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AN RKHS FORMULATION OF THE INVERSE REGRESSION
DIMENSION-REDUCTION PROBLEM

BY TAILEN HSING1 AND HAOBO REN

University of Michigan and Sanofi-Aventis Pharmaceutical

Suppose that Y is a scalar and X is a second-order stochastic process,
where Y and X are conditionally independent given the random variables
ξ1, . . . , ξp which belong to the closed span L2

X of X. This paper investigates
a unified framework for the inverse regression dimension-reduction problem.
It is found that the identification of L2

X with the reproducing kernel Hilbert
space of X provides a platform for a seamless extension from the finite- to
infinite-dimensional settings. It also facilitates convenient computational al-
gorithms that can be applied to a variety of models.

1. Introduction. Identifying the space spanned by the inverse regression
function leads to a highly effective dimension-reduction approach for nonpara-
metric regression function estimation. See Duan and Li (1991), Li (1991), Chen
and Li (1998), Cook (1998) and Cook and Li (2002), among others. In this paper,
we consider the approach in the context where the predictor is a stochastic process.
Our goal is to introduce a unified formulation that can be applied to a wide variety
of models, and, at the same time, retains the spirit of multivariate analysis so that
statistical inference can be carried out in a natural and efficient manner.

Let (�,F ,P) be a probability space, and let L2(�,F ,P) be the Hilbert space
containing all random variables on (�,F ,P) that have finite variances, and with
inner product defined by 〈U,V 〉L2(�,F ,P) = E(UV ). Let Y be a random element
defined on (�,F ,P). The nature of Y critically influences the construction of
the computational algorithms, but is of no relevance in the theoretical formulation
of the inverse regression problem. Let {Xt, t ∈ T } be a real-valued, zero-mean,
second-order stochastic process defined on (�,F ,P), where the index set T is as-
sumed to be a separable metric space. Here, T may be quite flexible which can be
a single homogeneous set or a union of sets with different topological nature; for
example, T = ⋃Q

q=1 Tq , where T1 = [a, b], T2 = {t1, . . . , tJ }, and so on, in which
case one can think of the restrictions of Xt to the Tq as covariates of different
functional nature. Note that we do not assume that the paths of Xt lie in a known
Hilbert space, which is a common assumption in functional data analysis literature
[cf. Ramsay and Silverman (2005), Dauxois, Ferré and Yao (2001) and Ferré and
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Yao (2003, 2005)]. Indeed, in the infinite-dimensional case, such an assumption
may be restrictive and the identification of the Hilbert space may pose an extra
problem in practice. Eubank and Hsing (2007) contains a discussion on the theo-
retical limitations of this assumption.

As usual, the Hilbert space L2
X of {Xt, t ∈ T } is defined as the subspace of

L2(�,F ,P) that contains all finite linear combinations of the form
∑k

i=1 ciXti ,
ti ∈ T , ci ∈ R, k = 1,2, . . . and their limits in L2(�,F ,P). See Ash and Gard-
ner (1975) for details of these notions.

Define the following conditions (IR1) and (IR2) in which ξ1, . . . , ξp are fixed
elements in L2

X:

(IR1) Y and X are conditionally independent given ξ1, . . . , ξp .
(IR2) For any ξ ∈ L2

X , E(ξ |ξ1, . . . , ξp) ∈ span{ξ1, . . . , ξp} a.s.

A particularly relevant model for which (IR1) holds is the multiple-index model

Y = �(ξ1, . . . , ξp, ε),(1)

where ε is a random error independent of the process {Xt }, and we call each ξi an
index and � the link function. The number of indices, the indices themselves and
the link function are all assumed unknown in practice.

Condition (IR2) holds if the joint distribution of any finite collection of elements
from L2

X is elliptically contoured, which would be the case if, for instance, {Xt }
is a Gaussian process. However, this could be much more general [see Hall and
Li (1993)]. It is clear that the indices ξi ’s in (1) are nonidentifiable if � is not
specified. However, the L2 subspace

L2
X,e := span{ξ1, . . . , ξp}

is identifiable. Following Li (1991), call L2
X,e the effective dimension-reduction

space (EDRS) for (1). We are interested in estimating the EDRS, and in some
situations, the link �.

It might be awkward to conceptualize the estimation of L2
X,e directly since it is

a space of random variables. In some cases, this problem can be overcome natu-
rally. For instance, if the sample paths of Xt are contained in a Hilbert space H
and ξj = 〈βj ,X〉H , where βj is the representer of the functional, then the prob-
lem of estimating L2

X,e can be solved by estimating the space spanned by the βj .
Indeed this is the approach adopted for the multivariate case in Li (1991) and for
the functional data case in Ferré and Yao (2003, 2005). See also Dauxois, Ferré
and Yao (2001). However, as mentioned earlier, we do not assume that the sample
paths of Xt are contained in a Hilbert space. Thus, we are interested in a natural
and flexible representation of the ξj . Our solution is the reproducing kernel Hilbert
space (RKHS) of Xt . It is known that the RKHS of Xt is a mirror image of L2

X in
terms of Hilbert space structure (cf. Section 2), and so the estimation of the EDRS
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in L2
X can, in principle, be accomplished through the estimation of the correspond-

ing space in the RKHS. The primary goal of this paper is to show how this idea
can be implemented, and the advantages of the approach. It is interesting to note
that the possibility of such an RKHS formulation was mentioned very briefly in
Remark 2.4 of Li (1992).

The structure of this paper is as follows. We review the basic properties of
RKHS in Section 2. We do so out of the concern that the notion of RKHS is
not a part of the standard statistics curriculum today and our readers may not
be familiar with the relevant facts required in this paper. Section 3 contains a
key theoretical result on the inverse regression function E(Xt |Y) that facilitates
dimension-reduction. Estimation issues are addressed in Section 4, where an as-
ymptotic theory will also be developed; the inference will be conducted based on
the data (xi, yi), i = 1, . . . , n, with each xi observed at a finite set of points. In Sec-
tion 5, we provide a number of numerical examples, including simulation studies
and a data analysis. Finally, the proofs are collected in Section 6.

We should mention that the present paper focuses on the basic RKHS formu-
lation of the inverse regression dimension-reduction problem but ignores many
important theoretical and methodological aspects that go along with the formu-
lation, such as tests for determining p in (1), choice of the number of slices in
the sliced inverse regression procedure, estimating smooth representers βj when
ξj = 〈βj ,X〉H , and so on. They will hopefully be pursued in future works by those
that find this approach meaningful.

2. Reproducing kernel Hilbert spaces. Since the seminal work of Parzen
(1959, 1961a, 1961b, 1963), statistical innovations using RKHS have been steadily
developed. See Wahba (1990), Gu (2002) and Berlinet and Thomas-Agnan (2004).
A quick survey reveals that the notion of RKHS is now embraced strongly by the
machine learning community due to its importance in regularization problems. In
this section we present the general definitions and common properties of RKHS
required in this paper. The details of most of the results can be found in Aron-
szajn (1950). Other relevant references will be provided in due course. In order to
be self-contained, short proofs are provided whenever suitable in Section 6.

A symmetric, real-valued bivariate function K defined on T is said to be
nonnegative definite, denoted by K ≥ 0, if for all n ∈ N, a1, . . . , an ∈ R, and
t1, . . . , tn ∈ T , we have

∑n
i,j=1 aiajK(ti, tj ) ≥ 0. For convenience, symmetric

nonnegative definite bivariate functions will be referred to as covariance kernels
below. Also, for any bivariate function K , write

Kt = K(·, t).

DEFINITION 1. A Hilbert space H is said to be a RKHS if the elements of H
are functions defined on some set T , and there is a bivariate function K on T × T ,
having the following two properties:
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(a) For all t ∈ T , Kt ∈ H .
(b) For all t ∈ T and f ∈ H , f (t) = 〈f,Kt 〉H .

In this case, K is said to be a reproducing kernel of H .

The following fundamental result is known as the Moore–Aronszajn theorem.

PROPOSITION 1. (a) If K is a reproducing kernel of H , then K is a covari-
ance kernel and is unique. Conversely, if K is a covariance kernel on T × T ,
a unique RHKS of functions on T with K as the reproducing kernel can be con-
structed.

(b) If K is the reproducing kernel of the RKHS H , then span{Kt, t ∈ T } is dense
in H .

Property (b) of Definition 1, called the reproducing property, is the essence of
the notion of RKHS and will be applied extensively throughout this paper. The
notation HK will be used to denote the RKHS having the reproducing kernel K .

