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Bayesian encompassing specification test under

not completely known partial observability

Carlos Almeida∗ and Michel Mouchart†

Abstract. This paper proposes the construction of a Bayesian specification test
based on the encompassing principle for the case of partial observability of latent
variables. A structural parametric model (null model) is compared against a non-
parametric alternative (alternative model) at the level of latent variables. The
null extended model is obtained by incorporating the non Euclidean parameter
of the alternative model. This extension is defined through a Bayesian Pseudo-
True Value, that makes the null model a reduction by sufficiency of the extended
model. The same observability process is introduced in both the null and the al-
ternative models; after integrating out the latent variables, a null and alternative
statistical models are accordingly obtained. The comparison is made between the
posterior measures of the non Euclidean parameter (of the alternative model) in
the extended and in the alternative statistical models. The general development
is illustrated with an example where only a linear combination of a latent vector
is observed; in the example, the partial observability is known up to the vector
defining the observed linear combination. Some identifiability issues are treated
and the example shows the operationality and some pitfalls of the proposed test,
through a numerical experiment.

Keywords: Bayesian encompassing; Bayesian specification test; Dirichlet prior;
Partial observability.

1 Introduction

An example of partial observability can be found in covariance structure models (or,

LISREL type models) involving ordinal variables. In these models, the normality hy-

pothesis of the latent variables has an important role. As a matter of fact, this hy-

pothesis permits to reduce the inference process to the analysis of the empirical means,

variances and covariances as these empirical moments represent a sufficient reduction;

see Olsson (1979) or Jöreskog (1994) for the estimation of the identified parameters.

If we consider models involving also ordinal variables, we should justify the normal-

ity of the latent variables supposedly generating, by discretization, these ordinal vari-

ables; for the use of the normality assumption in that class of models see Muthén

(1983, 1984); Jöreskog, Sörbom, du Toit, and du Toit (2002) and for details on the dis-

cretization model see Almeida and Mouchart (2003a,b). As another example of partial

observability, consider the observation of a linear combination of latent variables (with
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unknown coefficients). In Econometrics, this is indeed the case of the permanent income

hypothesis, where permanent demand and income are observable with errors only.

Formally, models involving partial observability can be described by means of a

structural model: ξ | θ ∼ Pξ|θ, along with an observability process defined in the

form of X = g(ξ, α)
.
= gα(ξ) where g is a known function, α ∈ IRq is an unknown

parameter, ξ is a vector of latent variables and X is a vector of manifest (or observable)

variables. The case where g is not a function of α (or α is known) has been treated in

Almeida and Mouchart (2005) under the heading of completely known partial observ-
ability ; the case where α ∈ IRq is unknown, but the functional form of g is known, is

called not completely known partial observabilitity and is the subject matter of this

paper.

When the partial observability does not correspond to a sufficient reduction, a loss

of identifiability is to be expected. Although the model is identified at the level of latent

variable (i.e. θ is identified by ξ), the statistical model is typically not identified (i.e.
(α, θ) is not identified by X) even when the partial observability process is identified

(i.e. α identified by X); see Mouchart and Oulhaj (2003) for a study on the sufficiency

and identification relations under partial observability. This loss of identifiability due

to partial observability requires a particular care for a correct interpretation of the

hypotheses involved in a testing procedure.

In the general setup, the Bayesian specification of the structural models correspond-

ing to the null, E0, and alternative hypotheses, E1, are:

E0 : (θ, ξ) ∼ Q0
θ,ξ = M0

θ ⊗ P 0
ξ|θ (1)

E1 : (ψ, ξ) ∼ Q1
ψ,ξ = M1

ψ ⊗ P 1
ξ|ψ (2)

where θ and ψ are the parameters characterizing the respective models of the latent

vector ξ, and the Markovian product M 0
θ ⊗P 0

ξ|θ, between a marginal (prior) probability

M0
θ and a (sampling) regular conditional probability P 0

ξ|θ, is the unique probability on

the product space (θ, ξ) generated by (M 0
θ ⊗ P 0

ξ|θ)(A × B) =

∫

θ∈A

P 0
ξ|θ(B) dM0

θ , and

similarly for E1. Thus, when densities exist, E0 might be represented as q0(θ, ξ) =

m0(θ)p0(ξ | θ). Note however that in E1 the use of densities is inappropriate because

the parameter space for ψ is infinite dimensional. A general nonparametric alternative

is specified by P 1
ξ|ψ = ψ.

