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Assessment of Locally Influential Observations

in Bayesian Models

Russell B. Millar1 and Wayne S. Stewart2

Abstract. In models with conditionally independent observations, it is shown
that the posterior variance of the log-likelihood from observation i is a measure
of that observation’s local influence. This result is obtained by considering the
Kullback-Leibler divergence between baseline and case-weight perturbed posteri-
ors, with local influence being the curvature of this divergence evaluated at the
baseline posterior. Case-weighting is formulated using quasi-likelihood and hence
for binomial or Poisson observations, the posterior variance of an observation’s
log-likelihood provides a measure of sensitivity to mild mis-specification of its dis-
persion. In general, the case-weighted posteriors are quasi-posteriors because they
do not arise from a formal sampling model. Their propriety is established under
a simple sufficient condition. A second local measure of posterior change, the cur-
vature of the Kullback-Leibler divergence between predictive densities, is seen to
be the posterior variance (over future observations) of the expected log-likelihood,
and can easily be estimated using importance sampling. Suggestions for identi-
fying locally influential observations are given. The methodology is applied to a
well known simple linear model dataset, to a nonlinear state-space model, and to
a random-effects binary response model.

Keywords: Case sensitivity, Kullback-Leibler divergence, influence, local sensitiv-
ity, predictive density, posterior density, quasi-posterior

1 Introduction

Bayesian case-influence analysis requires some measure of the change in the posterior

distribution when an observation is removed or down-weighted. For the normal linear

model, Johnson and Geisser (1983) chose as their measure the Kullback-Leibler di-

vergence between the predictive densities of the full-data and reduced-data posteriors.

Johnson and Geisser (1985) and Guttman and Pẽna (1988, 1993) used the Kullback-

Leibler divergence between the respective posterior densities. These works employed

analytical approximations to the Kullback-Leibler divergence because of its intractabil-

ity outside of the known variance case.

In the more general setting, Carlin and Polson (1991) demonstrated use of the Gibbs

sampler to estimate the Kullback-Leibler divergence between full-data and reduced-data

posteriors using an approach that required samples from both posteriors. Weiss (1996)

and Weiss and Cho (1998) demonstrated estimation of Kullback-Leibler divergences

(and other f-divergence measures, Csiszár [1967]) using a sample from the full-data

posterior only. However, even in the linear model case, this procedure can be numerically
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unstable due to infinite variance of the sample average estimator of the conditional

predictive ordinate (Weiss 1996; Peruggia 1997).

McCulloch (1989) took a local influence approach to model perturbation, in either

the prior or likelihood. This approach assumed a family of models indexed by hyperpa-

rameters and investigated sensitivity to a small change in these. McCulloch quantified

sensitivity by the curvature of the Kullback-Leibler divergence (between perturbed and

unperturbed posteriors) with respect to the hyperparameters and evaluated at the un-

perturbed model. This curvature is well known to be the posterior Fisher information

with respect to the hyperparameters (Kullback and Leibler 1951). McCulloch applied

this approach to local case-influence in the normal linear model by considering sensitiv-

ity to hyperparameter wi, where Yi|β, σ2 ∼ N(xTi β, w
−1
i σ2).

Here, we utilize a local influence approach to data-sensitivity that combines the ap-

proach of McCulloch (1989) with the weighted log-likelihood approach to local influence

employed by Cook (1986). The focus will be on case-sensitivity, but we remark that

our approach is applicable to any conditionally independent subset of the data. In the

context of case-sensitivity, we evaluate the local influence of observation yi by using

a geometric weighting of the likelihood contribution from yi. That is, yi contributes

fi(yi|θ)wi to the model for wi in an open interval containing unity. Unlike the local

perturbations considered in McCulloch (1989), these geometrically weighted likelihood

terms do not, in general, correspond to density functions, or may not even be integrable.

Consequently, the posterior densities obtained from using these modified likelihoods do

not derive from a proper joint density and hence we refer to them as quasi-posteriors.

In Section 2 it is shown that the quasi-posteriors are well defined under very mild condi-

tions. The geometrically weighted likelihood is shown to be a natural way to alter case

weight and the inverse weight is seen to correspond to an overdispersion term when the

observations are from a binomial or Poisson distribution.

In Section 3 it is shown that, in the context of local sensitivity to observation i,
the curvature of the Kullback-Leibler divergence between quasi-posteriors and the base-

line posterior, (evaluated at wi = 1) is simply the posterior variance of log fi(yi|θ).
Suggestions for identification of locally influential observations are given in Section 4.

In Section 5 the curvature of the Kullback-Leibler divergence between quasi-predictive

densities is seen to be the posterior variance (over future observations) of the expected

log-likelihood conditional on both the observed and future observations. Section 6 in-

cludes analytical formulae in the context of multiple linear regression, with application

to the Gesell adaptive score data of Mickey et al. (1967). This is followed by applica-

tions to a nonlinear state-space model of tuna biomass, and a repeated measures model

of binary behavioral responses.

