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1. Introduction

1.1. Background

First a word of explanation about the title. The subtext reason for this partic-
ular title is of course that 1953 was the year Everest was climbed. That is, I
believe, the first non-family event that I can recall, but it is far from an unrec-
ognized event. In the world of science, it was the year of Watson & Crick (43)
and the start of the DNA era, also far from unrecognized, and Dr. Edwards tells
me that 1953 was also the year in which R.A. Fisher was knighted, so also an
important year for him. However, the reason for my emphasis on 1953 today
is that that is the year of C.A.B.Smith’s discussion paper on human genetic
linkage detection in JRSS(B) (33).

We will come back to that in due course, but first, it is of course a great
honour to give a Fisher Memorial Lecture, and also an opportunity to repeat
one’s favourite Fisher quotes. Here are two of mine, both relating to the teaching
of Statistical Scientists. The first was written in 1933 shortly after he became
Galton Professor at University College London, to J.B.S. Haldane who was then
Professor of Genetics.
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Supposing mathematically trained students come to me ...., knowing nothing
and not very willing to know anything of experimentation with living material,
can I make them attend lectures in your department .... as one step towards
apprehending the kinds of reasoning used by experimenters.

This one resonates with me, after 7 years of building a program in Statistical
Genetics, even at University of Washington, which is one of the best and most
supportive places for such an endeavor. Students can sometimes be their own
worst enemies.

The second quotation is from a letter to John Wishart, dated October 27,
1949, agreeing to serve on a Faculty Board Committee to review the proposal
for the establishment of the Cambridge Diploma in Mathematical Statistics:

There is no wide or urgent demand for people who will define methods of proof
in set theory in the name of improving mathematical statistics. There is a
widespread and urgent demand for mathematicians who understand that branch
of mathematics known as theoretical statistics, but who are capable also of recog-
nising situations in the real world to which such mathematics is applicable.

That is as true today as it was then, and it is a particular pleasure to be giving
this talk here at the Isaac Newton Institute, where real-world mathematical and
statistical science are a priority.

In the event, I believe the Cambridge Diploma has educated many Statistical
Scientists of the kind Fisher would have approved of, including, I hope, myself.
My own links to Fisher are indirect, but the first was as a diploma student when
I did my applied project under the supervision of Dr. Anthony Edwards, then
finalizing the first edition of his book ”Likelihood”. I then became Dr. Edwards’
PhD student, and Dr. Edwards was the last Cambridge undergraduate admitted
to Part II Genetics under R. A. Fisher. After that, I did one year of postdoctoral
research with Luca Luigi Cavalli-Sforza, who had been a research associate in
Cambridge with Fisher around 1950. In fact, the first Fisher Memorial Lecture
I attended was the VIth, in London in June 1974, at which Professor Cavalli-
Sforza spoke on cultural versus biological evolution, an area for which he has
become famous (7). I have to admit, however, that the main reason I remember
that event is that it was the day after I submitted my PhD thesis.

Nonetheless, this is, in some sense, my third Fisher lecture. Fisher was a
founding member of the Biometric Society, now International Biometric Society
(IBS), and 1990 was the centenary of R. A. Fisher’s birth. IBS had a memorable
meeting in Hungary that year, starting the weekend that the currencies of the
former East and West Germanies German currencies were unified, and delegates
from Denmark and northern Germany could first come by train directly through
Berlin to Budapest. The meeting was also memorable for the Fisher Centenary
talks, at which I gave one in the opening plenary session on Fisher’s contribu-
tions to genetical statistics – a rather large topic to which one lecture cannot
do justice (40). Then, in 1994, at the Joint Statistical Meetings in the USA, I
gave my second, and, I believe, much more successful lecture on Likelihood and
Linkage (41). As a result, I cannot add anything new to that topic in the context
only of R. A. Fisher. That then is why, for this talk, also about likelihood and
linkage, I would like to focus on the contributions of C. A. B. Smith.
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1.2. Cedric Austen Bardell Smith: 1917 – 2002

Unlike Fisher’s biography, Cedric Smith’s is short, despite his long life. He
started at Cambridge, for which he held a life-long affection, first as an un-
dergraduate (1935-38) at Trinity College, reading the Mathematics Tripos, then
as a Ph.D.Student (1939-42) in the early days of the Statistical Laboratory.
There he was supervised by Bartlett, Wishart, and Irwin. Then, until the end
of the war, he worked as a porter at (the Old) Addenbrooke’s Hospital. In 1946,
he joined the Galton Laboratory, at University College London, where Fisher
had been the Galton Professor until 1943. Fisher was by then returning to Cam-
bridge, but Haldane was still Professor of Genetics. There at University College,
C.A.B. Smith remained for his long and active academic life, becoming Weldon
Professor of Biometry in 1964.

