connecting thread is “synthetic” data, in the language
of Neyman, Scott and Shane (1953) and Neyman and
Scott (1956). Synthetic data, based on simulations, are
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an exploratory tool for model validation that has the
advantage of suggesting how to create another model
if the resemblance of the simulation to the actual data
is not good.

There are quotes throughout to create a flavor of JN’s
statistical approaches.

2. JERZY NEYMAN

“His devotion to Poland and its culture and
traditions was very marked, and when his
influence on statistics and statisticians had
become worldwide it was fashionable ... to
say that ‘we have all learned to speak sta-
tistics with a Polish accent’ . . . ” (Kendall,
Bartlett and Page, 1982).

The life of Neyman is well documented by JN and
others; see, for example, Reid (1998), LeCam and
Lehmann (1974) and Scott (1985). Other sources are
cited later. Neyman was of Polish ancestry and as the
above quote makes clear he was very Polish! Table 1
records some of the basic events of his life. One sees
a flow from Poland to London to Berkeley with many
sidetrips intermingled throughout his life. These details
are from Scott (1985) and Reid (1998).

Neyman’s education involved a lot of formal mathe-
matics (integration, analysis, . . . ) and probability. He
often mentioned the book, The Grammar of Science
(Pearson, 1900) as having been very important for his
scientific and statistical work. He described Lebesgue’s
Leçons sur l’intégration as “the most beautiful mono-
graph that I ever read.”

TABLE 1
A timeline of Jerzy Neyman’s life

Date Event

1894 Born, Bendery, Monrovia
1916 Candidate in Mathematics, University of Kharkov
1917–1921 Lecturer, Institute of Technology, Kharkov
1921–1923 Statistician, Agricultural Research Institute,

Bydgoszcz, Poland
1923 Ph.D. in Mathematics, University of Warsaw
1923–1934 Lecturer, University of Warsaw

Head, Biometric Laboratory, Nencki Institute
1934–1938 Lecturer, then Reader, University College, London
1938–1961 Professor, University of California, Berkeley
1955 Berkeley Statistics Department formed
1961–1981 Professor Emeritus, University of California,

Berkeley
1981 Died, Oakland, California

The Author’s Note to the Early Statistical Papers
(Neyman, 1967) comments on the famous and influen-
tial teachers he had at Kharkov. They included S. Bern-
stein (“my teacher in probability”), C. K. Russyan, and
A. Przeborski. Others he mentions as influential in-
clude E. Borel, R. von Mises, A. N. Kolmogorov, E.
S. Pearson and R. A. Fisher.

Neyman came to Berkeley in 1938. That appoint-
ment had been preceded by a triumphant U.S. tour
in 1937. The book Neyman (1938b) resulted from the
tour. After Neyman’s arrival, internationally renowned
probabilists and statisticians began to visit Berkeley
regularly and contributed much to its research at-
mosphere and work ethic.

In Neyman’s time the lunch room used to play an
important role in the Berkeley Department. JN, Betty
Scott (ELS) and Lucien Le Cam enthralled students,
colleagues, visitors and the like with their conversation.
They involved everyone in the stories and discussions.

Neyman had a seminar Wednesday afternoons. It be-
gan with coffee and cakes. Then there was a talk, often
by a substantive scientist, but theoretical talks did oc-
cur from time to time. The talk’s discussion was fol-
lowed by drinks at the Faculty Club including the fa-
mous Neyman toasts. “To the speaker. To the interna-
tional intellectual community. To the ladies present and
some ladies absent.” Up until perhaps the mid-1970s
there was a dinner to end the event.

Neyman’s work ethic was very strong. It typically
included Saturdays in the Department, and for those
who came to work also there were cakes at 3 pm.

3. SOME FORMAL METHODS

“Every attempt at a mathematical treatment
of phenomena must begin by building a
simplified mathematical model of the phe-
nomena.” (Neyman, 1947).

This section provides a few of the technical ideas and
methods that are basic to the examples presented. The
examples involve dynamics, time, spatial movement,
Markov processes, state-space models, stochastic dif-
ferential equations (SDEs) and phenomena.

3.1 Random Process Methods

“. . . , modern science and technology pro-
vide statistical problems with observable
random variables taking their values in
functional spaces.” (Neyman, 1966).

By a random process is meant a random function.
Their importance was already referred to in Section 1.
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In particular Neyman was concerned with “phenomena
developing in time and space” (Neyman, 1960). The
random processes describing these are the backbone of
much of modern science.

3.2 Markov Processes

Neyman was taken with Markov processes. Reid
(1998) quotes him as saying,

“So what Markov did—he considered chan-
ges from one position to another position.
A simple example. You consider a particle.
It’s maybe human. And it can be in any
number of states. And this set of states may
be finite, may be infinite. Now when it’s
Markov—Markov is when the probability
of going—let’s say—between today and to-
morrow, whatever, depends only on where
you are today. That’s Markovian. If it de-
pends on something that happened yester-
day, or before yesterday, that is a general-
ization of Markovian.”

Time and Markovs play key roles in Fix and Ney-
man (1951). An advantage of working with a Markov
process is that when there is a parameter one can set
down a likelihood function directly.

3.3 Stochastic Differential Equations (SDEs)

“It seems to me that the proper way of ap-
proaching economic problems mathemati-
cally is by equations of the above type, in
finite or infinitesimal differences, with co-
efficients that are not constants, but ran-
dom variables; or what is called random or
stochastic equations. . . . The theory of ran-
dom differential and other equations, and
the theory of random curves, are just start-
ing.” (Neyman, 1938a).

To give an example, let r(t) refer to the location of
a particle at time t in Rp space. The path that it maps
out as t increases is called the trajectory. (Trajectory is
an old word used for a stochastic process.) Its vector-
valued velocity will be denoted

μ(t) = dr(t)/dt.

