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Bayesian Multivariate Areal Wombling for

Multiple Disease Boundary Analysis

Haijun Ma∗ and Bradley P. Carlin†

Abstract. Multivariate data summarized over areal units (counties, zip codes,
etc.) are common in the field of public health. Estimation or testing of geo-
graphic boundaries for such data may have varied goals. For example, for data
on multiple disease outcomes, we may be interested in a single set of “composite”
boundaries for all diseases, separate boundaries for each disease, or both. Dif-
ferent areal wombling (boundary analysis) techniques are needed to meet these
different requirements. But in any case, the underlying statistical model needs
to account for correlations across both diseases and locations. Utilizing recent
developments in multivariate conditionally autoregressive (MCAR) distributions
and spatial structural equation modeling, we suggest a variety of Bayesian hi-
erarchical models for multivariate areal boundary analysis, including some that
incorporate random neighborhood structure. Many of our models can be imple-
mented via standard software, namely WinBUGS for posterior sampling and R for
summarization and plotting. We illustrate our methods using Minnesota county-
level esophagus, larynx, and lung cancer data, comparing models that account for
both, only one, or neither of the aforementioned correlations. We identify both
composite and cancer-specific boundaries, selecting the best statistical model using
the DIC criterion. Our results indicate primary boundaries in both the composite
and cancer-specific response surface separating the mining- and tourism-oriented
northeast counties from the remainder of the state, as well as secondary (residual)
boundaries in the Twin Cities metro area.

Keywords: Areal data; Cancer; Multivariate conditionally autoregressive (MCAR)
model; Surveillance, Epidemiology and End Results (SEER) data.

1 Introduction

Recently, there has been increasing interest in the spatial problem of detecting barriers

separating regions of high and low response for certain quantities of interest. This area

is often referred to as boundary analysis or wombling, the latter name paying tribute

to an early important paper in the area (Womble 1951). In public health, wombling

is useful for detecting regions of significantly different disease mortality or incidence,

thus improving decision-making regarding disease prevention and control, allocation of

resources, and so on.

Multivariate areal data are common in public health studies. Much of this data is

areal (aggregated at a certain regional level) to protect subjects’ privacy. Since geo-
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Figure 1: Maps of age-adjusted standardized mortality ratios: (a) esophagus cancer;

(b) larynx cancer; (c) lung cancer.

graphic location is often a surrogate for a mix of lifestyle, environmental, and possibly

genetic factors that may underlie geographical differences (Elliot and Best 1998), ob-

servations collected over a map are often spatially correlated. At the same time, the

multiple variables under study (e.g., diseases sharing etiologic or other risk factors) are

often correlated too.

The Surveillance, Epidemiology and End Results (SEER; http://seer.cancer.gov)

database provides the numbers of deaths and corresponding numbers of person-years at

risk in quinquennial age brackets for each county in various states and each of several

cancer sites. Here we will study SEER data on the numbers of deaths due to can-

cers of the lung, larynx and esophagus in the years from 1990 to 2000 at the county

level in the U.S. state of Minnesota. These three cancer sites are all part of the upper

aerodigestive tract, and hence closely related anatomically. Epidemiological evidence

also shows a strong and consistent relationship between exposure to alcohol and tobacco

and the risk of cancer at these sites (Baron et al. 1993). In particular, the link between

tobacco use and lung cancer, the leading cause of cancer death in the U.S., is by now

well-established (http://www.lungcancer.org). Moreover, a new report of Institute

of Medicine (2006) finds sufficient evidence for a causal link between asbestos exposure

(a known cause of lung cancer) and laryngeal cancer.

Both larynx cancer and esophagus cancer are far rarer than lung cancer. For our

dataset, the raw mortality rates are less than 1 per 100,000 person for larynx cancer,

about 4 per 100,000 for esophagus cancer, and 45 per 100,000 for lung cancer. These

rates are roughly comparable to those seen in the U.S. generally, though the Minnesota

larynx rate remains small by comparison.

Figure 1 gives the raw county-level standardized mortality ratios (SMRs) based on

our data, calculated as Yik/Eik for i = 1, . . . , n and k = 1, 2, 3, where Yik is the cancer

http://seer.cancer.gov
http://www.lungcancer.org


H. Ma and B. P. Carlin 283

death count and Eik is the age-adjusted expected count for cancer k in county i 1.

The SMR maps for all three cancers indicate a pattern of decrease from northeast to

southwest, suggesting positive association among them. The pattern is strongest for

lung cancer, which also has less variable SMRs due to the higher case counts. To

further investigate this pattern, we performed a preliminary regression analysis using

overall (all three cancers) county-level age-adjusted SMR as the response variable, and

the sum of the x and y coordinates of each county’s centroid as the predictor variable.

This variable’s coefficient emerges as positive and statistically significant, indicating the

increase from southwest to northeast is important (consistent with the visual impression

from the maps), and motivating a full hierarchical spatial analysis. Such an analysis’

primary substantive goal would be to identify significant boundaries on these maps for

the cancers individually, as well as for any underlying spatial common factor, all while

accounting for correlation across both counties and cancers. Boundaries are important

here for public health professionals tasked with identifying geographic regions in need of

certain cancer-related intervention efforts, e.g., a cancer education or screening campaign

focused at a few shopping malls or other public locations. They are also useful for

identifying regions of rapid change in the fitted cancer surface, so that these areas can

be studied in more detail for clues (say, missing covariates) that might explain why

cancer mortality differs across the identified boundaries.

For correlated areal variables, the most popular modeling approach has been through

the conditionally autoregressive (CAR) distribution (Besag 1974) and its variants.

Mardia (1988) described the theoretical background for multivariate CAR (MCAR)

specifications using Gaussian Markov random fields (MRFs). Many generalizations of

MCAR allow more flexible modeling of associations between different variables and

areal units (see e.g. Kim et al. 2001; Carlin and Banerjee 2003; Gelfand and Vounatsou

2003). Recent development in Bayesian statistical computing and software has made

hierarchical MCAR modeling available to practitioners. For example, an important

special case of the MCAR, the multivariate intrinsically autoregressive (MIAR) distri-

bution, is included in the WinBUGS package (http://www.mrc-bsu.cam.ac.uk/bugs/)

under the name mv.car. Also, Jin et al. (1991) specified the MCAR conditionally, al-

lowing more versatile yet conceptually straightforward (and OpenBUGS-implementable)

modeling of the intervariable correlations.

