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We consider settings where the observations are drawn from a zero-mean
multivariate (real or complex) normal distribution with the population covari-
ance matrix having eigenvalues of arbitrary multiplicity. We assume that the
eigenvectors of the population covariance matrix are unknown and focus on
inferential procedures that are based on the sample eigenvalues alone (i.e.,
“eigen-inference”).

Results found in the literature establish the asymptotic normality of the
fluctuation in the trace of powers of the sample covariance matrix. We de-
velop concrete algorithms for analytically computing the limiting quantities
and the covariance of the fluctuations. We exploit the asymptotic normality
of the trace of powers of the sample covariance matrix to develop eigenvalue-
based procedures for testing and estimation. Specifically, we formulate a sim-
ple test of hypotheses for the population eigenvalues and a technique for
estimating the population eigenvalues in settings where the cumulative dis-
tribution function of the (nonrandom) population eigenvalues has a staircase
structure.

Monte Carlo simulations are used to demonstrate the superiority of the
proposed methodologies over classical techniques and the robustness of the
proposed techniques in high-dimensional, (relatively) small sample size set-
tings. The improved performance results from the fact that the proposed in-
ference procedures are “global” (in a sense that we describe) and exploit
“global” information thereby overcoming the inherent biases that cripple
classical inference procedures which are “local” and rely on “local” infor-
mation.
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1. Introduction. LetX =[xq,...,X,]bea p xn data matrix where X, ..., X,
denote n independent measurements, where for each i, x; has a p-dimensional
(real or complex) Gaussian distribution with mean zero, and positive definite co-
variance matrix X. When the samples are complex, the real and imaginary compo-
nents are assumed to be independent, identically distributed zero-mean Gaussian
vectors with a covariance of X /2. The sample covariance matrix (SCM) when
formed from these n samples as

1 & 1
1.1 S:=-) x;x, = -XX,
(L1 . 2 X =
with ’ denoting the conjugate transpose, has the (central) Wishart distribution

[Wishart (1928)]. We focus on inference problems for parameterized covariance
matrices modeled as Y9 = UAyU’ where

alel

aQI
(1.2) Ag = o ,

alp,

where a; > -+ > a; and Zl;zl pj = p. Defining #; = p;/p allows us to conve-
niently express the 2k — 1-dimensional parameter vector as 0 = (1, ..., t%—1, a1,
..., ay) with the obvious nonnegativity constraints on the elements.

Models of the form in (1.2) arise as a special case whenever the measurements
are of the form

(1.3) X; = As; +z; fori=1,...,n,

where z; ~ N, (0, X) denotes a p-dimensional (real or complex) Gaussian noise
vector with covariance X,, s; ~ N (0, X) denotes a k-dimensional zero-mean
(real or complex) Gaussian signal vector with covariance X, and A is a p X k
unknown nonrandom matrix. In array processing applications, the jth column of
the matrix A encodes the parameter vector associated with the jth signal whose
amplitude is described by the jth element of s;. See, for example, the text by Van
Trees (2002).

Since the signal and noise vectors are independent of each other, the covariance
matrix of x; can be decomposed as

(1.4) T=U+3,,

where X, is the covariance of z and W = AX A’. One way of obtaining ¥ with
eigenvalues of the form in (1.2) is when X, = ¢>I so that the n — k smallest eigen-
values of ¥ are equal to o'2. Then, if the matrix A is of full column rank and the
covariance matrix of the signals X is nonsingular, the p — k (with k < p here)
smallest eigenvalues of W are equal to zero so that the eigenvalues of X will be of



2852 RAO, MINGO, SPEICHER AND EDELMAN

the form in (1.2). Alternatively, if the eigenvalues of ¥ and X, have the identical
subspace structure, that is, in (1.2), tl-‘l’ = ti):Z for all i, then whenever the eigenvec-
tors associated with each of the subspaces of ¥ and X, align, the eigenvalues of X
will have the subspace structure in (1.2).

Additionally, from an identifiability point of view, as shall be discussed in Sec-
tion 7, if the practitioner has reason to believe that the population eigenvalues are
organized in several clusters about a; & a;/p/n, then the use of the model in (1.2)
with a block subspace structure will also be justified.

1.1. Inferring the population eigenvalues from the sample eigenvalues. While
inference problems for these models have been documented in texts such as
(Muirhead, 1982), the inadequacies of classical algorithms in high-dimensional,
(relatively) small sample size settings have not been adequately addressed. We
highlight some of the prevalent issues in the context of statistical inference and
hypothesis testing.

In the landmark paper [Anderson (1963)], the theory was developed that de-
scribes the (large sample) asymptotics of the sample eigenvalues (in the real-valued
case) for such models when the true covariance matrix has eigenvalues of arbitrary
multiplicity. Indeed, for arbitrary covariance X, the joint density function of the
eigenvalues [y, ..., [, of the SCM S when n > p + 1 is shown to be given by

(1.5) Zlﬂ(” PEVRELTT 11 — 15 f exp< iy 0 i 1VSV’)> dv,

|l
i<j

where [y > --- > 1, >0, Zﬁ;n is a normalization constant, and 8 = 1 (or 2) when S
is real (resp., complex). In (1.5), Q € O(p) when 8 = 1 while Q € U(p) when
B =2 where O(p) and U(p) are, respectively, the set of p x p orthogonal and
unitary matrices with Haar measure. Anderson notes that

If the characteristic roots of X are different, the deviations ... from the corresponding
population quantities are asymptotically normally distributed. When some of the roots
of X are equal, the asymptotic distribution cannot be described so simply.

Indeed, the difficulty alluded to X arises due to the presence of the integral over
orthogonal (or unitary) group on the right-hand side of (1.5). This problem is com-
pounded in situations when some of the eigenvalues of X are equal as is the case
for the model considered in (1.2). In such settings, large sample approximations
for this multivariate integral have been used [see, e.g., Muirhead (1982), page 403,
Corollary 9.5.6, Butler and Wood (2002, 2005)]. For the problem of interest, An-
derson uses just such an approximation to derive the maximum-likelihood estimate
of the population eigenvalues aj, as

(1.6) ZA forl=1,...,k,
p JEN
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where A j are the sample eigenvalues (arranged in descending order) and N is the
set of integers p; +---+ pi—1 +1,..., p1 + -+ + p;. This is a reasonable esti-
mator that works well in practice when n >> p. The large sample size asymptotics
are, however, of limited utility because they ignore the (significant) effect of the
dimensionality of the system on the behavior of the sample eigenvalues.