An important reason why RKHS plays an important role in statistics is that
the Hilbert space of a second-order stochastic process can be represented by the
RKHS whose reproducing kernel equals the covariance function of the process. To
see that, consider a second-order, zero-mean process {Xt, t ∈ T } with covariance
function R. As usual, HR denotes the RKHS with reproducing kernel R. Consider
the linear map �X from L2

X to HR satisfying

�X(Xt) = Rt, t ∈ T .

PROPOSITION 2. �X is an isometric isomorphism, namely, it is one-to-one
and satisfies 〈η, ξ〉L2

X
= 〈�X(η),�X(ξ)〉HR

, η, ξ ∈ L2
X .

The mapping �X was introduced by Loève (1948) and is sometimes referred
to as Loève’s isometry. For more information on the duality between a stochastic
process and its RKHS [see Wahba (1990)].

The following result given in Theorem 1.1 of Fortet (1973) provides an insight-
ful way to compute the RKHS norm.

PROPOSITION 3. A function f on T is in HK iff

sup
t1,...,tn

sup
ai

|∑n
i=1 aif (ti)|2∑n

i=1
∑n

j=1 aiajK(ti, tj )
< ∞,(2)

where the suprema are taken over all t1, . . . , tn ∈ T and all real a1, . . . , an for
all n, such that the denominator in (2) is nonzero. If f ∈ HK , then the left-hand
side of (2) is the RKHS norm.
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PROPOSITION 4. Suppose that K1 and K2 are two covariance kernels on T ×
T with K2 − K1 ≥ 0. Then:

(a) HK2 ⊃ HK1 where ‖f ‖HK2
≤ ‖f ‖HK1

for f ∈ HK1 , and,
(b) the linear operator L :HK2 
→ HK1 for which

LK2(·, t) = K1(·, t), t ∈ T

is a bounded, nonnegative definite, and self-adjoint operator on HK2 .

DEFINITION 2. Under the assumption of Proposition 4, we say that K2 domi-
nates K1 if K2 −K1 ≥ 0, denoted by K2 ≥ K1, and call L the dominance operator
of HK2 over HK1 . If L is nuclear, or trace-class, namely L satisfies tr(L) < ∞, we
say that K2 nuclear-dominates K1, denoted by K2 � K1, and L is called a nuclear
dominance operator.

The trivial case when K2 = K1 can be provided as an illustration, where L is
the identity mapping. Whether K2 � K1 in this case, of course, depends on the
dimensionality of T .

Let T be an index set and T1 ⊂ T . For any f defined on T , let f |T1 stand for
the restriction of f to the subset of T1.

PROPOSITION 5. Let T be a separable metric space of which S0 = {s1, s2, . . .}
is a dense subset. Let K be a covariance kernel on T × T and Kn = K|Sn×Sn ,
where Sn = {s1, . . . , sn}. For any function f defined on T , write fn = f |Sn . The
following hold:

(a) For any function f defined on T , if for some n > 1, fn ∈ HKn , then fm ∈
HKm for any m ≤ n and

‖fm‖HKm
≤ ‖fn‖HKn

.

(b) Let fn ∈ HKn for any n, and limn→∞ ‖fn‖HKn
< ∞. If either T is countable

or both K and f are continuous functions defined on T × T and T , respectively,
then f ∈ HK and ‖f ‖HK

= limn→∞ ‖fn‖HKn
.

3. The covariance operator of inverse regression. Below we continue to use
the notation developed in Sections 1 and 2, and assume that (IR1) and (IR2) hold.
As in Section 1, L2

X,e = span{ξ1, . . . , ξp} denotes the EDRS of (1) in L2
X . Define

the counterpart of the EDRS in HR :

HX,e = �X(L2
X,e) = span{�X(ξ1), . . . ,�X(ξp)},

which we call the reproducing kernel EDRS. We wish to conduct inference on
HX,e and L2

X,e.
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Denote by Zt the inverse regression process E(Xt |Y ), t ∈ T . Clearly, Zt is
also a second-order stochastic process with mean 0. Denote the covariance func-
tion of Zt by K . For m = 1,2, . . . , t1, . . . , tm ∈ T , let X = (Xt1, . . . ,Xtm)T ,
Z = (Zt1, . . . ,Ztm)T and a = (a1, . . . , am)T ∈ R

m. We have

var(aT X) = var(aT Z) + E(var(aT X|Y )).(3)

This implies that

R ≥ K(4)

and it follows from Proposition 4 that

HK ⊆ HR.

Motivated by Theorem 3.1 of Li (1991), we make the following claim:

The sample paths of Zt are in HX,e a.s.(5)

We will establish the validity of (5) in Theorem 6 below. However, let us first
assume that (5) holds and consider some implications. Since (5) implies that the
sample paths of Zt are in HR a.s., we can define the covariance operator

L = E

(
Z

⊗
HR

Z

)
,(6)

where the tensor product g
⊗

HR
h denotes the linear operator that maps f to

〈g,f 〉HR
· h for f,g,h ∈ HR . By the reproducing property,

(LRt)(s) = E(〈Z,Rt 〉HR
Zs) = E(ZtZs) = Kt(s), s, t ∈ T ,

which implies that Im(L) = HK and L is the dominance operator of HR over HK

[cf. Definition 2 and (b) of Proposition 4]. On the other hand, it follows readily
from (5) that Kt ∈ HX,e for all t ∈ T and hence

Im(L) = HK ⊆ HX,e.

Thus, dim(HK) ≤ dim(HX,e) = p. In particular, if HK = HX,e, estimating the
eigenfunctions of L provides an approach for estimating HX,e. Clearly, establish-
ing (5) is crucial.

REMARKS. (a) Note that HK is not always equal to HX,e. See Cook (1998)
for a thorough discussion on this and related issues. Extending the ideas in this
paper for dealing with those situations will be a topic of future research.

(b) Let X be multivariate, that is, finite-dimensional, and we denote it by X
for clarity. As before, assume that X has mean 0, covariance matrix R, and let
Z = E(X|Y). Then HR contains elements spanned by the column vectors of R,
where

〈f,g〉HR = E(fT R−XXT R−g) = fT R−g(7)
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and

�−1
X f = (R−f)T X, f ∈ HR,(8)

R− being the Moore–Penrose generalized inverse of R. Li (1991) showed that
Z ∈ L2

X,e with probability 1, and it follows that

Lg = E

(
Z

⊗
HR

Z

)
g = E(〈Z,g〉HRZ) = E(ZZT )R−g =: KR−g.(9)

By (7) and (9) the eigenvectors of L in HR are R1/2gi with the gi denoting
the eigenvectors of R−1/2KR−1/2 in the Euclidean space. Provided that HK =
HX,e, it follows from (8) that L2

X,e is estimated by the span of �−1
X (R1/2gi ) =

(R−1/2gi )
T X. This completely agrees with the result for the multivariate setting

described in Li (1991).
At first glance, (5) might seem a straightforward extension of similar results for

the multivariate case in Li (1991), or the functional case in Ferré and Yao (2003,
2005). However, a closer inspection reveals that this is not the case, and, to estab-
lish it, a deeper understanding of the relationship between a RKHS and the sample
paths of a stochastic process is called for. To give an idea of where the difficul-
ties lie, recall that Parzen (1963) showed that almost all the sample paths of X lie
outside of HR if T is an infinite separable metric space and R is continuous on
T × T ; for instance, if X is standard Brownian motion on [0,1], then the paths are
nowhere differentiable with probability 1 but HR contains functions with square-
integrable derivatives. In those situations, Zt is an average of paths that are a.s.
not in HR , let alone HX,e. Driscoll (1973) gave sufficient conditions under which
the sample paths of a Gaussian process fall into a RKSH; Lukić and Beder (2001)
provided a much more general treatment of this class of problems, going beyond
Gaussianity. The following development is partly inspired by their results.

In addition to the conditions (IR1) and (IR2) in Section 1, define the following
condition:

(IR3) Either T is countable, or both R is continuous on T × T and the sample
paths of E(Xt |Y) are continuous on T with probability 1.

The following can be proved.

THEOREM 6. Assume the conditions (IR1)–(IR3). Then (5) holds.

The proof of Theorem 6 will be given in Section 5. An approach for estimat-
ing L2

X,e by estimating L and �X as explained above will be developed in Sec-
tion 4.