Another line of research for multivariate area data has arisen from structural equa-

tion modeling (SEM); see e.g. Wang and Wall (2003) and Liu et al. (2005). The “shared

component” model of Knorr-Held and Best (2001) is also a special kind of SEM. In this

approach, the correlations among the spatially-referenced variables are modeled through

some collection of shared latent variables and their corresponding residual variations.

The rest of this article is organized as follows. Section 2 is devoted to providing back-

ground information on boundary analysis and multivariate areal modeling via MCAR

1The age-adjusted expected count is defined as Eik =
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and SEM. Section 3 then describes our proposed multivariate areal wombling techniques.

The methods are illustrated using our SEER cancer data in Section 4, where models

are compared using the Deviance Information Criterion (DIC; Spiegelhalter et al. 2002).

Both composite and disease-specific boundaries are constructed and evaluated for the

DIC-best models. Finally, Section 5 concludes and mentions directions for further work

in this area.

2 Methodological background

2.1 Existing methods for univariate areal boundary analysis

Boundary analysis typically involves estimation or testing of “lines” on a continuous

surface. In the areal case, however, defensible boundaries can only be a subset of the

borders that determine the areal units, since we lack within-county information. Early

studies in this area were purely algorithmic in nature; see e.g. Csillag et al. (2001);

Jacquez and Greiling (2003), and the GIS software package BoundarySEER.

Lu and Carlin (2005, henceforth LC) embedded areal boundary analysis in a Bayesian

hierarchical modeling framework. For counts of a single disease Yi, they assume

Yi | β, φi ∼ Poisson(µi) with logµi = logEi + x′
iβ + φi, i = 1, . . . , n ,(1)

and φ |W, τφ ∝ exp



−τφ

2

∑

i∼j

wij(φi − φj)
2



 , (2)

where (2) is the CAR prior for the areal random effects φ = (φ1, . . . , φn)′, τφ is a

positive scale parameter, and i ∼ j indicates that areas i and j are neighbors. The

CAR distribution is an MRF formed from consideration of all pairs of neighbors. More

specifically, the neighborhood structure is specified in an n × n proximity matrix, W ,

whose elements wij measure “closeness” of each pair of areas (i, j). The most common

choice is a “0/1” proximity matrix, wherein wij = 1 if areas i and j are neighbors

(spatially adjacent), and 0 otherwise. More general classes of weights (say, using inter-

centroidal distances) are also possible; see e.g. Cressie (1993, p.385) or Banerjee et al.

(2004, pp.70-71). In our Section 4 data analysis we focus on the 0/1 case, but not before

considering alternatives.

Let D = Diag(wi+), where wi+ =
∑

j wij is the sum of W ’s entries in row i. Then

(2) can be rewritten as exp
(
− τφ

2 φ
′(D −W )φ

)
. Due to the singularity of D − W ,

this CAR distribution is improper, and sometimes called an intrinsically autoregressive
(IAR) distribution. A commonly used proper CAR is obtained by instead taking the

joint distribution of φ to be p(φ|W,ρ) ∝ exp
[
− τφ

2 φ
′(D − ρW )φ

]
, where ρ is chosen

to make (D − ρW ) nonsingular (Cressie (1993, Sec. 6.3), Banerjee et al. (2004, pp.

80-81)).

In areal wombling, changes over county boundaries are quantified by boundary like-

lihood values (BLVs). Lu and Carlin (2005) determine BLVs using posterior summaries

of changes in the corresponding fitted mean structures. For example, the BLV can be
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the posterior mean of ∆|η|,ij = |ηi − ηj | for all adjacent i and j, where ηi = µi/Ei
measures the true underlying relative risk in area i. An edge element ij can then be

thought of as part of the boundary if E(∆|η|,ij |y) > c, where c > 0 is some predefined

constant.

The boundary segments identified using this method are often disconnected, even

though boundaries formed as series of connected segments may be preferred. Also note

that in this model, the CAR smooths over all neighbors regardless of auxiliary physical

(say, mountain range) or sociodemographic (say, racial) information that may be rele-

vant. Lu et al. (2006) allow the areal adjacency weights wij to be random and subject

to the influence of such covariate information. Ma et al. (2006) further extend this idea,

including both areal and edge random effects in the modeling. Following edge detection

techniques in the image restoration literature (e.g. Jeng and Woods 1991; Dass and Nair

2003), this paper proposed a “site-edge” (SE) approach that jointly models two types

of random effects. First, a set of site-level (areal) random effects φS = {φSi } are given

a CAR prior to account for spatial association among the areas. Then a second set of

edge-level random effects φE = {φEi } are included and their distribution modeled using

edge adjacency information from the map, enabling smoother, more connected bound-

aries. Continuing to assume that the observations can be modeled as Poisson counts,

the SE model replaces (2) with

φS | φE , τφ ∝ exp



−τφ

2

∑

i∼j

(1 − φEij)(φ
S
i − φSj )2



 , (3)

and φE ∝ exp



−ν

∑

ij∼kl

φEijφ
E
kl



 , (4)

where φSi ∈ < and φEij ∈ {0, 1}. The conditional distribution in (3) is IAR, with the

(1− φEij) playing the roles of the wij in (2). That is, φEij = 1 if edge (i, j) is a boundary

element, and 0 otherwise, so smoothing of neighboring site effects φSi and φSj is only

encouraged if there is no boundary between them. The prior for φE in (4) is an Ising
model with “binding strength” parameter ν (Geman and Geman 1984, p.725). Smaller

(or even negative) values of ν lead to more connected boundary elements, hence more

separated areal units. Finally, edges ij and kl are considered adjacent (ij ∼ kl) if

they are connected on the map. Ma et al. (2006) use this approach to find Medicare

service area boundaries for two competing hospice systems headquartered in Duluth,

Minnesota, but their work did not address potential dependence between the two hos-

pices.