Anthony Edwards wrote the obituary of C.A.B Smith for the Royal Statistical
Society, and made two comments that resonated with me

.. logical precision and intellectual honesty ..

.. lasting influence more on the way people think than on technical details...

I hope to demonstrate those two characteristics of Cedric’s work today.
Although I did not know Fisher, I did know C.A.B.Smith for over 25 years,

as a mentor and friend. I met him first while I was a graduate student here
in Cambridge. He was, in fact, the external examiner for my PhD thesis. More
importantly, both for me and for many others, he was co-Editor of Annals of
Human Genetics for many years. Four of my first six papers were published
there, and he reviewed those papers with meticulous but benign care: no logical
detail escaped him, and the papers are much the better for it. Cedric nominated
me for the ISI in 1981, and he was one of my references in the mid 1980s when
I decided to leave Cambridge, although I think he could not understand why I
would wish to do so.

However, I remember Cedric best from those years as a regular and active
participant at the annual Mathematical Genetics meetings. I remember the one
in Liverpool in 1976, to which I will return later. I also remember particularly
his presence at the two which I organized in Cambridge in 1978 and in 1985,
and his evident enjoyment in visiting Cambridge. The 1985 meeting was not
only the last I attended until the recent 30-year anniversary of their beginning,
but also occurred just as I was about to interview at University of Washington
(UW), for which Cedric had been one of my references. In one of the longer
discussions I had with him, I recall his prediction that I would not return to
UK academia, and of course he was right. Although I cannot match Cedric’s
long tenure at University College, my 21 years at UW seem to have gone very
quickly.
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2. The development of human genetic linkage analysis

2.1. Base-camp: The foundations.

Now, to reach the summit in 1953, we must first return to the base camp of
human genetic linkage analysis, which is undoubtedly the work of R.A.Fisher,
J.B.S.Haldane and L.S.Penrose in 1934-35. These three scientists realized that
the methods of gene mapping already well established for experimental organ-
isms could be applied to human genetic data, but also that there were diffi-
culties specific to the fact that human data are of necessity observational. All
three focused on linkage detection, in effect testing a null hypothesis of absence
of linkage, although the term null hypothesis was not yet in use. Fisher (14)
described linkage detection as “...evidently that which will first require discus-
sion as data .. become available” As we shall see later, absence of linkage has an
almost unique status as a null hypothesis; it has been referred to by Professor
John H. Edwards as “the only true null hypothesis in biology” (pers.comm.).

The contribution of Penrose (32) is a little different, and in some ways sim-
pler. His test statistic is based on correlations between traits in similarity of
phenotypes of relatives. If there is linkage, sibs similar for one trait will be
similar for the other. Haldane (18) used the method-of-moments u-statistic es-
timating equations of Bernstein (3) to form a test statistic for proportions of
observations being in accord with those expected in the absence of linkage. Thus
he too focussed on linkage detection, but pointed out that the same equations
may be used for estimation of recombination fractions. However, this approach
provides efficient estimates only close to the null hypothesis, where estimation is
usually of little interest. Fisher (14) noted the estimation potential of Haldane’s
approach, but also focussed on detection. He also started from Bernstein’s esti-
mating equation, but related it to the score and information of his method of
maximum likelihood (13). That is, to standardize his test statistic, he derived
and used a variance appropriate for any linkage value, not just the null hypoth-
esis. In turn this leads to results for what we would now call the power to detect
linkage as a function of the recombination fraction.