Consequently, (large sample size) asymptotic predictions, derived under the p
fixed, n — oo regime do not account for the additional complexities that arise in
situations where the sample size # is large but the dimensionality p is of compara-
ble order. Furthermore, the estimators developed using the classical large sample
asymptotics invariably become degenerate whenever p > n, so that p — n of the
sample eigenvalues will identically equal to zero. For example, when n = p/2, and
there are two distinct population eigenvalues each with multiplicity p/2, then the
estimate of the smallest eigenvalue using (1.6) will be zero. Other such scenarios
where the population eigenvalue estimates obtained using (1.6) are meaningless
are easy to construct and are practically relevant in many applications such as
radar and sonar signal processing, and many more. See, for example, the text by
Van Trees (2002) and the work of Smith (2005).

There are, of course, other strategies one may employ for inferring the popula-
tion eigenvalues. One might consider a maximum-likelihood technique based on
maximizing the log-likelihood function of the observed data X which is given by
(ignoring constants)

I(X|Z) ;= —n(TrST~! +logdet ¥),
or, equivalently, when ¥ = UAU’, by minimizing the objective function
(1.7) h(X|U, A) = (TrSUA™'U’ + logdet A).

What should be apparent on inspecting (1.7) is that the maximum-likelihood
estimation of the parameters of A of the form in (1.2) requires us to model the
population eigenvectors U as well (except when k = 1). If U were known a priori,
then an estimate of ¢; obtained as

1
(1.8) a~— > (USU);; forl=1,... k,
JEN

where N, is the set of integers p1 +---+ pi—1+1,..., p1 +---+ p1, will provide
a good estimate. In practical applications, the population eigenvectors might either
be unknown or be misspecified leading to faulty inference. Hence it is important
to have the ability to perform statistically sound, computationally feasible eigen-
inference of the population eigenvalues, that is, from the sample eigenvalues alone,
in a manner that is robust to high-dimensionality and sample size constraints.

We illustrate the difficulties encountered in high-dimensional settings with an
example (summarized in Figure 1) of a SCM constructed from a covariance ma-
trix modeled as ¥ = UAU’ with p = 80 and sample size n = 160. Half of the
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(d)
The challenge of estimating the population eigenvalues from the sample eigenvalues
in high-dimensional settings. (a) Sample eigenvalues versus true eigenvalues (p = 80, n = 160).
(b) Sample eigenvectors when U = 1. (¢) Diagonal elements of S when U = 1. (d) Sample eigenvec-
tors for arbitrary U. (e) Diagonal elements of S for arbitrary U.
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eigenvalues of A are equal to 2 while the remainder are equal to 1. The sample
eigenvalues are significantly blurred, relative to the true eigenvalues as shown in
Figure 1(a). Figure 1(b) and (d) plot the sample eigenvectors for the case when
the true eigenvectors U =1, and an arbitrary U, respectively. Figure 1(c) and (e)
plot the diagonal elements (S); ;. Thus, if the true eigenvector was indeed U =1,
then an estimate of the population eigenvalues formed as in (1.8) yields a good
estimate; when U # I, however, the estimate is very poor.

1.2. Testing for equality of population eigenvalues. Similar difficulties are en-
countered in problems of testing as well. In such situations, for testing the hypoth-
esis

Apitetpioi+l = Apittprit L pi+pr-

Anderson proposes the likelihood criterion given by

Prn/2
(1.9) w:[]‘[ij/(p,fZ?\‘J-) } forl=1,....k,

JEN JENI

where A j are the sample eigenvalues (arranged in descending order) and, as before,
N is the set of integers p1 +---+ pi—1+1,..., p1 +--- + p;. The test in (1.9)
suffers from the same deficiency as the population eigenvalue estimator in (1.6)—it
becomes degenerate when p > n. When the population eigenvectors U are known,
(1.9) may be modified by forming the criterion

pkn/2
(1.10) []‘[(U/SU)j,j/(p,;lZ(U/SU)J-J) } forl=1,....k.

JEN; JEN;

When the eigenvectors are misspecified, the inference provided will be faulty. For
the earlier example, Figure 1(e) illustrates this for the case when it is assumed
that the population eigenvectors are I when they are really U # I. Testing the hy-
pothesis ¥ = X reduces to testing the hypothesis ¥ = I, given samples X; for
i=1,...,n, where X; = X Y zxi. The robustness of tests for sphericity in high-
dimensional settings has been extensively discussed by Ledoit and Wolf (2002)
and is the focus of some recent work by Srivastava (2005, 2006).

1.3. Proposed statistical eigen-inference techniques. In this article our focus
is on developing population eigenvalue estimation and testing algorithms for mod-
els of the form in (1.2) that are robust to high-dimensionality, sample size con-
straints and population eigenvector misspecification in the spirit of the initial ex-
ploratory work in Rao and Edelman (2006). We are able to develop such computa-
tionally feasible algorithms by exploiting the properties of the eigenvalues of large
Wishart matrices. These results analytically describe the nonrandom blurring of
the sample eigenvalues, relative to the population eigenvalues, in the p, n(p) — oo
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TABLE 1
Structure of proposed algorithms

Testing: Hg,:h(0) := Vng_lvo, Recommend dim(vg) =2

Estimation: 0= arg min{vaT Q(;lvo +logdetQp}, Recommend dim(vy) = dim(@) + 1
0cO

Legend: (Vvg)j =p X <%TrSj —af), j=1,..., q

Qp = cov[vgvy] where (Qp); j = als»j

limit while compensating for the random fluctuations about the limiting behavior
due to finite-dimensionality effects. The initial work in Rao and Edelman (2006)
only exploited the nonrandom blurring of the sample eigenvalues without account-
ing for the random fluctuations; this was equivalent to employing the estimation
procedure in Table 1 with Qg =1.

Taking into account the statistics of the fluctuations results in an improved per-
formance and allows us to handle the situation where the sample eigenvalues are
blurred to the point that the block subspace structure of the population eigenval-
ues cannot be visually discerned, as in Figure 1(a), thereby extending the “sig-
nal” detection capability beyond the special cases tackled in Silverstein and Com-
bettes (1992). The nature of the mathematics being exploited makes them robust to
the high-dimensionality and sample size constraints while the reliance on the sam-
ple eigenvalues alone makes them insensitive to any assumptions on the population
eigenvectors. In such situations where the eigenvectors are accurately modeled, the
practitioner may use the proposed methodologies to complement and “robustify”
the inference provided by estimation and testing methodologies that exploit the
eigenvector structure.