In both models, X = g(ξ, α)
.
= gα(ξ) defines the same partial observability process,

where g is a known bi-measurable function and α is an unknown finite dimensional

parameter. The fact that the partial observability process is deterministic implies that:

(a) X ⊥⊥ θ | α, ξ;Q0 and (b) X ⊥⊥ ψ | α, ξ;Q1, (3)

and clearly: P 0
X|α,θ,ξ = P 1

X|α,ψ,ξ = δ{X=g(ξ,α)}, where δ{•} is the unit mass measure.

Let us try to localize the contribution of this paper within the literature on Bayesian

testing in general and, more specifically, within the literature on the encompassing prin-

ciple. It is difficult to organize an abundant, and still growing, literature on Bayesian
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testing in a systematic framework. After Florens and Mouchart (1993) it may neverthe-

less be useful to gather contributions focusing on the posterior probabilities of hypothe-

ses (null (H0) and alternative (H1)) under different forms, as posterior odds, Bayes

factors or p-values, see for example Berger (1985), Zellner (1984), Bayarri and Berger

(2000), and for relations with a sampling framework see Bernardo (1980), DeGroot

(1973), Berger and Delampady (1987). These approaches typically consider H0 and H1

within a unique Bayesian model and the null hypothesis as a restriction over the alterna-

tive hypothesis. In another approach different Bayesian models are associated to H0 and

H1 and attention is focused on how different the inferences are relative to a parameter

of interest, often defined in a more decision oriented framework; the Bayesian encom-

passing test permits this approach. For approaches based on Bayes factors and dealing

with specification testing see Berger and Guglielmi (2001), Verdinelli and Wasserman

(1998), see also Florens, Richard, and Rolin (2003) for some criticisms when, in the

alternative model, a Dirichlet process is used as a prior distribution on the space of

probability measures.

In line with seminal papers by Cox (1961, 1962) about testing non-nested hypotheses

the encompassing principle has been developed for comparing two experiments sharing

the same sample space. The main idea is to compare the inference made on the param-

eter of the second model using the first one and the inference on the same parameter

using the second model directly. Thus, the encompassing test leads to analyze, in

the framework of the preferred model, the behavior of statistics of interest within the

context of the non-preferred model. For a detailed study of the encompassing test-

ing in a sampling theory approach and in a parametric framework see Mizon (1984);

Mizon and Richard (1986). In a Bayesian framework, encompassing testing has been

sketched in (Florens, Mouchart, and Rolin 1990, section 3.5) and developed in a general

setup and applied to parametric models by Florens and Mouchart (1989, 1993) and in

time series in Florens, Larribeau, and Mouchart (1994).

Let us be more specific on the Bayesian encompassing approach and consider the two

statistical models on the same sample space, namely {P 0
ξ|θ : θ ∈ Θ} and {P 1

ξ|ψ : ψ ∈ Ψ},
endowed with prior distributions (M 0

θ and M1
ψ respectively). In order to include the

parameter of the second model in the, so-called, extended model, a Bayesian Pseudo-
True Value (BPTV) is defined through a probability transition. The use of a conditional

independence condition (BPTV condition) permits us to interpret the first model as the

marginalization by sufficiency of the extended model. The extended model is accordingly

written as:

Q0,∗ = M0
θ ⊗ P 0

ξ|θ ⊗Mψ|θ under ξ ⊥⊥ ψ | θ;Q0,∗ the BPTV condition.

The comparison is made between the posterior distributions of ψ in the extended

and in the alternative models, namely: M 0,∗
ψ|ξ and M1

ψ|ξ. A test statistic is constructed

through a distance or a divergence between these two posterior distributions. Since, in

general the distribution of this statistics is not known, it will be calibrated against the

predictive measure in the null model, P 0
ξ . Florens and Mouchart (1993) suggest as the

specification of the BPTV the sampling expectation, in the null model, of the posterior
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measure in the alternative one, namely:

Mψ|θ =

∫
M1
ψ|ξdP

0
ξ|θ ( = E0[M1

ψ|ξ | θ ] ). (4)

This suggestion is motivated by the idea that the meaning of ψ if the null model were

preferred might be obtained as the null predictive expectation of the alternative posterior

distribution; this suggestion for the specification of the BPTV may accordingly be

viewed as a Bayesian adaptation of the suggestion by Cox (1961).