2.2 MCAR models for multivariate areal data

The primary challenge in multivariate areal data modeling is formulating versatile and

practical probability distributions that sensibly model correlations both between and

within areas. Because of the relatively complex model and limited information provided
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by data, various simplifying assumptions (e.g., separability of the two types of correla-

tion) are often made. In this subsection, we give a brief review of two MCAR models

that are readily fit in WinBUGS, illustrating in the case of p = 2 diseases for simplicity.

The MIAR distribution is a direct multivariate extension of the IAR model. As in

the univariate case, the MIAR is improper and thus can only be used as a random effect

distribution, not a likelihood. Let areal random effects corresponding to the two diseases

be Φ = (φ′
1,φ

′
2), where φ′

1 = (φ11, . . . , φn1), φ
′
2 = (φ12, . . . , φn2), and n is again the

number of areal units. Under the MIAR model, the multivariate joint distribution is

defined as p(Φ) ∝ exp
{
−1/2Φ′[Λ ⊗ (D −W )]Φ

}
, where Λ is 2×2 and positive definite,

and ⊗ denotes the Kronecker product. This corresponds to the conditional distribution

(
φi1
φi2

)
φ−(i1,i2) ∼ N

((
φ̄i1
φ̄i2

)
, (wi+Λ)−1

)
, (5)

where φ−(i1,i2) stands for the collection of all φij except φi1 and φi2. Let φ̄i1 =∑
j wijφj1/wi+ and φ̄i2 =

∑
j wijφj2/wi+, the averages of the random effects for area

i’s neighbors specific to variables 1 and 2, respectively. It can be seen that Λ serves as

scaled conditional precision for (φi1, φi2), where wi+ is a scale parameter. Areas with

more neighbors have higher precision. Since Λ is common for all areas i = 1, . . . , n,

it controls the conditional precision for each pair of variables at the same site aver-

aged over all areas. Letting Σ = Λ−1, 1
wi+

Σ is the conditional covariance matrix with

ρ12 = σ12/
√
σ11σ22 as the conditional correlation between φi1 and φi2, i = 1, . . . , n. The

implementation of the same conditional correlation across all areas units facilitates com-

putation, but can be too restrictive; we may want to borrow more information (enforce

stronger correlations) across areas where we have less data.

Jin et al. (1991) propose a generalized MCAR (GMCAR) model that formulates

the joint distribution for a multivariate MRF by specifying simpler conditional and

marginal models. The GMCAR is constructed as p(φ1,φ2) = p(φ1|φ2)p(φ2), where

φ1|φ2 ∼ N(Aφ2, [(D − α1W )τ1]
−1) and φ2 ∼ N(0, [(D − α2W )τ2]

−1) are both proper

CAR with 0 < α1 < 1 and 0 < α2 < 1. As E(φ1|φ2) = Aφ2, the A matrix is defined

such that E(φ1|φ2) = (η0I + η1W )φ2, where η0 is a “bridging parameter” associating

φi1 with φi2, and η1 is that associating φi1 with φj2, i ∼ j. Since the conditional

and marginal distributions are both proper CAR, this model can be fit in WinBUGS as

well using the car.proper function. However, choosing the order in which the random

effects for different variables enter the model is a thorny practical issue. Note also

that α1, τ1 are conditional spatial autocorrelation and precision parameters, while α2, τ2
instead pertain to a marginal distribution, complicating hyperprior selection for these

parameters. Another drawback of this formulation is that extension to p > 2 variables

is increasingly awkward, since there are p! potential orderings.

2.3 Spatial factor analysis

Often it is scientifically interesting to find whether multiple diseases share common

underlying factors, which are often understood as a mixture of shared risk factors,
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socioeconomic status, and so on. An example is the shared component model of

Knorr-Held and Best (2001), illustrated in the WinBUGS user manual (2004). The model

partitions the geographical variation in two diseases into a common (shared) component

θ, and two disease-specific (residual) components ψ1 and ψ2. Again assuming the death

counts Yik for disease k in area i to be independent Poisson variables with mean µik,
k = 1, 2, they model

log(µik) = logEik + x′
ikβk + δkθi + ψik , (6)

where Eik are the expected counts, and the scaling parameters δk allow different “risk

gradients” for different diseases. The covariates xik are the multiple disease analog of

those in (1); if unavailable, the βk become univariate intercept parameters βk. Con-

volution priors (Besag et al. 1991) are given to the three components θ,ψ1, and ψ2,

expressing each areal random effect as a sum of a spatially structured random effect

(usually CAR) and a non-spatial i.i.d. white noise random effect. Best et al. (2005)

compared a shared component model with convolution priors and a multivariate con-

volution model using an MIAR prior for the random effects, and showed the former

delivered superior simulated DIC performance.

The advantage of the shared component model is that the common spatial pattern

of the two diseases can be extracted, while disease-specific spatial residuals are still

available for further investigation. This model described above is a special case of

spatial factor analysis. Wang and Wall (2003) proposed a generalized spatial factor

model for the relationship between several observed variables and a single spatially

distributed latent factor. Hogan and Tchernis (1999) used essentially this model to

quantify material deprivation in Rhode Island census tracts. Liu et al. (2005) offered a

generalized SEM framework for regression analysis using latent and manifest (observed)

variables while accounting for spatial correlation.

3 Multivariate boundary analysis

In this section, we develop several multivariate boundary analysis methods using the

building blocks discussed in the previous section. We start with a multivariate extension

of the LC method. Assuming p rare diseases, we again use a conditionally independent

Poisson likelihood to model Yik , the observed count for disease k in area i, where

i = 1, . . . , n and k = 1, . . . , p. Again Eik denotes the expected count, assumed fixed and

known and typically internally standardized (Banerjee et al. 2004, p.158) by disease. We

arrange the areal random effects as Φ = (φ1,1, . . . , φn,1, φ1,2, . . . , φn,2, φ1,p, . . . , φn,p)
′,

and write

Yik | µik ∼ Poisson(µik) , with logµik = logEik + x′
ikβk + φik , (7)

and Φ|W,Λ ∝ exp

{
−1

2
Φ′Λ ⊗ (D −W )Φ

}
, (8)

where Λ is p × p and positive definite. The spatial and inter-variable correlations are

captured by the MIAR distribution in (8). Following Ma et al. (2006), the BLVs for
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disease k can be defined as ∆η,ij,k = ηik − ηjk , the signed relative risk difference.