2 Perturbations of the likelihood

It will be assumed that the observations yi, i = 1, ..., n (possibly vector valued) are

conditionally independent given θ ∈ Θ ⊆ IRp. The density function (with respect to

measure ν) for observation i will be denoted fi(yi|θ). Local case-sensitivity will be
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assessed by evaluating the consequences of a small change in fi(yi|θ).
Change in fi(yi|θ) can be expressed in a variety of ways. For example, in the normal

data models, specifying var(Yi) = w−1
i σ2, wi > 0, (e.g., McCulloch 1989) is an obvious

way to alter the influence of observation i. More general perturbations of the sampling

model for Yi can be obtained, for example, by mixing fi with some other suitable density

(giving rise to a contamination class). Alternatively, the likelihood can be perturbed

without the notion of an alternative sampling model. For example, in location-family

models it may simply be of interest to evaluate the consequences of changing the datum

value from yi to yi + ε.

The case-weight approach taken below uses a quasi-likelihood type perturbation

to directly alter the weight of information provided by the observation of datum yi.
These quasi-likelihoods need not correspond to a sampling model, but nonetheless, the

resulting quasi-posterior is readily interpretable and is seen to be well defined under the

weak sufficiency condition provided in Proposition 1 (Section 2.2).

2.1 Geometrically weighted likelihood

For a given i, we formulate dependence on wi via weighted log-likelihood. That is, the

contribution to the likelihood function from observation i is

L
(q)
i (θ;wi) = fi(yi|θ)wi . (1)

The likelihood arising from the data with geometric weight wi on observation i is denoted

L(θ;wi) = fi(yi|θ)wi

∏

k 6=i

fk(yk|θ) .

The q superscript in (1) is used to denote quasi-likelihood because, as a function of

yi, fi(yi|θ)wi will not in general be a density function and may not be finitely integrable.

For 0 ≤ wi ≤ 1, this quasi-likelihood has a natural interpretation as a geometric mixture

of the likelihood Li(θ) = fi(yi|θ) and the non-informative likelihood (uniform over the

entire parameter space).

When Yi is univariate with density that is of one-parameter exponential family form

f(yi|θ) = exp {[yiθ − b(θ)]/a+ c(yi)} , (2)

the geometric weighted likelihood corresponds to the familiar quasi-likelihood of gener-

alized linear modelling. To within a multiplicative constant fi(yi|θ)wi is simply given

by replacing a by aw−1
i in (2). Thus, if L(p; yi, ni) is the likelihood function for ob-

serving proportion p̂i = yi/ni successes from a Binomial experiment with ni trials and

success probability pi, then the geometric weighted likelihood is equivalent to the same

Binomial likelihood function but with the number of “trials” set to wini. For normal

observations (with known variance σ2), the geometric weighting is equivalent to the

weighting given by changing the observation variance to w−1
i σ2. For Poisson(λi) ob-

servations, it is equivalent to evaluating the likelihood with “observed” value wiyi and

mean wiλi.
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In normal data models with unknown variance the geometrically weighted likeli-

hood, fi(yi|θ)wi differs subtly from that arising from the N(µi, w
−1
i σ2) model. The

geometrically weighted likelihood attenuates the information content (of observation i)
about all unknown parameters, including σ2, and wi close to zero approximates removal

of yi from the data. This is not the case for the N(µi, w
−1
i σ2) model, because of the

information content in this model about σ.

Some readers of an earlier draft suggested that, to avoid working with quasi-likelihood,

the geometrically weighted likelihood could be normalized

f∗
i (yi|θ;wi) =

fi(yi|θ)wi

∫
fi(yi|θ)widν(yi)

assuming existence of the denominator. However, this normalization violates the like-

lihood principle and we find it difficult to ascribe any meaningful interpretation to

f∗
i (yi|θ;wi) as a likelihood. For example, if Yi is exponentially distributed with mean λ,

then the normalized likelihood f∗
i (yi|θ;wi) corresponds to observing yi from an expo-

nential density with mean w−1
i λ. This makes no sense in the context of case sensitivity.

2.2 Propriety of quasi posteriors

For convenience, it will be assumed that the prior π(θ) is defined with respect to

Lebesgue measure. Then, defining

π(q)(y,θ;wi) = π(θ)fi(yi|θ)wi

∏

k 6=i

fk(yk|θ)

and assuming that the integral

f (q)(y;wi) =

∫

Θ

π(q)(y,θ;wi)dθ

is finite, the weighted-likelihood quasi-posterior

π(q)(θ|y;wi) =
π(q)(y,θ;wi)

f (q)(y;wi)
(3)

is a proper density function. The following proposition provides a very simple and nat-

ural sufficient condition for the propriety of (3).

Proposition 1. For any wi, 0 ≤ wi ≤ 2, f (q)(y;wi) will be finite if both π(θ|y(−i))

and π(θ|y(+i)) are proper, where y(−i) denotes the data with observation i removed

and y(+i) denotes the data consisting of y plus an identical copy of the datum value yi
with sampling model fi(yi|θ).