More recently, Florens, Richard, and Rolin (2003) developed an operational specifi-

cation test. They use as null hypothesis a parametric specification of the sampling null

model and as alternative a nonparametric specification with a Dirichlet process as prior

distribution. With this specification and using the BPTV specified as in (4), they show

that the posterior measure M 0,∗
ψ|ξ is a mixture of Dirichlet processes. They use direct

simulation of Dirichlet process, as developed in Rolin (1992) or in Sethuraman (1994), in

order to compute the test statistic and for its calibration against the predictive measure

in the null model, P 0
ξ . For a nonparametric alternative they suggest to focus attention

on the two posterior distributions of finite dimensional functionals of the parameter in

the alternative model. Later, in Almeida and Mouchart (2005) the encompassing spec-

ification test has been extended to the a case of partial observability when the function

defining the partial observability is completely known.

A comparison of the present paper with a recent paper, Berger and Guglielmi (2001),

to be referred as BG, may be illuminating. Firstly, BG is basically oriented toward Bayes

factors. Thus the comparison of two models is made on the sample space through the

respective predictive distributions. In BG, model fit is crucial and there is a concern to

neutralize the role of the prior distribution by making a privileged use of non-informative

prior distributions. Furthermore, the strictly positive probability of ties when simulating

the predictive distribution under a Dirichlet process specification creates difficulties

when the sampling distribution is assumed to be continuous. BG resort to a mixture of

Polya tree processes to face this issue. In this paper the model comparison is based on

the posterior distributions and therefore operates on the parameter space; thus ties in the

predictive distributions do not raise difficulties. Here the emphasis is on interpretation

(i.e. how far can we interpret a model and its parameters) in the light of the other

model and the BPTV is the key for carrying out that comparison. Secondly, BG embed

the parameter of the null model into the alternative model and use, for that purpose,

Polya trees. In this paper we embed the alternative model into an extended version of

the null model and this embedding is operated by making use of the BPTV. Therefore

BG interpret θ in the alternative model whereas we interpret ψ in the (extended) null

model.

This paper is organized as follows. The next section exposes the theoretical frame-

work that describes the impact of partial observability on an encompassing test of a

parametric hypothesis against a non-parametric alternative hypothesis. Section 3 ap-

plies the general framework for the particular case of observing a linear combination of

latent variables and gives a summary of the numerical results of an example, that also

provides some details on numerical procedures. Some concluding remarks complete the
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paper.

2 General Results

The encompassing principle. This principle may be viewed as a possible approach for

switching from an “old” theory to another “new” theory and can be expressed as follows.

The empirical findings explained in the framework of the old theory should also be

explained in the framework of the new theory. Here, we extend that idea for a case

where only partial observation is available.

When completing the structural models (1) and (2), in order to incorporate α and X ,

we shall also assume a separation between the structural and the observability models

in the sense that the sampling distributions of ξ should not depend on α; more precisely:

(a) α ⊥⊥ ξ | θ;Q0 and (b) α ⊥⊥ ξ | ψ;Q1. (5)

Condition (5a) also means that in the structural null model, θ is a sufficient parameter

and therefore conditionally on θ, the ξ’s are not informative about α (i.e. the prior

and the posterior distributions of α given θ are the same). Note that θ being minimal
sufficient also means that θ is identified. Similarly for (5b) in the alternative model.

For the approach of sufficiency on the parameter space see Barankin (1960) and, in a

Bayesian framework, (Florens, Mouchart, and Rolin 1990, subsection 2.3.3, and for the

link with identification as minimal sufficiency the results in sections 4.4 and 4.6).

The complete null model E0 and the complete alternative model E1 are therefore

E0 : (θ, α, ξ,X) ∼ Q0
θ,α,ξ,X = M0

θ,α ⊗ P 0
ξ|θ ⊗ P 0

X|ξ,α

E1 : (ψ, α, ξ,X) ∼ Q1
ψ,α,ξ,X = M1

ψ,α ⊗ P 1
ξ|ψ ⊗ P 1

X|ξ,α.