Rewriting this equation in terms of increments and
adding a random disturbance leads to a so-called sto-
chastic differential equation

dr(t) = μ(r(t), t) dt + σ (r(t), t) dB(t)(1)

or in integrated form,

r(t) = r(0)+
∫ t

0
μ(r(s), s) ds +

∫ t

0
σ (r, s) dB(s).(2)

If, for example, the process B is Brownian, that is,
the increments B(ti+1)−B(ti) are IN(O, (ti+1 − ti)I),
then, under conditions on μ and σ , a solution of the
equation exists and is a Markov process. The function
μ is called the drift rate and σ the diffusion coefficient.

A particular case of an SDE is the Ornstein–Uhlen-
beck process given by

dr(t) = α
(
a − r(t)

)
dt + σ dB(t)

with α > 0 and σ a scalar. This models a particle be-
ing attracted to the point a with the motion disturbed
randomly.

An approximate solution to (1) is given, recursively,
by

r(ti+1) − r(ti) ≈ μ(r(ti), ti)(ti+1 − ti)
(3)

+ σ (r(ti), ti)Zi

√
ti+1 − ti

with the ti an increasing sequence of time points filling
in the time domain of the problem; see Kloeden and
Platen (1995). The Zi are independent p-variate stan-
dard normals. This solution procedure to (1) is known
as the Euler method. In fact Itô (1951) used an expres-
sion like (3) to demonstrate that, under conditions, (1)
had a unique solution.

There has been a substantial amount of work on sta-
tistical inference for SDEs; references include Heyde
(1994) and Sørensen (1997). There are parametric and
nonparametric fitting methods. Inferential work may
be motivated by setting down the above approximation
and taking the ti to be the times of observation of the
process.

Assuming that μ(r, t) = μ(r), that σ (r(t), t) = σ I,
σ scalar, and that r is p vector-valued, one can consider
as an estimate of σ 2

σ̂ 2 = 1

pI

∑
i

∥∥r(ti+1) − r(ti) − μ̂(r(ti))

(4)
· (ti+1 − ti)

∥∥2
/(ti+1 − ti),

i = 1, . . . , I , having determined an estimate of μ.
If the region of motion, say D, is bounded with

boundary ∂D, one can proceed via the SDE

dr(t) = μ(r(t), t) dt + σ (r(t), t) dB(t) + dA(t)

with the support of A on the boundary ∂D. This con-
struction pushes the particle into D.
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3.4 A Potential Function Approach

The choice of the function μ in (1) may be mo-
tivated by Newtonian dynamics. Suppose there is a
scalar-valued potential function, H(r(t), t); see Taylor
(2005). Such a function H can control a particle’s di-
rection and velocity.

In a particular physical situation the Newtonian
equations of motion may take the form

dr(t) = v(t) dt,

dv(t) = −βv(t) dt − β∇H(r(t), t) dt,(5)

with r(t) the particle’s location at time t, v(t) the parti-
cle’s velocity and −β∇H the external force field acting
on the particle. The parameter β represents the coeffi-
cient of friction. Here ∇ = (∂/∂x, ∂/∂y)τ is the gradi-
ent operator. For example, Nelson (1967) makes use of
the form (5).

In the case that the relaxation time, β−1, is small
(or in other words, the friction is high), (5) is approxi-
mately

dr(t) = −∇H(r(t), t) dt = μ(r, t) dt.

Writing the velocity v(t) = μ(r, t) one is led to a sto-
chastic gradient system

dr(t) = −∇H(r(t), t) dt + σ dB(t).

The function H might be a linear combination of
elementary known functions, a combination of thin
plate splines placed around a regular grid or based on
a kernel function. Example 7 below will indicate the
method. The method is further elaborated in Brillinger
(2007a, 2007b).

4. THREE EXAMPLES OF JN’S APPLIED
STATISTICS WORK

“. . . the delight I experience in trying to
fathom the chance mechanisms of phe-
nomena in the empirical world.” (Neyman,
1970).

Neyman was both an exceptional mathematical sta-
tistician and an exceptional applied statistician. The
applied work commenced right at the beginning of
his career and continued until the very end. This sec-
tion presents examples from astronomy, fisheries and
weather modification. These examples were chosen as
they are interesting and they blend into the later exam-
ples in the paper.

Neyman’s work was special in applied statistics
in that he set down specific “postulates” or assump-
tions. Tools of his applied work included sampling,

best asympotically normal (BAN) estimators, C(α)
tests, chi-squared, randomization and synthetic data.
His work was further characterized by the very care-
ful preparation of the data by his Statistical Laboratory
workers.

JN’s applied papers typically include substantial in-
troductions to the scientific field of concern. Topics in-
clude farfield effects of cloud seeding, estimation of
the dispersion of the redshift of galaxies, higher-order
clustering of galaxies, and sardine depletion.

Given Neyman’s concern with the scientific method,
one can wonder how he validated or appraised his mod-
els. On reading his papers, hypothesis testing seems
to include assessment. There were lots of data, and
fit components (observed–expected) and chi-squared
(residuals). There was smooth chi-squared to get alter-
native hypotheses. There was often the remark, “ap-
pears reasonable.”

4.1 Example 1. ASTRONOMY

“By far the strongest and most sustained ef-
fort expended for us in studying natural phe-
nomena through appropriately selected as-
pects of the process of clustering referred
to astronomy, specifically to galaxies. . . . ,
the stimulus came from the substantive sci-
entists, that is from astronomers.” (Neyman
and Scott, 1972).

The work of Neyman, and his collaborators in this
case, is a model for applied statistics. The question is
made clear. Substantive science is involved. Statistical
theory is employed and developed as necessary. Em-
pirical analyses are carried out.

In a series of papers Neyman, Scott, Shane and
Swanson addressed the issue of galaxy clustering.
They applied mathematical models to the Lick galaxy
counts of Shane and Wirtanen. They were the first to
compare the observed galaxy distribution to synthetic
images of the Universe. They assumed that clusters
occur around centers distributed as a spatial Poisson
process. Each center was assigned a random number of
galaxies and the latter placed independently at random
distances from the center. This model, the so-called
Neyman–Scott model, seemed to fit reasonably. How-
ever, when Neyman and Scott produced a simulated
realization, or synthetic plate, of the sky from their
model they were surprised. The actual pictures of the
sky were a lot more lumpy than those their simulation
had produced.
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FIG. 1. Left-hand panel is an image of an actual photographic plate. The right-hand panel is a synthetic plate. See Scott, Shane and
Wirtanen (1954).