Proof. With yi removed the data contribute the likelihood
∏
k 6=i fk(yk|θ), and with

the addition of an identical copy of yi, the data contribute the likelihood

fi(yi|θ)2
∏

k 6=i

fk(yk|θ) .
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Now, for any 0 ≤ wi ≤ 2,

fi(yi|θ)wi ≤ 1 + fi(yi|θ)2, ∀ θ ∈ Θ

and hence,

f (q)(y;wi) =

∫

Θ

π(θ)fi(yi|θ)wi

∏

k 6=i

fk(yk|θ)dθ

≤
∫

Θ

π(θ)
∏

k 6=i

fk(yk|θ)dθ +

∫

Θ

π(θ)fi(yi|θ)2
∏

k 6=i

fk(yk|θ)dθ

< ∞ .

Proposition 1 extends in an obvious way to wi, 0 ≤ wi ≤ n for any integer n > 2.

Note that, by application of Bayes rule, propriety of the data-reduced posterior

π(θ|y(−i)) implies propriety of π(θ|y) (with probability one). However, in the case of

continuous data, it does not necessarily imply propriety of π(θ|y(+i)) because adding

a copy of yi corresponds to conditioning on a zero-probability subspace of the sample

space (see Appendix A). In practice, notwithstanding pathological exceptions, we feel

that the conditions of Proposition 1 are very weak and will be satisfied.

3 Local sensitivity to likelihood perturbation

3.1 Kullback-Leibler divergence and Fisher information

The Kullback-Leibler divergence (Kullback and Leibler 1951) is used here as a measure of

the difference between two density functions. The directed Kullback-Leibler divergence

between densities πa(θ) and πb(θ) (with respect to Lebesgue measure) is

I(πa, πb) = Eπa

[
log

(
πa(θ)

πb(θ)

)]

=

∫

Θ

πa(θ) log

(
πa(θ)

πb(θ)

)
dθ (4)

and can be interpreted as the information lost when πb is used to approximate πa (Burn-

ham and Anderson 2002). The directed Kullback-Leibler divergence is not symmetric

in its arguments and some authors (e.g., Pettit and Smith 1985; Guttman and Pena

1988, 1993) prefer to work with the symmetric Kullback-Leibler divergence given by

J(πa, πb) = I(πa, πb) + I(πb, πa) .

Assume a family of densities defined on Θ ⊆ IRp and indexed by w ∈ IR of the form

{πw(θ); 1 − ε < w < 1 + ε} (5)
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for some ε greater than 0. Density π1 will be referred to as the baseline density. The dif-

ference between πw and the baseline density can be measured by the directed Kullback-

Leibler divergence I(πw , π1). In the context of local case-sensitivity, and in the spirit of

McCulloch (1989), we consider the shape of the function i(w) = I(πw , π1) at w = 1.

Kullback-Leibler divergences are non-negative and i(w) is zero when w = 1. Con-

sequently, assuming the appropriate third-order regularity conditions on derivatives of

logπw with respect to w (Kullback 1959, p. 26–27), the first derivative of i(w) is zero

at w = 1 and the second derivative of i(w) = I(πw , π1), evaluated at w = 1, is

Ïθ = varθ

(
∂ logπw(θ)

∂w

∣∣∣∣
w=1

)
. (6)

This second derivative is the Fisher information, with respect to w, evaluated at the

baseline density. The Fisher information (6) is also the the second derivative of the

directed Kullback-Leibler divergence i∗(w) = I(π1, πw) (Kullback 1959) and hence the

second derivative of the symmetric Kullback Leibler divergence J(πw , π1) is twice the

Fisher information.

3.2 Local case sensitivity

In the context of posterior sensitivity to observation i, the family of densities under

consideration is of the form given in (3) for wi in some open interval containing unity,

for which Proposition 1 (Section 2.2) provided a sufficient condition. The directed

Kullback-Leibler divergence between π(q)(θ|y;wi) and the baseline posterior is i(wi) =

I(π(q)(θ|y;wi), π(θ|y)). From (6), the second derivative of this divergence is

Ïθi = varθ|y

(
∂ logπ(q)(θ|y;wi)

∂wi

∣∣∣∣
wi=1

)
(7)

which is the Fisher information,with respect to wi, evaluated at the baseline posterior.

Regularity conditions for this result are considered in Appendix B.

Kullback-Leibler divergences between posterior distributions, and the corresponding

curvatures, are not generally tractable. However, note that the normalizing constant

f (q)(y;wi) in (3) does not depend on θ. Thus, (7) can be simplified to

Ïθi = varθ|y

(
∂ log π(q)(y,θ;wi)

∂wi

∣∣∣∣
wi=1

)
(8)

= varθ|y

(
∂ log(fi(yi|θ)wi)

∂wi

∣∣∣∣
wi=1

)

= varθ|y(li(θ))

where li(θ) = log fi(yi|θ).
We remark that (8) holds more generally for smooth perturbations of the baseline

joint density π(y,θ), in either prior or likelihood.
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4 Identification of locally influential observations

Observation i can be identified as being of high relative local influence if Ïθi is substan-

tially greater than the average local influence over all observations. However, it is also

necessary to consider the magnitude of Ïθi because it is not necessarily the case that

observations with high relative influence will be of concern. Conversely, it is possible

that all observations could have high local influence without any one being substantively

higher than the others. (In the known-variance linear regression example, equation (16)

shows that under-specification of the variance will inflate Ïθi for all observations.)