For the Bayesian encompassing test, the null model needs to be extended by incor-

porating ψ, the parameter of the alternative one. The construction of this extended
model E0,∗ makes use of an extended Bayesian Pseudo-True Value (BPTV) condition,

namely:

ψ ⊥⊥ α, ξ | θ;Q0,∗. (6)

This condition actually aggregates two conditions, namely:

(a) ψ ⊥⊥ α | ξ, θ;Q0,∗ and (b) ψ ⊥⊥ ξ | θ;Q0,∗ (7)

The first one gives a neutrality of the partial observability for interpreting ψ in Q0,∗

and the second one is the standard BPTV hypothesis within the structural model. Note

that (5a) and (7a) are equivalent to:

α ⊥⊥ (ξ, ψ) | θ;Q0,∗. (8)

The extended statistical model, obtained after integrating the latent variable ξ, can

be written as:

Q0,∗
θ,α,ψ,X = M0

θ,α ⊗ P 0
X|θ,α ⊗Mψ|θ,



308 Encompassing under partial observability

where the conditional probability Mψ|θ represents a BPTV satisfying (6).

Since the structural process acts independently of the partial observability process,

we assume that α and θ are a priori independent, more specifically:

(a) α ⊥⊥ θ;Q0 and (b) α ⊥⊥ ψ;Q1. (9)

The next theorem shows that (9a), along with the extended BPTV condition (6), implies

in the extended complete model, a complete separation between the structural model

and the parameter of the observability process.

Theorem 1. Using the extended BPTV condition (6), we have under (9a), that:

α ⊥⊥ (ξ, ψ, θ);Q0,∗ (10)

Proof. Clearly (10) is equivalent to (a) α ⊥⊥ ξ, θ and (b) α ⊥⊥ ψ | ξ, θ. Property (a) is

equivalent to (9a) and α ⊥⊥ ξ | θ, implied by (8), and property (b) is also implied by (8).

The encompassing principle consists in evaluating d1(X) = d∗(M0,∗
ψ|X ,M

1
ψ|X) as a

test statistic, where d∗ is a discrepancy or a divergence between probability measures

which must be calibrated against P 0
X , the predictive distribution under the model E0. In

a decision theoretic framework, loss functions, and therefore decision procedures, are not

likely to depend on the complete specification of the functional parameter ψ. It is instead

more likely that a finite dimensional functional λ = h(ψ) represents the parameter

of actual interest. In such a case, the test statistic takes the form d∗(M0,∗
λ|X ,M

1
λ|X)

rather than d∗(M0,∗
ψ|X ,M

1
ψ|X). Florens, Richard, and Rolin (2003) have developed an

operational version of the encompassing test statistic when the parameter of interest is

λ and the observation is complete, i.e. when ξ = X .

Identification and Encompassing testing. As mentioned before, the partial observation

is not likely to identify the complete parameters α and θ (resp. ψ) in the null (resp.

alternative) model, even though we have assumed that θ (resp. ψ) is identified by ξ.
This is so unless X is a sufficient statistic in both models, see Mouchart and Oulhaj

(2003).

Let us define γX (resp. ωX) as a minimal sufficient parameter for the sampling

distribution of X in the null (resp. alternative) model. Thus in the null model γX is a

measurable function of θ and α, and in the alternative model the parameter identified

by the statistical model P 1
ξ|ψ ◦ g−1

α is ωX = ψ ◦ g−1
α , a measurable function of ψ and α.

These identified parameters are such that:

(a) X ⊥⊥ θ, α | γX ;Q0 (b) X ⊥⊥ ψ, α | ωX ;Q1. (11)

This raises the question whether d1(X) should be defined from the distance between

the posterior distributions of the complete parameter ψ or of the identified parameter
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ωX only. Let us therefore ask how far it is legitimate to concentrate the encompassing

test on the identified part of ψ, i.e. to evaluate

d2(X) = d∗(M0,∗
ωX |X ,M

1
ωX |X)

instead of d1(X). Intuitively, that would be legitimate if in the extended null model

and in the alternative model the distributions conditional on the data and the identified

parameters would not depend on the data. This is clearly the case for the alternative

model in view of condition (11b). The next theorem gives a condition under which

a similar property holds in the extended null model and provides as a Corollary, i.e.
equation (13), a more operational structure.

Theorem 2. Under (6), the extended model E0,∗ satisfies:

X ⊥⊥ ψ, θ, α | γX ;Q0,∗ (12)

Proof. Indeed, in Q0,∗, we have that (6) implies ψ ⊥⊥ X | θ, α, which jointly with (11a)

implies (12).