We consider testing the hypothesis for the equality of the population eigenval-
ues and statistical inference about the population eigenvalues. In other words, for
some unknown U, if Xo =UAg,U’, where Ay is modeled as in (1.2), techniques
to (1) test if X = X, and (2) estimate 0y are summarized in Table 1. We note
that inference on the population eigenvalues is performed using the entire sample
eigen-spectrum unlike (1.6) and (1.9). This reflects the inherent nonlinearities of
the sample eigenvalue blurring induced by high-dimensionality and sample size
constraints.

Table 2 compares the bias and mean square error of various techniques of es-
timating the nonunity population eigenvalue in Figure 1 (the SCM is complex-
valued) when the block structure is known a priori, that is, when #; =, = 0.5,
and ap = 1 are known and a := a; is unknown and to be estimated. The first
two columns refer to the procedure in (1.8) where the correct population eigen-
vectors U # I are used, the third column refers to Anderson’s procedure in (1.6)
while the fourth column refers to the procedure in (1.8) where U =1 is used
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TABLE 2
Comparison of performance of different techniques for estimating the nonunity population
eigenvalue in Figure 1 when the block structure is known a priori

Known U Known U Unknown U
)/ n Max Like. Max Like.x p2 Anderson  Max Like. SEI SEIx p2
(a) Bias
10 20 0.0117 0.1168 —1.9994 —0.5811 —0.0331 —0.3308
20 40 0 0.0001 —1.9994 —0.5159 —-0.0112 —-0.2244
40 80 0.0008 0.0301 —1.9994 —0.5245 —0.0019 —0.0776
80 160 —0.0003 —0.0259 —1.9994 —0.4894 —0.0003 —0.0221
160 320 0.0000 0.0035 —1.9994 —0.4916 —0.0003 —0.0411
320 640 0.0001 0.0426 —1.9994 —0.5015 0.0001 0.0179
(b) MSE
10 20 0.0380 3.7976 3.9990 0.3595 0.0495 4.9463
20 40 0.0100 3.9908 3.9990 0.2722 0.0126 5.0256
40 80 0.0025 3.9256 3.9991 0.2765 0.0030 4.8483
80 160 0.0006 4.1118 3.9991 0.2399 0.0008 5.1794
160 320 0.0002 4.1022 3.9990 0.2417 0.0002 5.0480
320 640 0.0000 4.0104 3.9990 0.2515 0.0000 5.0210

instead of the population eigenvectors. The last two columns refer to the pro-
posed statistical eigen-inference (SEI) technique in Table 1 with 6 :=a, v(0) =
TrS — p(0.5a + 0.5), and Qg = (1/2a> + 1/2a%c + ac + 1/2 + 1/2¢ — a)c?
where ¢ = p/n. Note that though the SEI techniques do not exploit any eigenvec-
tor information, their performance compares favorably to the maximum-likelihood
technique that does. As for the other techniques, it is evident that the inherent fi-
nite sample biases in the problem cripple the estimators derived on the basis of
classical large sample asymptotics.

An important implication of this in practice is that in high-dimensional, sample
size starved settings, local inference, performed on a subset of sample eigenvalues
alone, that fails to take into account the global structure (i.e., by modeling the
remaining eigenvalues) is likely to be inaccurate, or worse misleading. In such
settings, practitioners are advised to consider tests (such as the ones proposed)
for the equality of the entire population eigen-spectrum instead of testing for the
equality of individual population eigenvalues.

We view the inference techniques developed herein as the first step in the devel-
opment of improved high-dimensional covariance matrix estimation algorithms.
The issue of inverse covariance matrix estimation which Srivastava (2007) exam-
ines in the context of discriminant analysis is also related.

The approach we have in mind differs from the (sample eigenvalue) shrinkage-
based techniques in Haff (1980), Dey and Srinivasan (1985) in a crucial regard.
Our perspective is that the eigenvalues and the eigenvectors (or subspaces) of the



2858 RAO, MINGO, SPEICHER AND EDELMAN

sample covariance matrices are blurred relative to the population eigenvalues and
eigenvectors (or subspaces), respectively. For the model considered in this article,
the precise analytical characterization of the blurring of the eigenvalues (Theo-
rem 2.7) allows us to formulate and solve the deblurring problem. The tools from
free probability are applied in the first author’s dissertation [see Nadakuditi (2007)]
to precisely describe the blurring of the population eigenvectors (or subspaces) as
well. The answer is encoded in the form of a conditional eigenvector “distribution”
that explicitly takes into account the dimensionality of the system and the sample
size available—the conditioning is with respect to the population eigenvalues. The
idea that the covariance matrix estimate thus constructed from the deblurred eigen-
values and eigenvectors should be significantly better has merit. The development
of computationally realizable eigenvector deblurring algorithms is a significant ob-
stacle to progress along this direction of research.

1.4. Related work. There are other alternatives found in the literature to
the block subspace hypothesis testing problem considered in this article. El
Karoui (2007) provides a test for the largest eigenvalue for a large class of com-
plex Wishart matrices including those with a population covariance matrix of the
form in (1.2). Though the results are stated for the case when p < n, simula-
tions confirm the validity of the techniques to the alternative case when p > n
and for real Wishart matrices. El Karoui’s tests can be classified as a local test
that utilizes global information, that is, information about the entire (assumed)
population eigen-spectrum. Testing is performed by computing the largest eigen-
value of the sample covariance matrix, recentering, rescaling it and rejecting the
hypothesis if it is too large. The recentering and rescaling parameters are deter-
mined by the @; and #; values in (1.2) while the threshold is determined by the
quantiles of the appropriate (real or complex) Tracy—Widom distribution [Tracy
and Widom (1994, 1996), Johnstone (2001)]. A disadvantage of this procedure is
the great likelihood that recentering by the false parameter pushes the test statis-
tic toward the left tail of the distribution. Consequently, the identity covariance
hypothesis will be accepted with great likelihood whenever the recentering and
rescaling coefficients are calculated for the model in (1.2) with a; > 1. The pro-
posed global test based on global information avoids this pitfall and is based on
distributional results for the traces of powers of Wishart matrices that also appear
in Srivastava (2005). The issue of whether a local test or a global test is more
powerful is important and highlighted using simulations in the context of a joint
estimation and testing problem in Section 7; its full resolution is beyond the scope
of this article.