“When the calculated scheme of distribu-
tion was compared with the actual distribu-
tion of galaxies . . . , it became apparent that
the simple mechanism postulated could not
produce a distribution resembling the one
we see” (Neyman and Scott, 1956).

More clustering was needed in the model. Neyman
and Scott proceeded to introduce it. With a two-stage
clustering process the simulated appearance of the sky
looked much more realistic. Figure 1, taken from Scott,
Shane and Wirtanen (1954), presents an example.

In summary,

“. . . it was shown that the visual appearance
of a ‘synthetic’ photographic plate, obtained
by means of a large-scale sampling experi-
ment, conforming exactly with the assump-
tions of the theory, is very similar to that of
an actual plate” (Neyman, Scott and Shane
1954).

4.2 Example 2. SARDINE DEPLETION

“Biometry is an interdisciplinary domain
aimed at the understanding of biological
phenomena in terms of chance mecha-
nisms.” (Neyman, 1976).

In 1947–1948 Neyman was called upon by the Cali-
fornia Council of the Congress of Industrial Organiza-
tions to study the decrease in sardine catches. The de-
crease was of great concern and strongly affected the

canneries and commerce of the workers along the west
coast of the United States.

In particular JN was consulted regarding the natural
and fishing mortality of the sardines. A specific pur-
pose of his work was “. . . to study the methods of esti-
mating the death rates of the sardines.” JN wrote three
reports on sardine fishery. They are collected in Ney-
man (1948) and titled, 1. Evaluations and Observa-
tions of Material and Data Available on the Sardine
Fishery, 2. Natural and Fishing Mortality of the Sar-
dines, and 3. Contribution to the Problem of Estimat-
ing Populations of Fish with Particular Reference to
Fish Caught in Schools, Such as Sardines. A revision
of the third report appeared as Neyman (1949).

At the outset of Neyman (1949), he provides Table 2.
From it he infers a “rapid decline . . . observed in spite
of a reported increase in fishing effort. . . ” A second
table, Table 3, gives the amount (in arbitrary units) of
sardines landed on the West Coast in the seasons 1941–
1946, classified by age and season. Figure 2 graphs the

TABLE 2
Seasonal catch of California sardines

1943–1948 in 1000 tons

Year Seasonal catch

1943–1944 579
1944–1945 614
1945–1946 440
1946–1947 248
1947–1948 110
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TABLE 3
Numbers, mt,a , of sardines caught by age and year

Season 41–2 42–3 43–4 44–5 45–6

age = 1 926.0 718.0 1030.0 951.0 493.0
2 6206.0 2512.0 1308.0 2481.0 1634.0
3 3207.0 4496.0 2245.0 1457.0 1529.0
4 868.0 1792.0 2688.0 1298.0 799.0
5 361.0 478.0 929.0 1368.0 407.0
6 95.1 169.4 327.0 498.5 299.2
7 47.2 36.0 98.4 148.0 111.2

amounts with lines joining the values for the same sar-
dine age. One sees the high numbers in the early 1940s
followed by decline. The interpretation is tricky be-
cause the numbers reflect both the fish available and
the effort put into catching them. Neyman (1948) dis-
cussed the effect of migration and concluded that it was
unimportant for his current purposes.

Turning to analysis Neyman remarks,

“Certain publications dealing with the sur-
vival rates of the sardines begin with the as-
sumption that both the natural death rate and
the fishing mortality are independent of the
age of the sardines, at least beginning with
a certain initial age.” (Neyman, 1948).

and goes on to say,

“In the present note a method is suggested
whereby it is possible to a (sic) test the hy-
pothesis that the natural death rate is inde-
pendent of the age of the sardines” (Ney-
man, 1949).

FIG. 2. The data of Table 3 plotted versus year. The curve labels
1–7 index the age groups.

To address the independence issue, and possibly mo-
tivated by Table 3, Neyman sets up a formal structure
as follows. Let Nt,a be “the number of fish available
aged a at the beginning of season t and exposed to
the risk of being caught.” Here these numbers are col-
lected into a vector, N(t) = [Nt,a]. Next nt,a is set to
be the expected number of sardines aged a caught dur-
ing season t , and Pt = 1 − Qt set to be the “fishing
survival rate in the t th year.” Continuing, pa = 1 − qa

denotes the “natural survival rate at age a” and qa the
“rate of disappearance.” The rate of mass emigration
during season t is denoted by Mt .

The following null hypothesis may be set down con-
cerning the mortality rates,

H0 :qa0 = qa0+1 = · · · = qa, a > a0.

Specific assumptions Neyman considered were:

(i) Qt = nt,a/Nt,a , season t fishing mortality,
(ii) Nt+1,a+1 = Nt,a(1 − Qt)(1 − qa),

(iii) Nt+1,a+1 = Nt,a(1 − Qt)(1 − Mt)(1 − qa).

Assumptions (ii) and (iii) involve separation of the age
and season variables. For identifiability of the model
Neyman writes

nt+1,a+1 = nt,aRtpa = nt,artp
∗
a

with

Rt = Pt(1 − Mt)

Qt

Qt+1, rt = Rt/R1, p∗
a = R1pa.

One notes from these expressions that nt+1,a+1/nt,a

separates into a function of t and a function of a. This
last led Neyman to work with logs of ratios in his
analyses. (There will be more on this choice later.) He
estimates p∗

a = R1pa , which is proportional to pa un-
der his definitions, from the data.

The p∗
a estimates are provided in Table 4 and

graphed in Figure 3. One sees a steady decrease with
age. Table 5 provides n̂t,a based on assumptions (i) and
(ii) [or (i) and (iii)].

Neyman’s conclusions included,

TABLE 4
Parameter estimates (these are the values obtained in calculations

for this article)

Season 41–2 42–3 43–4 44–5

p∗
a 0.5944 0.4854 0.4629 0.4056

rt 1.0 1.2252 1.0695 0.6259
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FIG. 3. Estimates of the natural survival rate, p∗ as a function of
age.