The Kullback-Leibler calibration of McCulloch (1989) provides one approach to as-

sessing the magnitude of Ïθi . McCulloch (1989) showed that, for any k ≥ 0, q(k) =

0.5(1 + (1− e−2k)1/2) is the unique value in the interval [0.5, 1) such that the Kullback-

Leibler divergence between Bern(0.5) and Bern(q) densities is k. Ïθi can be used to

obtain the second order approximation of i(wi) = I(πwi
, π1) in a neighbourhood of

unity and McCulloch’s calibration can then be applied to this approximation evaluated

at some wi value close to unity. For example, if Ïθi = 0.5 and we take wi = 0.8, then

the second-order approximation gives I(π0.8, π1) ≈ 0.5(1−0.8)2/2 = 0.01. A divergence

of 0.01 corresponds to the information lost when a Bern(0.57) distribution is used to

approximate the Bern(0.5) distribution.

However, we recommend that model complexity should be taken into consideration

when deciding whether an observation has unduly high local influence. Gelman et al.

(2004, p. 182) discuss two measures of model complexity. The first is that presented by

Spiegelhalter et al. (2002), which can be written

p
(1)
D = 2

(
l(Eθ|y[θ]) −Eθ|y[l(θ)]

)

where l(θ) = log f(y|θ). The second measure is

p
(2)
D = 2varθ|y(l(θ)) . (9)

Spiegelhalter et al. (2002, p. 591) show that p
(1)
D ≈ p in a model with p parameters

when the prior information is negligible and the posterior is approximately normal. In

the known-variance iid normal linear model of Section 6.1, p
(1)
D and p

(2)
D are both exactly

equal to p.

Noting, in (9), that the variance of the log-likelihood is influenced by model com-

plexity, we suggest assessing the local influence of the observations using

Mi =
varθ|y(li(θ))

varθ|y(l(θ))
. (10)

(Note thatMi, i = 1, ..., n do not in general sum to unity because the li(θ), i = 1, ..., n are

correlated.) Another possibility, based on using p
(1)
D as the measure of model complexity,

would be to use l(Eθ|y[θ]) − Eθ|y[l(θ)] in place of varθ|y(l(θ)) in (10). However, we

feel that the standardization in (10) is particularly natural. Note that varθ|y(l(θ)) is

the curvature of the Kullback-Leibler divergence with respect to a local weighting of all
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observations, of the form L(θ;w) =
∏n
i=1 fi(yi|θ)w. ThusMi is the local case-sensitivity

due to yi, standardized by the local sensitivity to the full data. In the examples in

Section 6 we deemed an observation to be of high local influence if Mi exceeded 4/n.

That is, if Ïθi exceeded 2p
(2)
D /n.

5 Local sensitivity of marginal and predictive distribu-

tions

More generally, interest may lie in posterior sensitivity of a measurable transforma-

tion T (θ) on Θ. Kullback and Leibler (1951) showed that the divergence between two

probability spaces is at least as great as the divergence between any measurable-onto

transformation of those probability spaces. That is, the Kullback-Leibler divergence

i(wi) = I(π(q)(θ|y;wi), π(θ|y)) can not increase under measurable-onto transforma-

tions of these posteriors, and consequently the curvature can not increase under such

transformations. It follows that the curvature is invariant to invertible transformations

of the parameters.

In the case that θ = (ψ,λ) where λ are nuisance parameters, then it will be the

Kullback-Leibler divergence between π(ψ|y;wi) and π(ψ|y) that is of interest. In this

case,

Ïψi = varψ|y

(
∂ logπ(q)(ψ|y;wi)

∂wi

∣∣∣∣
wi=1

)
. (11)

Applying eq. (6) of Millar (2004) in the context of likelihood perturbation, and assuming

that π(q)(θ|y;wi) can be differentiated under the integral sign,

∂π(q)(θ|y;wi)

∂wi

∣∣∣∣
wi=1

= π(q)(θ|y)[li(θ) −Eθ|y(li(θ))]

and hence

∂π(q)(ψ|y;wi)

∂wi

∣∣∣∣
wi=1

=
∂
∫
π(q)(θ|y;wi)dλ

∂wi

∣∣∣∣∣
wi=1

=

∫
[li(θ) −Eθ|y(li(θ))]π

(q)(θ|y)dλ .

Therefore,

∂ logπ(q)(ψ|y;wi)

∂wi

∣∣∣∣
wi=1

=

∫
[li(θ) −Eθ|y(li(θ))]

π(q)(θ|y)

π(q)(ψ|y)
dλ

= Eθ|ψ,y[li(θ) −Eθ|y(li(θ))]

and so

Ïψi = varψ|y

(
Eθ|ψ,y[li(θ) −Eθ|y(li(θ))]

)

= varψ|y

(
Eθ|ψ,y[li(θ)]

)

= Ïθi −Eψ|y

(
varθ|ψ,y[li(θ)]

)
. (12)
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Other times, sensitivity of predictive distributions may be of interest. Letting yrep
denote future observation(s) from frep(y|θ), the predictive density of yrep is given by

f(yrep|y) =

∫
frep(yrep;θ)π(θ|y)dθ .