To introduce sliced inverse regression (SIR) in HR , consider the stochastic
process

Z
G
t = E(Zt |G)



AN RKHS FORMULATION 733

for a given σ -field G. An example of G is the σ -field generated by the sets
{ω ∈ � :Y ∈ Is}, s = 1, . . . , S, where the Is , called slices in Li (1991), are disjoint
sets forming a partition of the range of Y . Denote by KG the covariance function
of Z

G
t . The same variance decomposition argument in (3) shows that K ≥ KG, and

Proposition 4 implies that HKG ⊆ HK . If the conditions of Theorem 6 hold, then
we have

HKG ⊆ HK ⊆ HX,e.(10)

Denote the dominance operator of HR over HKG by LG, which is the covariance
operator

LG = E

(
ZG

⊗
HR

ZG

)
.(11)

As before, estimating the eigenfunctions of LG also estimates HX,e if HKG =
HX,e.

4. Estimation and asymptotic theory. Assume without further reference in
this section that the conditions (IR1)–(IR3) hold so that the conclusion of The-
orem 6 holds. The primary goals of this section are to describe a procedure of
estimation based on SIR, and to develop an asymptotic theory for the procedure.

In view of the description in Section 3, the estimations of the covariance func-
tion R and inverse regression covariance function K are clearly crucial elements
in this problem. In some cases, these could be done more efficiently if the precise
nature of the sample paths of X is known. For example, in the infinite-dimensional
case if the sample paths of X are m-times continuously differentiable for some m,
the incorporation of the information in nonparametric estimation procedures may
lead to a faster rate of convergence in estimating R and K [see Rice and Silver-
man (1991), Silverman (1996), James, Hastie and Sugar (2000), Ramsay and Sil-
verman (2005) and Wu and Pourahmadi (2003)]. However, we will not make such
assumptions here, as our aim is to consider a general procedure whose principles
and properties will, for a large part, transcend the detailed nature of the path prop-
erties of the second-order stochastic process X. Indeed, the development below
simultaneously addresses both the finite- and infinite-dimensional cases.

We continue to use the notation defined in Section 3. In addition, for a real
symmetric, nonnegative-definite matrix A, let λj (A) be the j th largest eigenvalue
of A; if the eigendecomposition of A is

A = ∑
λj (A)uj uT

j ,

define the generalized power

Aα = ∑
λj (A)>0

λα
j (A)uj uT

j , α ∈ R.
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Note that A−1 is the Moore–Penrose inverse of A and we denote it by A−.
We will focus on estimating L2

X,e by SIR, that is, assume that HKG = HX,e,
where G is the σ -field generated by the sets {ω ∈ � :Y ∈ Is}, s = 1, . . . , S, the sets
I1, . . . , IS forming a partition of the range of Y with

ps := P(Y ∈ Is) > 0 for each s.

Note that ZG = E(E(X|Y)|G) = E(X|G), so

LG = E

(
E(X|G)

⊗
HR

E(X|G)

)
=

S∑
s=1

pshs

⊗
HR

hs,

where

hs = E(X|Y ∈ Is).(12)

To fix ideas, let the eigenvalues of LG be distinct; for 1 ≤ j ≤ p, let fj denote
the eigenfunction corresponding to the j th largest eigenvalues of LG, and, without
loss of generality, let ξj = �−1

X (fj ).
Let (Yi,Xi,t ),1 ≤ i ≤ n, be n i.i.d. realizations of (Y,Xt). However, we only

observe Yi,Xi,tj ,1 ≤ i ≤ n,1 ≤ j ≤ Jn, for some finite Jn. Let

Xi = (Xi,t1, . . . ,Xi,tJn
)T and hs = E(X1|Y1 ∈ Is)

and, for each J ,

RJ = {E(X1,tiX1,tj )}Ji,j=1.(13)

Estimate ps , hs and RJn , respectively, by the empirical estimators

p̂s = 1

n

n∑
i=1

I (Yi ∈ Is), ĥs =
∑n

i=1 XiI (Yi ∈ Is)∑n
i=1 I (Yi ∈ Is)

and R̂n,Jn = 1

n

n∑
i=1

XiXT
i .

If Xi is not centered, then we need to center where appropriate in hs and R̂n,Jn .
As mentioned in the beginning of this section, in practice, if X has smooth paths,
then incorporating the information in the estimation of hs and RJ may lead to
estimators that are more efficient than the naive ones defined here.

For k ≤ J , let PJ,k and P̂n,Jn,k be the projection matrices onto the eigenspaces
of the first k eigenvalues of RJ and R̂n,Jn , respectively; let

RJ,k = PJ,kRJ PJ,k and R̂n,Jn,k = P̂n,Jn,kR̂n,JnP̂n,Jn,k.(14)

Our proposed estimator of ξj is

ξ̂n,k,j = (Xt1, . . . ,XtJn
)R̂−1/2

n,Jn,kvj =: (Xt1, . . . ,XtJn
)β̂n,k,j ,(15)

where vj is the eigenvector corresponding to the j th largest eigenvalue of

M̂n,k := R̂−1/2
n,Jn,k

(
S∑

s=1

p̂s ĥs ĥT
s

)
R̂−1/2

n,Jn,k(16)
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in R
Jn . Note that X in (15) is a generic process whose sole purpose is to facilitate

the definition of the estimator ξ̂n,k,j . Below we will investigate the convergence of
ξ̂n,k,j to ξj in L2

X .

REMARKS. (a) The procedure described above is not entirely new. If Xi is
finite-dimensional with Jn = J , then taking k = J reduces the procedure above to
that in Li (1991). In the infinite-dimensional case, the estimation of the eigenspaces
of RJn corresponding to small eigenvalues is typically unstable, in which case k

acts as a smoothing parameter that controls the trade-off between bias and vari-
ance. Chiaromonte and Martinelli (2002) considered a similar approach in the
context of analyzing gene-expression data.

(b) Ferré and Yao (2003) assume that the paths of Xi are in a known Hilbert
space H . Their procedure is a “continuous” version of ours, since they assume
that functional data Xi are observed in their entirety. Of course, functional data are
never observed in their entirety, so some kind of discrete approximation will have
to be incorporated to implement their procedure. As such, there is little difference
between their procedure and ours in that setting.

(c) In the infinite-dimensional case, if the observational points are different for
different Xi , then smoothing of observed data Xi becomes necessary. In that case,
the quantities ĥs and R̂−1/2

n,Jn,k will be computed based on the smoothed data. The
details of this will be worked out in future work.

We proceed to explain the motivations of ξ̂n,k,j and develop an asymptotic the-
ory. Let Jn be nondecreasing and tending to some J∞ as n → ∞, where J∞ is
assumed to be ∞ for the infinite-dimensional case. A related issue for the infinite-
dimensional case is that we stated earlier that we observe Xi,tj ,1 ≤ i ≤ n,1 ≤ j ≤
Jn, at stage n, but we did not specify the manner in which the set of observation
points t1, . . . , tJn change with n. There are two options in that regard. The first one
is to consider the fully general case where each tj actually also depends on n so
that tj = tn,j . Another option is to consider a nested sequence of sets

TJ := {t1, . . . , tJ }, J ≥ 1,

where the tj do not depend on J , so that more observation points will simply
be added to each Xi as n increases. As far as the proofs go, the two cases require
similar arguments. However, since the nested-sequence assumption entails slightly
simpler details and much cleaner notation, we will take that approach.

First define two technical conditions, both of which amount to requiring that the
leading eigenvalues of RJ dominate the rest. The first condition is

lim
k→k∞

lim sup
J→J∞

tr
(
(R−

J − R−
J,k)KJ

) = 0 for some k∞ ≤ J∞,(17)

where KJ = {K(ti, tj )}Ji,j=1, and RJ and RJ,k are as defined in (13) and (14),
respectively. It is shown by Lemma 12 below that, under very general conditions,
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limJ→J∞ tr(R−
J KJ ) < ∞, which can be shown to be the trace of the dominance

operator from HR to HK . In that light, the condition (17) is quite mild.
To motivate the second technical condition, observe that if 0 < inft E(X2

t ) ≤
supt E(X2

t ) < ∞, then

tr(RJ ) = ∑
j≥1

λj (RJ ) =
J∑

j=1

E(X2
tj
) = O(J ).(18)

If the random variables Xti ,1 ≤ i ≤ J , are uncorrelated, RJ is a diagonal ma-
trix and all of the eigenvalues are bounded away from 0 and ∞. In the infinite-
dimensional case, we wish to avoid this type of situation and focus on those where
the strength of dependence among the Xti increases as J increases, so that the
leading eigenvectors of RJ dominate. In that case, gaps of size O(J ) can be ex-
pected to exist between leading eigenvalues. The second technical condition is,
for m equal to a fixed positive integer,

lim inf
J→J∞

ρm(RJ )

J
> 0,(19)

where

ρm(RJ ) = min{|λj (RJ ) − λm(RJ )| :λj (RJ ) �= λm(RJ )}.(20)

Indeed, the conditions (17) and (19) are extremely general, as reflected by the
following result.