Silverstein and Combettes (1992) consider the situation when the sample eigen-
values discernibly split into distinct clusters and suggest that the proportion of
the eigenvalues in each cluster will provide a good estimate of the parameters a;
in (1.2). The nature of the distributional results in Bai and Silverstein (1998) imply
that whenever the sample eigenvalues are thus clustered, then for large enough p,
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the estimate of a; thus obtained will be exactly equal to true value. Such a proce-
dure could not, however, be applied for situations such as those depicted in Fig-
ure 1(a) where the sample eigenvalues do not separate into clusters. Silverstein
and Combettes (1992) do not provide a strategy for computing the # in (1.2) once
the a; is computed—the proposed techniques fill the void.

A semiparametric, grid-based technique for inferring the empirical distribution
function of the population eigenvalues from the sample eigen-spectrum was pro-
posed by El Karoui (2006). The procedure described can be invaluable to the prac-
titioner in the initial data exploration stage by providing a good estimate of the
number of blocks in (1.2) and a less refined estimate of the underlying a; and ¢;
associated with each block. Our techniques can then be used to improve or test the
estimates.

1.5. Outline. The rest of this article is organized as follows. In Section 2 we
introduce the necessary definitions and summarize the relevant theorem. Concrete
algorithms for computing the analytic expectations that appear in the algorithms
summarized in Table 1 are presented in Section 3. The eigen-inference techniques
are developed in Section 4. The performance of the algorithms is illustrated using
Monte Carlo simulations in Section 5. Some concluding remarks are presented in
Section 8.

2. Preliminaries.

DEFINITION 2.1. Let A=Ay be an N x N matrix with real eigenvalues. The
jth sample moment is defined as

. 1 ‘
tr(A’) := — Tr(A/),
(A7) N (A7)

where Tr is the usual unnormalized trace.

DEFINITION 2.2. Let A = Ay be a sequence of self-adjoint N x N random
matrices. If the limit of all moments defined as

A_. 1 J
o = IJE)IlOOE[tr(AN)] (N eN)
exists, then we say that A has a limit eigenvalue distribution.

NOTATION 2.3. For a random matrix A with a limit eigenvalue distribution
we denote by M4 (x) the moment power series, which we define by

Ma(x):=1+ Zaj‘xj.
Jj=1
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NOTATION 2.4. For a random matrix ensemble A with limit eigenvalue distri-
bution we denote by g4 (x) the corresponding Cauchy transform, which we define
as formal power series by

1 1
ga(x):= lim E[—Tr(xIN — AN)_I} = —My(1/x).
N—o00 N X
DEFINITION 2.5. Let A:=Apy bean N x N self-adjoint random matrix en-
semble. We say that it has a second-order limit distribution if for all i, j € N the
limits

A : i
af = IJgnookl(tr(Afv))

and
ol = lim kp(Tr(Ak), Tr(AL))
’ N—o0
exist and if
. (1) j (r)
Nh_)mookr (Tr(AY ), ..., Tr(A%")) =0

forall » >3 and all j(1),..., j(r) € N. In this definition, we denote the (classical)
cumulants by k. Note that k; is just the expectation, and k» the covariance.

NOTATION 2.6. When A = Ay has a limit eigenvalue distribution, then the
limits oz;.‘ =limy 00 E[tr(A{V)] exist. When A y has a second-order limit distrib-
ution, the fluctuation

tr(Af\,) — ozf‘
is asymptotically Gaussian of order 1/N. We consider the second-order covari-
ances defined as
aft = lim cov(Tr(Ak), Tr(A})),
N—oo

and denote by M 4(x, y) the second-order moment power series, which we define
by

Ma(x,y):= Z aif‘jx"yj.

ij=1

THEOREM 2.7. Assume that the p X p (nonrandom) covariance matrix ¥ =
(X ) peN has a limit eigenvalue distribution. Let S be the (real or complex) sample
covariance matrix formed from the n samples as in (1.1). Then for p,n — o0
with p/n — ¢ € (0, 00), S has both a limit eigenvalue distribution and a second-
order limit distribution. The Cauchy transform of the limit eigenvalue distribution,
g(x) = gs(x), satisfies the equation

1 X
(2.1) gx) = 1_C+ng(x)gz<1—c+cxg(x>>’
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with the corresponding power series Ms(x) = 1/xgs(1/x). Define S= %X/X YY)
that its moment power series is given by
2.2) M3(y) =c(Ms(z) — 1) + 1.

The second-order moment generating series is given by

2
where
d d
ax AM5(x)) - 75 (yM5(y)) 1 )
2.3b M (x,y) = _ ’
( ) S (X y) xy( (XMg(X) _ yMg(y))Z (.X _ y)2

where B equals 1 (or 2) when the elements of S are real (or complex).

PROOF. Theorem 2.7 is due to Bai and Silverstein. They stated and proved it
in Bai and Silverstein (2004) by complex analysis tools. (Note, however, that there
is a missing factor 2 in their formula (2.3a) that has been corrected in their book
[Bai and Silverstein (2006), page 251, Lemma 9.11, (9.8.4)].) U

Our equivalent formulation in terms of formal power series can, for the case
B =2, also be derived quite canonically by using the theory of second-order free-
ness. Let us also mention that the proof using second-order freeness extends easily
to the situation where X is itself a random matrix with a second-order limit distri-
bution. If we denote by My the corresponding second-order moment power series
of X, as in Notation 2.6, then the theory of second-order freeness gives (for 8 = 2)
the following extension of formula (2.3b):

d . 4y M-
M (. y) = My (M (x), yMg(y)) - o8y M)

Mg (x) Mg(y)
(2.4) ) )
N xy(a(XMS(x)) HOMs)) )
(xMg(x) — yMg(y))? (x — y)?

Whereas from an analytic point of view, formulas (2.1) and (2.4) might look
quite mysterious, from the perspective of free probability theory there is an easy
conceptual way of looking on them. Namely, they are just rewritings into formal
power series of the following fact: the matrix S has a compound free Poisson dis-
tribution, for both its moments and its fluctuations. This means that the free cu-
mulants of S of first and second-order are, up to scaling, given by the moments
and the fluctuations, respectively, of X. (This should be compared to: a classical
compound Poisson distribution is characterized by the fact that its classical cumu-
lants are a multiple of the moments of the corresponding “jump distribution.”) In
the case where X is nonrandom the fluctuations of X are clearly zero (and thus the
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second-order free cumulants of S vanish), that is, My = 0, resulting in the special
case (2.3b) of formula (2.4).