The curvature of the Kullback-Leibler divergence between case-weight perturbed quasi-

predictive densities and unperturbed predictive densities is given by the Fisher infor-

mation

Ï
yrep

i = varyrep|y

(
∂ log frep(yrep|y;wi)

∂wi

∣∣∣∣
wi=1

)
. (13)

Using similar calculations to those used to obtain (12), it can be shown that

Ï
yrep

i = varyrep|y

(
Eθ|yrep,y[li(θ)]

)

= Ïθi −Eyrep|y

[
varθ|yrep,y(li(θ))

]
. (14)

Moreover, from Weiss (1996, Theorem 3) it can be concluded that, under weak condi-

tions, I(π(q)(yrep|y;wi), π(yrep|y)) converges monotonically to I(π(q)(θ|y;wi), π(θ|y))

as the dimension of yrep increases. Note that the conditional variance in the second

term of (14) would, under appropriate regularity conditions, become arbitrarily small

as the dimension of yrep was increased.

6 Examples

In Section 6.1, explicit formulae for Ïθi , Ï
yrep

i and Ï
yrep,i

i are obtained for multiple linear

regression with known variance. In the unknown variance case, and in the nonlinear

state-space (Section 6.2) and correlated Bernoulli data (Section 6.3) examples, calcula-

tion of the curvatures is obtained using posterior sampling.

To estimate Ï
yrep

i , note that

π(θ|yrep,y) ∝ f(yrep|θ)π(θ|y) .

For any value yrep, importance sampling can therefore be used to estimate Eθ|yrep,y[li(θ)]
by ∑m

k=1 f(yrep|θ(k)) log fi(yi|θ(k))
∑m
k=1 f(yrep|θ(k))

where θ(k) is a sample from π(θ|y). We do not consider estimation of marginal local

influence Ïψi , but remark that this could be implemented using nested sampling (Weiss

and Cho, 1998).

6.1 Linear regression

Consider the linear model with Y ∼ Nn(Xβ, σ
2In), where X is n × p of rank p < n

and xTi denotes the ith row of X . With a uniform prior distribution on β, and σ2
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assumed known, the Kullback-Leibler divergences and their curvatures may be obtained

explicitly. Specifically, the distribution of β|y is Np(Bb,B) where B = σ2(XTX)−1

and b = XTy/σ2, and E[Yi|β] = xTi β has posterior mean and variance µi = xTi Bb and

σ2
i = xTi Bxi. Therefore

Ïβi = varβ|y (log fi(yi|β))

=
1

4σ4
varβ|y

(
(yi − xTi β)2

)
(15)

= σ2
i [2(yi − µi)

2 + σ2
i ]/(2σ

4)

= hi[(yi − µi)
2/σ2 + hi/2] (16)

where hi = xTi (XTX)−1xi is the leverage of covariate vector xi.

Denoting

D−1 = B−1 − 1

σ2
xix

T
i , d = b− 1

σ2
xiyi ,

the Kullback-Leibler divergence between π(β|y(−i)) and π(β|y) is

i0,i = I(π(β|y(−i)), π(β|y))

= −k
2
− 1

2
log

( |D|
|B|

)
+

1

2
(tr(B−1D) + (Bb−Dd)TB−1(Bb−Dd)) .

After some algebra this simplifies to

i0,i =
1

2

[
−1 + log(1 − hi) +

1

1 − hi

(
hi(yi − µ)2

(1 − hi)σ2
+ 1

)]
. (17)

Both (16) and (17) combine measures of leverage and lack of fit. However, note that

extremely high leverage observations (i.e., hi close to unity) have a greater impact on

case-deletion sensitivity than on local sensitivity.

To determine the local sensitivity of the predictive distribution, note that by defi-

nition, y|β and yrep|β are independent and identically distributed Nn(Xβ, σ
2In), and

therefore, conditional on y and yrep, E[Yi|β] = xTi β has mean

µi,rep = xTi (XTX)−1XT (y + yrep)

and variance σ2
i,rep = σ2

i /2. From (15)

varβ|y,yrep
(log fi(yi|β)) =

σ2
i

2
[2(yi − µi,rep)

2 + σ2
i /2]/(2σ4) .

It is straightforward to show that Eyrep|y[µi,rep] = µi and varyrep|y(µi,rep) = σ2
i /2,

giving

Eyrep|y

[
varβ|y,yrep

(log fi(yi|β))
]

=
σ2
i

4σ2
[2(yi − µi)

2 + 3σ2
i /2] .
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After a bit of simplification we obtain from (14)

Ï
yrep

i =
Ïβi
2

− h2
i

8
. (18)

With similar calculations it can be shown that

Ï
yrep,i

i =
hi

1 + hi

(
Ïβi − h2

i

2(1 + hi)

)
(19)

where yrep,i denotes the ith element of yrep.