PROPOSITION 7. Let T = [a, b] be any compact interval, t, . . . , tJ be equally
spaced in T . If the covariance function R is continuous on T × T , then (17) holds
with k∞ = J∞ = ∞. If, additionally, the multiplicity of λm(Q) is 1, where Q is
the integral operator Q :f → ∫ b

a R(·, y)f (y) dy,f ∈ L2[a, b], then (19) holds as
well.

The first step in establishing the estimator (15) is to compare LG with the fol-
lowing operator:

L̃
G
n,k =

S∑
s=1

p̂s h̃s

⊗
HR

h̃s,

where

h̃s = h̃s,n,k = (R(·, t1), . . . ,R(·, tJn))R
−
Jn,kĥs .(21)

Let ‖ · ‖∞ denote the sup or uniform norm of an operator.

LEMMA 8. Assume that either T = ⋃∞
J=1 TJ , or

⋃∞
J=1 TJ is dense in T and R

is continuous on T × T . Also assume that (17) holds. Then we have

‖L̃G
n,k − LG‖∞

p−→ 0 as n → ∞ and then k → k∞.
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Under the conclusion of Lemma 8, the eigenvalues and eigenfunctions of L̃
G
n,k

converge in probability to those of LG, where convergence of the eigenfunctions is
in terms of the norm of HR . The convergence of the eigenvalues follows from
Corollary 4 on page 1090 of Dunford and Schwarz (1988). The convergence
of the eigenfunctions follows from the convergence of projection operators of
eigenspaces, which can be established as in Gohberg and Kreı̆n (1969), page 15
[see also Dauxois, Pousse and Romain (1982), pages 141–142].

Next, we express the eigenproblem of L̃
G
n,k as an eigenproblem in R

J .

LEMMA 9. Let (λj ,uj ) be the eigenvalues and eigenvectors of

M̃n,k := R−1/2
Jn,k

(
S∑

s=1

p̂s ĥs ĥT
s

)
R−1/2

Jn,k(22)

in R
Jn . Then, for each j , λj is an eigenvalue of L̃

G
n,k and (R(·, t1), . . . ,R(·, tJn))×

R−1/2
Jn,k uj is the corresponding eigenfunction.

Thus, under the assumptions of Lemma 8,

‖(R(·, t1), . . . ,R(·, tJn))R
−1/2
Jn,k uj − fj‖HR

p−→ 0(23)

as n → ∞ and then k → k∞.

Let

ξ̃n,k,j := �−1
X ((R(·, t1), . . . ,R(·, tJn))R

−1/2
Jn,k uj ) = (Xt1, . . . ,XtJn

)R−1/2
Jn,k uj .

Since �X is an isometric isomorphism (Proposition 2) and �(ξj ) = fj , (23) is
equivalent to

‖ξ̃n,k,j − ξj‖L2
X

p−→ 0 as n → ∞ and then k → k∞.(24)

However, since R is unknown, ξ̃n,k,j cannot be directly used for inference. Intu-
itively, (λj ,uj ) in Lemma 9 can be estimated by the eigenvalues and eigenvectors
of M̂n,k in (16). The following result provides the justification.

LEMMA 10. Assume that supt E(X4
t ) < ∞. Also assume that Jn = o(n)

and (19) holds for m = k, a fixed positive integer. Then

‖M̂n,k − M̃n,k‖∞
p−→ 0 as n → ∞.(25)

Also if uj and vj are the eigenvectors corresponding to the j th eigenvalues of M̃n,k

and M̂n,k , respectively, we have

‖ξ̂n,k,j − ξ̃n,k,j‖L2
X

p−→ 0 as n → ∞.(26)



738 T. HSING AND H. REN

Combining (24) and (26), we have:

THEOREM 11. Assume that supt E(X4
t ) < ∞, Jn = o(n), and either T =⋃∞

J=1 TJ , or
⋃∞

J=1 TJ is dense in T and R is continuous on T × T . Also assume
that (17) holds, and that (19) holds for all m ∈ K = {k1, k2, . . .} where k� → k∞.
Then for each j ,

‖ξ̂n,k�,j − ξj‖L2
X

p−→ 0 as n → ∞ and then � → ∞.(27)

REMARKS. (a) The interpretation of (27) is that, under the assumptions of

the theorem, there exists a sequence �n such that ξ̂n,k�n ,j
p−→ ξj in L2

X . In reality,
k�n is picked so that R̂n,Jn,k�n

and R̂−
n,Jn,k�n

estimate RJn and R−
Jn,k�n

, respectively,
well.

(b) We conjecture that the assumption Jn = o(n) can be considerably relaxed.
The assumption is needed because, in our proofs, we bound the distances between
certain operators using the Hilbert–Schmidt norm. To relax the condition requires
a different approach of bounding those distances, which is beyond our reach at this
point.

5. Numerical examples. We now demonstrate the methodology in Section 4
with some numerical examples. Examples 1 and 2 are based on computer simula-
tions, and Example 3 contains an analysis of real data.

In order to implement the methodology in Section 4, we need to know how
to choose k in ξ̂n,k,j . Recall that k is a smoothing parameter which controls the
bias/variance trade-off. Also recall from the asymptotic theory [cf. (17) and (19)]
that our procedure is designed to deal with situations where the effective dimension
of the data is much smaller than Jn, the actual length of the data vector. In prac-
tice, k can be chosen subjectively to ensure that

∑k
j=1 λj (R̂n,Jn)/

∑
allj λj (R̂n,Jn)

is close to 1, and yet the eigenvalues λj (R̂n,Jn),1 ≤ j ≤ k, are not “too small.”
However, the following data-driven procedure for choosing k may be useful. Con-
sider the model

Y = �(ξ1, . . . , ξp) + ε(28)

and assume that � is smooth. For each feasible k and i = 1, . . . , n, we leave out
(xi , yi) and use the rest of the data (x[−i],y[−i]) to compute the ξ̂n,k,j in (15) and
nonparametrically estimate �; use the ξ̂n,k,j , the estimated �, and xi to compute a
predicted value ŷi,k ; let CV (k) = ∑n

i=1(yi − ŷi,k)
2, and pick k to minimize CV (k).

Instead of leaving one datum out at a time, given enough data, we can also divide
the data into training and testing samples in computing CV ; see Example 3. These
cross-validation procedures are not ideal since we need to know p in advance, and
the nonparametric fitting adds an extra layer of complication. A more satisfactory
procedure that is free of these problems is currently not available.
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The number of slices S in SIR is another issue. However, it is a relatively minor
one which usually does not change the outcomes of the analysis in a big way. We
let S = 10 in all of the following examples.

EXAMPLE 1. Let {X(t), t ∈ [0,1]} be a standard Brownian motion, ε ∼
N(0,0.32), and

Y = exp
(∫ 1

0
β(s)X(s) ds

)
+ ε,

where β(s) = sin(3πs/2). Hence ξ = ∫ 1
0 β(s)X(s) ds. A sample of n = 100 i.i.d.

(xi, yi) were generated, where each xi was observed at 100 equally spaced time
points in [0,1]. The first five eigenvalues of the sample covariance R̂n,Jn are
35.17, 4.06, 1.65, 0.75 and 0.54 compared to the first five theoretical eigenval-
ues 0.405285, 0.045031, 0.016211, 0.008271, and 0.005003 of the Brownian mo-
tion in L2[0,1]. The amounts of variation in the sample explained by the first
five eigenvectors of the sample covariance cumulatively are 0.80, 0.89, 0.93, 0.94
and 0.96. The cross-validation procedure described in the beginning of this section
selected k = 2. The plots of β̂ , ξ̂ versus ξ , and y versus ξ̂ are displayed in Figure 1.
See (15) for the definitions of β̂ and ξ̂ . We also estimated the link function � by
smoothing spline, which is displayed along with the plot for y versus ξ̂ . It is not
surprising that β̂ is not smooth since no smoothing took place in computing it. If
desired, a smoothing procedure can be incorporated in the eigendecomposition of
M̂n,k [see, e.g., Silverman (1996)]. Note that the results presented are based on one
single simulation run. However, the quality of the estimates, especially for � and ξ ,
is largely representative of what is obtained in repeated simulations. In particular,
the sample correlations were seen to be averaging over 0.98 in repeated simulation
runs.