Disease-specific boundaries can thus be constructed based on posterior summaries of

the ∆η,ij,k, as in the univariate case. On the other hand, if we are interested in a single

set of composite boundaries, we need to define a set of BLVs that represent the overall

change for all diseases under study. One possible choice is ∆η̄,ij = 1
p

∑p
k=1(ηik − ηjk),

i.e., the composite BLV is defined as the average of the disease-specific BLVs. Other

definitions may be appropriate depending on the scientific problem under study. The

model is completed by choosing vague priors for the hyperparameters; for example, a

Wishart prior is usually chosen for Λ, independent vague Gaussian (or possibly flat)

priors are used for the βk, and so on.

The GMCAR model adopts the approach described in Section 2.2, instead of di-

rectly specifying the joint prior distribution of the multivariate areal random effects Φ.

Specifically, we define the prior distribution for the three sets of areal random effects in

our dataset by conditioning sequentially as p(φ1,φ2,φ3) = p(φ2|φ1,φ3)p(φ1|φ3)p(φ3).

In the context of our Figure 1 data, this conditioning order (3, then 1, then 2) translates

to modeling lung cancer, followed by esophagus cancer given lung cancer, and finally

larynx cancer given the other two. This particular order is chosen so that φ for diseases

with less information are conditioned on those with more information, and produces

p(φ3) ∼ N(0, [(D − α3W )τ3]
−1) ,

p(φ1|φ3) ∼ N(Aφ3, [(D − α1W )τ1]
−1) , (9)

and p(φ2|φ1,φ3) ∼ N

(
B

(
φ1

φ3

)
, [(D − α2W )τ2]

−1

)
,

where |α1| < 1, |α2| < 1, and |α3| < 1. Here, A is n× n while B is n × 2n. Following

Jin et al. (2005), we set A = ξ1I+ ξ2W and B = [ξ3I+ ξ4W , ξ5I+ ξ6W ], where I is the

n × n identity matrix. Thus ξ = (ξ1, . . . , ξ6)
′ are “bridging” parameters, where ξ1, ξ3,

and ξ5 associate pairs of areal random effects defined on the same area unit, while ξ2, ξ4,
and ξ6 associate areal random effects among neighboring units. Thus ξ1 and ξ2 pertain

to diseases 1 and 3 (esophagus and lung), ξ3 and ξ4 to diseases 1 and 2 (esophagus and

larynx), and finally ξ5 and ξ6 to diseases 2 and 3 (larynx and lung). It is important to

remember that, like the α and τ parameters, the ξ are defined on different conditioning

levels, and thus cannot be directly compared. Note that the three equations given in

(9) are proper CAR models, and hence the joint prior distribution is valid as long as

all three of the distributions in (9) are valid. Boundary analysis may then proceed as

before, with individual boundaries based on the posterior distributions of the ∆η,ij,k ,

and composite boundaries perhaps based on the ∆η̄,ij posteriors.

Turning to shared-component boundary analysis, we use the above Poisson likelihood

and the link function given in (6), but slightly different priors than in Subsection 2.3,

namely

θ|τs ∼ CAR(τs,W ) , (10)

and ψik|τψk

iid∼ N(0, 1/τψk
) . (11)

Boundaries for the latent factor θ identify edges of abrupt change that are common to
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all of the diseases. Note that (11) assumes the residuals ψik are independent across

both regions and diseases. We could easily generalize to independent CAR models (i.e.,

ψk|τψk
,W

ind∼ CAR(τψk
,W )) or even use an MCAR forψ = (ψ′

1, . . . ,ψ
′
k)

′, although our

inclusion of the shared component θ in (10) may well make such complexity unnecessary.

Defining the “shared” BLV for edge ij as ∆θ,ij = θi − θj , boundary elements can be

identified based on posterior summaries of ∆θ,ij (say, E(∆θ,ij |y) or their magnitudes).

Disease-specific residual boundaries (separating areas that differ due to factors other

than the spatial common factor) can analogously be based on ∆ψ,ij,k = ψik − ψjk for

each disease k. We hasten to add that, as in all factor analysis modeling, constraints need

to be imposed on δ to avoid identifiability problems. For p = 2, Knorr-Held and Best

(2001) set δ1 = 1/δ2 and place a lognormal prior on δ1; Held et al. (2005) generalize

this approach for p > 2. We instead follow Liu et al. (2005) and fix δp = 1, but leave

the remaining δk unconstrained.

To avoid the oversmoothing often associated with the CAR model in boundary

analysis, we can allow the areal adjacency matrix for the common factor to be random.

Boundary analysis is straightforward using this approach: we simply replace the prior

in (10) with the random adjacency CAR given in (3) and (4). That is, we assume

θ|φE , τs ∼ CAR(τs,W ), where the φEij = 1 − wij have the Ising prior given in (4). In

other words,

φE ∝ exp{−νφE ′
W ∗φE} , (12)

whereW ∗ is the edge-space adjacency matrix (i.e., W ∗
mm′ = 1 if edgem ≡ ij is connected

to edge m′ ≡ kl). We refer to this model as SESHARED. Alternatively, allowing the

adjacency matrix in an MIAR distribution to be random can be achieved by assigning

the Ising prior (12) to the φEij in (8). We refer to this as the SEMIAR model. Note that

the overall boundary map could now be based on posterior summaries (say, posterior

means) of the edge random effects φE themselves, if desired.

It is computationally difficult to specify a hyperprior for ν and estimate it from the

data. This is because its full conditional requires evaluation of
∑

exp(−ν∑ij∼kl φ
E
ijφ

E
kl),

where the first summation is over all possible 0-1 statuses of the adjacent edges (2216

possibilities in our 216-edge setting). For a given ν, there will be at most m+ 1 unique

values for this sum, where m is the number of edge adjacencies (406 in our map).