For the definition of free cumulants and more information on second-order free-
ness, the interested reader should consult Collins et al. (2007), in particular, Sec-
tion 2.

3. Computational aspects.

PROPOSITION 3.1. For Xy =UAgU asin(1.2),let@ = (11, ..., ti—1, a1, ...,
ar), where t; = pi/p. Then S has a limit eigenvalue distribution as well as a
second-order limit distribution. The moments 01]5, and hence af i depend on 6

and c. Let vy be a g-by-1 vector whose jth element is given by
(vg)j =TrS/ — par}.
Then for large p and n,

(3.1 Vg ~ N (g, Qg),

where g =0 if S is complex and (Qg);,j = (xfj.

PROOF. This follows directly from Theorem 2.7. From (3.2) and (3.4), the
moments a,f depend on «® and ¢ = p/n and hence on the unknown parameter
vector 0. The existence of the nonzero mean when S is real follows from the state-
ment in Bai and Silverstein (2004). [

3.1. Computation of moments of limiting eigenvalue distribution. A method of
enumerating the moments of the limiting eigenvalue distribution is to use the soft-
ware package RMTool [Rao (2006)] based on the polynomial method developed in
the second part of the first author’s dissertation [Nadakuditi (2007)]. The software
enables the moments of S to be enumerated rapidly whenever the moment power
series of X is an algebraic power series, that is, it is the solution of an algebraic
equation. This is always the case when X is of the form in (1.2). For example, if
0 = (t1, 2, a1, az, a3), then we can obtain the moments of S by typing in the fol-
lowing sequence of commands in MATLAB once RMTool has been installed. This
eliminates the need to obtain manually the expressions for the moments a priori:

>> startRMTool

>> syms ¢ tl t2 al a2 a3

>> number_of_moments = 5;

>> LmzSigma = atomLmz ([al a2 a3],[tl t2 1-(tl+t2)]);
>> LmzS = AtimesWish (LmzSigma,c) ;

>> alpha_S = Lmz2MomF (LmzS, number_of_moments) ;

>> alpha_Stilde = c*alpha_S;
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An alternate and versatile method of computing the moments relies on exploit-
ing (2.1) which expresses the relationship between the moment power series of X
and that of S via the limit of the ratio p/n. This allows us to directly express the
expected moments of S in terms of the moments of X. The general form of the
moments of S, given by Corollary 9.12 in Nica and Speicher [(2006), page 143] is

s TRSTEREEE P )N I )N DNTENG)
(32) aj= Z chtizt+ij o 2y (3 )’2---(oej )i Vit iy
ijZO
liy+2ip+3i3+-+jij=j

where y;/

ol is the multinomial coefficient given by

W) J!
33 M = )
(3-3) Vivsiz, ooy iligh -G+ 1= (i +ia+- - +1))!
The multinomial coefficient in (3.3) has an interesting combinatorial interpre-
tation. Let j be a positive integer, and let iy,...,i; € N U {0} be such that
i1 +2ip +---+ jij = j. The number of noncrossing partitions 7 € N C(j) which
have iy blocks with 1 element, i, blocks with 2 elements, ..., i; blocks with j

elements is given by the multinomial coefficient yi{ )

The moments of S are related to the moments of S as

(3.4) of =cai  forj=12,....

We can use (3.2) to compute the first few moments of S in terms of the moments
of X. This involves enumerating the partitions that appear in the computation of the
multinomial coefficient in (3.3). For j = 1 only i{; = 1 contributes with yl(l) =1,

thus,
(3.5) o =ca®.

Forn=2onlyi; =2,i» =0and i; =0, i = 1 contribute with

2 2
vo=1 vi=1
and thus
(3.6) oS = cof + ).

For n = 3 we have three possibilities for the indices, contributing with

3 _ 3 _ 3 _
¥3.00=1L Yito=3 Yoo =1

thus

3.7) oS =ca® +3catal + A @)’
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For n = 4 we have five possibilities for the indices, contributing with

4 _ 4 _ 4 _ “4) _ 4) _
¥4.0.0.0 =1, ¥2.1.0.0 =0 Y0.2.0.0 = 2 Y1.01.0 =% Y0.0.0.1 =1
thus

(3.8)  af =car +4ctafaF 423 (@)’ + 63 (af) a4 cHal)t

For specific instances of X, we simply plug the moments ozl-): into the above ex-
pressions to get the corresponding moments of S. The general formula in (3.2) can
be used to generate the expressions for higher-order moments. We can efficiently
enumerate the sum-constrained partitions that appear in (3.2) by employing the al-
gorithm that recursively computes the nonnegative integer sequences s (k) of length

j with the sum constraint Z;j{:1 s(k) k = j listed below

Input: Integer j
Output: Nonnegative integer sequences s(k) of length j satisfying constraint
Yk =I[stk) xkl=n

Ifj=1

The only sequence of length 1 is s = j
else

fork=0to 1

Compute sequences of length j — 1 for j —k x j
Append k to each sequence above and include in output
end
end

3.2. Computation of covariance moments of second-order limit distribution.
Equations (2.3a) and (2.3b) express the relationship between the covariance of
the second-order limit distribution and the moments of S. Let M (x) denote a mo-
ment power series as in Notation 2.3 with coefficients « ;. Define the power series
H(x) =xM(x) and let

HHE) FHE) )
(Hx)—Hy)*  (x—y)?

so that M (x, y) := xyH(x, y). The (i, j)th coefficient of M°(x, y) can then
be extracted from a multivariate Taylor series expansion of #f(x, y) about x = 0,
y = 0. From (2.3a), we then obtain the coefficients ozf i= 2/ ﬂ)a;’}lj . The coeffi-
cients af j can be readily enumerated by invoking a short sequence of commands
in the MAPLE computer algebra system. For example, the code on the next page
will enumerate oz5572. By modifying this code, we can obtain the coefficients ozf j
in terms of o; := aiS = ozjs /c for other choices of indices i and j and the constant
max _coeff chosen such that i + j <2 max _coeff.

