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On the Multimodality of Random Probability

Measures

George Kokolakis∗ and George Kouvaras†

Abstract. Nonparametric methods for density estimation are examined here.
Within a Bayesian setting the construction of an absolutely continuous random
probability measure is often required for nonparametric statistical analysis. To
achieve this we propose a “partial convexification” procedure of a process, such as
the Dirichlet, resulting in a multimodal distribution function with a finite expected
number of modes. In agreement with convexity theory results, it is shown that the
derived random probability measure admits a density with respect to Lebesgue
measure.
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1 Introduction

In nonparametric Bayesian analysis, the Dirichlet process (Ferguson 1973, 1974) is usu-

ally chosen to represent nonparametric prior information on a space of probability

distributions. Among the most popular ways to derive random Dirichlet probability

measures is the Urn representation scheme (Blackwell and MacQueen 1973), and the

stick-breaking representation (Sethuraman 1994). The major drawback of a Dirichlet

process is that it selects discrete distributions with probability one. To overcome this

problem, alternative methods such as mixtures of Dirichlet processes (Antoniak 1974;

Escobar and West 1995; Walker et al. 1999) and Polya trees (Lavine 1992, 1994) have

been proposed.

In this paper, we present a Bayesian procedure with prior distributions on the space

of probability measures on the real line that have finite expected number of modes.

Section 2 describes the construction of random Dirichlet probability measures using

a variant of Polya trees (Kokolakis 1983). In section 3, we review some concepts on

unimodality in IR and provide the theoretical background on “partial convexification”

which is needed to implement our methodology. In section 4, we present some illustrative

results and possible extensions are discussed.
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2 Construction of random Dirichlet probability measures

In this section, we construct random probability measures which are Dirichlet processes

on some measurable space (X ,F) with β(·) a σ–additive nonnull finite measure on

(X ,F). We assume that the σ–field F is generated by a sequence of nested partitions

of X , i.e.,

X = B0 ∪ B1, with B0 ∩ B1 = ∅

B0 = B00 ∪ B01, B1 = B10 ∪ B11, with B00 ∩ B01 = B10 ∩ B11 = ∅
and in general

Be = Be0 ∪ Be1, with Be0 ∩ Be1 = ∅,
where e is a d-dimensional binary string, i.e., e = (e1, ..., ed) ∈ {0, 1}d, d = 1, 2, ....

Let θe = Pr[Be], the random cell probabilities of the 2d sets Be, e ∈ {0, 1}d, d =

1, 2, ..., and ue0 = Pr[Be0 |Be] and ue1 = Pr[Be1 |Be], the conditional (random) cell

probabilities satisfying the relation ue0 + ue1 = 1 for all e ∈ {0, 1}d−1, with B∅ = X .

To generate a random cell probability θe of a tree with d levels, we choose the path from

the root of the tree to the leaf and form the corresponding product of conditional cell

probabilities u’s. A useful result here is the following theorem, special versions of which

can be found in Ferguson (1974), in Kokolakis (1983) and in Kokolakis and Dellaportas

(1996).

Theorem 1. Let θ = (θe0, θe1), e ∈ {0, 1}d−1, (d = 1, 2, ...), be the random cell
probability vector at the d level and ue0 be the corresponding conditional cell probabilities
up to the dth level. Suppose that ue0 are independent Beta(βe0, βe1) distributed with
e ∈ {0, 1}d−1.
A necessary and sufficient condition that θ be Dirichlet distributed with parameters
(βe0, βe1), e ∈ {0, 1}d−1 is that the following conditions be satisfied:

βe0 + βe1 = βe, for all e ∈ {0, 1}d−1, d = 1, 2....

Remark 1. The above theorem allows us to construct a random Dirichlet process

with parametric finite measure β(·) by taking βe = β(Be) for all e ∈ {0, 1}d, d = 1, 2, ....

3 Partial convexification

Much of the work with unimodal distribution functions is based on a representation

theorem due to Khincin and Shepp (see Feller 1971, p.158). In particular, when X = IR

we have:

Theorem 2. The c.d.f. F is unimodal, with mode at zero, i.e., F is convex on the
negative real line and concave on the positive, if and only if it is of the form:
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F (t) =

∫ 1

0

G(t/u) du, t ∈ IR.

This means that F is the distribution of the product of two independent random

variables U and Y , with U uniformly distributed on (0, 1) and Y having an arbitrary

c.d.f. G.

It is easy to realize that Theorem 2 takes the following equivalent form:

Corollary 2.1. The c.d.f. F is convex on the negative real line and concave on the
positive, if and only if there exists a distribution function G on IR such that F admits
the representation:

F (x) = G(0−) +

∫

IR
Hy(x)G( dy), x ∈ IR, (1)

where Hy(·) is, for y 6= 0,

Hy(x) =





0,
x

y
≤ 0,

x

|y| , 0 <
x

y
< 1,

y

|y| ,
x

y
≥ 1,

and for y = 0, H0(·) is degenerate at zero.

From the above representation of F we notice that when y = 0, we have p ≡ Pr[X =

0] = Pr[Y = 0]. When y 6= 0, Hy(x) is a bounded function of x with bounded left and

right derivatives. In addition, the derivative of Hy(x) is bounded for all x ∈ IR \ {0, y}.
Specifically, with fixed y 6= 0 and x 6= 0, y, the derivative of Hy(x) is

hy(x) ≡ DHy(x) =





1

|y| , 0 <
x

y
< 1,

0, otherwise.