Evaluation of this sum may be possible for a smaller map, but even then, acceptable

convergence of (say) Metropolis steps for ν is very much in doubt. As a result, we

follow previous convention and think of ν as a tuning constant, sometimes comparing

results under a few plausible values before making a final decision. Even with ν fixed,

evaluation of this model is complicated by the need to include the proper normalizing

constant in the full conditional for θ (since W in this distribution depends on φE , which

is random). In this paper, we follow Ma et al. (2006) and include τ
G/2
s |D−W |+ as this

normalizing constant, where G is the rank of (D−W ) and |D−W |+ is the product of

its nonnegative eigenvalues.

Finally, we note an interesting connection between the GMCAR and shared compo-

nent models. The latter’s link function (6) can be written as log(µk) = log Ek+Xkβk+

δ′kθ+ψk, where δk = δk1n×1. On the other hand, from the conditional specification of
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GMCAR given in (9), we have φ1 = Aφ3 + ε1, where ε1 ∼ N(0, [(D−α1W )τ1]
−1) and

φ2 = B
(φ

1

φ3

)
+ ε2, where ε2 ∼ N(0, [(D − α2W )τ2]

−1). Plugging these into (7), we get

logµk = logEk+Xkβk+Ckf+εk, where C1 = [0n×n, A], C2 = B and C3 = [0n×n, In×n]

are all n× 2n matrices, for f =
(φ1

φ3

)
and ε3 = 0n×1. Thus f =

(φ1

φ3

)
is analogous to the

latent factor vector θ in the shared component model, while the Ck are playing the role

of the factor loadings δk. Of course, there are differences; the GMCAR has fewer areal

random effects (ε1, ε2,φ3) than the shared component (ψ1,ψ2,ψ3,θ), and six “factor

loading” parameters (ξ1, . . . , ξ6) instead of just two (δ1, δ2). The use of proper CAR

specifications within either or both of these frameworks would also alter their properties,

and thus how similarly they behave.

4 Data analysis

4.1 Multivariate areal wombling model selection

In this section, we illustrate and compare our various multivariate boundary analysis

techniques in the context of the SEER three cancer dataset introduced in Section 1 and

mapped in Figure 1. We begin by selecting the best model. Here one often thinks of

cross-validatory or other out-of-sample forecasting methods, but they are less natural

for areal data due to the interconnected and often irregular nature of the spatial lattice.

The underlying map with its adjacency structure breaks down as soon as we decide

to leave out one or more regions. Leaving regions out will not only result in a loss of

information, but more importantly may lead to “islands” or other components in the

map for which implementing the model itself will be difficult.

As such, we instead turn to DIC, an extension of the Akaike information criterion

(AIC) that reflects both goodness of fit and complexity of hierarchical models. This

criterion is based upon the deviance statistic, D(θ) = −2 log f(y|θ) + 2 logh(y), where

θ is the collection of parameters in the model, f(y|θ) is the likelihood, and h(y) is any

standardizing function of the data alone. The DIC is then defined as DIC = D + pD,
where D = E(D(θ)|y) is the posterior mean deviance, and pD is the effective number

of parameters in the model (i.e., a count that is typically less than the actual number

of parameters due to the shrinkage of random effects toward their own grand mean).

Using an asymptotic normal approximation to the posterior, Spiegelhalter et al. (2002)

show that pD is sensibly defined as pD = D − D(θ̂), where θ̂ is a suitable “plug-in”

estimate of θ (say, the posterior mean). DIC can be interpreted approximately as the

expected posterior loss in prediction when adopting a particular model. Thus using DIC

to compare the various boundary analysis models is reasonable, since we are interested

in selecting the model that leads to the best prediction of the boundary elements in the

study region. Models with smaller DIC values are preferred.

We begin with a comparison of several neighborhood structures for our data. Table 1

gives pD and DIC values for several of our simpler models using different forms of the

weight matrix W . All models in this table were fit using WinBUGS. The first column of
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model W matrix D(θ) D(θ̂) pD DIC

IndCAR 0/1 1472.35 1398.53 73.82 1546.16

0/e−0.3dij 1472.56 1398.55 74.01 1546.57

0/e−dij 1470.69 1395.00 75.70 1546.37

e−0.3dij 1472.45 1375.28 97.17 1569.62

e−dij 1467.49 1372.80 94.70 1562.19

MIAR 0/1 1461.21 1385.06 76.16 1537.37

0/e−0.3dij 1481.88 1426.39 55.49 1537.36

0/e−dij 1505.15 1463.36 41.79 1546.94

e−0.3dij 1769.84 1759.01 10.83 1780.66

e−dij 1756.40 1746.61 9.785 1766.18

SHARED-G 0/1 1454.43 1373.86 80.57 1535.00

0/e−0.3dij 1455.16 1375.35 79.81 1534.97

0/e−dij 1454.15 1373.32 80.83 1534.98

e−0.3dij 1453.11 1353.90 99.21 1552.32

e−dij 1454.19 1361.68 92.51 1546.70

SHARED-C 0/1 1464.77 1393.52 71.25 1536.03

0/e−0.3dij 1463.30 1390.26 73.04 1536.34

0/e−dij 1462.48 1387.37 75.11 1537.59

e−0.3dij 1465.16 1378.02 87.15 1552.31

e−dij 1462.30 1376.16 86.14 1548.43

Table 1: Comparison of pD and DIC values for multivariate boundary analysis models

with different neighborhood structures, SEER esophagus, larynx and lung cancer data.

the table indicates the spatial model. IndCAR refers to the model that fits three inde-

pendent CAR models; i.e., it assumes independence between the diseases, but spatial

association within each disease. Next, MIAR refers to the multivariate IAR model given

in (7) and (8). SHARED-G is described in (10) and (11), while SHARED-C replaces

(11) with independent CAR priors for the ψk, i.e., ψk|τψk
,W

ind∼ CAR(τψk
,W ). We

adopt independent gamma priors with mean 1 and variance 100 for all the precision

parameters, flat priors for the intercepts β, and N(0, 102) priors for the loading factors

δ1 and δ2 (recall δ3 is fixed at 1).