“While in certain instances the differences
between Tables IV (here Table 3) and VII
(here Table 5) are considerable, it will be
recognized that the general character of
variation in the figures of both tables is
essentially similar” (Neyman, 1948, pages
14–15).

No formal test of H0 was set down, but Neyman con-
cludes that,

“Since the estimates of the p∗
a decrease

rather regularly, it seems that the true nat-
ural survival rates must decrease with the
increase in age. . . ” (Neyman, 1948).

Basic elements of this example include working with
empirical data, noting the age and season structure ex-
plicitly, and working with a Markov-like setup. Inter-
estingly Neyman talks of an expected value, but no full
probability model is set down.

In part this example is meant to get the reader in the
mood for an age-structured population analysis to ap-
pear later in the paper.

The final example taken from Neyman’s work fol-
lows.

TABLE 5
Estimates of the nt,a , the expected numbers of sardines

Season 1 2 3 4 5

age, 3 2810.0 3556.3 2117.9 1761.6 —
4 1059.3 1684.3 2611.7 1355.7 661.0
5 383.7 514.2 1001.7 1355.7 412.5
6 91.9 77.6 291.6 495.9 391.7
7 — 37.3 88.2 126.5 125.9

4.3 Example 3. WEATHER MODIFICATION

“The meteorological aspects of planning an
experiment with cloud seeding depend upon
the past experience, upon what the exper-
imenter is prepared to adopt as a working
hypothesis and upon the questions that one
wishes to have answered by the experiment”
(Neyman and Scott, 1965–1966).

Cloud seeding became an interest of Jerzy Neyman
starting in the early 1950s. He and his collaborators
studied data from the Santa Barbara and Arizona rain-
fall experiments. Neyman and Scott moved on to study
data from a Swiss weather modification experiment
that had been designed to see if cloud seeding could
reduce hailfall. The experiment was carried out in the
Canton of Ticino during the period 1957–1963 and was
called Grossversuch III.

The experimental design involved each day deciding
whether conditions were suitable to define an “experi-
mental day.” If a day was suitable seeding was or was
not carried out the following day, randomly. Seeding, if
any, lasted from 0730 to 2130 hours local time. Rain-
fall measurements that had been made in Zurich, about
120 km away from Ticino, were studied.

In the course of their work Neyman and Scott discov-
ered so-called “far-away effects,” that is, an apparent
increase in amount of rainfall at a distance. See Ney-
man, Scott and Wells (1969).

Figure 4 provides a reconstruction of a graph that
Neyman and Scott (1974) employed to highlight the re-
sult. It presents average hourly rainfall totals smoothed
by a running mean of 3, for the experimental days
when a “warm” stability layer and southerly winds
were present.

To obtain the data of Figure 4 the values were read
off a graph in Neyman and Scott (1974). The solid
curve refers to experimental days with seeding, the
dashed to those without. There were 53 experimental
days with seeding and 38 without.

What Neyman and Scott focused on in the figure was
an apparent effect of seeding in Zurich starting about
1400 hours in the afternoon.

They wrote as follows,

“. . . the curves. . . represent averages of a
number of independent realizations of cer-
tain stochastic processes. The ‘seeded’ cur-
ves are a sample from a population of one
kind of processes and the ‘not seeded’ curve
a sample from another. For an initial pe-
riod of a number of hours. . . the two kinds
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FIG. 4. Comparison of seeded and not seeded hourly precipita-
tion amounts on days with southerly upper winds. The solid line
is rainfall for seeded days and the dashed line for unseeded. The
horizontal line with arrowheads represents the seeding period at
Ticino. A three-hour moving average had been employed to smooth
hourly totals.

of processes coincide. Thereafter, at some
unknown time T, the two processes may be-
come different. Presumably, all the experi-
mental days differ from each other, possi-
bly depending on the direction and veloc-
ity of prevailing winds. Therefore, the time
T must be considered as a random variable
with some unknown distribution. The theo-
retical problem is to deduce the confidence
interval for the expectation of T, . . . ” (Ney-
man and Scott, 1974).

This problem will be returned to later in the paper.

4.4 Neyman and Exploratory Data Analysis (EDA)

Given my statistical background it would be remiss
not to provide some discussion of EDA in Neyman’s
work. Quotes are one way to bring out pertinent aspects
of Neyman’s attitude to EDA. One can conclude that
exploratory data analysis was one of his talents.

“. . . while hunting for a big problem I cer-
tainly established the habit, . . . , to neglect
rigour” (Neyman, 1967).

“PAGE asked whether the elimination of
outliers–supposed projected foreground or
background objects recognized by discor-
dant velocities–would not in itself introduce
unwanted selection effects. NEYMAN ad-
vised that the investigator try calculations
with and without outliers, then make up his
mind ‘which he likes best’, while retaining
both.”

“Compared with the old style experiments,
characterized by the attitude ‘to prove,’ the
proposed experiment would be substantially
richer. . . . This, then, will implement the at-
titude ‘to explore’ contrasted with that ‘to
prove’ ” (Neyman and Scott, 1965–1966).

“We emphasize that such an investigation
is only exploratory; whatever may be found
are only clues which must be studied further
and hopefully verified in other experiments”
(Dawkins, Neyman and Scott, 1977).

JN did not seem to use residuals much. However, in
Neyman (1980) one does find,

“. . . one can observe a substantial number
of consecutive differences that are all neg-
ative while all the others are positive. . . . the
‘goodness of fit’ is subject to a rather strong
doubt, irrespective of the actual computed
value of χ2, even if it happens to be small”
(Neyman, 1980).

Neyman et al. (1953) proposed an innovative EDA
method to examine variability: specifically, given val-
ues X and Y with the same units, plot X − Y and
|X −Y | versus (X +Y)/2. Figure 5 compares Tables 3
and 5 of the sardine analysis this way. In the two pan-
els one sees wedging, that is, an increase of variabil-
ity with size. This suggests that a transformation of the
data might simplify the matter. Neyman did employ the
log transform in his analysis of the sardine data consis-
tent with the multiplicative character of the model.