EXAMPLE 2. Consider the model in which X is a fractional Gaussian
process on [0,1] with self-similarity index H = 0.75 [cf. Samorodnitsky and

FIG. 1. The leftmost plot is β (smooth curve) and β̂ (nonsmooth curve) versus t , the middle plot
is ξ̂ versus ξ , and the right plot is y versus ξ̂ .
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FIG. 2. The left plot is ξ̂ versus ξ , and the right plot is y versus ξ̂ .

Taqqu (1994)], and

Y = tan−1

( 32∑
i=30

Xi/121 +
92∑

i=90

Xi/121

)
+ ε,

where ε ∼ N(0,0.32). Note that, in this case, ξ cannot be written as an L2[0,1]
inner product of a smooth curve β with X. A sample of n = 80 i.i.d. (xi, yi) were
generated, where each xi was observed at 120 equally spaced time points in [0,1].
The same methodology as in Example 1 was applied, and the results are displayed
in Figure 2. The variation in the sample explained by the first four eigenvectors
of the sample variance R̂n,Jn exceeded 99%. However, cross validations picked
k = 8. Other simulation runs produced qualitatively similar results.

EXAMPLE 3. Consider a set of data recorded by the Tecator Infratec Food and
Feed Analyzer, available at http://lib.stat.cmu.edu/datasets/tecator, and which were
analyzed by Ferré and Yao (2005), Amato, Antoniadis and Feis (2006) and Ferraty
and Vieu (2006). Each food sample contains finely minced pork meat with differ-
ent contents of fat, protein and moisture. During the experiment, the spectrometer
measured the spectrum of light transmitted through the sample in the region 850–
1050 nanometers (nm). For each meat sample, the data consist of a 100-channel
spectrum of absorption and the contents of fat, protein and moisture. The spectral
data are partially observed functional data, whereas fat, protein and moisture con-
tents are multivariate data. The spectral data are transformed to − log10 of their
original value. In this example, we focus on the regression of spectrum X on fat
content U . In accordance with the literature, we perform the normalizing transfor-
mation Y = log10(U/(1 − U)).

The sample size of these data is 240, and, as in Amato, Antoniadis and
Feis (2006), we use the first 125 for training, and the remaining 115 for validation.
The first three eigenvectors of the sample covariance R̂n,Jn explain over 99.5% of
the total variation. For different values of k, we used the first four of the estimated
edr variables to estimate �, where the smoothing spline anova function ssanova

http://lib.stat.cmu.edu/datasets/tecator
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FIG. 3. The two plots on the left describe the estimated RKHS edr functions f̂1 and f̂2 for Tecator
data, and the plot on the right is ŷ = �̂(̂ξ1, ξ̂2, ξ̂3, ξ̂4) versus y.

in R [cf. Gu (2002)] was our fitting algorithm. The validated prediction errors,
{n−1 ∑n

i=1(ŷi − yi)
2}1/2, for k = 5,21 and 25 were 0.06842495,0.04481962 and

0.07414923, respectively, with k = 21 achieving the smallest prediction error.
With k = 21, the two plots on the left of Figure 3 are the estimates of the first two
RKHS edr functions, and the plot on the right of Figure 3 is ŷ := �̂(̂ξ1, ξ̂2, ξ̂3, ξ̂4)

versus y for the validation sample.

6. Proofs.

PROOF OF PROPOSITION 2. Consider η = ∑m
i=1 aiX(si), ξ = ∑n

j=1 bjX(tj ).
By the reproducing property,

〈�X(η),�X(ξ)〉HR
=

m∑
i=1

n∑
j=1

aibj 〈Rsi ,Rtj 〉HR
=

m∑
i=1

n∑
j=1

aibjR(si, tj ),

which is 〈η, ξ〉L2
X

. The equality extends readily to general random variables in L2
X

since random variables of the form η, ξ are dense. �

PROOF OF PROPOSITION 4. Since

|∑n
i=1 aif (ti)|2∑n

i=1
∑n

j=1 aiajK2(ti, tj )
≤ |∑n

i=1 aif (ti)|2∑n
i=1

∑n
j=1 aiajK1(ti , tj )

,

(a) follows at once from Proposition 3. To show (b), note that for f = ∑n
i=1 ci ×

K2(·, ti), we have Lf = ∑n
i=1 ciK1(·, ti) =: f1, and hence

‖Lf ‖2
HK1

‖f ‖2
HK2

=
‖f1‖2

HK1

‖f ‖2
HK2

=
∑n

i=1
∑n

j=1 cicjK1(ti , tj )∑n
i=1

∑n
j=1 cicjK2(ti , tj )

≤ 1.(29)

Since the set of f of the above form is dense in HK2 , (29) holds for all f ∈ HK2 .
This shows that L is bounded. That L is nonnegative, and self-adjoint can be seen
easily by the reproducing property. �
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PROOF OF PROPOSITION 5. Part (a) follows at once from Fortet’s formula
in Proposition 3. To show (b), we focus on the case where K and f are contin-
uous. Note that for any arbitrary finite set of points, t1, . . . , tn ⊂ T and constants
a1, . . . , an ∈ R such that

∑
i

∑
j aiajK(ti, tj ) �= 0, it follows from the continuity

of K and f , together with Fortet’s formula, that

|∑n
i=1 aif (ti)|2∑n

i=1
∑n

j=1 aiajK(ti, tj )
≤ lim

n→∞‖fn‖HKn
.

Then it is clear that limn→∞ ‖fn‖HKn
is equal to the expression on the left-hand

side of (2), and (b) follows from Proposition 3. If, instead, T is countable, then
the above proof can be easily adapted to yield the desired conclusion and is omit-
ted. �

LEMMA 12. Let T be a separable metric space. Assume that K1 and K2 are
covariance kernels on T × T such that:

(a) K2 � K1, and
(b) either T is countable or K2 is continuous.

Define a countable set S0 = {s1, s2, . . .} which is equal to T if T is countable, and
some arbitrary dense subset of T otherwise. Denote by L the dominance operator
of HK2 over HK1 , and, for i = 1,2, let Ki,n be the restriction of Ki to Sn × Sn

where Sn = {s1, s2, . . . , sn}. Then we can compute tr(L) by the formula

tr(L) = lim
n→∞ tr(K1,nK

−
2,n),

where K−
2,n is the Moore–Penrose generalized inverse of K2,n.

PROOF. Let Ki,0 be the restriction of Ki to S0 × S0. We first establish that
HKi,0 and HKi

are isometrically isomorphic. If T = S0, there is nothing to prove.
So we focus on the case where K2 is continuous and S0 is a dense subset of T .
Note that, since K2 � K1, the continuity of K2 implies that of K1. For s, s′ ∈ S0,

‖Ki,0(·, s) − Ki,0(·, s′)‖2
HKi,0

= ‖Ki(·, s) − Ki(·, s′)‖2
HKi

= Ki(s, s) + Ki(s
′, s′) − 2Ki(s, s

′),

which tends to 0 if s, s′ both approach a fixed point t ∈ T by continuity. By com-
pleteness Ki,0(·, t)|S0 ∈ HKi,0 for each t ∈ T . Then it is easy to see that HKi,0

and HKi
are isometrically isomorphic. Thus, it suffices to prove

tr(L0) = lim
n→∞ tr(K1,nK

−
2,n),

where L0 is the dominance operator of HK2,0 over HK1,0 . This follows from the
argument below [cf. Lukić and Beder (2001)]. Apply the Gram–Schmidt procedure
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to the functions K2,0(·, si), i = 1,2, . . . , to obtain a CONS e1,0, e2,0, . . . of HK2,0 .
Thus,

tr(L0) =
∞∑
i=1

〈L0ei,0, ei,0〉HK2,0
.