The second column of Table 1 indicates the promixity matrix W used in each CAR

model. Here we compare five possibilities, the first of which is the usual 0/1 adjacency

structure. Next are two structures for which we let wij = exp(−ωdij) if areas i and

j share a common boundary, and 0 otherwise. Here dij is the distance between the

centroids of the two counties, and ω is a spatial decay parameter. This neighborhood

structure may be more appropriate if neighboring areas are sometimes of very different

sizes, and we want to downweight the association of adjacent but large areas. As we

assume that closer areas are more alike, which is a positive correlation, we need to set

ω > 0. Since WinBUGSwill not permit unknown ω, we show results for two fixed choices of
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model binding strength D(θ) D(θ̂) pD DIC

IndSE ν = 0.1 1522.50 1481.36 41.14 1563.64

ν = 1 1488.95 1433.36 55.59 1544.54

ν = 100 1478.47 1414.30 64.17 1542.64

SEMIAR ν = 0.1 1460.93 1380.47 80.46 1541.39

ν = 1 1464.10 1392.27 71.84 1535.94

ν = 100 1460.51 1386.07 74.44 1534.94

SESHARED ν = 0.1 1447.75 1362.89 84.87 1532.62

ν = 1 1449.22 1364.50 84.72 1533.94

ν = 100 1449.88 1361.40 88.47 1538.35

Table 2: Comparison of pD and DIC values for multivariate boundary analysis models

with different binding strength parameters ν for Ising prior, SEER esophagus, larynx

and lung cancer data.

ω, 0.3 and 1. When ω = 0.3, the pairwise correlations are centered at 0.5. But for ω = 1,

most of the correlations are fairly small, of which about 75% are less than 0.2. Finally,

we consider wij = exp(−ωdij) for all county pairs. This neighborhood structure allows

areas that are not physically connected to be neighbors, while still yielding W elements

very close to 0 for widely separated county pairs. Table 1 indicates this assumption is

not well supported by our data. Combining the adjacency and distance information (as

the 0/e−ωdij matrices do) leads to better results, but the simple 0/1 choice typically

performs quite competitively. As such, we adopt the usual 0/1 proximity matrix for all

subsequent models.

Next, we investigate the impact of different “binding strength” parameters ν on our

SE models. Table 2 gives DIC and related summaries for three models and three choices

of ν. Here, IndSE denotes the model that fits separate SE models for every variable.

The SEMIAR (site-edge MIAR) model is the one described near equation (12), while

the SESHARED model adds an extra layer of random edge effects φE onto SHARED-G

by replacing (10) with (3) and (4). This table indicates different binding strengths do

not significantly affect the trade-offs between goodness of fit (expressed as D(θ) ) and

model complexity (expressed as pD). However, there is some preference for smaller ν in

the shared component model, while larger ν fare better in the other two models. This

difference is not surprising, since in the former case ν directly affects only the underlying

factor, whereas in the latter two cases it affects all of the disease-specific spatial random

effects.

Table 3 gives a summarizing DIC comparision for our various areal wombling models.

All models used the conditionally independent Poisson likelihood, 0/1 adjacency matrix,

and feature only an intercept βk (no covariates xik). The models in the first two blocks of

rows in the table follow the log link function given in (7). The models in the third block

of rows instead use the shared component link function (6), which requires estimation

of the unknown factor loadings δ. The remaining differences across models lie mainly
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model D(θ) D(θ̂) pD DIC

IID 1464.45 1365.64 98.81 1563.26

MultIID 1445.12 1338.09 107.13 1552.36

IndCAR 1472.35 1398.53 73.82 1546.16

IndSE 1478.47 1414.30 64.17 1542.64

MIAR 1461.21 1385.06 76.16 1537.37

GMCAR 1463.10 1392.20 70.74 1533.84

SEMIAR 1460.51 1386.07 74.44 1534.94

SHARED-G 1454.43 1373.86 80.57 1535.00

SHARED-C 1467.77 1393.52 71.25 1536.03

SESHARED 1447.75 1362.89 84.87 1532.62

Table 3: Comparison of pD and DIC values for multivariate boundary analysis models,

SEER esophagus, larynx and lung cancer data.

in their random effect specifications, as we now describe.

The first block of rows in the table shows DIC values for models that do not account

for spatial and inter-variable correlations simultaneously. For example, in the IID model,

the areal random effects φSik are assumed to follow an i.i.d. Gaussian distribution, which

models neither the spatial nor the inter-variable correlations. In the MultIID model,

inter-variable correlations are modeled by assigning a multivariate normal prior to the

random effects at the same areal unit, i.e., replacing (8) by φSi
iid∼ N

(
0,Λ−1

)
, where

φSi = (φSi1, . . . , φ
S
ip)

′ is the set of areal random effects for different variables over areal

unit i. Spatial correlations are thus ignored by this model. Conversely, the IndCAR

model ignores inter-variable (in our case, cross-cancer) correlations, assigning indepen-

dent CAR priors to the areal random effects for different variables. That is, we let

φSk
ind∼ CAR(τφk

,W ), where φSk ≡ (φS1k, . . . , φ
S
nk)

′ is the set of areal random effects for

variable k. In a similar vein, the IndSE model fits separate SE models for every variable;

this is the approach of Ma et al. (2006).

For the hyperparameters of the models in the first row block, vague conjugate prior

distributions are adopted, including flat priors for the intercepts, Gamma(mean 1, vari-

ance 100) priors for the precision parameters in the IID and IndCAR models, and a

Wishart(R, r) prior for the p-dimensional precision matrix Λ in the MultIID model. We

chose r = p and selected R to be diagonal (cancer counts at same locations are inde-

pendent a priori), where the prior means for the diagonal entries of Λ were taken as 15

with variance 150.