Then, under condition (6) we have X ⊥⊥ ωX | γX ;Q0,∗ and we may write:

Q0,∗
θ,α,ψ,X =

[
M0
γX

⊗M0,∗
ωX |γX

⊗ P 0
X|γX

]
⊗M0,∗

α,θ,ψ|γX
. (13)

Equation (13) means that in the extended complete model, the prior conditional distri-

bution M0,∗
α,θ,ψ|γX

need not be explicitly specified for the construction of the encompass-

ing test.

Finally, the next theorem requires a further condition on the BPTV in order to

ensure that ωX is sufficient, in the extended model, relative to ψ.

Theorem 3. Under the extended BPTV condition (6), if

ψ ⊥⊥ γX | ωX ;Q0,∗ (14)

then
ψ ⊥⊥ X | ωX ;Q0,∗ (15)

Proof. Clearly (15) is implied by ψ ⊥⊥ X, γX | ωX which is equivalent to (14) along

with ψ ⊥⊥ X | γX , ωX implied by (12).

Theorem 3 permits us to write: M0,∗
ψ|X =

∫
M0,∗
ψ|ωX

dM0,∗
ωX |X . If, by specification, we

impose the coherence condition:

M0,∗
ψ|ωX

= M1
ψ|ωX

, (16)

a convenient distance for the posterior distributions of ψ can be defined through a

distance between posterior distributions of ωX , as in d2(X).
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It should be emphasized that the conditions (14) and (16) are restrictions on the

prior specification only and are accordingly not testable as they do not bear on the

sampling neither on the structural process. Furthermore, these conditions depend on

the specification of M0,∗
α,θ,ψ|γX

that leaves the testing procedure invariant, as a result

of equation (13). For given M0
α and M0

θ , these conditions restrict the specification of

the BPTV Mψ|θ that provides the interpretation of ψ (the natural parameter in the

alternative model) in the (extended) null model. The motivation of these restrictions

is to give explicit conditions that justify formally that the testing procedure compares

the posterior distributions of ωX , the identified part of (α, ψ), rather than the complete

posterior distribution, a rather natural requirement.

Summarizing, under the conditions (6), (14) and (16), d2 is an adequate and more

operational substitute of d1. Because of (13), conditions (14) and (16) are restrictions

on the unspecified M0,∗
α,θ,ψ|γX

. In a decision theoretic framework, we assume also that

the parameter of interest λ is a function of ωX rather than ψ, i.e. λ = h(ωX).

3 An Example

Let us illustrate the computations implied by the test developed so far by examining a

simple example. We first sketch a parametric (fully normal) null model with a nonpara-

metric alternative model along with a partial observability equation. Next we sketch

the computations required to obtain the Bayesian encompassing test statistic and its

calibration. More specifically we sketch the necessary steps for evaluating the poste-

rior distributions of ωX , the parameter identified by the data in the alternative model,

from which we evaluate the two posterior distributions of λ = h(ωX), the parameter

of interest, and finally simulate the distribution of the test statistic d∗(M0,∗
λ|X ,M

1
λ|X).

In both models, the simulation of the posterior distribution of ωX requires, as a pre-

liminary step, the simulation of the posterior distribution of α. Under a continuous

specification of the prior distribution of α, the posterior distribution of α given a sam-

ple Xn
1 = (X1, . . . , Xn) can be simulated by acceptance rejection methods. Finally, we

control the operationality of the proposed procedure through a numerical exercise.

The Null and the Alternative Models. Consider a linear model with errors of measure-

ment:

Xi = β′ζi + σxεxi
, Zi = ζi + Σ

1
2
zzεzi

(Xi, Z
′
i)

′ ∈ IR1+k, ζi ∼ ind N(k)(µζ ,Σζζ)

where Var(εxi
) = 1 and Var(εzi

) = Ik. Let us denote Wi = (Xi, Z
′
i)

′. Defining a

(k + 1) × (2k + 1)-matrix A, we obtain a partial observability model:

Wi = Aξ∗i where A =

(
β′ σx 0′

Ik 0 Σ
1
2
zz

)
and ξ∗i = (ζ ′i , εxi

, ε′zi
)′.