Let Ln be the dominance operator of HK2,n
over HK1,n

, and ei,n be the restriction
of ei,0 to Sn. It is clear that ei,n,1 ≤ i ≤ n, form an orthonormal basis for HK2,n

.
Thus,

tr(Ln) =
n∑

i=1

〈Lnei,n, ei,n〉HK2,n
=

n∑
i=1

〈L0ei,0, ei,0〉HK2,0
,

so that tr(L0) = limn→∞ tr(Ln). Viewing Ln,K1,n and K2,n as matrices, it fol-
lows from (b) of Proposition 4 that LnKn,2 = Kn,1. Thus, Ln = K1,nK

−
2,n, which

completes the proof. �

LEMMA 13. Let T be a separable metric space, and let {Ut, t ∈ T } be
a second-order process on T with mean 0 and covariance function K1. Let K2
be another covariance kernel on T × T such that:

(a) K2 � K1, and,
(b) either T is countable, or both K2 is continuous on T × T and the sample

paths of U are continuous a.s. on T .

Then P(U ∈ HK2) = 1.

PROOF. Let S0, Sn, K1,n, K2,n and L be as defined in Lemma 12. Note that
tr(L) < ∞ by the assumption K2 � K1. Define Un = U |Sn . Since Un is finite-
dimensional, it is easily seen that Un ∈ HK1,n

a.s., which implies that Un ∈ HK2,n

a.s. by (a) of Proposition 4. By (7) and the property of trace,

E(‖Un‖2
K2,n

) = E(UT
n K−

2,nUn) = E[tr(UT
n K−

2,nUn)] = E[tr(UnU
T
n K−

2,n)]
= tr[E(UnU

T
n )K−

2,n] = tr(K1,nK
−
2,n).

Since ‖Un‖K2,n
is monotone by (a) of Proposition 5, it follows from the monotone

convergence theorem and Lemma 12 that

E
[

lim
n→∞‖Un‖2

K2,n

]
= lim

n→∞ tr(K1,nK
−
2,n) = tr(L) < ∞.(30)

This implies that limn→∞ ‖Un‖2
K2,n

< ∞ a.s., which, by (b) of Proposition 5, im-
plies that U ∈ HK2 a.s. �

PROOF OF THEOREM 6. The proof is accomplished in three steps below.
(a) Verify that dim(HK) ≤ p.
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By definition L2
Z = span{Zt, t ∈ T }. It follows from (IR1) and (IR2) that for

each t ∈ T ,

Zt = E(E(Xt |Y, ξ1, . . . , ξp)|Y) = E(E(Xt |ξ1, . . . , ξp)|Y)

=
p∑

i=1

ci,t E(ξi |Y) a.s.

for some constants ci,t . It follows that Zt ∈ span{E(ξi |Y ), i = 1, . . . , p}, t ∈ T .
Consequently, L2

Z ⊆ span{E(ξi |Y ), i = 1, . . . , p}, and hence dim(HK) =
dim(L2

Z) ≤ p.
(b) Verify that Z ∈ HR a.s. By step (a) and (4), we conclude at once that R � K

and the dominance operator L of HR over HK is of finite rank and hence nuclear
with tr(L) < ∞. Thus, the desired conclusion here follows from Lemma 13 under
the condition (IR3).

(c) Finally, prove that Z ∈ HX,e a.s. We will show that 〈Z,h〉HR
= 0 a.s. for

any h ∈ HR such that

〈h,�X(ξi)〉HR
= 0, 1 ≤ i ≤ p.(31)

Fix such an h and let ξ = �−1
X (h) ∈ L2

X . If h = Rt , then ξ = Xt , and, by the
reproducing property, we obtain

〈Z,h〉HR
= Zt = E(Xt |Y) = E(ξ |Y).

Hence, in general, we have

〈Z,h〉HR
= E(ξ |Y) for all h ∈ HR.

By the properties of conditional expectation and (IR1),

E(ξ |Y) = E(E(ξ |ξ1, . . . , ξp, Y )|Y) = E(E(ξ |ξ1, . . . , ξp)|Y).

Thus, it suffices to show that the above right-hand side equals 0, which we now do.
Since by (IR2), E(ξ |ξ1, . . . , ξp) = ∑p

i=1 ciξi for some ci,1 ≤ i ≤ p, we have

E(E2(ξ |ξ1, . . . , ξp)) = E

( p∑
i=1

ciξi E(ξ |ξ1, . . . , ξp)

)

= E

( p∑
i=1

ciE(ξξi |ξ1, . . . , ξp)

)
=

p∑
i=1

ci E(ξξi),

which, by isometry and (31), is equal to
p∑

i=1

ci〈�X(ξ),�X(ξi)〉HR
=

p∑
i=1

ci〈h,�X(ξi)〉HR
= 0.

Thus, E(ξ |ξ1, . . . , ξp) = 0 a.s. and therefore E(E(ξ |ξ1, . . . , ξp)|Y) = 0 a.s. The
proof is complete. �
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PROOF OF PROPOSITION 7. Without loss of generality, take [a, b] to be [0,1]
and, for convenience, let t0 = 0 and ti = j/J,1 ≤ j ≤ J . Let RJ be the discretized
version of R:

RJ (s, t) =
J∑

i,j=1

R(ti, tj )I
(
(s, t) ∈ [ti−1, ti) × [tj−1, tj )

)
.

Define the integral operator QJ :f → ∫ 1
0 RJ (·, y)f (y) dy on L2[0,1]. Note that Q

is Hilbert–Schmidt and hence has a countable number of eigenvalues. It is straight-
forward to verify that QJ has the same eigenvalues as J−1RJ , and QJ converges
to Q in uniform norm. Thus, λj (RJ ) ∼ Jλj (Q) for each fixed j . Hence, (19)
holds if the multiplicity of λm(Q) is 1.

To show that (17) holds, let λi,φi be the eigenvalues and eigenfunctions of Q.
By Mercer’s theorem, R(s, t) = ∑

i λiφi(s)φi(t). Define

R(k) = ∑
i≥k+1

λiφi(s)φi(t).

For any f ∈ HR , write f(k) = ∑
i≥k+1〈f,φi〉L2[0,1]φi . It is obvious that∥∥f(k)

∥∥
HR(k)

≤ ‖f ‖HR
.(32)

Now we claim that

lim
k→∞

∥∥f(k)

∥∥
HR(k)

= 0, f ∈ HR.(33)

Given ε > 0, there exist some finite M and constants ci such that the approximation
f̃ = ∑M

i=1 cmR(·, tm) of f satisfies ‖f − f̃ ‖HR
< ε. Write∥∥f(k)

∥∥
HR(k)

= ∥∥(f − f̃ + f̃ )(k)

∥∥
HR(k)

≤ ∥∥(f − f̃ )(k)

∥∥
HR(k)

+ ∥∥(f̃ )(k)

∥∥
HR(k)

.

The first term on the right-hand side is bounded by ε by (32). Note that (f̃ )(k) =∑M
i=1 cmR(k)(·, tm) so that∥∥(f̃ )(k)

∥∥
HR(k)

= cT R(k)c → 0 as k → ∞,

where R(k) = {R(k)(ti , tj )}Mi,j=1. This shows that

lim sup
k→∞

‖f(k)‖HR(k)
< ε.

Since ε is arbitrary, (33) follows. Now for any process Ut, t ∈ T , whose sample
paths are in HR a.s. and E(‖U‖2

HR
) < ∞, by (32), (33) and Lebesgue’s dominated

convergence theorem,

lim
k→∞ E

(∥∥U(k)

∥∥2
HR(k)

) = 0.
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In particular,

lim
k→∞ E

(∥∥Z(k)

∥∥2
HR(k)

) = 0,

where Z = E(X|Y). However, by the proof of Lemma 13,

E
(∥∥Z(k)

∥∥2
HR(k)

) = lim
J→∞ tr

(
(R−

J − R−
J,k)KJ

)
.

Hence, (17) holds. �

For each J , let HRJ
be the subspace of HR spanned by R(·, tj ), j = 1, . . . ,

J . Let RJ = {R(ti, tj )}Ji,j=1. Each f ∈ HRJ
can be written as f = (R(·, t1), . . . ,

R(·, tJ ))c, c ∈ R
J , where, by the reproducing property, ‖f ‖2

HR
= cT RJ c. Thus,

without loss of generality, write

HRJ
= {(R(·, t1), . . . ,R(·, tJ ))c : c ∈ Im(RJ )}.

Let �J be the projection operator from HR into HRJ
. Also define the space

HRJ,k
= {(R(·, t1), . . . ,R(·, tJ ))c : c ∈ Im(RJ,k)}

and the projection �J,k from HR into HRJ ,k .

LEMMA 14. For any f ∈ HR , and J ≥ k ≥ 1,

�J,kf = (R(·, t1), . . . ,R(·, tJ ))R−
J,kf,(34)

where f = (f (t1), . . . , f (tJ ))T .