For the models in the second block of Table 3’s rows, the MIAR is the model given

in (7) and (8), while the SEMIAR (site-edge MIAR) model is described near equation

(12). For both models, we use the same Wishart prior for Λ as used above, and set the

binding strength parameter ν = 1 in SEMIAR, based on the results of Table 2. The

GMCAR model adopts the generalized MCAR approach using the structure and disease
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Figure 2: Maps of SESHARED model, Minnesota SEER cancer mortality data: (a)

posterior medians of the spatial shared component; (b) significant/nonsignificant shared

components.

conditioning order given in (9). For this model, we assign N(0, 102I) priors to ξ, flat

priors to the intercepts β, independent gamma priors with mean 1 and variance 100

to τ1, τ2, and τ3, and independent Uniform(0, 0.99) priors to α1, α2, and α3. Finally,

the models in the third row block of Table 3 are the shared component (spatial factor

analysis) models SHARED-G, SHARED-C, and SESHARED. In the latter case, we alter

the binding strength parameter in (4) to ν = 0.1, as suggested by Table 2; all priors

remain as specified earlier. All of the models except IndSE, SEMIAR and SESHARED

can be fit in WinBUGS or OpenBUGS. Comparing the DIC values for IID, MultIID and

IndCAR in Table 3, we see that adding spatial correlation improved DIC score more

than adding inter-variable correlations. IndSE performs better than the other “Block

1” models, but only marginally better than IndCAR and less well than any of the

multivariate spatial models. The models accounting for both spatial and inter-variable

correlations perform the best. The MIAR, SEMIAR, SHARED-G and SHARED-C have

very similar DIC values, while SESHARED and GMCAR (which we have seen is related

to the SHARED models) have the smallest DICs of all.

The SESHARED model is relatively robust to prior changes, and its interpretation

is more straightforward than that of GMCAR. Moreover, the conditioning order used

by our GMCAR is partially data-based; other orders either do not perform as well or

lead to poor MCMC convergence. As such, we adopt the SESHARED model for our

subsequent choropleth areal and wombled boundary maps.

Previous epidemiological studies and basic anatomical relations suggest that esoph-

agus, larynx and lung cancer are related. As we noticed in Figure 1, the raw SMRs
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Figure 3: Composite boundary maps under the SESHARED model, Minnesota SEER

data: (a) posterior medians of ∆η̄,ij ; (b) posterior medians of ∆θ,ij ; (c) posterior means

of φEij ; (d) significant/nonsignificant ∆η̄,ij ; (e) significant/nonsignificant ∆θ,ij .

for the three cancers show similar patterns of decrease from northeast to southwest.

Thus it seems plausible to model an underlying common factor connecting the three

diseases. Panel (a) of Figure 2 plots the posterior medians of the underlying shared

component θ. Panel (b) identifies the counties with significantly positive or negative θ,
i.e., those whose posterior 95% CI contains only positive or negative values. The remain-

ing counties (those whose 95% CI includes zero) are labeled non-significant. The shared

component exhibits a strong spatial pattern, with counties in northeastern Minnesota

subject to higher cancer risk, and the risk decreasing as we move to the southwest. How-

ever, in the presence of the spatially structured shared component, the disease-specific

residual effects ψik are all non-significant.

The (δ1, δ2, δ3)
′ in (6) are interpreted as “log-relative risk gradients” for the different
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Figure 4: Disease-specific fitted relative risks ηik, Minnesota SEER data: (a) esophagus

cancer; (b) larynx cancer; (c) lung cancer.

Figure 5: Disease-specific boundary maps based on posterior medians of ∆η,ij,k, Min-

nesota SEER data: (a) esophagus cancer; (b) larynx cancer; (c) lung cancer.

diseases. In the case of no disease-specific effects ψik , we have log(µik) = logEik +βk +

δkθi. Since δ3 = 1, this means that θi = log(ηi3)−β3. Thus the shared component is the

log-relative risk of lung cancer, “shifted” by β3. Since we internally standardize for each

disease, we expect β3 ≈ 0, so this shift should be minimal. The posterior distributions

of δ1 and δ2 are fairly symmetric around 0.98 and 0.92, respectively, indicating little

adjustment of the shared component’s scale is needed for the other two cancers. The

posterior 95% CI for δ1 does not include 0 while that for δ2 does, reflecting the paucity

of information regarding larynx cancer in the dataset.

The composite boundary map can be constructed based on either the shared com-

ponent, or some summary of the disease-specific relative risks (which incorporate both

shared component and disease-specific effect information). Panels (a), (b), and (c) of

Figure 3 give composite boundaries based on ∆η̄,ij , ∆θ,ij , and φEij , respectively. The

mean-based boundaries in panels (a) and (b) are quite similar, whereas the variance-
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Figure 6: Disease-specific fitted residual effects ψik, Minnesota SEER data: (a) esoph-

agus cancer; (b) larynx cancer; (c) lung cancer.

Figure 7: Disease-specific boundary maps based on posterior medians of ∆ψ,ij,k, Min-

nesota SEER data: (a) esophagus cancer; (b) larynx cancer; (c) lung cancer.

based boundaries in panel (c) show different patterns that seem less helpful for boundary

detection. Panels (d) and (e) identify mean-based edges whose posterior 95% CI for the

corresponding parameter excludes 0. There are not many, but both panels identify

boundaries separating portions of the Twin Cities metro area (shaded with blue color)

from the exurban and rural regions nearby.

Next, Figure 4 shows maps of fitted relative risks ηik = µik/Eik for the three cancers.

Comparing them to the raw SMR plots shown in Figure 1, we notice the characteristic

shrinkage and spatial smoothing in the Bayesian estimates. Larynx cancer is a fairly

rare disease, so with so little data about it we would like to borrow information from the

other two diseases, as well as across space. Figure 4(b) reflects this desired smoothing.

Using the usual BLV idea, disease-specific boundary maps can be constructed based

on ∆η,ij,k posterior summaries. These boundaries are shown in Figure 5. The boundary
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Figure 8: Areal template used for small simulation study, with assumed 0/1 adjacency

structure indicated for three cancers.

maps indicate similar patterns across disease, but subtle differences (say, east of the

Twin Cities metro area in panel (b), the larynx map) can be appreciated.

Finally, Figure 6 shows choropleth posterior median maps of the disease-specific

residuals ψik , while Figure 7 gives corresponding mean-based boundaries. Recalling

these random effects are for the most part not significantly different from 0, we regard

these last plots as primarily exploratory tools. Still, Ramsey County (darkest shaded

region in Figure 4(b); contains the city of St. Paul) appears to show an unusually high

rate of larynx cancer. This is reflected in its Figure 6(b) shading, as well as its separation

from all of its neighbors in Figure 7(b). The lung cancer rate in Hennepin County (the

slightly larger county just west of Ramsey; contains the city of Minneapolis) also appears

elevated in Figure 6(c), but this appears to have less impact on the corresponding

boundaries in Figure 7(c), perhaps since the data are more conclusive regarding lung

cancer.