2.2. Camp 2: Likelihood-based scores for linkage detection

The next major advance came in 1940, when Fisher (16) developed his ap-
proach making clearer the relationship to efficient scores in likelihood-based
testing procedures. This was taken up by D. J. Finney in a series of papers
((12), and following). Finney (12) considered general multinomial data, with
cell probabilities pi(η), i = 1, ..., k, and a null hypothesis H0 : η = 0. The log-
likelihood contribution for each observation in category i is logpi(η), the score
contribution is

∂

∂η
logpi(η)|η=0 = p′i(0)/pi(0).
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Finney (12) expands the likelihood contribution pi(η) about η = 0 to obtain

Li = pi(0) (1 + λiη + O(η2))

Efficient scores sum over independent observations, so that at η = 0 the total
score becomes =

∑
obs

λi, and the information for η is
∑

obs
piλ

2

i .
This series of papers is a major excursion up the mountain, but it has its

limitations. First it is likelihood, not log-likelihood as would be so for another
10 years. The other is a problem that all the early statistical geneticists struggled
with: the fact that, in genetics, not only do we have dependent observations, but
that it is the dependence that is all-important. The unit of observation is the
pedigree, or in their case the nuclear family. The number of categories k of the
multinomial is the number of different joint trait and marker data configurations
on each pedigree structure. The likelihood must be computed, and in the days
before computers the scores must be tabulated, for each family size and data
configuration, and for each trait model.

2.3. Camp 3: Linkage likelihoods for estimation

The next large step came with the work of Bell & Haldane (2) and Haldane &
Smith (20). In some sense this is a digression from the main theme, as these pa-
pers address estimation of recombination fractions between X-linked loci. How-
ever, in supporting the advance to the 1953 summit this work is important for
three reasons. First, Bell & Haldane (2) introduced use of likelihood to the esti-
mation of recombination fractions from data on human pedigrees of, in principle,
any structure. Likelihoods are multiplied over disjoint pedigree structures, and
the overall MLE of recombination fraction estimated from the overall likelihood
function. Second, Haldane & Smith (20) went further, using the likelihood ratio
L(χ)/L(1/2) at recombination fraction χ compared to its value under no linkage
(χ = 1/2). Further, the issue of the fact that there are substantial prior odds on
absence of linkage is now explicitly addressed: the prior for the recombination
fraction includes a point mass at χ = 1/2.

In terms of linkage analyses using pedigree data, however, the most important
advance of Haldane & Smith (20) is the way they compute their probabilities
of observed data on four- and five-generation pedigrees. They explicitly condi-
tion on phased genotypes of pedigree members who divide the pedigree into two
parts, noting the consequent conditional independence of data on the two parts
of the pedigree. Hence, they accumulate the probability sequentially over the
pedigree. The argument is identical to that used by Elston & Stewart (11) in the
now-famous Elston-Stewart algorithm. It is the basis not only of the computa-
tional algorithms that came to be known in the human statistical genetics world
as “(pedigree) peeling”, but also of computations used in statistical analyses of
graphical models (28).

This brings me back to the Mathematical Genetics meeting in Liverpool
in 1976. There, Professors Chris Cannings and C. A. B. Smith independently
gave the first talks on pedigree peeling computations for general pedigrees (29),
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although I suspect few of the audience realized they were presenting equivalent
algorithms. These algorithms were generalized further by Cannings et al. (5; 6),
and helped to bring statistical genetics back into the statistical mainstream
when the same ideas were applied to general graphical models by Lauritzen &
Spiegelhalter (28).

2.4. Camp 4: Lod scores and inference

We come now to the final supporting camp before the summit: the use of lod
scores for inference (1). I cannot here do justice to Barnard’s JRSS(B) Discus-
sion Paper, but mention here only that this is the paper where the odds-ratio
and lods were first introduced as general tools for inference. Barnard’s b-lods
(or backwards lods) are what we now know as the log likelihood-ratio. As a
JRSS discussion paper, there were of course many discussion comments but of
most interest to us here are those of C. A. B. Smith. Clearly, he was intrigued
and excited by these ideas. He makes three main comments, which indicate he
may have already been thinking in terms of application of these ideas to the
detection of genetic linkage from pedigree data. (1) He likes the log-odds (lods)
in preference to the odds-ratio, citing the additivity of lods over independent
data structures. (2) He compares favourably the approach of Barnard (1) with
that of the Neyman-Pearson theory, noting that while that framework has a
rigid acceptance/rejection framework, “lods ... has not this rigidity ... yet gives
...control of error.” (3) He raises again the problem of the composite alternative
hypothesis, as well as the fact that weight should maybe be assigned to the null
hypothesis, suggesting a prior distribution and a likelihood function integrated
with respect to this prior.