3.9 H(x,y):= (
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> with (numapprox) :
> max_coeff := 5:
> H := x -> x*(l+sum(alphal[j]*x"2,j=1..2*max_coeff)):
> dHx : = diff(H(x),x): dHy := diff(H(y),vy):
> H2 := simplify(dHx*dHy/ (H(x)-H(y))"2-1/(x-y)"2:
> H2series := mtaylor (H2, [x,y],2*max_coeff):
> i:=5: j =2:
> M2_infty_coeff[i, ]
:= simplify(coeff (coeff (H2series,x,i-1),y,j-1)):
> alphaS_second[i,j] := (2/beta)*M2_infty_coeff[i,j]:

Table 3 lists some of the coefficients of M obtained using this procedure.
When «j =1 for all j € N, then «; ; = 0 as expected, since o; = 1 denotes the
identity matrix. Note that the moments «1, ..., a;4; are needed to compute the
second-order covariance moments o; j = o ;.

The covariance matrix Q with elements Q; ; = «; ; gets increasingly ill-
conditioned as dim(Q) increases; the growth in the magnitude of the diagonal
entries «; ; in Table 3 attests to this. This implies that the eigenvectors of Q en-
code the information about the covariance of the second-order limit distribution
more efficiently than the matrix Q itself. When X = I so that the SCM S has the
(null) Wishart distribution, the eigenvectors of Q are the (appropriately normal-
ized) Chebyshev polynomials of the second kind [Mingo and Speicher (2006)].
The structure of the eigenvectors for arbitrary X is, as yet, unknown though re-
search in that direction might yield additional insights.

4. Eigen-inference algorithms.

4.1. Estimating 0 for known model order. Estimating the unknown parameter
vector @ follows from the asymptotic result in Proposition 3.1. For large p, n,
since vy is (approximately) normally distributed we can obtain the estimate 6 by
the principle of maximum-likelihood. When S is real, Bai and Silverstein provide
a formula, expressed as a difficult-to-compute contour integral, for the correction
term pg in (3.1). The log-likelihood of vy is (ignoring constants and the correction
term for the mean when S is real) given by

4.1) £(vp10) ~ —v} Qp vy — log det Qy,
which allows us to obtain the maximum-likelihood estimate of @ as

4.2) a(q) = argmin VgQ(;lVg + logdet Qg for ¢ = dim(vy) > dim(#),
0cO

where © represents the parameter space for the elements of 6 and vy and Qg are
constructed as in Proposition 3.1.
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TABLE 3
Relationship between the coefficients o; j = o ; and o

Coefficient Expression

al,l (0%) —»a%

o)1 —dajap + 20(% + 203

2 160{%0(2 - 604% - 60/11 —8ajaz + 4oy

o3,1 9a]2(x2 —6ajaz — 30{% + 304 — 30(‘1‘

o3 2 6as + 3Oa1a2 42aloe2 — 18apa3 + 120:l + 24a1a3 — 120104

@33 —18a2 — 2Taras + 9o — 300 + 213 + 3607wy — 720303 + 1260ty —
1350{%0{% + 108aj g3 — 18y s

g1 12a1a2 16oz1 2—8a2a3+12a1 3—8a1a4+4a1 + 4oy

o4 - 12053 — 24004 + 8ag — 20051 + 160{2 + 32041 g — 56011 o3+ 880(‘1‘012 - 9604%0(% +
800 g3 — 160 05

@43 9603a3 + 60a] + 84y a3 + 43207303 + 180afas — 48a304 + 1207 — 360205 —
240106 + 1440  cp0y + 480 ars — 960y — 156a1a§ — 30003 0 — 3960 az03

oy.4 —1400:1 - 760{2 48agar + 256030401 — 400{4 + 16ag — 64a3a5 — 32017 +

1408a1a2a3 3360{1013 +256a1cx4—|—l44cx2a4 480a1a3+160a2a3 —|—64ozloz6—
128a1a5 - 14400:1012 + 8320{1052 + 800051&2 - 768a1a2a3 - 576a1a2a4 +

192a 1005

a5 1 —5(1% — 10apay + Sag — Sa? + Sa% + 1505%0(4 - 2005%0[3 + 250{‘1‘0{2 - 300{%0{% +
300jp3 — 100 o

@52 60c503 + 300] + 50003 + 24005303 + 1100 o3 — 300304 + 1007 — 300pa5 —
200t + 1000 0p0g + 4003 ars — 7003 otg — 90a1a§ — 1600}y — 24007 arar3

os53 —IOSOt1 — 600{2 45agar + 210030401 — 30a4 + 15ag — 603005 — 30017 +

114Oa1a2a3 270a1a3 +225(x1a4—|—120a2a4 390a1a3+135a2a3 —|—6Oa1a6—
120(110{5 - 11250{1012 + 6600{1052 + 615a1a2 - 630011(12013 - 495(110{20!4 +

180a 1 v a5
5,4 —900a12a4a3 + 80a%a7 —~ 1600:130:6 — 62007y — 3200a§a§ + 700a1a§ +
39600{ — 72002 065062 + 184003 1o40n — 41000 (a3 + 360002 a2a3 -

1140a1a3(x2 + 10400:1 a3 440a2a3 + 4400340 + 240a 1 ooty + 3200 5003 —
10200(1012014 + 2009 — 1820011 apy+ l80(x20t5 +320(x1 as+ 180a1a4 + 11200:1 a3+
80a3 +280a] — 400y g — 607012 — 800306 — 100405

5,5 2400a2a5af — 135003050; + 600czas0) + 300a1a7a2 — 900agara? —
12000{30{50{1 + 4000 g3 + 30000530{40{1 + 510002 a2a4 + 1230001?052043 +
5700a](x2(x3 + 4400a1a2a3 + 400(){10:6 - 150000:10:2013 — 57500{?0[2014 —
200a1(x7 + 5000 ag05 + 225a6a2 — 6752207 — 3250a‘l‘a% — 6250304 +
3500:30(4 — 6000:10(3 — 10500{20{3 28000{30:1 - 115500:10(2 33003040109 —
800a5a1 + 325a4a2 — 4375a1a2 — 6300t1 + 1000:30{1 — 75(x5 + 2550{2
120000f 3 + 4550080y + 1550080tq + 25019 — S0ty g — T5ap0g — 1000307 —
1250404
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4.2. Guidelines for picking g := dim(vg). Canonically, the parameter vector
of models such as (1.2) is of length 2k — 1 so that ¢ = dim(vg) must equal or
exceed 2k — 1. In principle, estimation accuracy should increase with g since the
covariance of vy is explicitly accounted for via the weighting matrix Qg.

Figure 2 compares the quantiles of the test statistic V’eQ; lvo for dim(vy) =¢q
with the quantiles of the chi-squared distribution with g degrees of freedom when
q =2, 3 for the model in (1.2) with @ = (0.5, 2, 1), n = p and p =40 and p = 320.
While there is good agreement with the theoretical distribution for large n, p, the
deviation from the limiting result is not insignificant for moderate n, p. This justi-
fies setting g = 2 for the testing procedures developed herein.

