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Comment: Bayesian Checking of the
Second Levels of Hierarchical Models
M. Evans

Abstract. We discuss the methods of Evans and Moshonov [Bayesian
Analysis 1 (2006) 893–914, Bayesian Statistics and Its Applications (2007)
145–159] concerning checking for prior-data conflict and their relevance to
the method proposed in this paper.
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1. INTRODUCTION

This is an interesting paper dealing with an impor-
tant topic. It is a logical continuation of the contribu-
tions found in Bayarri and Berger (2000). In particular,
it continues the emphasis on avoiding the “double use
of the data” and this is an important point that we agree
with.

While it seems intuitively clear what “double use of
the data” means, it would be nice to have a precise defi-
nition as the phrase seems to be used a bit too freely by
some at times, at least in our view. Intuitively, in model
checking, this would seem to be the situation where the
fitted model depends on a particular aspect of the data
and then the model is checked by comparing the same
aspect of the data with the fitted model. On the other
hand, we have seen assertions that a “double use of the
data” is being made in situations like computing a pos-
terior (the first use) and then (the second use) comput-
ing a characteristic of that distribution like a mode or
hpd region. While in some technical sense this seems
like using the data twice, there does not seem to be any-
thing wrong with it, at least to us. Rather than giving
a definition, this paper, like Bayarri and Berger (2000)
and Robins, van der Vaart and Ventura (2000), points
to a negative consequence of double use of the data,
in terms of the lack of uniformity of p-values. Perhaps
the factorization in Section 2 of this discussion gives a
general method of ensuring that components of the to-
tal information available to a statistician for an analysis
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are used appropriately, and so gives a general charac-
terization for avoidance of “double use of the informa-
tion.”

This paper assumes a default or “objective” prior on
the last level of a hierarchically specified prior. In gen-
eral this will result in an improper prior. Part of the
motivation for this seems to be that “model checking
with informative priors cannot separate inadequacy of
the prior from inadequacy of the model” and so the
methodology proposed by Box (1980), which is based
on proper priors, is not used. We disagree with the
quoted statement. The methods discussed in Evans and
Moshonov (2006, 2007) are a modification of Box’s
approach and are motivated precisely by the need to
separate the two kinds of inadequacies in the context of
proper, informative priors which, as they should, repre-
sent subjective beliefs. We briefly outline this approach
in Section 2. Also, Evans and Moshonov (2006) in-
cludes methodology for checking the second level of a
hierarchical model based on a factorization of the full
information. We discuss this in Section 3 and show that
this methodology is also applicable when the first level
is improper.

While we agree with the necessity to consider im-
proper priors as part of a general theory of statistics,
it is difficult for us to accept these as a basis from
which statistical theory is built. It is our opinion that
the core of statistics is represented by the proper prior
context. As such, we feel that what is done outside of
this core should be highly influenced, if not directed,
by the central theory with proper priors. So our discus-
sion reflects this and considers the implications for the
situation discussed in this paper.
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For us checking the sampling model and the prior
are important parts of a statistical analysis. A common
complaint concerning the prior is that it is subjective,
as it represents someone’s personal beliefs about the
true value of θ . A common retort is that the sampling
model is also subjective as it represents someone’s be-
lief that the true distribution is in this class, that is, it
was someone’s subjective choice. Of course, both these
statements are correct as there is typically little “objec-
tive” about either choice. From another point of view,
the fact that these choices are subjective is a good thing
because they are (hopefully) informed choices and that
should lead to better statistical analyses than if we
made these choices arbitrarily, or based on convention.
For us the way to reconcile the debate between objec-
tive and subjective is through checking that these ingre-
dients make sense in light of what we know to be truly
objective (at least if it is collected correctly), namely,
the data. Others argue that no such checks should be
made, as they lead us to be incoherent. There is a wide
diversity of opinion on these matters and we certainly
acknowledge value in various points of view.

2. FACTORING THE FULL INFORMATION

Suppose we have prescribed a sampling model
{Pθ : θ ∈ �}, a proper prior �, and have observed the
data x. The sampling model and prior combine to give
the joint model Pθ × � for (x, θ). We will suppose
that this joint model and the observed data comprise
the full information available to the analyst. We are not
saying that further information may not be available in
an analysis, but we will restrict our discussion to the
situation where this is all we have. Further, denote the
prior predictive measure by M(B) = ∫

� Pθ(B)�(dθ);
for statistics T and U ◦ T on the sample space let
MT (·|U ◦ T ) denote the conditional prior predictive
distribution of T given U ◦ T , and �(·|x) denote the
posterior of θ.