PROOF. By the reproducing property, for any a ∈ Im(RJ,k),

0 = 〈f − �J,kf, (R(·, t1), . . . ,R(·, tJ ))a〉HR

= (f (t1), . . . , f (tJ ))a − ((�J,kf )(t1), . . . , (�J,kf )(tJ ))a,

so that

(f (t1), . . . , f (tJ ))a = ((�J,kf )(t1), . . . , (�J,kf )(tJ ))a.(35)

Write

�J,kf = (R(·, t1), . . . ,R(·, tJ ))c, c ∈ Im(RJ,k)

and we will show that c = R−
J,kf. Evaluating both sides at t1, . . . , tJ and pre-

multiplying the resulting vectors by R−
J,k , we obtain

R−
J,k[(�J,kf )(t1), . . . , (�J,kf )(tJ )]T = R−

J,kRJ c = c.

Since the rows of R−
J,k are in Im(RJ,k), it follows from (35) that

R−
J,k[(�J,kf )(t1), . . . , (�J,kf )(tJ )]T = R−

J,kf.

Hence, c = R−
J,kf and the result follows. �
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LEMMA 15. Assume that either T = ⋃∞
J=1 TJ , or

⋃∞
J=1 TJ is dense in T

and R is continuous on T × T . We also assume that (17) holds. Then,

E‖(I − �J,k)Z‖2
HR

→ 0 as J → J∞ and then as k → k∞,

where I is identity mapping.

PROOF. If T = ⋃∞
J=1 TJ , then by definition HR = span{R(·, tj ), j = 1,2,

. . .}. Now suppose
⋃∞

J=1 TJ is dense in T , where J∞ = ∞, and R is continuous
on T × T . Then as in the proof of Lemma 12, for tj�

→ t as � → ∞, the sequence
of functions R(·, tj�

) is Cauchy and must converge to R(·, t). Hence R(·, t) ∈
span{R(·, tj ), j = 1,2, . . .} for each t , and we also have HR = span{R(·, tj ), j =
1,2, . . .}. Thus, in either case, we conclude

lim sup
J→∞

‖(I − �J )g‖HR
= 0, g ∈ HR

and, by Lebesgue’s dominated convergence theorem,

lim sup
J→∞

E‖(I − �J )Z‖2
HR

= 0.(36)

Next we establish

lim
k→k∞

lim sup
J→∞

E‖(�J − �J,k)Z‖2
HR

= 0,(37)

which together with (36) imply the result. By Lemma 14,

(�J − �J,k)Z = (R(·, t1), . . . ,R(·, tJ ))(R−
J − R−

J,k)Z,

where Z = (Z(t1), . . . ,Z(tJ ))T . Hence,

‖(�J − �J,k)Z‖2
HR

= ZT (R−
J − R−

J,k)RJ (R−
J − R−

J,k)Z

= tr
(
(R−

J − R−
J,k)ZZT )

.

Since E(ZZT ) = KJ , (37) follows from (17). �

COROLLARY 16. Assume the conditions of Lemma 15. Let F be a σ -field and
ZF

t = E(Z|F ). Then

E‖(I − �J,k)Z
F ‖2

HR
→ 0 as J → J∞ and then as k → k∞.(38)

For hs defined in (12), s = 1, . . . , S,

‖(I − �J,k)hs‖HR
→ 0 as J → J∞ and then as k → k∞.(39)
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PROOF. Since KF ≤ K , (38) follows from the same proof of the lemma
with ZF replacing Z everywhere. To prove (39), letting G be the σ -field based
on which hs is defined, we have ZG = hs if Y ∈ Is . Hence,

‖(I − �J,k)Z
G‖2

HR
=

S∑
s=1

‖(I − �J,k)hs‖2
HR

I (Y ∈ Is).

Then (39) clearly follows from this and (38). �

PROOF OF LEMMA 8. We will first show that

‖h̃s − hs‖HR

p−→ 0 as n → ∞ and then k → k∞.(40)

Write, by Lemma 14,

h̃s − hs = (R(·, t1), . . . ,R(·, tJn))R
−
Jn,k(̂hs − hs) + (�Jn,k − I )hs.

The second term is taken care of by Corollary 16. To show that the first term tends
to 0 in probability in HR , note that it is equivalent to showing that

(̂hs − hs)
T R−

Jn,k(̂hs − hs)
p−→ 0 as n → ∞.(41)

Let ȟs = (nps)
−1 ∑n

i=1 XiI (Yi ∈ Is). Write

E
(
(ȟs − hs)

T R−
Jn,k(ȟs − hs)

) = tr
[
R−

Jn,k E
(
(ȟs − hs)(ȟs − hs)

T )]
.

By independence,

E
(
(ȟs − hs)(ȟs − hs)

T )
= 1

n2p2
s

n∑
i=1

n∑
j=1

E
(
XiXT

j I (Yi ∈ Is)I (Yj ∈ Is)
) − hshT

s

= 1

np2
s

E
(
X1XT

1 I (Y1 ∈ Is)
) − 1

n
hshT

s ≤ 1

np2
s

RJn.

Thus,

E
(
(ȟs − hs)

T R−
Jn,k(ȟs − hs)

) ≤ 1

np2
s

tr(R−
Jn,kRJn)

(42)

= 1

np2
s

tr(R−
Jn,kRJn,k),

which tends to 0 as n → ∞, since tr(R−
Jn,kRJn,k) ≤ k. This proves (41) with ĥs

replaced by ȟs . Since p̂s
a.s.−→ ps , (41) follows as well. This completes the proof

of (40).
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Next for f ∈ HR with ‖f ‖HR
= 1,∥∥∥∥∥

(
h̃s

⊗
HR

h̃s

)
f −

(
hs

⊗
HR

hs

)
f

∥∥∥∥∥
HR

= ‖〈h̃s, f 〉HR
h̃s − 〈hs, f 〉HR

hs‖HR

≤ ‖〈h̃s, f 〉HR
h̃s − 〈hs, f 〉HR

h̃s‖HR
+ ‖〈hs, f 〉HR

h̃s − 〈hs, f 〉HR
hs‖HR

≤ ‖h̃s − hs‖HR
‖h̃s‖HR

+ ‖h̃s − hs‖HR
‖hs‖HR

.

It follows from (40) that the right-hand side tends to 0 in probability, and hence∥∥∥∥∥h̃s

⊗
HR

h̃s − hs

⊗
HR

hs

∥∥∥∥∥∞

p−→ 0 as n → ∞ and then k → k∞.

The result follows from this. �

PROOF OF LEMMA 9. Consider the linear mapping � that maps HRJn,k
to

HRJn,k
such that

� : (R(·, t1), . . . ,R(·, tJn))c 
→ RJnc = RJn,kc, c ∈ Im(RJn,k).

It is easy to see that � is an isometric isomorphism. The operator L̃G in HRJn,k
that

corresponds to L̃G in HRJn,k
is

L̃G =
S∑

s=1

ps h̃s

⊗
HRJn

h̃s,

where h̃s = PJn,kĥs . Representing an eigenvector of L̃G as RJn,kc, c ∈ Im(RJn,k),
by the reproducing property, the eigenequation of L̃G is

S∑
s=1

p̂sPJn,kĥs ĥT
s PJn,kc = λRJn,kc, cT RJn,kc = 1, c ∈ Im(RJn,k),

which is equivalent to

S∑
s=1

p̂sR−1/2
Jn,k ĥs ĥT

s R−1/2
Jn,k u = λu, uT u = 1, c = R−1/2

Jn,k u.
�

For a square matrix A containing complex elements, let ‖A‖HS = √
tr(AA∗),

where A∗ = AT . ‖A‖HS is known as the Hilbert–Schmidt (HS) norm or Frobe-
nius norm of A. See Dunford and Schwarz (1988), page 1010, or Horn and John-
son (1990), Chapter 5. Note that ‖A‖∞ ≤ ‖A‖HS.
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LEMMA 17. Assume that supt E(X4
t ) < ∞. Then

E‖R̂n,Jn − RJn‖2
HS ≤ CJ 2

n /n

for some universal constant C.

PROOF. By definition, E‖R̂n,Jn − RJn‖2
HS = tr(E(R̂n,Jn − RJn)

2). By inde-
pendence,

E(R̂n,Jn − RJn)
2 = 1

n

(
E[(X1XT

1 )2] − E2(X1XT
1 )

) ≤ 1

n
E[(X1XT

1 )2].
Hence,

E‖R̂n,Jn − RJn‖2
HS ≤ 1

n
E(tr(X1XT

1 ))2 = 1

n
E(‖X1‖4

RJn
) ≤ C

J 2
n

n
. �

LEMMA 18. Assume that supt E(X4
t ) < ∞. Also assume that Jn = o(n)

and (19) holds for m = k, a fixed positive integer. Then

‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )PJn,k‖HS = Op

(
1/

√
n
)
.