FIG. 5. Comparisons of Table 3, x-values and Table 5, y-values.
The left panel plots (x − y) versus (x + y)/2 and the right |x − y|
versus (x + y)/2.
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5. FOUR EXAMPLES OF RANDOM PROCESS
DATA ANALYSIS

The following examples report some of my work,
typically with collaborators. They were suggested in
part by my exposure to JN and to the preceding exam-
ples.

5.1 Example 4. SHEEP BLOWFLIES

In Example 2 above Neyman studied data on sar-
dines that included the actual age information. How-
ever, it can be the case that, even though a population
is age-structured, only aggregate data are available, and
actual age information is unavailable. This is the case
in the example that follows. To deal with it a state-
space model is set down. The (unobserved) state vector
is taken to be the counts of individuals in the various
age groups. The story and details follow.

The tale begins with the mathematician John Guck-
enheimer and the then entomologist George Oster com-
ing to meet with DRB. They had in hand data on a pop-
ulation of lucilia cuprina (Australian sheep blowflies).
The data concerned an experiment maintained from
1954 to 1956 under constant, but limited conditions by
A. J. Nicholson, then Chief Division of Entomology,
CSIRO, Australia.

At the beginning of the experiment 1000 eggs were
placed in a cage. Every other day counts were made
of the number of eggs, of nonemerging flies’ eggs, of
the number of adult flies emerging, and of the number
of adult fly deaths. The life stages, and corresponding
time periods, of these insects are given in Table 6. Fur-
ther details of the experiment may be found in Nichol-
son (1957). To get digital values Oster and a student
took a photo of one of the figures in that paper. The
photo was then projected on a wall and numerical val-
ues read off. Unfortunately some of the populations’
sizes went off the top of the figure. The values for these
cases were obtained when DRB later visited CSIRO.

Guckenheimer and Oster’s question was whether
these data displayed the presence of a strange attrac-
tor, a concept from nonlinear dynamic systems analy-
sis; see Brillinger et al. (1980) and Guckenheimer and

TABLE 6
Life stages and their lengths for sheep blowflies

Life stage Length

egg 12–24 hours
larva 5–10 days
pupa 6–8 days
adult 1–35 days

FIG. 6. Square roots of counts for the Nicholson blowfly data. The
top panel provides the number of adults and the bottom the number
of emerging pupae.

Holmes (1983). The behavior evidenced in the second
half of the series graphed in Figure 6 is what attracted
Guckenheimer and Oster’s attention. The initial oscil-
lations come from the usual lifespan of the adults.

In the particular experiment studied here the amount
of food put in the fly cage was deliberately restricted.
This meant that the fecundity of the females was re-
duced. When much food was available many eggs were
laid. With insufficient food the number of eggs was re-
duced. This led to boom periods and bust periods in the
population size.

Figure 6 graphs the square roots of total adult popu-
lation count, as well as of the number of flies emerg-
ing. The time points are every other day over a pe-
riod of approximately two years. In the graphs one sees
an initial periodic behavior in both series followed by
rather irregular behavior. The square roots were plot-
ted to make the variability of the display more nearly
constant.

Brillinger et al. (1981) proceeded by setting down a
formal state-space model for the situation as follows:

t = 0,1,2, . . . , represents time, observations being
made every other day,

Et , the number of emerging flies in time period
(t, t + 1],

Et , the entrant column vector; it has Et in row 1 and
0 elsewhere,

Nt , the adult population at time t.

Constructs include:
Nt = [Nit ], the state vector; in it row i gives the num-

ber of population members aged i − 1 at time t ,
Pt = P(Ht ) = [pi,t ], the survival matrix. The entry

in row i + 1, column i gives the proportion surviving
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age i to age i + 1. Pt is taken as depending on the his-
tory Ht , that is, the collection of the data values up to
and including time t .

The available data are Et and Nt .
The measurement equation, corresponding to the ob-

served population size is, Nt = 1′Nt . The dynamic
equation is

Nt+1 = PtNt + Et+1 + fluctuations.

This expression updates the counts of adult flies in each
age group, starting from N0 = 0. The fluctuations rep-
resent variabilities in those numbers.

In one analysis (Brillinger et al., 1980), the following
nonlinear age and density model was employed:

pi,t = 1 − Prob{individual aged i,

dies aged i at time t |Ht }
= (1 − αi)(1 − βNt)(1 − γNt−1).(6)

This model allows survival dependence on age, i, on
the current population size, Nt and on the preceding
population size, Nt−1. The final term allows the possi-
bility that it takes some time for the limited or excess
food situation to take effect.

Weighted least squares was employed in the fitting of
model (6). On the basis of residual plots weights were
taken to be N2

t . Hence writing Dt = Nt−1 − Nt + Et

one seeks

min
θ

∑
t

(
Dt+1 − ∑

i

qimi,t

)2/
N2

t ,

where θ = {αi, β, γ } and mi,t is the conditional ex-
pected value, E{Ni,t |Ht }. Graphs of the estimates of
the individual entries of Nt are provided in Brillinger
et al. (1980).

Synthetic series were computed to assess the reason-
ableness of the model (6). In the simulations counts of
deaths in the time period (t − 1, t], are computed. The
deaths, Dt , are plotted in the top panel of Figure 7. The
value Dt is thought of as fluctuating about the value∑

i

qi,tNi,t

where Ni,t is the population aged i at time t .
The results of two simulations are provided in Fig-

ure 7. In the first, the middle series, the variability is
taken as binomial. In the second, the bottom series,
the variability is taken as independent normal, mean
0, standard deviation σ̂Nt with σ̂ estimated from the
weighted least squares results. That the appearances of

FIG. 7. Death series and synthetic death series using the model
(6).

the synthetic series are so close to the actual series re-
lates to the use of the common stimulus series, Et .

A byproduct of this analysis is that because the mea-
surement equation, Nt = 1′Nt , is of simple addition
form by this analysis one has developed a decompo-
sition of the population total series into individual age
series. These are graphed in Brillinger et al. (1980).