In the most general estimation setting as in (4.2) where 6 includes the small-
est population eigenvalue of Xy we have found that ¢ := dim(vg) must be no
smaller than dim(@) 4+ 1. When the smallest eigenvalue of Xy is known, how-
ever, g can be as small as dim(@). Within these guidelines, picking a smaller value
of ¢ provides robustness in low-to moderate-dimensional settings where the de-
viations from the asymptotic result in Theorem 2.7 are not insignificant. Numer-
ical simulations suggest that the resulting degradation in estimation accuracy in
high-dimensional settings, in using the smallest suggested choice for ¢ instead of
a higher value, is relatively small. This loss in performance is offset by an increase
in the speed of the underlying numerical optimization routine. This is the case be-
cause, though the dimensionality of @ is the same, the matrix Q gets increasingly
ill-conditioned for higher values of ¢, thereby reducing the efficiency of optimiza-
tion methods.

4.3. Testing § = 0y.

PROPOSITION 4.1. Define the vector vg and the covariance matrix Qg as

TrS — pozl):
TrS* — = (= -1)ar=
T ploay + n(ozl ) 5 o) .
2 &y — > 263 + 263 — 4d 18
4. == 1 1
(430) Qo =7 [2&% 203 —4ddy 4y — 83 T3 — 632 + 160,37 — 6&‘1‘}’
with B =1 (or 2) when S is real (or complex) and &; = ozls given by
@4a) & =Lal,
n
p P’
(44b)  F="ay + (@),

2 3
~ 129> Py v P, %3
4.4c =—a3 +3— +—= )
( ) a3 na3 nzal a) 3 (ap)
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FIG. 2.  Numerical simulations (when S is complex) illustrating the robustness of the distribution
approximation for the test statistic in Table 1 formed with dim(v) = 2 to moderate-dimensional
settings. (a) p =n =40: dim(v) = 2. (b) p =n = 320: dim(v) = 2. (c) p =n =40: dim(v) = 3.
(d) p =n =320: dim(v) = 3.
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2 2 3 4
@4ad) @y =La 1400l 422 @ + 6@ 2ef + LDy,
n n n n n
and oziZ =(/p)TrX = le‘-:lajt;. Thus, for large p and n, vg ~ N (0, Qg) so
that

4.5) h@) :=viQ, Vo ~ x3.

PROOF. This follows from Proposition 3.1. The correction term for the real
case is discussed in a different context in Dumitriu, Edelman and Shuman (2007).
A matrix-theoretic derivation in the real case (8 = 1) can be found in Srivas-
tava (2005), Corollary 2.1, page 3. U

We test for § = 6 by obtaining the test statistic
(4.6) Hy, : h(80) = v§, Qg 've,,

where the vy, and Qg, are constructed as in (4.3a) and (4.3b), respectively. We
reject the hypothesis for large values of Hp,. For a choice of threshold y, the
asymptotic convergence of the test statistic to the X22 distribution implies that

4.7 Prob.(Hg, = 110 = 8) ~ F% (y).
Thus, for large p and n, when y = 5.9914, Prob.(Hp, = 1|6 = ) ~ 0.95.

4.4. Estimating 0 and testing the estimate. When a 0 is obtained using (4.2)
then we may test for 6 = @ by forming the testing statistic

h0 —l s
(4.8) Hy:h(0) =ul W> " ug,

where the ug and Wp are constructed as in (4.3a) and (4.3b), respectively. How-
ever, the sample covariance matrix S can no longer be used since the estimate 6
was obtained from it. Instead, we form a test sample covariance matrix constructed
from [(n/2)] randomly chosen samples. Equivalently, since the samples are as-
sumed to be mutually independent and identically distributed, we can form the test
matrix from the first [(n/2)] samples as

o
49 S= X
@2 n/2] 2 o

Note that ot,f will have to be recomputed using X5 and ¢ = p/[(n/2)]. The hy-
pothesis § = 9 is tested by rejecting values of the test statistic greater than a thresh-
old y. The threshold is selected using the approximation in (4.7). Alternately, the
hypothesis can be rejected if the recentered and rescaled largest eigenvalue of S
is greater than the threshold y. The threshold is selected using the quantiles of
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the (real or complex) Tracy—Widom distribution. The recentering and rescaling
coefficients are obtained by the procedure described in El Karoui (2007).

4.5. Estimating 0 for unknown model order. Suppose we have a family of

models parameterized by the vector #%). The elements of #*) are the free
parameters of the model. For the model in (1.2), in the canonical case 6 =
(t1,....tk—1, a1, ...,ax) since t; + - -- +tx_1 + t = 1 so that dim(9®) =2k — 1.
If some of the parameters in (1.2) are known, then the parameter vector is modified
accordingly.

When the model order is unknown, we select the model which has the minimum
Akaike Information Criterion. For the situation at hand we propose that

5-®
(4.10) N
where k = arg min{ug(k) W,()f(i)ua\(k) + log det W?i(k) } +2 dim(o(k))’
keN

where L) and W« are constructed as described in Section 4.4 using the test
sample covariance matrix in (4.9). Alternately, a sequence of nested hypothesis
tests using a largest eigenvalue based test as described in El Karoui (2007) can
be used. It would be useful to compare the performance of the proposed and the
nested hypothesis testing procedures in situations of practical interest.

In the point of view adopted in this article, the sample eigen-spectrum is a sin-
gle observation sampled from the multivariate probability distribution in (1.5).
Thus we did not consider a Bayesian Information Criterion (BIC) based for-
mulation in (4.10) because of the resulting degeneracy of the conventional
“log(Sample Size)” penalty term. In the context of model selection, the study of
penalty function selection, including issues that arise due to dimensionality, re-
mains an important topic whose full resolution is beyond the scope of this article.
Nevertheless, we are able to demonstrate the robustness of the method proposed
in (4.10) in some representative situations in Section 6.