In Box’s approach to model checking, the observed
value of x is compared with M to see if there is model
failure, that is, we check to see if x is a surprising value
from M. There would appear to be an illogicality in-
volved in this, however, as we know, at least in the sub-
jective Bayesian context, that x was not generated from
M. If our assertion was that x was generated from M,

perhaps as a random effects model, then it would make
sense to check x against M, as this is an assertion about
the underlying data generating mechanism. It is clearly
more appropriate, in Bayesian context, however, to see
if x is not surprising for at least one of the distributions

in {Pθ : θ ∈ �}, that is, check x against what we are
asserting is the data generating mechanism—the sam-
pling model.

As discussed in Evans and Moshonov (2006), there
are two possibilities for failure in the Bayesian formu-
lation: the sampling model may fail by x being sur-
prising for each distribution in the sampling model or,
if the sampling model does not fail, the prior may con-
flict with the data by placing the bulk of its mass on
those distributions in the sampling model for which the
data is surprising. Note that it only makes sense to talk
about prior-data conflict if the sampling model does not
fail. Logically, checking the sampling model precedes
checking for prior-data conflict.

How then should we check for prior-data conflict?
Intuitively this arises when the effective supports of the
likelihood and the prior do not overlap. As discussed in
Evans and Moshonov (2006), however, the clearest ap-
proach to measuring this conflict comes from asking if
the observed likelihood is a surprising value from its
prior predictive distribution. Given that the likelihood
map is minimal sufficient, this is equivalent to asking
if the observed value T (x) of a minimal sufficient sta-
tistic T is surprising from its marginal prior predic-
tive MT . Further consideration shows that T (x) can be
surprising simply because some value U(T (x)) is sur-
prising where U ◦ T is ancillary. When such ancillar-
ies exist, this leads to comparing T (x) to MT (·|U ◦ T )

where U ◦ T is a maximal ancillary, as this condition-
ing removes the maximal amount of ancillary variation.
Ancillary variation is clearly not relevant to assessing
prior-data conflict as it does not depend on the parame-
ter. Further, there is nothing to prevent us from using
some function S(T ), and comparing its observed value
to the distribution MS(T )(·|U ◦ T ), to check for prior-
data conflict. Of course, S has to be chosen sensibly if
we are going to make a meaningful check.

This approach leads to the following factorization of
the joint distribution:

Pθ × �
(1)

= P(·|T ) × PU◦T × MT (·|U ◦ T ) × �(·|x),

where P(·|T ) is the conditional distribution of the data
given the minimal sufficient statistic T , and so does
not involve θ, and PU◦T is the marginal distribution
of PU◦T which is also free of θ. Each of the compo-
nents in (1) plays a separate role in a statistical analy-
sis. P(·|T ) and PU◦T are available for checking the
sampling model, MT (·|U ◦ T ) is available for check-
ing for prior-data conflict and �(·|x) [which really
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only depends on the data through T (x)] is for inference
about θ. We see that M = P(·|T ) × PU◦T × MT (·|U ◦
T ), which explains how this is a modification of Box’s
approach and it shows how to check for inadequacies
in the prior as well as the sampling model.

It is our claim that effectively (1) shows us how
to proceed to avoid double use of the information
and, as such, avoid double use of the data. Of course,
as mentioned in the paper, it may be difficult, with
complicated models, to determine P(·|T ) or PU◦T in
meaningful ways. Accordingly, it seems reasonable to
weaken this requirement in such contexts to having this
hold asymptotically in some sense. For example, a chi-
squared goodness-of-fit test is asymptotically ancillary.