The test developed so far for testing the normality of the (2k + 1)-dimensional vector

ξ∗i requires considerable computations. Let us illustrate the main difficulties to be
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faced in the simplest case where k = 1 and only Xi is actually observable. Thus, let

us consider a bivariate latent vector ξi, a linear combination of which is observable,

namely: Xi = gα(ξi) = α′ξi, where ξi = (ζ ′i , εxi
)′ and α = (β, σx)

′.

We want to compare a completely normally distributed (with known variances) null

model with a nonparametric alternative model both satisfying (5) and (9), namely:

α ⊥⊥ (ξ, θ);Q0 and α ⊥⊥ (ξ, ψ);Q1; more explicitly:

E0 :





ξ | θ, α ∼ N(2)(θ, A0)

θ | α ∼ N(2)(0, B0)

α ∼ M0
α

E1 :





ξ | ψ, α ∼ ψ
ψ | α ∼ Di(n1

0N(2)(0, C0))

α ∼ M1
α,

(17)

where A0, B0 and C0 are positive definite matrices, n0 > 0 and Di denotes a Dirichlet

process. The corresponding statistical models are:

E0 :





X | θ, α ∼ N (α′θ, α′A0α)

θ | α ∼ N(2)(0, B0)

α ∼ M0
α

E1 :





X | ψ, α ∼ ωX
ωX | α ∼ Di(n1

0N (0, α′C0α))

α ∼ M1
α.

(18)

where, as in Section 2, ωX = ψ ◦ g−1
α is the parameter of E1 identified by X .

Posterior distributions of α. In the null model, the posterior distribution of (α | Xn
1 )

may be obtained as follows: For an n-size sample, the joint distribution of Xn
1 and θ

conditionally on α is:

(
Xn

1

θ

)
| α; E0 ∼ N(n+2)

[(
0

0

)
,

(
Σn ΣXθ
ΣθX B0

)]

with:

Σn = α′A0α




1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


+ α′B0α




1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1


 ,

ΣθX = Σ′
Xθ = (B0α, . . . , B0α) .

Using a continuous prior distribution, m0(α), the posterior will be also continuous,

moreover: m0(α | Xn
1 ) ∝ m0(α) p0(Xn

1 | α), where p0(Xn
1 | α) is the density function

of a multivariate normal distribution with zero means and variance matrix Σn.

In the alternative model E1, Dirichlet process properties imply that: X | α; E1 ∼
N (0, α′C0α) and, conditionally on α, the posterior distribution of the identified param-

eter ωX is a Dirichlet process:

ωX | α,Xn
1 ; E1 ∼ Di(n1

0N (0, α′C0α) + nF̂n), (19)

where F̂n denotes the empirical distribution of the sample Xn
1 . After integrating α out,

the posterior distribution of the identified parameter ωX is accordingly a mixture of
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Dirichlet processes, more specifically:

M1
ωX |Xn

1
=

∫
M1
ωX |α,Xn

1
dM1

α|Xn
1
. (20)

In order to obtain the distribution M 1
α|Xn

1
, we first make use of the following property

of the Dirichlet processes:

P 1
Xn

1 |α =
⊗

{1≤i≤n}

P 1
Xi|X

i−1
1 ,α

=
⊗

{1≤i≤n}

n1
0N (0, α′C0α) + (i− 1)F̂i−1

n1
0 + (i− 1)

,

where F̂j is the empirical distribution using the first j observations (X j
1) and ⊗ stands

for the Markovian product as defined in (1). A Radon-Nikodym derivative of P 1
Xn

1 |α is

easily obtained relative to a measure L
(n)
∗ to be defined. Let L be the Lebesgue measure

on the real numbers and denote the following Radon-Nikodym derivatives:

f1,α
0 =

dN (0, αC0α)

dL
and f̂i =

dF̂i

dF̂n
.