Gesell Data. Figure 1 shows Gesell adaptive score plotted against child’s age (months)

of first spoken word (Mickey et al. 1967). For the known variance scenario, we set

σ2 equal to the classical residual mean square, s2 =
∑21
i (yi − µi)

2/19 = 121.5045,

where µi = xTi Bb, and the values of i0,i, Ï
β
i , Ï

yrep

i and Ï
yrep,i

i were calculated ana-

lytically using equations (16)–(19). In the unknown variance case θ = (β, σ2) and

the reference prior π(θ) = σ−2, σ > 0 was used. The Kullback-Leibler divergence,

i0,i = I(π(θ|y(−i)), π(θ|y)) was calculated using the approximation of Guttman and

Pẽna (1988, eq. 5.3).
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Figure 1: Gesell data from Mickey et al. (1967)

For the known σ2 model, both p
(1)
D and p

(2)
D are exactly 2. Using the criterion of

Section 4, observations with Ïβi exceeding 4/21 ≈ 0.19 are identified as having high local
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influence. This identifies the high-influence observation 18 and the outlying observation

19 (Fig. 1, Table 1). The Kullback-Leibler divergence for case removal, i0,i, is highest

for observation 18. However, with regard to small changes in case weight, observation

19 (Ïβ19 = 0.40) is slightly more influential than observation 18 (Ïβ18 = 0.38). The high

leverage of observation 18 is reflected in its relatively large value of Ï
yrep,i

i .

σ2 = s2 π(σ2) = σ−2

i xi yi hi i0,i Ï
β
i Ï

yrep
i Ï

yrep,i
i i0,i Ïθi Ï

yrep
i Ï

yrep,i
i

1 15 95 0.05 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00
2 26 71 0.15 0.09 0.13 0.06 0.02 0.06 0.13 0.06 0.01
3 10 83 0.06 0.07 0.13 0.06 0.01 0.07 0.16 0.08 0.01
4 9 91 0.07 0.03 0.05 0.02 0.00 0.00 0.05 0.03 0.00
5 15 102 0.05 0.02 0.03 0.02 0.00 0.00 0.04 0.02 0.00
6 20 87 0.07 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00
7 18 93 0.06 0.00 0.01 0.00 0.00 0.00 0.03 0.02 0.00
8 11 100 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00
9 8 104 0.08 0.01 0.01 0.00 0.00 0.00 0.03 0.02 0.00

10 20 94 0.07 0.02 0.03 0.01 0.00 0.00 0.04 0.02 0.00
11 7 113 0.09 0.06 0.09 0.05 0.01 0.03 0.09 0.05 0.01
12 9 96 0.07 0.01 0.01 0.00 0.00 0.00 0.03 0.02 0.00
13 10 83 0.06 0.07 0.13 0.06 0.01 0.07 0.16 0.08 0.01
14 11 84 0.06 0.05 0.09 0.04 0.00 0.03 0.09 0.05 0.01
15 11 102 0.06 0.01 0.01 0.01 0.00 0.00 0.03 0.02 0.00
16 10 100 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00
17 12 105 0.05 0.02 0.03 0.02 0.00 0.00 0.04 0.02 0.00
18 42 57 0.65 1.09 0.38 0.14 0.10 1.05 0.39 0.12 0.08
19 17 121 0.05 0.22 0.40 0.20 0.02 1.69 1.53 0.71 0.06
20 11 86 0.06 0.04 0.06 0.03 0.00 0.01 0.06 0.03 0.00
21 10 100 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00

Table 1: Local influence measures for the Gesell data, for known and unknown σ2.

In the unknown σ2 case, p
(1)
D ≈ 3.12 and p

(1)
D ≈ 3.47, resulting in a threshold of

approximately 0.330 for identification of high local influence. Again, this identifies

observations 18 and 19. Observation 19 now has largest value of both i0,i and Ïθi , which

may be attributed to the influence that this observation has on the posterior distribution

of σ2.

6.2 Nonlinear state-space model

Millar and Meyer (2000) applied a Bayesian state-space implementation of a Schaefer

surplus production model to the South Atlantic albacore tuna catch-rate data of Po-

lacheck et al. (1993). These data span the years 1967 to 1989, with 1967 being the first

year of the fishery (Table 2). Under the Schaefer model, the biomass in year t is given

by

B1967 = Keu1967 , t = 1967

Bt = (Bt−1 + rBt−1(1 −Bt−1/K) − Ct−1) e
ut , 1968 ≤ t , (20)
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where r is the intrinsic growth rate of the population, K is virgin biomass, Ct is the

catch (assumed known) in year t, and ut are iid Normal(0, σ2).

The catch rates, yt, are assumed to have expected value that is proportional to

biomass. Specifically, the catch rates are modelled as

yt = qBte
vt ,

where parameter q is the “catchability coefficient”, and vt are iid Normal(0, τ2).

The model parameters are θ = (K, r, q, σ2, τ2B1967, ...B1989) and hence yt, t =

1967, ..., 1989, are conditionally independent. Parameters K, σ2, and τ2 were given

vaguely informative priors derived from expert knowledge. The prior for catchability

was π(q) = q−1. Intrinsic growth rate, r, was given an informative log-normal prior that

was derived from analysis of other tuna stocks. These priors were assumed independent.