In the context of an improper prior that leads to
a proper posterior, then (1) is still available but now
the factor MT (·|U ◦ T ) is not a probability measure
and so it is not clear how we would check for prior-
data conflict. As discussed in Evans and Moshonov
(2006, 2007), a partial characterization of a noninfor-
mative prior is that it would never lead to evidence of
a prior-data conflict existing no matter what data is
obtained. Thus the choice of an improper prior is an
assertion that this choice avoids such a conflict. Non-
informative sequences of priors are also discussed in
Evans and Moshonov (2006, 2007) and these can pro-
vide a way to justify such a statement for a particu-
lar improper prior. In any case, the choice of an im-
proper prior should not in any way change the role of
the remaining factors if we follow the principle that the
proper case is central. Although we do not have a for-
mal proof, it would seem that the methods discussed in
Bayarri and Berger (2000) will satisfy this asymptoti-
cally.

Further, any p-values computed according to this
factorization will have the necessary uniform proper-
ties when assessed against the appropriate measures.
For example, if p(t) = MT (h(T ) > h(t)) is a p-value
for checking for prior-data conflict with no ancillary,
then p(T ) will be uniformly distributed, at least in the
continuous case, when T ∼ MT .

3. HIERARCHICAL MODELS

In Evans and Moshonov (2006, 2007) methods are
discussed for checking hierarchically specified priors
for θ = (θ1, θ2) ∈ �1 × �2, that is, we specify pri-
ors �1 and �2 so that �(d(θ1, θ2)) = �2(dθ2|θ1) ×
�1(dθ1). In such situations we would like to check the
individual components of the prior separately, as this
gives us more information about a prior-data conflict

when this occurs. For example, it may be that �1 con-
flicts but �2 does not.

We distinguish two different situations. First, the pa-
rameters θ1 and θ2 may both be part of the likelihood
function and second, only θ2 is part of the likelihood
function. The second situation corresponds to hierar-
chical models and θ1 is a hyperparameter. Methods are
presented in Evans and Moshonov (2006, 2007) for
both of these situations, but we only discuss hierarchi-
cal models here.

With proper priors we have the prior �∗
2(dθ2) =∫

�1
�2(dθ2|θ1)�1(dθ1) for the model parameter and

the methods of Section 2, based on the minimal sta-
tistic T for the model {Pθ2 : θ2 ∈ �2}, are available to
check whether or not �∗

2 conflicts with the data. While
this check is available, Evans and Moshonov (2006)
develop a factorization that is appropriate for checking
the components, such as the second level �2(·|θ1), of
a hierarchical model.

To simplify the presentation of this, we will sup-
pose there are no relevant ancillaries for {Pθ2 : θ2 ∈ �2}
based on T , but note that these can be incorporated as
well. We can formally generate another model for x

from the joint distribution, namely, via

Mθ1(dx) =
∫
�2

Pθ2(dx)�2(dθ2|θ1)

= P(dx|T )(t)

∫
�2

PT θ2(dt)�2(dθ2|θ1)

= P(dx|T )(t) × MT θ1(dt).

This model is only formal, as, indeed, our model indi-
cates that x was not generated via Mθ1, for some value
of θ1. Here Mθ1 is the conditional prior predictive dis-
tribution for x given θ1 and MT θ1 is the conditional
prior predictive distribution for T given θ1. Note that
when �2(·|θ1) is proper, as in the paper, then Mθ1 and
MT θ1 are also proper.

Let V (T ) be a minimal sufficient statistic for the for-
mal model for T given by {MT θ1 : θ1 ∈ �1}. We can
factor MT θ1 as MT (·|V )×MV θ1, where MT (·|V ) is the
conditional prior predictive distribution of T given V,

and MV θ1 is the conditional prior predictive distribu-
tion of V given θ1. Then the joint distribution of (θ1, x)

can be factored as

P(·|T ) × MT (·|V ) × MV × �1(·|V ),(2)

where MV is the prior predictive distribution of V and
�1(·|V ) is the posterior distribution of θ1.