5 Discussion and future work

In this paper, we have proposed several models that can be adopted to carry out mul-

tivariate boundary analysis. Accounting for correlations across both space and variables

can improve the modeling, both in terms of improved DIC scores and more meaning-

ful and easily interpretable maps and other summaries of the corresponding enhanced

model parameters. The SESHARED model emerged as best for our Minnesota cancer

dataset, but many of the models we considered improved on the IndCAR and IndSE,

two models that carefully account for spatial association but ignore correlation among

the cancers.

In order to investigate the performance of our preferred SESHARED model more

broadly, we carried out a brief simulation study. To control the size of the computation,

we replace our Minnesota county-level grid by an idealized 4× 4 template. We generate

independent Poisson counts with one mean for a set of contiguous “lower” regions, and

another mean for the remaining, “upper” regions. We then create “true” boundaries

that are correlated but not identical across the cancers as shown in Figure 8: we set
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model P (CS) pD DIC
IndCAR .752 32.93 227.81

MultIID .798 24.20 219.54

SESHARED .842 23.45 215.40

Table 4: Simulated probabilities of correct selection (CS) and average pD and DIC

scores, 1000 datasets drawn over the 4 × 4 regular template.

the “lower” units to be Regions 1, 2, 3, 4, and 6 for Cancer 1, but add Region 7 to

this list for Cancer 2, and further add Region 8 to this list for Cancer 3. We generate

1000 sets of artificial data, setting the two means equal to 10 and 2. We also assume

equal populations in all areas, so that the internally standardized expected counts Eik
for disease k are all equal to the average count Ȳk over all areas.

Table 4 gives the empirical probabilities of correct selection (averaged over the 1000

simulated datasets) for the IndCAR, MultIID, and SESHARED models. (Note the first

two of these models account for either spatial or inter-variable correlations, but not

both.) The correct selection probability for each cancer is computed as m/M , where m
is the number of the M true boundary segments identified by the model (i.e., amongst

those having the top 6 BLVs), and M equals 6 for Cancers 1 and 2 but equals 5 for

Cancer 3. We do this based on the absolute values of the posterior medians of the ∆η,ij,k ,

as in Section 4. The table shows SESHARED to have the largest empirical probability

of correct selection averaged over the three cancers. The table also compares model fit

and complexity by showing the pD and DIC scores averaged over the 1000 simulations.

The SESHARED model again emerges as best of this class, with modest complexity

and the smallest average DIC score.

The southwest-to-northeast pattern evident in Figure 1 motivates a search for a suit-

able spatially-oriented covariate to include in our models. Sadly, while a thorough search

of the U.S. Census Bureau site quickfacts.census.gov yielded several county-level in-

come, poverty, and occupational covariates, none emerged as worthy of inclusion in any

of our spatial models. The proportion of each county’s business establishments classifed

as forestry, fishing, hunting, mining, or agriculture support was significantly associated

with lung cancer for some models, but even this did not lead to worthwhile improvements

in DIC score. Other specifications could also be adopted for the shared-component and

the disease-specific random effects in (10) and (11). For example, we might decompose

the common factor θi in (6) as πφi + (1 − π)εi, where φ ∼ CAR, εi
iid∼ N(0, σ2), and

π ∼ Bernoulli(p) with a vague prior for p. This is a convolution model encouraged by

Lawson and Clark (2002). As this model is highly overparameterized, model selection

could be applied to see if modeling both spatially structured and unstructured random

effects is warranted. Our SEMIAR model assumed that the all disease-specific areal

random effects share a common underlying neighborhood structure. A more general
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framework would be to allow each variable to have its own neighborhood structure, i.e.,

Φ|ΦE ,Λ ∝ exp

{
−1

2
Φ′R(Λ,ΦE)Φ

}
, (13)

and φEk ∝ exp{−νkφEk
′
W ∗
kφ

E
k } , k = 1, . . . p ,

where ΦE = (φE1
′
, . . . ,φEp

′
)′, φEij,k = 1 − wij,k, and R(Λ,ΦE) denotes any suitable

(typically proper) inverse covariance matrix. Here wij,k is the ij entry of Wk , the

proximity matrix for variable k.

We note the IndSE model also uses a different W matrix for each disease, but

does not allow modeling of any association among these matrices. Such inter-variable

association can be incorporated through specification of the covariance structure of

Φ, Σ = R−1. Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) proposed

useful techniques, but used a single, fixed neighborhood structure for all variables. In our

SEMIAR setting, we could generalize their approach, decomposing Σ in the 3-variable

case as



R′
1R1λ11 R′

1R2λ12 R′
1R3λ13

R′
2R1λ12 R′

2R2λ22 R′
2R3λ23

R′
3R1λ13 R′

3R2λ23 R′
3R3λ33


 =




R′
1 0 0

0 R′
2 0

0 0 R′
3


 (Λ⊗In×n)




R1 0 0

0 R2 0

0 0 R3


 ,

where R′
kRk = D− αkWk, k = 1, 2, 3, i.e., Rk is the upper-triangular Cholesky decom-

position of D − αkWk . Gelfand and Vounatsou (2003) instead recommend a spectral

decomposition, Rk = Diag(1 − αkωi)
1
2P ′D

1
2P , where the ωi are the eigenvalues of

D− 1
2WkD

− 1
2 and P is an orthogonal matrix with the corresponding eigenvectors as its

columns.

Finally, multivariate areal wombling as described herein leads naturally to methods

of spatiotemporal areal wombling, as needed to track changes in areal boundaries over

time (say, for annual cancer surveillance purposes). Here the temporal units play the role

of the p variables above. Space-time separability (analogous to our use of the Kronecker

product in (8)) would be a natural assumption to ease conceptual and computational

difficulties, but may or may not be justified for any given dataset.
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