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Comment: Bayesian Checking of the
Second Level of Hierarchical Models:
Cross-Validated Posterior Predictive
Checks Using Discrepancy Measures
Michael D. Larsen and Lu Lu

1. INTRODUCTION

We compliment Bayarri and Castellanos (BC) on
producing an interesting and insightful paper on model
checking applied to the second level of hierarchical
models. Distributions of test statistics (functions of
the observed data not involving parameters) for judg-
ing appropriateness of hierarchical models typically in-
volve nuisance (i.e., unknown) parameters. BC (2007)
focus on ways to remove the dependency on nui-
sance parameters so that test statistics can be used
to assess models, either through p-values or Berger’s
relative predictive surprise (RPS). They demonstrate
shortcomings in terms of very low power of posterior
predictive checks and a posterior empirical Bayesian
method. They also demonstrate better performance of
their partial posterior predictive (ppp) method over a
prior empirical Bayesian method. Methods of Dey et
al. (1998), O’Hagan (2003) and Marshall and Spiegel-
halter (2003) also are compared.

Methods are contrasted in terms of whether they re-
quire proper prior distributions, how many measures of
surprise (one per group or one total) are produced, and
the degree to which data are used twice in estimation
and testing. Their preferred method (ppp) can use im-
proper prior distributions, which are referred to as ob-
jective, produces a single measure of surprise for each
test statistic, and avoids double use of the data. For the
models and statistics considered, in comparison to the
alternatives presented, ppp has a more uniform null dis-
tribution of p-values and more power versus alterna-
tives.
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In this discussion, we suggest that cross-validated
posterior predictive checks using discrepancy mea-
sures hold some promise for evaluating complex mod-
els. We apply them to O’Hagan’s data example, pro-
vide some comments on the paper and discuss possible
future work.

2. CROSS-VALIDATED POSTERIOR PREDICTIVE
CHECKS USING DISCREPANCY MEASURES

Suppose there are data for I groups: Xi, i = 1, . . . , I ,
where Xi = (Xij , j = 1, . . . , ni). The unknown para-
meters in the first level in group i are θi : f (Xi |θi) in-
dependently. The parameters in the second level of the
model are η: π(θ |η) = ∏I

i=1 π(θi |η). The prior distri-
bution on η is π(η). Let D(X,θ, η) be a generalized
discrepancy measure. If D(X,θ, η) = D(X), then it is
a test statistic. Examples are given in the next section
for the normal-normal model considered by BC (2007).
Cross-validated posterior predictive model checking
using a discrepancy measure is implemented as fol-
lows. Separately for each i = 1, . . . , I :

1. Generate M values (m = 1, . . . ,M) from the poste-
rior distribution of η|X(−i); call them ηm

(−i), where
X(−i) represents all the data without group i.
Generating values of η will be accomplished in
many cases through iterative simulation methods
that will generate values of θ(−i), where θ(−i)

is the collection of group parameters excluding
group i: f (η|X(−i)) = ∫

f (η, θ(−i)|X(−i)) dθ(−i) ∝∫
π(η)π(θ(−i)|η)f (X(−i)|θ(−i)) dθ(−i).

2. Generate values θm
i of θi given the hyperparame-

ters ηm
(−i) independently from π(θi |ηm

(−i)), m =
1, . . . ,M .

3. Generate replicate data Xm
i independently from

f (Xi |θm
i ), m = 1, . . . ,M .

4. Compute the proportion of times out of M that
D(Xm

i , θm
i , ηm

(−i)) is greater than D(xi, θ
m
i , ηm

(−i)),
m = 1, . . . ,M .
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TABLE 1
Posterior predictive p-values for individual groups and the whole population

Discrepancy Group 1 Group 2 Group 3 Group 4 Group 5 Whole population

Overall X2 0.568 0.857 0.261 0.747 0.287 0.483
1st Level X2 0.547 0.893 0.140 0.893 0.202 0.496
2nd Level X2 0.512 0.594 0.567 0.518 0.403 0.513
Maxj∈{1,...,ni } Xij 0.476 0.851 0.060 0.847 0.143 —
Maxj∈{1,...,ni } |Xij − θi | 0.610 0.839 0.113 0.923 0.283 —
Maxj∈{1,...,ni } |Xij − μ| 0.682 0.820 0.286 0.897 0.151 —
Maxi |X̄i − μ| — — — — — 0.493

This proposal allows the use of objective prior distri-
butions, is relatively easy to implement in many hierar-
chical models, avoids double use of data in group i for
evaluating the model for group i, and allows many test
statistics and discrepancy measures to be used based on
one set of simulations of η and θ . On the negative side,
this procedure may lose some power for some statistics
compared with ppp, but likely much less so than regu-
lar posterior predictive checks. The use of more flexi-
bly defined discrepancies, however, could produce rel-
atively powerful evaluations for some aspects of some
models. The proposal requires more computing than
regular posterior predictive checks and faces issues of
multiplicity in testing. The method is applied in Sec-
tion 3 and followed by discussion in Section 4.