Consider how each of the factors in (2) is to be used.
First P(·|T ) is available for checking the basic sam-
pling model {Pθ2 : θ2 ∈ �2}. If no evidence is found
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against {Pθ2 : θ2 ∈ �2}, we can proceed to check the
formal model {MT θ1 : θ1 ∈ �1} for T using MT (·|V )

and note that this does not depend on �1. Note also
that MT (·|V ) is proper whenever �2(·|θ1) is proper
for each value of θ1. If evidence is found against this
model, then, because we have accepted the sampling
model, and so consequently the model {PT θ2 : θ2 ∈ �2}
for T , this must occur because of a conflict between
the observed value T (x) and �2. So a check of the
formal model {MT θ1 : θ1 ∈ �1} using MT (·|V ) is a
check for prior-data conflict with �2. Note that this
check proceeds exactly as in the simpler situation de-
scribed in Section 2. If we find no evidence against
{MT θ1 : θ1 ∈ �1}, then we can check for a conflict with
�1 using MV . Finally, if there is no conflict with �1,

then �1(·|V ) is available for inference about θ1. Of
course, if there is no conflict with �1 and �2, then we
can also make inference about the parameter of inter-
est θ2.

The model {MV θ1 : θ1 ∈ �1} may have ancillaries.
Let W ◦ V be such a maximal ancillary. We then have
that MV factors as MV = MW◦V × MV (·|W ◦ V ) so
that (2) becomes

P(·|T ) × MT (·|V )
(3)

× MW◦V × MV (·|W ◦ V ) × �1(·|V ).

In this case, given that we have accepted the sampling
model, the factor MW◦V is available for checking for
prior-data conflict with �2, and MV (·|W ◦ V ) is the
appropriate factor for checking �1. The justification
for this is exactly as in the simple case discussed in
Section 2.

Note that in (3), the only distribution that will neces-
sarily be improper when �1 is improper, is MV (·|W ◦
V ). The measure MV (·|W ◦ V ) is to be used only in
the check for �1. Therefore, the choice of an improper
�1 is really an assertion that this prior will never con-
flict with the data. Irrespective of whether or not �1
is improper, the factors MT (·|V ) and MW◦V are avail-
able to check for prior-data conflict with �2, when it
is proper.

We consider the implementation of this approach in
the normal-normal hierarchical model presented in the
paper.

EXAMPLE (Normal–normal hierarchical model).
We first consider a simpler model. In particular, we
assume that the known σ 2

i are all equal to σ 2 and
that we have balance, namely, n1 = · · · = nI = n.

For this problem we have that T (x) = (x̄1, . . . , x̄I )
′ ∼

NI (θ, (σ 2/n)I) and here θ is the model parameter

(corresponding to θ2 in our parameterization of a hier-
archical model above). Therefore, according to our fac-
torization, we check the sampling model using P(·|T ),

which is effectively the distribution of the residuals.
Now

(x̄1, . . . , x̄I )
′ = (θ1, . . . , θI )

′ + (
σ/

√
n
)
(z1, . . . , zI )

′

where the zi are i.i.d. N(0,1) and, from the sec-
ond level, (θ1, . . . , θI )

′ ∼ NI (μ1, τ 2I ), independent of
(z1, . . . , zI )

′. Thus (μ, τ 2) is the hyperparameter (cor-
responding to θ1 in our parameterization of a hierarchi-
cal model above). This implies that MT (μ,τ 2) is given
by (x̄1, . . . , x̄I )

′ ∼ NI (μ1, (τ 2 + σ 2/n)I ). It is then
easy to see that V (x̄1, . . . , x̄I ) = (

∑I
i=1 x̄i ,

∑I
i=1 x̄2

i ) is
a minimal sufficient statistic for the model {MT (μ,τ 2) :
μ ∈ R1, τ 2 > 0}. Note also that V is a complete min-
imal sufficient statistic so there are no relevant ancil-
laries W that we need consider for the check for the
second level.

To determine MT (·|V ) we need the conditional dis-
tribution of (x̄1, . . . , x̄I )

′ given (
∑I

i=1 x̄i ,
∑I

i=1 x̄2
i ).

This is clearly uniform on the sphere of squared ra-
dius

∑I
i=1 x̄2

i lying in the hyperplane of RI given by
{(y1, . . . , yI )

′ :
∑I

i=1 yi = ∑I
i=1 x̄i}. We can simulate

from this distribution by generating v1, . . . , vI−1 i.i.d.
N(0,1), putting ui = vi/(

∑I−1
i=1 v2

i )
1/2 and

(y1, . . . , yI )
′ = (x̄1, . . . , x̄I )

′ + A(u1, . . . , uI−1)
′

where A ∈ RI×(I−1) is such that the matrix (1/
√

I A)

is orthogonal. Then for any particular discrepancy sta-
tistic, we can compute an appropriate p-value via sim-
ulation.