The fitted death rates were nonlinear in the popula-
tion size, so mathematically a strange attractor might
be present (Brillinger, 1981).

In this situation one is actually dealing with a non-
linear closed loop feedback system with time lags. Gut-
torp (1980), in his doctoral thesis, completed the analy-
sis of the feedback loop modeling the births.

5.2 Example 5. WEATHER MODIFICATION
REVISITED

Neyman and Scott’s problem referred to in Exam-
ple 3 was addressed in Brillinger (1995). At issue was
making inferences concerning the travel time of seed-
ing effects from Ticino to Zurich. The approach of the
paper was to envisage a succession of travel time ef-
fects that started at times throughout the seeding pe-
riod. This way one had replicates to allow employ-
ment of statistical characteristics. A conceptual model
involving a gamma density for the travel velocity of
the seeding effect was employed. The data themselves
were graphed in Figure 4 above.

The model employed is the following. Suppose that
“rain particles” created at Ticino move off toward
Zurich with a possibility of leading to a cluster of rain
drops there. Suppose that the particles are born at Ti-
cino at the times σj of a point process M , at rate pM(t).
Suppose that the travel times from the particles’ times
of creation, Uj , to Zurich are independent of each other
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with density fU(·). Let N denote the point process of
times, τj , at which the particles arrive at Zurich and
pN(t) denote the rate of that process.

If the j th particle moves with velocity vj and the
distance to be traveled is 
, then its travel time is uj =

/vj and since∑

j

δ(t − τj ) = ∑
j

δ(t − σj − uj )

with δ(·) the Dirac delta, one has

pN(t) =
∫

pM(t − u)fU(u)du.

Let the amounts, Rj , of rain falling at Zurich associ-
ated with the individual particles, be statistically inde-
pendent of the particles. Let μR denote E{Rj }. Then
the rate of rainfall at Zurich at time t is

pX(t) = μR

∫
pM(t − u)fU(u)du.

Next let X(t) denote the cumulative amount of rain
falling at Zurich from time 0 to time t . Its expected
value is

E{X(t)} =
∫ t

0
pX(v) dv.

Turning to Figure 4, Neyman and Scott employed a
running mean of order 3 of the hourly totals to get the
values graphed. These are the data available for analy-
sis. (The hourly values appear to be lost.) The running
mean may be written

Y(t) = 1
3

(
X(t + 1) − X(t − 2)

)
for t = 2,3, . . . . Its expected value is

1
3

∫ t+1

t−2
pX(v) dv

(7)

= 1
3μR

∫ t+1

t−2

∫
pM(v − u)fU(u)dudv.

One can now view the Neyman–Scott problem as re-
lated to estimating fU(·) of (7), that is, estimating the
travel time density given the available data.

To proceed, the seeding rate pM(t) will be taken
to be constant on the time interval from 0730 to
2130 hours and to be 0 otherwise. It will be further
assumed that the travel time of U has the form θ/W

with θ a parameter, and with W Weibull, having scale
1, and shape s. Brillinger (1995) took the gamma as the
density, but a review of the literature of wind speeds
suggests that the Weibull would be more appropriate.

Writing pM(t) = C for A < t < B (here A = 7.5 and
B = 21.5 hr) one has the regression function

E{Y(t)} = α + C

3
μR

[∫ t+1−A

t−2−A
FU(u)du

(8)

−
∫ t+1−B

t−2−B
FU(u)du

]
,

where FU(·) denotes the distribution function of U , in
the case of seeding and α is the natural level of rain-
fall. With the assumed Weibull velocity distribution,
(8) may be evaluated in terms of G the distribution
function of the Weibull. Specifically,∫ x

0
FU(u)du = x

[
1 − G

(
1

x
, s

)]

− s

s − 1

[
1 − G

(
1

x
, s − 1

)]
.

(To derive this one replaces Prob{1/W ≤ u} by
Prob{W ≥ 1/u} and integrates by parts.)

The estimates of the unknowns μ = θ�((s − 1)/s)

(the average travel time), s, α, β = CμR/3 were deter-
mined by ordinary least squares, weighting the seeded
terms by 53 and the unseeded by 38 to handle the un-
equal numbers of seeded and unseeded cases.

Figure 8, left-hand panel, presents the data (solid
curve) and the fitted (dotted) curve. The parameter es-
timates obtained are:

μ̂ = 4.78(0.47) hr,

ŝ = 6.68(5.12),

α̂ = 0.24(0.02),

β̂ = 1.69(0.19).

FIG. 8. Left panel—actual and fitted (dotted line) rainfall when
seeding. Right panel—actual and synthetic in the case of seeding
(dotted line).
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[The standard errors, assumed the errors to be i.i.d.]
One sees in the left-hand panel that the actual data

have a peak near 1800 during 0730 and 2130 hr,
whereas the fitted has a flat top. Perhaps the birthrate,
pM(t), of particles is not approximately constant as as-
sumed above. Perhaps the distribution, fU(u), depends
on time. Perhaps the result is due to natural variability.

A synthetic plot is generated to examine the fit.
Specifically the fluctuations of the unseeded days have
been added to the fitted curve and graphed in the right-
hand panel of Figure 8. Still the fitted curve is quite flat
on the top, in contrast to the Neyman–Scott data curve
which is noticeably peaked. The added fluctuations do
not bring the curve up to the data level.

Returning to the Neyman–Scott problem of Sec-
tion 3, the second quotation there refers to T , a ran-
dom time at which seeding first shows up in Zurich.
The U ’s represent the lengths of time it takes for an ef-
fect just initiated to arrive. One can take the expected
value, EU , to be ET . Using the parameter estimates
above, an approximate 95% confidence interval for the
expectation of T is

4.78 ± 2 ∗ 0.47 hours.

More work needs to be done with this example. A indi-
cation of how to proceed is provided by Figure 8. The
data graph is pointed, whereas the fitted is flat-topped.

5.3 Example 6. ELK MOTION

The data now studied were collected at the Starkey
Experimental Forest and Range (Starkey), in North-
eastern Oregon. Quoting from the website, fs.fed.us/
pnw/starkey/publications/by_keyword/Modelling_
Pubs.shtml.