3. O’HAGAN’S EXAMPLE

O’Hagan’s data [see Section 5 of BC (2007)] are
used to study the performance of model checking
based on regular and cross-validated posterior pre-
dictive checks utilizing various discrepancy measures.
The model being fit is a two-level normal-normal hier-
archical model. Notation is the same as in BC (2007).

Different discrepancy measures relate to various
parts of the model. The overall X2 discrepancy, de-

fined by
∑ni

j=1
(Xij−μ)2

(σ 2+τ 2)
for group i, measures the ad-

equacy of two levels as a whole. The first and sec-

ond level X2 discrepancies, defined as
∑ni

j=1
(Xij−θi)

2

σ 2

and (θi−μ)2

τ 2 for group i, detect the inadequacy of
the first- and second-level models, respectively. The
three measures above also can be summed across
groups, i = 1, . . . , I . The maximum absolute devi-
ation of a group average from the overall center is
Maxi |X̄i − μ| and quantifies fit of the whole model.
The maximum value Maxj∈{1,...,ni} Xij and the mini-
mum value Minj∈{1,...,ni} Xij in group i are sensitive

to extremes within groups. The maximum absolute de-
viations of observations from the group mean in group
i, Maxj∈{1,...,ni} |Xij − θi |, relates to spread about the
mean within group i. The maximum absolute devia-
tion of observations from the overall mean in group
i, Maxj∈{1,...,ni} |Xij − μ|, relates to adequacy of both
levels in the model.

For the regular posterior predictive checks noninfor-
mative prior distributions for parameters σ 2, μ and τ 2

were used: π(μ) ∝ 1, π(σ 2) ∝ 1/σ 2 and π(τ 2) ∝ 1/τ

(or equivalently π(τ) ∝ 1). Table 1 shows the poste-
rior predictive p-values for individual groups and the
whole population. As observed by BC (2007), suffer-
ing from the double use of data, none of the discrep-
ancy measures detect any evidence of incompatibility
between the observed data and the null model for indi-
vidual groups or for the population as a whole.

Table 2 shows the p-values based on cross-validated
posterior predictive checks for individual groups. The
model fits the data from groups 1, 2 and 4 very well.
For group 3, the p-values based on the first-level X2

discrepancy is 0.016, which indicates slight inade-
quacy of the first-level model. This is not surprising
due to the extreme observation 4.10. The impact of
this unusual observation in group 3, given a model of
equal spread in each group, also is detected by the dis-
crepancy measure Maxj∈{1,...,ni} |Xij − θi |, which has
a p-value of 0.023. Despite the concern about the first-
level model in group 3, discrepancy measures focused
on the second level and the model overall do not detect
any problem. This is consistent with the fact that the
mean and spread in group 3 are not extreme compared
with the other groups.

For group 5, all discrepancies detect the inadequacy
of the hierarchical model. This makes sense since
group 5 has a very extreme group mean of 4.44, which
is almost three times the other group means, and has at
least one relatively extreme observation of 6.32, which
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TABLE 2
Cross-validated posterior predictive p-values for individual groups

Discrepancy Group 1 Group 2 Group 3 Group 4 Group 5

Overall X2 0.653 0.804 0.520 0.730 0.007
1st Level X2 0.168 0.315 0.016 0.291 0.000
2nd Level X2 0.577 0.656 0.654 0.585 0.007
Maxj∈{1,...,ni } Xij 0.641 0.723 0.373 0.759 0.005
Maxj∈{1,...,ni } |Xij − θi | 0.203 0.333 0.023 0.411 0.002
Maxj∈{1,...,ni } |Xij − μ| 0.715 0.819 0.472 0.841 0.006

is almost twice the overall within-group standard de-
viation away from the group mean. Note that even if
p-values for group 5 were multiplied by 5 or 6 to deal
with multiplicity of testing, the result would still be less
than 0.05 for all the various discrepancies.

Now we consider improving the proposed hierar-
chical model by using more robust distributions for
modeling the outlying group and extreme observations.
Since we have seen slight inadequacy in the first-level
model for groups 3 and 5 and serious inadequacy in the
second-level model for group 5, we might consider us-
ing Student-t distributions to accommodate the unusual
observations and the extreme group mean parameter in
the hierarchical model.