The conditional prior π(B1967, ...B1989|K, r, q, σ2, τ2) is induced from the priors on K, r
and σ2, using (20).

The posterior distribution of the model parameters has greatest local sensitivity to

the catch rates in years 1968, 1971 and 1984 (Table 1). These are all years in which

the log catch rate, log yt, is considerably higher than expected under the model (Fig. 2,

Millar and Meyer [2000]).

The model complexity estimates, p
(1)
D and p

(2)
D were vastly different, taking values

2.3 and 14.8 respectively. Using p
(2)
D , the high-influence threshold is approximately 1.29,

and this is exceeded by only the 1968 catch-rate data. While it is the case that other

years give high absolute values of local sensitivity (e.g., Ïθ1971 = 0.87), they are not of

sufficient magnitude to exceed the threshold.

In fisheries management, the unknown of greatest interest is the current biomass. In

the context of these historical tuna data, spanning the years 1967 to 1989, the biomass of

interest is B1990. The posterior predictive density of B1990 has greatest local sensitivity

to the catch rates in the earliest two years, 1967 and 1968, and the last year, 1989. The

relatively high local sensitivity to the first two years can be attributed to these years

being especially informative about virgin biomass, K.

6.3 Repeated Bernoulli Data

Lindsey (1993) developed a model for the repeated Bernoulli data from the behavioral

experiment of Solomon and Wynne (1954). This experiment recorded whether or not

a dog received an electric shock through the floor of its cage. The shock was avoidable

if the dog jumped over a partition in its compartment within 10 s of a barrier being

removed. The data are a binary sequence of results from 25 trials applied to 30 dogs.

Lindsey (1993) models the probability that dog i receives a shock on trial k by

pik = axikbk−1−xik

where xik is the number of avoidances that the dog has made in trials 1 to k − 1. The

dogs are assumed (conditionally) independent.
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Catch Catch rate

Year (1000s t) (kg/100 hooks) Ïθi Ïy1990i

1967 15.9 61.89 0.15 0.02

1968 25.7 78.98 1.51 0.09

1969 28.5 55.59 0.07 0.00

1970 23.7 44.61 0.34 0.01

1971 25.0 56.89 0.87 0.01

1972 33.3 38.27 0.35 0.01

1973 28.2 33.84 0.46 0.00

1974 19.7 36.13 0.07 0.00

1975 17.5 41.95 0.35 0.00

1976 19.3 36.63 0.07 0.00

1977 21.6 36.33 0.07 0.00

1978 23.1 38.82 0.10 0.00

1979 22.5 34.32 0.09 0.00

1980 22.5 37.64 0.14 0.00

1981 23.6 34.01 0.06 0.00

1982 29.1 32.16 0.06 0.00

1983 14.4 26.88 0.30 0.00

1984 13.2 36.61 0.55 0.00

1985 28.4 30.07 0.21 0.00

1986 34.6 30.75 0.07 0.00

1987 37.5 23.36 0.37 0.00

1988 25.9 22.36 0.08 0.01

1989 25.3 21.91 0.38 0.18

Table 2: Local influence measures for the tuna data

We used this example as implemented in the distribution of the WinBUGS package

(Spiegelhalter et al. 1995), where it uses highly dispersed normal priors, truncated to

(−∞, 0), on log a and log b. That is, the prior is proper, but can be considered an

approximation to the improper prior π(a, b) = a−1b−1, 0 < a, b < 1.

Local sensitivity was evaluated with respect to the vector yi of 25 responses recorded

for dog i. The model complexities, p
(1)
D and p

(2)
D , were approximately 1.98 and 2.00,

respectively, corresponding to a high-influence threshold of 0.133. Dogs 2 and 9 have

the highest local sensitivities, Ïθi , of approximately 0.51 and 0.56 respectively. Inspection

of the data shows that dog 2 received 14 shocks in the first 15 trials (the highest of any

dog), but no further shocks in the remaining 10 trials. Dog 9 appears to be the most

“training-resistant” of the 30 dogs. It was the only dog to receive a shock in the last five

trials, receiving shocks on trials 26 and 30. Dogs 22, 24 and 29 have local sensitivities



Millar and Stewart 379

less than 0.24, but in excess of the threshold of 0.133. These three dogs, and dog 9,

were the only four dogs to receive a shock during the last eight trials.

7 Conclusions

Local case-sensitivity provides an assessment of the sensitivity of posterior inference to

a modest change in the weight given to an observation. The geometric weighted likeli-

hood provides a natural method to alter observation weight. It corresponds to a linear

weighting of the individual log-likelihood term and has the interpretation that the in-

formation content, measured as the Fisher information about θ provided by observation

i, is proportional to wi.