The above analysis also applies when the σ 2
i /ni are

all equal. When they are not equal the analysis is more
complicated, as the form of V depends on which ones
are equal. Further, it is not a complete minimal suffi-
cient statistic and so there are relevant ancillaries.

Based on the factorization (3) we feel that MT (·|V )

and MW◦V are appropriate distributions for comput-
ing p-values to assess the second level for a hierarchi-
cal model. Further, the uniformity of the corresponding
p-values should be assessed against these distributions
and this does not require that �1 be improper.

It is difficult to compare our approach with the pro-
posal in the paper, but we note that it has the dis-
tinct advantage of not involving the prior for the first
level. For our check on the second level we need say
nothing about the prior for the first level and it can
be improper. The intuition for this lies with condition-
ing on V, which completely removes the effect of �1
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on the prior predictive for T , and the fact that �2 in-
duces the ancillary W ◦V. Therefore any conflict that is
found can only be due to �2. It may be that the method
proposed in the paper will satisfy (3) in an asymptotic
sense but we do not have a proof of this.

4. CONCLUSIONS

It is sometimes suggested that model checking is a
somewhat informal process. Partly this is because mod-
els can fail in many ways and some of these may be
more relevant in certain situations than others. It seems
impossible then to come up with a methodology that
will check for all of the possibilities simultaneously.
So it seems reasonable to ask that we specify a set of
checks that we think are relevant, prior to seeing the
data, and then implement only these, rather than going
on a hunting expedition for defects. A similar approach
seems appropriate for checking for prior-data conflict.

While selection of the actual checks is perhaps some-
what informal, we do not believe that there is complete
freedom in this. Some general principles must apply.
The ill effects of double use of the data, as discussed
in this paper and Bayarri and Berger (2000), provide a
good example of the need for such principles.

In frequentist statistical theory, inference about pa-
rameters depends on the data only through the mini-
mal sufficient statistic and, what is left over in the data
(the residual), is available for model checking. Mixing
these up would seem to correspond to an inappropriate
statistical analysis. We believe this is equally applica-
ble in Bayesian formulations.

Checking for prior-data conflict seems to sit between
model checking and inference. While it depends on the
minimal sufficient statistic, however, the factorization
given by (1) indicates that it really is separate from
model checking and inference as it involves a separate
component of the full information as expressed by the
joint distribution. In essence (1) prescribes how each
component of the full information is to be used in a sta-
tistical analysis. If we mix these up, it would seem to
us that we can expect illogical or incoherent behavior,
for example, overly conservative p-values. Note that in
a certain sense each component of (1) is independent
of the others, as we could prescribe each probability
measure separately and still end up with a valid joint
distribution. Specification of each component of (1) is
necessary and sufficient for the specification of a joint
probability distribution for (x, θ).

Of course, this restriction could be weakened to re-
quiring that a methodology only satisfy (1) in some
asymptotic sense. The motivation for this would seem
to arise from the complexity of some situations. Still,
(1) can be implemented exactly with many models of
considerable importance, so it is not just of theoretical
relevance.

Similarly, we believe that (3) is the relevant factor-
ization for model checking and checking for prior-data
conflict in hierarchical models. From that perspective
it would be important to see if the methods proposed in
the paper satisfied this in some asymptotic sense. This
would give us more confidence that these constituted
an appropriate way to proceed in situations where they
were felt to be necessary.

We also feel that our discussion of (3) shows that the
choice of prior �1 for θ1 is irrelevant for checking �2
with hierarchical models. In particular, whether �1 is
proper or improper, the check for �2 is the same and
this is a satisfying result. This does not appear to be the
case for the method proposed in the paper which de-
pends, in particular, on which objective prior we use.
Perhaps this effect disappears as the amount of data
increases, but then the relevance of checking for prior-
data conflict disappears too, as the effect of the prior
on inference disappears, at least under reasonable reg-
ularity conditions.

Overall, our purpose here is to suggest that there is
a principled approach to the question addressed in the
paper. We are not saying that using the partial poste-
rior approach is in some way incorrect. We do think,
however, that it would be worth investigating to what
extent the partial posterior approach satisfied (3).
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