To perform a robust analysis, we replace the nor-
mal distributions by Student-t distributions with fixed
degrees of freedom ν1 = 3 and ν2 = 2.2 in the first
and second levels of the hierarchical model. The
cross-validated posterior predictive p-values assum-
ing Student-t distributions in both levels of model are
shown in Table 3. The two-level robust Student-t model
successfully accommodates the unusual observation in
group 3 and almost accommodates the extreme obser-
vation in group 5. But it does not fully address the
inadequacy of the second-level model for fitting group
5’s data. Given this result, one might suggest treating

group 5 as being generated from a normal distribution
with a shifted location parameter or an inflated vari-
ance parameter. One could also consider using another
model, such as one of BC’s (2007) alternative models
in their Section 3.6. If there were more groups with
higher means, then fitting a mixture of normal distrib-
utions in the second level might be an option.

Degrees of freedom greater than 2 are used because
such t-distributions have finite variances. A little bit
of experimenting was done to choose the degrees of
freedom. Larger degrees of freedom had less success
(slightly) of fitting the data, but made little difference
in posterior distributions of parameters or in results in
Table 3. If the degrees of freedom are thought of as
parameters, then posterior variance will be quite high
with this few groups.

4. SOME COMMENTS ON THE PAPER AND
DISCUSSION

From the above analysis we can see that it is useful
to employ various discrepancies to measure the over-
all performance and the specific assumptions of the
model. Cross-validated posterior predictive checking
allows the use of many discrepancies focused on var-
ious aspects of the model and avoids the double use

TABLE 3
Cross-validated posterior predictive p-values for individual groups assuming Student-t distributions

for both levels in the hierarchical model

Discrepancy Group 1 Group 2 Group 3 Group 4 Group 5

Overall X2 0.680 0.856 0.493 0.822 0.074
1st Level X2 0.211 0.376 0.081 0.381 0.060
2nd Level X2 0.636 0.676 0.667 0.639 0.022
Maxj∈{1,...,ni } Xij 0.581 0.664 0.320 0.734 0.070
Maxj∈{1,...,ni } |Xij − θi | 0.295 0.450 0.117 0.501 0.122
Maxj∈{1,...,ni } |Xij − μ| 0.732 0.877 0.440 0.891 0.134
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of data. It is also useful for assessing individual small
groups or areas that are inconsistent with the model.
Extensions to multilevel models, models with covari-
ates and generalized linear models should be possible.
See Gelman (2004) and Gelman et al. (2005) and refer-
ences therein for other examples of model diagnostics
that use flexibility in defining evaluations to advantage.

The framework of test statistics only for checking
models is less flexible and requires more effort; test sta-
tistics of BC’s (2007) Section 3.3 required some refine-
ment of procedures in Appendix C. The authors should
be commended on their efforts and explanations; their
results show a definite advantage over the other meth-
ods in their article in these applications.

The authors state that they intend the model checks
to be preliminary in order to avoid model elaboration
and (possibly) averaging. It seems unlikely to us that
there would not be value in using such methods for
further study of models past an initial stage. Indeed,
it might be the case that unusual patterns might be de-
tectable only after models reach a certain level of com-
plexity. We agree with the authors that assessing total
uncertainty through an elaborate model selection and
refinement procedure is a challenge that deserves more
study.

An issue for future work with model assessment is
multiplicities: the use of multiple test statistics or dis-
crepancy measures to evaluate a single model and tests
concerning individual groups. Multiplicity in testing
will affect power and distribution of p-values. One
could recommend selecting one discrepancy to assess
each part of a model and avoid too much overlap and
redundancy. We agree with BC (2007) that in cases
with many discrepancy measures and, in particular,
many groups, simple Bonferroni corrections might de-
crease power too much; in such cases investigation of
methods from statistical genetics (small n, large p)
might be helpful. As a side note, it would not be partic-
ularly hard to simulate p-value distributions and power
for cross-validated posterior predictive p-values under
the scenarios of BC (2007) with or without adjustment
for multiplicity.

In order to implement cross-validated posterior pre-
dictive checking one must sample the posterior dis-
tribution while leaving out groups of data. When the

number of groups or areas is large, the computa-
tion needed for reanalyzing the model without each
group or area could be time consuming. To avoid re-
fitting the model without each group, methods such
as importance weighting and importance resampling
could be used to approximate the posterior distribution
that would be obtained if the analysis were repeated
with leaving out the group. See Stern and Cressie
(2000), Marshall and Spiegelhalter (2003) and refer-
ences therein in this regard.

Again we wish to thank authors for a stimulating pa-
per that demonstrates a method that seems quite effec-
tive and clearly states issues involved.
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