Applying the bounded convergence theorem we conclude that the c.d.f. F is differen-

tiable a.e. in IR, and its derivative, wherever it exists, is

f(x) ≡ DF (x) =

∫

IR\{0}

DHy(x)G( dy) =





∫

(−∞,x)

1

|y|G( dy), x < 0,

∫

(x,+∞)

1

|y|G( dy), x > 0.

(2)
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In this case
∫

f(x) dx = 1 − p. When p = 0, f is a density function.

Introducing the above result into (1) we get the following relation:

G(x−) + Pr[Y = x] · I(x≥0) = F (x) − xf(x), x ∈ IR. (3)

When X = IR+, an immediate consequence of the above results is the following:

Corollary 2.2. The c.d.f. F is concave on the positive real line if and only if there
exists a distribution function G on [0, +∞) such that F admits the representation:

F (x) =

∫

[0,+∞)

Hy(x)G( dy), x ∈ IR+, (4)

and then

G(x) = F (x) − xf(x), x ∈ IR+. (5)

Results similar to (2), (4) and (5) can be found in Brunner (1992) and

Hansen and Lauritzen (2002).

Remark 2. As a consequence of the Corollary 2.2, we always get a c.d.f. F on the

positive real line with single mode at zero, no matter what the distribution G, we start

with, is. Thus, the above procedure produces a very restrictive class of distributions.

“Partial convexification” of a c.d.f. G that produces a c.d.f. F with a finite num-

ber of modes, rather than a single mode, would be preferable. In our Bayesian model

specification, we work with random c.d.f.’s produced by a Dirichlet process. Since a

random Dirichlet probability distribution is with probability one discrete, we apply an

alternative procedure. Instead of the Un(0,1) distribution we consider the Un(α, 1)

distribution with 0 < α < 1. The parameter α can be fixed, or random with a prior

distribution p(α), on the interval (0, 1).

Let us assume the following:

1. U is Uniformly distributed over the interval (α, 1) with α fixed on the interval (0,

1), i.e.,

U ∼ Un(α, 1), 0 < α < 1.

2. Y is distributed according to G which is a Dirichlet process Di(β(·)) and β(·) a

σ–additive nonnull finite measure on (IR+,B+), and

3. Y and U are independent.
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Then

F (x) =

∫

(0,+∞)

Hy(x)G( dy), x ∈ IR+, (6)

where Hy stands for the Uniform distribution function over the interval (αy, y), i.e.,

Hy(x) =





0, x ≤ αy,
x − αy

(1 − α)y
, αy < x < y,

1, x ≥ y,

(7)

and the c.d.f. F of the product X = UY admits a.e. a derivative f . Specifically, the

following equation is satisfied:

F (x) = G(x) + xf(x) − α

1 − α
{G(

x

α
) − G(x)}, x ∈ IR+. (8)

It is interesting to notice that when Y has a discrete distribution {qk = Pr[Y =

k], k = 1, 2, ...}, then

F (x) =

[x]∑

k=1

qk +
x

1 − α

[ x

α
]∑

k=[x]+1

(
1

k
− α

x
)qk , x ∈ IR+, (9)

where [·] stands for the integer part.

According to (6) we obtain a prior distribution on the subspace of multimodal c.d.f.’s.

The expected number of modes of F increases from one, when α = 0, to infinity, when

α = 1, having a finite number of modes when 0 < α < 1. This means that when

0 < α < 1, the c.d.f. F (x) alternates between local concavities and local convexities,

i.e., a “partial convexification” of F is produced.

4 Application

For demonstration purposes we have simulated ten datasets from a mixture of two nor-

mal distributions, specifically N(15, 32) and N(30, 42), with weights w1/w2 = 2/3. The

sample sizes have all been taken equal to 250. Dirichlet processes have been produced

with parameter 50 × Ga, where Ga stands for the Gamma distribution function with

mean µ = 25 and standard deviation σ = 5. The “partial convexification” procedure

has been applied with the parameter α= 0.80.

In Figure 1, ten random draws from a Dirichlet process are presented (dotted lines)

together with their locally convexified versions (continuous lines). In Figure 2, the

posterior Dirichlet probability measures based on the datasets produced are presented

with dotted lines. Their locally convexified versions are presented with continuous

lines. We may notice the convexification procedure results in some overestimation of

the posterior distributions. This could be avoided if, before updating the Dirichlet
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processes, we had solved the equation (8) with respect to G using a continuous version

of the empirical distribution function in the place of F . This task, together with possible

generalizations, such as dealing with higher dimensional sample spaces, representing

correlation structures and using efficient algorithms, as in MacEachern (1994), is the

object of future research.
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Figure 1: Locally convexified random Dirichlet probability distributions (continuous

lines) and preconvexified random Dirichlet probability distributions (dotted lines).

10 20 30 40 50

0.2

0.4

0.6

0.8

1

Figure 2: Locally convexified posterior Dirichlet probability distributions (continuous

lines) and posterior Dirichlet probability distributions (dotted lines).
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