Our measure of the local influence of observation i on π(θ|y) is Ïθi , the curvature

(evaluated at the baseline posterior) of the Kullback-Leibler divergence between baseline

and perturbed posteriors. This is easily estimated from a posterior sample, as the

posterior variance of log fi(yi|θ). Local influence on predictive densities is the curvature,

Ï
yrep

i , of the Kullback-Leibler divergence between baseline and perturbed predictive

densities, and is the posterior variance of Eθ|yrep,y[log fi(yi|θ)]. This can be estimated

using importance sampling. Weiss (1996) showed that (under weak conditions) Ï
yrep

i

converges to Ïθi as the number of future predictions increases. Thus, even if interest

is not specifically in sensitivity of π(θ|y), Ïθi will nonetheless be a relevant measure of

local sensitivity if the model is to be used for a large number of predictions.

Appendix A: Propriety counterexample

The following counterexample shows that propriety of π(θ|y) does not imply pro-

priety of π(θ|y(+i)).

Let Y be distributed N(µ, σ2), and let the independent priors be

π(µ) ∝ 1, µ ∈ IR

π(σ) = 1, 0 < σ < 1 .

For any outcome, y1 ∈ IR, π(µ, σ|y1) is proper because the integral

∫ 1

0

1

σ

∫ ∞

−∞

e−
(y1−µ)2

2σ2 dµ dσ.

is finite (and equal to
√

2π).

Now, set y2 = y1. Under the model that y1 and y2 are independent observations

from a N(µ, σ2), propriety of π(µ, σ|y1 = y2) requires finiteness of the integral

∫ 1

0

1

σ2

∫ ∞

−∞

e−
(y1−µ)2

σ2 dµ dσ =

∫ 1

0

1

σ2

√
πσdσ

=
√
π

∫ 1

0

1

σ
dσ .
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This integral does not exist finitely.

Appendix B: Regularity conditions

Kullback (1959) gives third-order regularity conditions for the curvature result that

was used to obtain equation (7). In the present context, these are conditions on the

derivatives of π(q)(θ|y;wi) and logπ(q)(θ|y;wi). These can be established by appropri-

ate conditions upon π(q)(y,θ;wi).

Note that π(q)(y,θ;wi) is continuous as a function of wi ∈ (0, 2), and assuming the

conditions of Proposition 1, is absolutely bounded by an integrable (dθ) function for

all wi ∈ (0, 2). Thus, f (q)(y;wi) is continuous (Billingsley 1979, p. 181) on (0, 2). Let

A = (1− ε, 1+ ε) ⊆ (0, 2) be such that f (q)(y;wi) is uniformly bounded away from zero

for all wi ∈ A.

We shall require that for all wi ∈ A,

∣∣∣∣∣
∂jπ(q)(y,θ;wi)

∂wji

∣∣∣∣∣ ≤Mj(θ) , j = 1, 2, 3, (21)

where each Mj(θ) is finitely integrable (dθ). From these conditions we have that

f (q)(y;wi) can be differentiated to third-order under the integral sign (Billingsley 1979),

∂jf (q)(y;wi)

∂wji
=

∫

Θ

∂jπ(q)(y,θ;wi)

∂wji
dθ . (22)

Assuming that π(q)(y,θ;wi) is strictly positive for all θ ∈ Θ and all wi ∈ A, it follows

that the derivatives (∂wi) of logπ(q)(θ|y;wi) = logπ(q)(y,θ;wi) − log f (q)(y;wi) exist

up to third-order for wi ∈ A. This is the first regularity condition.

The second set of regularity conditions requires that for all wi ∈ A,

∣∣∣∣∣
∂jπ(q)(θ|y;wi)

∂wji

∣∣∣∣∣ ≤ Gi(θ) , i = 1, 2, 3, (23)

where Gi(θ), i = 1, 2 are integrable over Θ. This is immediately satisfied because

f (q)(y;wi) is uniformly bounded away from zero on A, and its first and second derivative

are uniformly bounded, by (21) and (22). The final part of this second set of regularity

conditions is that Eθ|y[G3(θ)] is absolutely bounded.

The third set of regularity conditions require that

∫

Θ

∂jπ(q)(θ|y;wi)

∂wji
= 0, j = 1, 2.

This follows from (23) (Billingsley 1979) and the fact that, under Proposition 1, π(q)(θ|y;wi)
is a density function for all wi ∈ A.
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Note that
∣∣∣∣∣
∂jπ(q)(y,θ;wi)

∂wji

∣∣∣∣∣ =

∣∣∣∣∣
∂jπ(θ)f(y(−i)|θ)fi(yi|θ)wi

∂wji

∣∣∣∣∣

= |π(q)(y,θ;wi)li(θ)
j |

≤ |π(θ)f(y(−i)|θ)li(θ)j(1 + fi(yi|θ)2)|, j = 1, 2, 3,

and so (21) will be satisfied if the integrals

∫

Θ

π(θ)f(y(−i)|θ)li(θ)3dθ (24)

and ∫

Θ

π(θ)f(y(+i)|θ)li(θ)3dθ (25)

exist finitely, where y(+i) is defined in Proposition 1. These conditions are specifying

finiteness of the posterior third moment of the log-likelihood, when yi is removed, and

when an additional copy of yi (from sampling model fi(yi|θ)) is added.
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