As the measures L and F̂n are mutually singular, we may write:

dP 1
Xi|X

i−1
1 ,α

d(L+ F̂n)
(x) =

n1
0f

1,α
0 (x) + (i− 1)f̂i−1(x)

n1
0 + (i− 1)

dP 1
Xn

1 |α

dL
(n)
∗

(xn1 ) =
∏

{1≤i≤n}

n1
0f

1,α
0 (xi) + (i− 1)f̂i−1(xi)

n1
0 + (i− 1)

(21)

where L
(n)
∗ denotes the n-times product measure of (L+ F̂n). Therefore, if there exists

a prior density m1(α), the posterior distribution of α can be simulated using:

m1(α | Xn
1 ) ∝ m1(α)

dP 1
Xn

1 |α

dL
(n)
∗

(Xn
1 ). (22)

Encompassing. Let us now build an encompassing test under assumptions (14) and (16)

where the BPTV has the following structure:

MωX |γX
=

∫
M1
ωX |X̃n

1
dP 0

X̃n
1 |γX

= E0[ M1
ωX |X̃n

1
| γX ] (23)

where X̃n
1 = (X̃1, . . . , X̃n) is a virtual sample generated from P 0

Xn
1 |γX

. This specification

ensures the BPTV condition, i.e. ωX ⊥⊥ Xn
1 | γX ;Q0,∗.

Let us now stipulate that the virtual sample X̃n
1 is generated independently of the

actual sample Xn
1 :

X̃n
1 ⊥⊥ Xn

1 | γX ;Q0,∗, i.e. P 0
X̃n

1 |Xn
1

=

∫
P 0
X̃n

1 |γX
dM0

γX |Xn
1

(24)
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Then we obtain the posterior distribution of ωX , as follows:

M0,∗
ωX |Xn

1
= E0[ MωX |γX

| Xn
1 ] by BPTV condition

= E0[ E0[ M1
ωX |X̃n

1
| γX ] | Xn

1 ] by (23)

= E0[ M1
ωX |X̃n

1
| Xn

1 ] by (24) (25)

By (25) and (20), both in the null and in the alternative models the posterior dis-

tributions of the identified parameter ωX are mixtures of Dirichlet processes. The

algorithm for Bayesian encompassing testing developed in Florens, Richard, and Rolin

(2003) can be applied in this case with a simple adaptation; this algorithm is based on

a direct simulation of trajectories of the Dirichlet process as developed in Rolin (1992)

and in Sethuraman (1994).

For the sake of illustration, we have selected for λ the first two moments, making our

exercise comparable with that of Florens, Richard, and Rolin (2003). The simulation of

the posterior distributions M1
λ|Xn

1
and M0,∗

λ|Xn
1

may be obtained as follows:

Step 1 Simulation of λ1
1, . . . , λ

1
M1

given Xn
1 in E1. For each i = 1, . . . ,M1, let αi be

a simulated sample from M1
α|Xn

1
from (22) and (ωX)i a simulated trajectory of

M1
ωX |Xn

1 ,αi
from (19), then (ωX)i is a simulated trajectory of M 1

ωX |Xn
1
. Compute

λ1
i = h[(ωX)i] for i = 1, . . . ,M1

Step 2 Simulation of λ0
1, . . . , λ

0
M0

given Xn
1 in E0,∗. For each i = 1, . . . ,M0, simulate

(X̃n
1 )i from P 0

X̃n
1 |Xn

1

through (24). We simulate again (ωX)i from M1
ωX |X̃n

1

as

in step 1. From (25), this sequence is distributed as M 0,∗
ωX |Xn

1
. Compute λ0

i =

h[(ωX)i] for i = 1, . . . ,M0

Step 3 Computation of the test statistics d2(X
n
1 ). From the iid samples λ1

1, . . . , λ
1
M1

from step 1 and λ0
1, . . . , λ

0
M0

from step 2, estimate d2(X
n
1 ) by means of a discrep-

ancy between the two posterior distributions of λ | Xn
1 ; the simplest algorithm,

developed in Wang, Kulkarni, and Verdú (2005), is used for this estimation. This

algorithm uses a data driven partition for integration. In fact when, for example,

the Kullback-Leibler discrepancy between two equivalent probability measures, P
and Q is estimated through generating samples Xn

1 from P and Y n1 from Q we

compute:

dKL(P,Q) =

∫
log

(
dP

dQ

)
dP

=

∫
dP

dQ
log

(
dP

dQ

)
dQ

'
∑

{i∈P}

∆Pi
∆Qi

log

(
∆Pi
∆Qi

)
∆Qi
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where P is a partition of the space, ∆Pi and ∆Qi are the number of points of the

samples Xn
1 and Y n1 respectively in the set i of the partition. This partition is

chosen such that the quantities (∆Qi) are greater than a given positive value.