3. Lod scores for linkage

3.1. The 1953 summit

So now we come to Smith’s 1953 paper (33) also a JRSS (B) discussion paper.
We have the four supporting elements that lead to linkage lod scores: (1) the
foundation work of Fisher (14) and Haldane (18); (2) scores and information for
testing for linkage related to derivatives of the likelihood (16; 12); (3) likelihoods
computed on pedigree structures (20); and (4) lod scores as a general tool for
inference (1).

In order not to interrupt the flow, I am going to go straight to the lod score
arguments of Smith (33), but I shall later come back to many other key points
made in the paper. First, as did others, he reparametrizes, using η = 1− 2χ, so
that the null hypothesis is H0 : η = 0 and 0 ≤ η ≤ 1. As did Finney (12) he
considers multinomial data in categories i and expands

pi(η) = pi(0)(1 + aiη + O(η2)),
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noting again p′i(0) = aipi(0) giving Fisher’s score ai for an observation in
category i. Then however, he converts to log-likelihoods, giving the contribution
of each i-type observation to lod score as

ℓi = loge pi(η) − loge pi(0) ≈ aiη.

Here the equation is given only to first order, although Smith (33) is much
more careful about the higher-order terms. The lod score for small η is then
lod =

∑
i xiaiη for xi i-type observations, and rejecting H0 if lod score large

is large is equivalent to Fisher’s efficient score λ =
∑

i aixi being large.
Although Smith (33) shows this first-order equivalence with Fisher’s scores,

he also makes clear that he is following Barnard (1) in viewing the lod score as
a tool in its own right, commenting that one may use “natural or common lods
according to convenience.” (In the days of log tables, before computers, common
base-10 logarithms were indeed more convenient for most purposes.) Rather than
tabulate scores, the goal is now to compute log-likelihoods on pedigrees.

As a JRSS(B) Discussion paper, there were many comments. Those of
J.B.S.Haldane are perceptive. He said “... for many purposes the lods approach
may be more fruitful” and “...[this is a] novel approach which is going to be
absolutely fundamental.”. The subsequent 50 years have proved him right.

3.2. Power and type-1 error

The criterion of a (base-10) lod score of 3 for detection of linkage was introduced
by Morton (30). It has proven an immensely successful criterion, providing al-
most no false positive results for simple genetic traits, and leading eventually to
the the construction of genome-wide human genetic maps (27). However, it is
neither a necessary consequence of the sequential probability ratio test (SPRT)
approach of (30), nor directly chosen to ensure a small type-1 error rate. Indeed,
there is no fundamental difference between a sequential and non-sequential ap-
proach to linkage detection once the lod score is chosen as the test criterion. In
his introduction, Morton (30) states

... current methods to detect human linkage.... u-scores, Penrose sib-pair method,
the [likelihood] ratio method... Smith (1953) has shown that they are all really
different forms of the nonsequential probability ratio test.

while Smith (35) in an uncharacteristically sharp comment says

It seems to me that the use of a ... sequential stop-rule ... is not appropriate in
linkage work and confers no advantage: on the other hand Bayes’ theorem can
be quite easily applied ... and gives a more satisfactory answer from both the
theoretical and practical point of view.

The criterion of a lod score of 3 for detection of linkage relates rather to the
probability a detected linkage is true; in modern terminology the false discovery
rate (FDR). A prior probability of linkage is therefore required, but this need
not be considered a Bayesian procedure. Rather the prior probability relates to
the process of sampling the loci that are to be tested for linkage. In Smith (33)
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the argument implicitly assumes a 5% type-1 error rate, and explicitly assumes
sufficient information that all true linkages will be detected. He suggests that, as
an approximation, only 1 in 24 of random pairs of loci will be linked, so that in
every 100 pairs tested there will be 4 true linkages and 5 false ones, resulting in
“more false positives than true ones.” Morton’s argument (30) is more precise.
He assumes the prior probability of linkage is π ≈ 1/20, and derives

FDR =
α(1− π)

(α(1 − π) + πW )
=

19α

19α + W

where W is the average power.
Morton (30) used the standard SPRT formulae relating type-1 error proba-

bility α and power (1− β) to the lod-score bounds for acceptance and rejection
of linkage. However, the basis of these formulae is not restricted to the sequen-
tial approach. It is here of interest to note the contribution of G. Barnard’s
to the Discussion of Smith’s 1953 paper (33). As often, the JRSS Discussion
comments contain as much of interest as the main papers, and Barnard gives
an improvement to the error bound given by Smith, saying:

[It is a] general result that ... odds of error ... equal to the conditional mean value
in the critical region of the likelihood ratio. [This is] true regardless of whether
or not sampling has been sequential, or ..