Starkey was set up by the US Forest Service for

“Long-term studies of elk, deer, and cattle—
examining the effects of ungulates on ecosys-
tems.”

A specific management question of concern is whether
recreational uses by humans would affect the animals
there substantially. Further details about Starkey and
the recreation experiment may be found in Brillinger
et al. (2001a, 2001b, 2004), Preisler et al. (2004) and
Wisdom (2005).

In the first analysis presented the elk were not delib-
erately disturbed and their paths were sampled at dis-
crete times. This gave control data for an experiment.
An all-terrain vehicle (ATV) was introduced and driven
around on the roads in the NE Meadow of Starkey. The

FIG. 9. Northeast pasture of the Starkey Reserve and the elk mo-
tion on control days. The left panel shows the paths of 8 elk, super-
posed. The right panel displays the estimated velocity field μ̂(r) as
a vector field.

analysis to be presented quantifies the effect of the dis-
turbance. The locations of both the ATV and the elk
were monitored by GPS methods.

There were 8 elk in the study. The ATV was in-
troduced into the meadow over 5-day periods. This
was followed by 9-day “control” periods with no ATV.
In the control periods the animals were located every
2 hours. In the ATV case elk locations were estimated
about every 5 min. The ATV’s locations were deter-
mined every second.

Figure 9, left-hand panel, shows observed elk tra-
jectories superposed. One sees the animals constrained
by the fence, but moving about most of the Reserve.
They often visit the SE corner. The straight line seg-
ments result from the locations being obtained only
every 2 hours in this control case.

The animal motion will be modeled by the SDE

dr(t) = μ(r(t)) dt + σ dB(t)(9)

with r(t) the location at time t , B a bivariate standard
Brownian motion and σ a scalar. The function μ is as-
sumed to be smooth. The discrete approximation (3)
becomes a generalized additive model with Gaussian
errors; see Hastie and Tibshirani (1990).

The resulting estimate is displayed as a velocity vec-
tor field (μ̂1(r), μ̂2(r)) in the right-hand panel of Fig-
ure 9 employing arrows. One sees the animals moving
along the boundary and toward the center of the pas-
ture. The fence can be ignored in this data analysis.

The fence is important in preparing a synthetic tra-
jectory. What was done in that connection was to em-
ploy the relation (3) with the proviso that if it generated
a point outside the boundary, then another point was

www.fs.fed.us/pnw/starkey/publications/by_keyword/Modelling_Pubs.shtml
www.fs.fed.us/pnw/starkey/publications/by_keyword/Modelling_Pubs.shtml
www.fs.fed.us/pnw/starkey/publications/by_keyword/Modelling_Pubs.shtml
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FIG. 10. The first three panels display the tracks of the indicated
animals. The final panel, lower right, is a synthetic path.

generated until one stayed within the boundary. This is
a naive but effective method if the ti of (3) are close
enough together. Better ways for dealing with bound-
aries are reviewed in Brillinger (2003).

Figure 10 shows the trajectories of three of the an-
imals. The lower right panel presents a synthetic path
generated including 188 location points. The synthetic
trajectory does not appear unreasonable.

Consideration now turns an analog of regression
analysis for trajectories, that is, there is an explanatory
variable. The explanatory variable is the changing loca-
tion, x(t), of the ATV. The left-hand panel of Figure 11
shows the routes of the ATV cruising around the roads

FIG. 11. The left panel shows the ATV’s route, while the right
shows the elk paths in the presence of the ATV. The ATV passes in
and out some gates on the lefthand side.

of the Meadow. The right-hand panel provides the su-
perposed trajectories of the 8 elk. One sees, for exam-
ple, the elk heading to the NE corner, possibly seeking
refuge. The noise of the ATV is surely a repellor when
it is close to an elk, but one wonders at what distance
does the repulsion begin?

The following model was employed to study that
question. Let r(t) denote the location of an elk, and
x(t) the location of the ATV, both at time t . Let τ be a
time lag to be studied. Consider

dr(t) = μ(r(t)) dt + ν
(|r(t) − x(t − τ)|)dt

(10)
+ σ dB(t).

The times of observation differ for the elk and the
ATV. They are every 5 minutes for the elk when the
ATV is present and every 1 sec for the ATV itself. In
the approach adopted location values, x(t), of the ATV
are estimated for the elk observation times via inter-
polation. The ATV observed times are close in time,
namely 1 second, so the interpolation should be rea-
sonably accurate.

Expression (10) allows the change in speed of an
elk to be affected by the location of the ATV τ time
units earlier. Assuming that μ and ν in (10) are smooth
functions, then the model may be fit as a general-
ized additive model. Figure 12 graphs |ν̂(d)|, d be-
ing the distance of the elk from the ATV. (The norm

|ν| =
√

ν2
1 + ν2

2 here.) One sees an apparent increase in
the speed of the elk, particularly when an elk and the
ATV are close to each another. The increased speed is
apparent at distances out to about 1.5 km. An upper
95% null level is indicated in Figure 12 by a dashed
line. One sees less precise measurement at increasing
large values of τ .

The estimation of |ν(d)| was also carried out in the
absence of the μ term in the model. The results were
very similar. This gives some validity to interpreting
the estimate ν̂(d) on its own despite the presence of μ
in the model.

In conclusion, the ATV is having an apparent effect
and it has been quantified to an extent by the graphs of
Figure 12.

These results were presented in Brillinger et al.
(2004). Also Wisdom (2005) and Preisler et al. (2004)
modeled the probability of elk response to ATVs in a
different way. They used data for the year 2002, and
measured the presence of an effect in another manner.

5.4 Example 7. MONK SEALS: A POTENTIAL
FUNCTION APPROACH

Hawaiian monk seals are endemic to the Hawaiian
Islands. The species is endangered and has been declin-
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FIG. 12. The function |ν̂| of (10) for the time lags 0, 5, 10, 15 minutes.

ing for several decades. It now numbers about 1300.
One hypothesis accounting for the decline in numbers
is the poor growth and survival of young seals owing
to poor foraging success. In consequence of the decline
data have been collected recently on the foraging habi-
tats, movements, and behaviors of these seals through-
out the Hawaiian Islands Archipelago. Specific ques-
tions that have been posed regarding the species in-
clude:

What are the geographic and vertical marine habitats
that Hawaiian monk seals use?