PROOF. Our goal is to show that for any given ε > 0 there exists δ such that

lim sup
n→∞ P

(‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )PJn,k‖HS > δ/
√

n
)
< ε.

First we pick ρ so that

lim sup
n→∞ P

(‖R̂n,Jn − RJn‖HS > ρJn/
√

n
)
< ε,

which is possible by Lemma 17. Below we will show that on the event

‖R̂n,Jn − RJn‖HS ≤ ρJn√
n

,(43)

we have, for some δ,

‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )PJn,k‖HS ≤ δ√
n

for large n.(44)

Without loss of generality, assume that λk(RJ ) > 0. For definiteness, let r be
a constant satisfying 0 < r < lim infJ→J∞

ρk(RJ )
2J

. Denote by i the imaginary unit.
Let � be the rectangle on the complex plane with vertices (λ1(RJn) + rJn) −
rJni, (λ1(RJn) + rJn) + rJni, (λk(RJn) − rJn) + rJni, (λk(RJn) − rJn) − rJni,
and let ∂� be the boundary of �. The length �(∂�) of ∂� is 8rJn + 2(λ1(RJ ) −
λk(RJ )). By (18),

lim sup
n→∞

�(∂�)

Jn

< ∞.(45)
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Since ρ/
√

n → 0, by Corollary 4 on page 1090 of Dunford and Schwarz (1988)
and (43), we have, for large n and uniformly for all j ,

|λj (R̂n,Jn) − λj (RJn)| ≤ ‖R̂n,Jn − RJn‖∞ ≤ ‖R̂n,Jn − RJn‖HS < rJn.

Thus, � contains λj (RJn) and λj (R̂n,Jn), but no other eigenvalues of either RJn

or R̂n,Jn . Also � does not contain the complex origin. Let

RJn(z) = (z − RJn)
−1 and R̂n,Jn(z) = (z − R̂n,Jn)

−1

be the resolvent of RJn and R̂n,Jn , respectively, where z is complex argument re-
stricted to the respective resolvent sets. By the Cauchy integral formula [cf. Dun-
ford and Schwarz (1988), page 568],

R̂−1/2
n,Jn,k − R−1/2

Jn,k = 1

2πi

∮
∂�

z−1/2[R̂n,Jn(z) − RJn(z)]dz

and hence

‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )PJn,k‖HS
(46)

≤ 1

2π

∮
∂�

|z|−1/2 · ∥∥(
R̂n,Jn(z) − RJn(z)

)
PJn,k

∥∥
HS dz.

Note that RJn(z)PJn,k = (z − RJn,k)
−1, which is the resolvent of RJn,k and we

denote it subsequently as RJn,k(z). Observe that

sup
z∈�

‖RJn(z)‖2
HS = sup

z∈�

Jn∑
i=1

|z − λi(RJn)|−2 ≤ Jn

(rJn)2 = 1

r2Jn

(47)

and

sup
z∈�

‖RJn,k(z)‖2
HS = sup

z∈�

k∑
i=1

|z − λi(RJn)|−2 ≤ k

(rJn)2 .(48)

Write

R̂n,Jn(z)PJn,k = (z − RJn − R̂n,Jn + RJn)
−1PJn,k

= (
RJn(z)

−1 − R̂n,Jn + RJn

)−1PJn,k(49)

= (
I − RJn(z)(R̂n,Jn − RJn)

)−1
RJn,k(z).

By (43), (47), the fact that ‖AB‖HS ≤ ‖A‖HS‖B‖HS, and the assumption Jn =
o(n),

sup
z∈�

‖RJn(z)(R̂n,Jn − RJn)‖HS <
ρ

r

√
Jn

n
< 1 for large n.(50)
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A standard argument [cf. (3.3) of Gohberg and Kreı̆n (1969)] shows that(
I − RJn(z)(R̂n,Jn − RJn)

)−1 = ∑
j≥0

[RJn(z)(R̂n,Jn − RJn)]j .(51)

By (49) and (51),(
R̂n,Jn(z) − RJn(z)

)
PJn,k = ∑

j≥1

[RJn(z)(R̂n,Jn − RJn)]jRJn,k(z)

and by the triangle inequality and (50),∥∥(
R̂n,Jn(z) − RJn(z)

)
PJn,k

∥∥
HS

(52)

≤ ‖RJn(z)‖HS‖R̂n,Jn − RJn)‖HS‖RJn,k(z)‖HS

1 − ‖RJn(z)(R̂n,Jn − RJn)‖HS
.

Finally,

sup
z∈∂�

|z|−1/2 = (
λk(RJn) − rJn

)−1/2 ≤ (
λk+1(RJn) + rJn

)−1/2

(53)
< (rJn)

−1/2.

By (46) and (52),

‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )PJn,k‖HS

≤ �(∂�)

2π
sup
z∈∂�

|z|−1/2 · ‖RJn(z)‖HS‖R̂n,Jn − RJn‖HS‖RJn,k(z)‖HS

1 − ‖RJn(z)(R̂n,Jn − RJn)‖HS
,

from which (44) using (43), (45), (47), (48), (50) and (53). �

PROOF OF LEMMA 10. Write

‖R̂−1/2
n,Jn,kĥs − R−1/2

Jn,k ĥs‖2
RJn = ĥT

s (R̂−1/2
n,Jn,k − R−1/2

Jn,k )2ĥs

= tr
(
(R̂−1/2

n,Jn,k − R−1/2
Jn,k )2(̂hs ĥT

s )
)

= ‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )(̂hs ĥT
s )1/2‖2

HS

= ‖(R̂−1/2
n,Jn,kR1/2

Jn,k − PJn,k)R
−1/2
Jn,k (̂hs ĥT

s )1/2‖2
HS.

Since ‖AB‖HS ≤ ‖A‖HS‖B‖HS, we conclude

‖R̂−1/2
n,Jn,kĥs − R−1/2

Jn,k ĥs‖RJn

(54)
≤ ‖(R̂−1/2

n,Jn,kR1/2
Jn,k − PJn,k)‖HS‖R−1/2

Jn,k (̂hs ĥT
s )1/2‖HS.

We first address the second term of the right-hand side of (54). By definition and
the same argument that leads to (42),

‖R−1/2
Jn,k (̂hs ĥT

s )1/2‖2
HS = tr(R−

Jn,kĥs ĥT
s ) = Op(1).(55)
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We next deal with the first terms on the right-hand side of (54). Write

R̂−1/2
n,Jn,kR1/2

Jn,k − PJn,k = (R̂−1/2
n,Jn,k − R−1/2

Jn,k )R1/2
Jn,k.

It follows from Lemma 18 that

‖R̂−1/2
n,Jn,kR1/2

Jn,k − PJn,k‖HS ≤ ‖(R̂−1/2
n,Jn,k − R−1/2

Jn,k )PJn,k‖HS‖R1/2
Jn,k‖HS

(56)
= Op

(√
Jn/n

) = op(1).

By (54)–(56), we conclude that (25) holds.
Next,

‖ξ̂n,k,j − ξ̃n,k,j‖2
L2

X

= (R−1/2
Jn,k uj − R̂−1/2

n,Jn,kvj )
T RJn,k(R

−1/2
Jn,k uj − R̂−1/2

n,Jn,kvj )

= (
R−1/2

Jn,k (uj − vj ) − (R̂−1/2
n,Jn,k − R−1/2

Jn,k )vj

)T RJn,k

× (
R−1/2

Jn,k (uj − vj ) − (R̂−1/2
n,Jn,k − R−1/2

Jn,k )vj

)
≤ 2(uj − vj )

T PJn,k(uj − vj )

+ 2vT (R̂−1/2
n,Jn,k − R−1/2

Jn,k )RJn,k(R̂
−1/2
n,Jn,k − R−1/2

Jn,k )v

≤ 2‖uj − vj‖2
RJn + 2‖(R̂−1/2

n,Jn,k − R−1/2
Jn,k )PJ,k‖2

HS‖R1/2
Jn,k‖2

HS.

The first term tends to 0 in probability by the previous part, (25), whereas the
second term converges to 0 in probability as in (56). �
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