To clarify this comment, let f0() and f1() be the two probability densities for
x under the null and alternative hypotheses. Then the type-1 error and type-2
error probabilities are

α =

∫
C

f0(x)dx, and 1 − β =

∫
C

f1(x)dx,

where C is the critical region for the test. Barnard refers to the ratio α/(1− β)
as the odds of error, and

α/(1 − β) =

∫
C

f0(x)/

∫
C

f1(x)dx

=

∫
C

(f0(x)/f1(x))f1(x)dx/

∫
C

f1(x)dx

= E1(f0(X)/f1(X) | X ∈ C)

Since the null hypothesis is here in the numerator, we will reject H0 if the likeli-
hood ratio is small, and the critical region C will be of the form f0/f1 ≤ 1/A,
and hence α/(1 − β) ≤ 1/A. For the SPRT, we “ignore overshoot” and set
equality in the inequality, obtaining α/(1− β) = 1/A or A = (1− β)/α, and
equivalently B = β/(1 − α).

The main point of difference between these 1950s approaches, and what
all these authors are struggling with is the issue of the alternative hypothesis.
Whereas the Neyman-Pearson approach adopted a fixed alternative for which
power is maximized subject to a given type-1 error, Fisher preferred not to con-
sider the alternative hypothesis, testing only goodness of fit to a null hypothe-
sis. Haldane & Smith (20; 33) balanced between the two extremes, wanting to
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weight values in the alternative to compute an integrated likelihood or posterior
probability of linkage. Morton (30) has the interesting proposal of choosing the
specific alternative to form the SPRT according to the amount of data available,
in such a way as to keep approximately constant the power at that alternative.
Thus, if very large amounts of data are available, an alternative very close to the
null is considered; for less data, the alternative hypothesis is further from the
null hypothesis. In the context of genetic linkage detection, these arguments are
nowadays moot. If there are genes affecting trait values, there will be tight link-
age to some marker in a genome scan, and the issue is one of multiple dependent
tests rather than of the composite alternative hypothesis.

4. Further aspects of human genetic linkage analysis

4.1. Smith (1953): the background

We return now to the early part of Smith’s paper (33), which has, in many ways,
a very modern flavor. He discusses effects on phenotype of environment, genetics
and of gene-environment interaction. For complex traits, he discusses the issues
of delayed age-of-onset, penetrance, and problems of variation in severity and
diagnostic criteria. On the genetic side, he notes that there was at that time
little direct experimental evidence of chromosomal inheritance in humans. His
arguments are made by analogy with plant and animals genetic mapping ap-
proaches, and he comments, as had others before him (14; 18) on the problem of
using observational data as opposed to data from experimental organisms. He
discusses genetic complexities, such as inversions, translocations, and deletions,
and notes the possibility of using inherited deletions as genetic markers. Finally,
he addresses the issue of genetic heterogeneity. Whereas Haldane & Smith (20)
had addressed allelic heterogeneity, which poses little problem for linkage analy-
sis other than in the estimation of disease allele frequencies, (33) addresses locus
heterogeneity, although also to some extent dismissing it since

... the significance test gives linkage with any one of these [loci].

Next, Smith (33) addresses the issue of associations, both at the population
level and among relatives. In the context of linkage detection, he discusses when
and where there is information for inference, noting again that the unit of ob-
servation is the whole pedigree. In the population at large, he states that after a
few generations linkage disequilibrium (LD) will be slight, using this explicitly
as the justification for assuming equal probability for phase in founder members
of a pedigree. However, he also notes that if linkage is very tight, LD will be
maintained over many generations and can provide evidence for the detection of
linkage. While Fisher (17) had used the same argument of population haplotype
frequencies to order the three rhesus loci, this seems to be the first suggestion
of the use of LD for linkage detection, although of course at that time today’s
dense genomewide maps that make this a practical proposition were not avail-
able. In the same vein, (33) addresses also family-based associations. He notes
that if and only if there is LD in the population a single parent-offspring pair
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can provide evidence of linkage, foreshadowing the transmission disequilibrium
test (TDT) (38), but that otherwise two offspring are required.