How long is a foraging trip?
For more biological detail see Stewart et al. (2006)

and Brillinger, Stewart and Litnnan (2006, 2008).
The data set studied is for the west side of the main

Hawaiian Island of Molokai. The work proceeds by fit-
ting an SDE that mimics some aspects of the behavior
of seals. It employs GPS location data collected for one
seal. An SDE is found by developing a potential func-
tion.

The data are from a three-month journey of a juve-
nile male while he foraged and occasionally hauled out
onshore. The track started 13 April 2004 and ended 27
July 2004. The animal was tagged and released at the
southwest corner of Molokai; see Figure 13, top left
panel. The track is indicated for six contiguous 15-day
periods. The seal had a satellite-linked radio transmit-
ter glued to his dorsal pelage. It was used to document
geographic and vertical movements as proxies of for-
aging behavior.

There were 754 location estimates provided by the
Argos satellite service, but many were suspicious. As-
sociated with a location estimate is a prediction of the

location’s error (LC or location class). The LC index
takes on the values 3, 2, 1, 0, A, B, Z. When LC = 3, 2
or 1 the error in the location is predicted to be 1 km or
less, and these are the cases employed in the analysis
here.

The estimated times of locations are irregularly
spaced and not as close together as one might like. This
can lead to difficulties of analysis and interpretation.

The motivating SDE of the analysis is

dr(t) = μ(r(t)) dt + σ dB(t), r(t) ∈ F,(11)

with μ = −∇H , H a potential function, σ scalar, B
bivariate Brownian and F the region inside the 200-
fathom line up to Molokai. There was discussion of the

FIG. 13. Plots of the seal’s well-determined locations for suc-
cessive 15-day periods. The dashed line is the 200-fathom line. It
corresponds to Penguin Bank.
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potential approach in Section 3. The potential function
employed here is

H(x,y) = β10x + β01y + β20x
2

(12)
+ β11xy + β02y

2 + C/dM(x, y)

where dM is the shortest distance to Molokai from the
location (x, y). The final term in (12) is meant to keep
the animal off Molokai.

The model was fit by ordinary least squares taking
C = 7.5. In the analysis the number of data points was
142 and the parameter estimates obtained were β̂ =
(93.53,8.00,−0.47,0.47,−0.41), and σ̂ = 4.64 km.
Figure 14 shows the estimated potential function, Ĥ .
This seal is pulled into the middle of the concentric
contours, with the Brownian term pushing it about.

Synthetic plots were generated to assess the reason-
ableness of the model and to suggest departures. Fig-
ure 15 shows the results of a simulation of the process
(only one path was generated) having taken the para-
meter values to be those estimated and having broken
the overall trajectory down into six segments as in Fig-
ure 13, to which it may be compared. The sampling
interval, dt , employed in the numerical integration of
the fitted SDE is 1 hour. The paths were constrained
to not go outside the 200-fathom line and not to go on
the island. (See Brillinger, 2003, for methods of doing

FIG. 14. The fitted potential function obtained using the potential
function (12). The darker the values are, the deeper the potential
function is. The slanted line region is Molokai.

FIG. 15. Synthetic plots of the model (11) having fit the potential
function (12). The times are those of the data of Figure 13.

this.) The locations of the time points of the synthetic
track are the times of the observed locations. This al-
lows direct comparison with the data plot of Figure 13.
The variability of Figure 15 is not unlike that of Fig-
ure 13.

In this work the scattered, sometimes unreasonable,
satellite locations have been cleaned up and summa-
rized by a potential function. The general motion of the
animal on a foraging trip has been inferred and simu-
lated. It has been learned that the animal stays mostly
within Penguin Bank and tends to remain in an area off
the west coast of Molokai.

There are other examples of potential function esti-
mation in Brillinger, Stewart and Littnnan (2006, 2008)
and Brillinger (2007a, 2007b).

6. CONCLUSION

“Say what you are going to say, say it, then
say what you said” (Neyman, Personal com-
munication).

It was a great honor to be invited to present the Ney-
man Lecture. I attended many Neyman Seminars and
made quite a few presentations as well. A side effect
of the work was the very pleasant experience of read-
ing through many of Neyman’s papers in the course of
preparing the lecture and the article. So many personal
memories returned.

The emphasis has been placed on dynamic and spa-
tial situations. There are three examples of JN and
ELS; two concern temporal functions and one spatial.
Four examples are provided of the work of DRB with
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collaborators. Two are temporal and two are spatial-
temporal. The data are from astronomy, fisheries, me-
teorology, insect biology, animal biology and marine
biology. The models and analyses were not all that dif-
ficult. The statistical package R was employed.

The field of sampling was another one to which Ney-
man made major contributions; see Neyman (1934,
1938a). It can be argued that work in sampling had a
more profound impact on the United States than any of
his other applied work. I looked hard but did not find
reference to repeated sample surveys in JN’s work. Had
I, there would have been some discussion of dynamic
sample survey.

The reader cannot have missed the many references
to Elizabeth Scott. In fact in many places in my lecture
the title could have been the Neyman–Scott Lecture.
From the year 1948 on, 55 out of 140 of JN’s papers
were with her. Some 118 of Betty’s publications are
listed in Billard and Ferber (1991). One in the spirit
of this lecture, Scott (1957), concerns the Scott effect,
a biasing effect that occurs in galaxy observations be-
cause at greatest distances only the brightest would be
observed. She developed a correction method (Scott,
1957).

I end with a wonderful and enlightening story con-
cerning Jerzy Neyman. It was told by Alan Izenman
at the lecture in Minneapolis. In the early 1970s the
Berkeley Statistics Department voted to do away with
language requirements. (There had been exams in two
non-English languages.) In response in the graduate
class that JN was teaching he announced that he was
going to ask various people to give their presentation
in their native, non-English, language. This continued
for a number of weeks and languages.
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