Step 4 Simulation of (Xn
1 )∗` , ` = 1, . . . , NC for calibration. Simulate (α, θ)`, ` =

1, . . . , NC from (18), for each (α, θ)`, simulate (Xn
1 )∗` | (α, θ)` from (18). Thus

(Xn
1 )∗` ∼ P 0

Xn
1
. For each (Xn

1 )∗` , compute the test statistic d2[(X
n
1 )∗` ] repeating

the steps 1 to 3. Finally estimate the p− value as follows:

̂p− value =
1

NC

∑

1≤`≤NC

1I{d2((Xn
1 )∗

`
) > d2(Xn

1 )}

Remark. The simulation of the distribution of α | Xn
1 can be simplified when the

predictive probability that all observations are different is equal to one, namely:

P 0
Xn

1
(∀ i, j, Xi 6= Xj) = 1.

This is indeed the case when, in the null model, the sampling distribution is continuous.

Therefore the density of Xn
1 | α; E1, as given in (21), may be simplified, with probability

one, into:
dP 1

Xn
1 |α

dL
(n)
∗

(Xn
1 ) ∝

∏

{1≤i≤n}

f1,α
0 (Xi).

which corresponds to an iid sample of f 1,α
0 . In other words, when the sample space is

explored in order to find the predictive distribution of the test statistic under the null

model, we are going to fall, with probability one, in the region where the sample can be

considered as an iid sample relative to the alternative model, conditionally on α.

Numerical illustration. For the sake of simplicity, we specify in this exercise the same

prior distribution for α i.e. M0
α = M1

α. A suitable specification of that prior distribu-

tion may be obtained through the following reparametrization. The minimal sufficient

parameter may be easily described, namely αX = α′(A0 + B0)α. Let us reparametrize

α into (αX , τ) as follows:

α =
√
αXR

−1
0

(
cos τ
sin τ

)
; τ ∈ [0, 2π) αX ≥ 0

where R0 is a 2× 2-matrix such that: (A0 +B0) = R′
0R0. For the prior distribution let

us consider:

αX ⊥⊥ τ ; αX ∼ Gamma(1, 1), τ ∼ U[0,2π).

The variances covariances matrices are fixed to A0 = B0 =

(
1 .5
.5 1

)
. The purpose

of this exercise is to evaluate to which extent a sample generated by a distribution in

the alternative sampling model is likely to be associated to a value of the test statistic

relatively far in the tail of the null predictive distribution.
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Consider accordingly the following specification:

φ = (φ1, φ2)
′; φ1 ⊥⊥ φ2; φi ∼ χ2

2

ξ = D0

(
ξ̃ −

(
2

2

))
; ξ̃ = (ξ̃1, ξ̃2); ξ̃1 ⊥⊥ ξ̃2 | φ; ξ̃i ∼ Expo

(
1

φi

)

where we choose D0 in such a way that 12 D0D
′
0 = A0 +B0; so doing ensures that the

predictive expectation and variances are the same as in the null model. For the test

statistic we consider the Kullback-Leibler divergence numerically computed by means

of a procedure suggested by Wang, Kulkarni, and Verdú (2005).

If one considers the rule “Reject E0 if ̂p− value ≤ 0.05”, one may define the empirical

coverage as the proportion of the rejected samples because the sample is generated in

the alternative region. The empirical coverage is expected to be higher than 0.05 and

increase with the sample size. Table 3 gives the observed results for four different sample

sizes (n = 10, 50, 100, 200) and 3 trials.

n trial 1 trial 2 trial 3

10 0.14 0.10 0.14

50 0.17 0.13 0.11

100 0.25 0.20 0.18

200 0.28 0.23 0.24

Table 1: Coverage rates

One may notice that, with a slight exception in trial 3, the coverage rate increases

monotonically with the sample size and is always higher than 0.05.

4 Conclusions

This paper demonstrates the operationality of a Bayesian encompassing test in the

framework of partial observability even if numerical issues require powerful computa-

tions. We show that the test, from a theoretical point of view, is feasible. The proposed

procedure might therefore be adapted to a wider class of problems.

From a numerical point of view, the computations are made easier thanks to the

possibility of direct simulations for the trajectories of a Dirichlet process (making use of

the Rolin-Sethuraman representation). If this were not the case, e.g. for other nonpara-

metric alternatives, recourse to heavier, and numerically more problematic, procedures,

such as those based on MCMC, could probably not be avoided.
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