Smith (33) then moves to ibd-based methods for linkage detection, summa-
rizing the sib-pair method of Penrose (32), noting that this approach does not
require specification of a trait model. Finally, he moved to inbreeding. Haldane
(19) had noted that variation in the level of inbreeding within a population
causes associations between recessive characters at the population level, and
that these associations are increased by linkage between the loci underlying
such recessive traits. Whereas Haldane (19) had been primarily interested in
the evolutionary aspects of these associations, Smith (33) demonstrated how
such associations could be used for linkage detection. He thus predicted the
method of Homozygosity Mapping (25), used successfully in the 1990s to map
many rare recessive traits, although, as with the TDT, the genome wide maps
that would make this approach practical would not be available for 30 years.

A modern review paper (26) describes four methods for mapping the genes for
complex traits, summarizing then as: (1) Lod scores for linkage; (2) Associations
in populations; (3) ibd-based methods; and (4) mapping of quantitative trait
loci in experimental organisms. This is a useful review paper, but there is little
integration of the four approaches, and some of the papers cited remind me of
another R. A. Fisher quote (15)

.... it is usually understood that the conclusions drawn from experimental results
must rest on a detailed knowledge of the experimental procedure actually em-
ployed. Nevertheless, in human genetics especially, statistical methods are some-
times put forward, and their respective claims advocated with entire disregard
for the conditions of ascertainment.

In comparison, Smith (33) covers, at some level and for discrete Mendelian
traits, all four of these areas, starting with mapping in experimental organisms,
proceeding to discuss population associations, then developing lod scores, and
finally coming back to ibd-based methods in the form of sib-pair analyses and
homozygosity mapping. More importantly, he presents them not as four distinct
areas, but as aspects of the single scientific problem of linkage detection, with
a single overall (likelihood) approach to solution. To quote Morton (30) again

... current methods to detect human linkage.... u-scores, Penrose sib-pair method,
[likelihood] ratio method... Smith (1953) has shown that they are all really dif-
ferent forms of the nonsequential [likelihood] ratio test.

and, had he been writing 40 years later, he could have added homozygosity
mapping (25), TDT (38) and other family-based association tests that may be
the best hope for mapping the genes associated with complex traits. Of course,
much has been achieved since 1953, but just as the seeds of Smith (33) are in
the work of Fisher (14; 17) and Haldane (18; 19), so also are the seeds of modern
linkage methods in Smith (33).

4.2. Later contributions of C. A. B. Smith

Smith (33) is a summit, and, together with Morton (30), set the stage for much
subsequent work in linkage analysis for the following 40 years. However, it is
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far from the only contribution of C. A. B. Smith, and there are two for which,
perhaps, he is better known.

The first is the use of “Gene counting” for the maximum likelihood estimation
of population allele frequencies. The method was introduced in a paper with
colleagues (8), but less well known is Smith (34) in which he studied convergence,
relating it to conditional variance of the latent alleles counts given the data. Of
course, “Gene counting” is a special case of the EM algorithm (9) and EM
algorithms are widespread in Statistical Genetics, but many of the results of
Dempster, Laird and Rubin (9) are first given for the gene-counting case by
Smith (34).

Second, and to those working in human genetic linkage analysis perhaps best
known (31) is Smith’s test for locus heterogeneity (36). First mentioning locus
heterogeneity as “not a problem” for linkage detection (33), he later introduced
his test (36) which is still widely used.

Last but not least, is his work on algorithms for the computation of proba-
bilities on pedigree structures, the conditional independence logic being already
present in Haldane & Smith (20) and made explicit in Smith (37). Although
presented in the context of a Mendelian model and a specific example, Smith
(37) is more general than Elston & Stewart (11) in that computations may be
made both upwards and downwards over the pedigree structure. The same logic
was used by Cannings et al. (5; 6) to extend to pedigrees of arbitrary structure
and more complex genetic models.

4.3. Elods: the expected lod score

It is perhaps surprising that the elod, or expected lod score, finds no place in
Smith (33) nor in his later work. The Kullback-Leibler information

KL(f1 ; f0) = E0(log(f0(X)/f1(X)))

had already been introduced as a measure of the information to distinguish
probability densities f0 and f1 when f0 is true (24). However, the relationship
to Fisher information and likelihood seems not to have been appreciated until
the work of Kempthorne (22) and Kendall (23).

Whereas for most applications of likelihood ideas and inference tools, statis-
tical genetics, and indeed linkage analysis, have been at the forefront, elods seem
not to have entered the Statistical Genetics literature until Thompson (39) and
not in relation to the detection of genetic linkage until Thompson et al. (42).
This is not because they are not applicable in this context; they have become
an important tool for assessing information for linkage detection (31). There
are two likely reasons for the relatively late appearance of elods in statistical
genetics. The first is computational. To compute a lod score on a pedigree it is
necessary to sum over all possible genotypic configurations on a pedigree that
give rise to the observed data. To compute an elod, it is necessary to also sum
over all possible data configurations. Even in 1978 this was a daunting task even



E.A. Thompson/Human genetic linkage analysis 12

on small pedigrees: the elods of (42) were estimated by Monte Carlo, since ex-
haustive ennumeration was considered impractical. Another reason may be the
statistical inference framework adopted by Smith (33). The elod requires a spe-
cific alternative hypothesis f1. We have already seen how the earlier researchers
struggled with the problem of the alternative hypothesis, and in particular how
C. A. B. Smith in his discussion of Barnard (1) expressed reservations about
“rigidity” of the Neymann-Pearson framework with its specific alternative.

5. Summits in Biology and Technology

New ideas in basic inference for Statistical Genetics (as opposed to Popula-
tion Genetics) since 1953 have been few and far between. However, there have,
of course, been advances in methods, keeping pace with the huge advances in
Biology and Technology which have required new computational tools and al-
gorithms.

When C.A.B.Smith wrote his 1953 paper, it was still believed that the hu-
man cell nucleus had 48 chromosomes, and he repeatedly said that the direct
evidence for genes/chromosomes etc. in humans was slight, and that he argued
by analogy with much-better-understood plant and animal genetics. Since then
we have had decades of revolutionary change:
• 1955-1965: Very soon after, indeed starting in the same year (43), we had a
decade of change in understanding of DNA transcription and translation, estab-
lishing the central dogma of DNA sequence to RNA to Protein.
• 1965-1975: Then came the revolution in computing technology, making pos-
sible computations of probabilities and likelihoods on complex data structures.
• 1975-1985: Then came DNA markers, from the RFLPs of (4) to the SNPs of
today, providing genetic marker maps of the human genome, and making pos-
sible the idea of a genome-wide scan for linkage detection.
• 1985-1995: Next came the biotechnology revolution, with automated methods
for DNA sequencing and marker typing, providing huge increases in data and
potentially the power to address complex traits.
• 1995-2005: Finally, has come the bioinformatics revolution, providing the hu-
man genome sequence, the HapMap, and gene expression data.

Each stage has raised new challenges for statistical genetics, and perhaps I
should end with quote from another (often unrecognized) statistical scientist:
Florence Nightingale. I started with two quote of R. A. Fisher concerning the
teaching of statistics at University College, and in Cambridge. This one is was
written when R. A. Fisher was less than one year old, and concerns the teaching
of statistics in the University of Oxford. On 3 January 1891, Florence Nightin-
gale wrote to her friend Benjamin Jowettt about the possibility of setting up a
Chair of Statistics at Oxford (21):

... the enormous amount of Statistics [i.e. data] at this moment at their disposal
is absolutely useless. Why? Because... [they] have received no education whatever
on the point on which all ... must ultimately be based. We do not want a neat
arithmetical sum. We want to know what we are doing. What we want first is
not ... an accumulation of facts, but to teach [them] the uses of facts.
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I believe this is as much a danger with genetic and genomic data now as it was
for Public Health Data 110 years ago, and I also believe it is a sentiment with
which both C.A.B Smith, and R. A. Fisher would have heartily approved. To
return again to Dr. Edwards’ comment in his RSS obituary of C. A. B. Smith:

.... we want to know [understand] what we are doing ....

.... a lasting influence on the way people think.
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