5. Numerical simulations. Let X5 be as in (1.2) with 0 = (11, a1, a»). When
t1 = 0.5, a; =2 and ap = 1, then half of the population eigenvalues are equal
to 2 while the remainder are of magnitude 1. Let the unknown parameter vector
0 = (¢, a) where t =t and a = a;. Using the procedure described in Section 3.1,
the first four moments can be obtained as (here ¢ = p/n)

(5.1a)  of=1+t(a—1),
(5.1b) @3 = (—2ac+a*c+c)* + (=1 +2ac —2c +a>)t + 1+,
oz‘;)g = (—302612 +a3P -+ 3ac2)t3
(5.1¢) + (B¢ 4+ 3c%a* — 3ac — 6ac® — 3a’c + 3a’c + 30)t?
+ (=3c¢* 4+ a® — 1 —6¢+ 3ac + 3a’c + 3ac®)t + 1 + ¢* + 3,
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a;f = (641263 +a*c —4ac® —4a33 + c3)t4
+ (=6¢* — 12a°c* + 12ac?
—12a%3 + 4a° 3 + 12ac* + 6a*c? — 4c) 3
+ (—4a*c — dac — 12ac® — 24ac® + 6a*c
(5.1d)
+6a%c + 12a3¢% + 6¢ — 6¢%a* + 6¢% + 18¢* — 4a’c)t?
+ (—4(:3 +4ac + 6¢%a® + dac’
— 1+ 12ac* — 18¢% + 4a’c — 12¢ + 4a’c + a*)t
+ 1+ +6c46¢2.

From the discussion in Section 3.2, we obtain the covariance of the second-order
limit distribution

) a5 —a?d) A2(e) + 2013S —dajas)
(52) Qo= E 3 (2(0{13)3 —1—20139 —4afa§) c4(4af — Salsocg ,
—6(cr3)? + 1605 (@) — 6(ad)*)

where § = 1 when S is real-valued and 8 =2 when S is complex-valued.

We then use (4.2) to estimate # and hence the unknown parameters ¢ and a.
Tables 4 and 5 compare the bias and mean squared error of the estimates for a
and ¢, respectively. Note the 1/p? type decay in the mean squared error and how
the real case has twice the variance as the complex case. As expected by the the-
ory of maximum-likelihood estimation, the estimates become increasingly normal
for large p and n. This is evident from Figure 3. As expected, the performance
improves as the dimensionality of the system increases.

6. Model order related issues.

6.1. Robustness to model order overspecification. Consider the situation when
the samples are complex-valued and the true covariance matrix ¥ = 2I. We erro-
neously assume that there are two blocks for the model in (1.2) and that a, = 1
is known while a := a; and t := t; are unknown and have to be estimated. We
estimate @ = (a, t) using (4.2) as before. The empirical cumulative distribution
function (CDF) of  over 4000 Monte Carlo trials shown in Figure 4(d) shows
that f — 1 as p,n(p) — oo. Figure 4(c) compares the quantiles of test statistic
in (4.5) with that of the chi-squared distribution with two degrees of freedom.
The excellent agreement for modest values of p and n validates the distribu-
tional approximation. Figure 4(a) and (b) plot the mean squared errors in esti-
mating a and 7, respectively. As before, the mean squared error exhibits a 1/p?
behavior. Table 6 shows the 1/p decay in the bias of estimating these parame-
ters.
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TABLE 4
Quality of estimation of t = 0.5 for different values of p (dimension of observation vector) and n
(number of samples)—both real and complex case for the example in Section 5

Complex case Real case
p n Bias MSE (MSE x p2)/100 Bias MSE  (MSE x p2)/100
(@n=0.5p
20 10 0.0455 0.3658 1.4632 0.4862 1.2479 4.9915
40 20 —0.0046 0.1167 1.8671 0.2430  0.3205 5.1272
80 40 —0.0122 0.0337 2.1595 0.1137  0.08495 5.437
160 80 —0.0024 0.0083 2.1250 0.0598  0.02084 5.335
320 160  0.0008 0.0021 2.1790 0.0300  0.00528 5.406
byn=p
20 20 —0.0137 0.1299 0.5196 02243 0.3483 1.3932
40 40 —0.0052 0.0390 0.6233 0.1083  0.0901 1.4412
80 80 —0.0019 0.0093 0.5941 0.0605 0.0231 1.4787
160 160 —0.0005 0.0024 0.6127 0.0303  0.0055 1.4106
320 320 —0.0001 0.0006 0.6113 0.0162 0.0015 1.5155
(©)n=2p
20 40 —0.0119 0.0420 0.1679 0.1085 0.1020 0.4081
40 80 —0.0017 0.0109 0.1740 0.0563  0.0255 0.4079
80 160 —0.0005 0.0028 0.1765 0.0290  0.0063 0.4056
160 320 —0.0004 0.0007 0.1828 0.0151 0.0016 0.4139
320 640  0.0001 0.0002 0.1752 0.0080  0.0004 0.4024

For this same example, the seventh and eighth columns of Table 6 show the
level at which a sphericity and the 2 block hypothesis are accepted when the pro-
cedure described in (4.2) is applied and a threshold is set at the 5% significance
level. The ninth and tenth columns of Table 6 show the acceptance rate for the 2
block hypothesis when the largest eigenvalue test proposed in El Karoui (2007) is
applied on a test sample covariance matrix formed using first [n/2] samples and
the original sample covariance matrix, respectively. The largest eigenvalue value
test has an acceptance rate closer to the 5% significance level it was designed for.
For all of the p and n values in Table 6, over the 4000 Monte Carlo trials, applying
the procedure described in Section 4.5 produced the correct estimate k = 1 for the
order of the model in (1.2) when X = 2I.

6.2. Robust model order estimation. We revisit the setting in Section 5, where
the population parameter vector 8 = (aj, az, t1) = (2, 1,0.5) and the sample co-
variance matrix is formed from complex-valued data. We employ the procedure
described in Section 4.5 to estimate the model order k (assumed unknown) and the
corresponding 2k — 1-dimensional parameter vector 0® . Over 1000 Monte Carlo
trials, for values of p, n listed in Table 7, we observe the robustness to model order
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TABLE 5
Quality of estimation of a =2 for different values of p (dimension of observation vector) and n
(number of samples)—both real and complex case for the example in Section 5

Complex case Real case

p n  Bias MSE (MSE x p2)/100  Bias MSE  (MSE x p2)/100
(@n=0.5p

20 10 0.1278 0.1046 0.4185 0.00748  0.1024 0.4097

40 20 0.0674 0.0478 0.7647 —0.01835 0.04993 0.7989

80 40 0.0238 0.0111 0.7116 —0.02240  0.01800 1.1545

160 80 0.0055 0.0022 0.5639 —0.02146  0.00414 1.0563

320 160 0.0007 0.0005 0.5418 —0.01263 0.00112 1.1692
b)yn=p

20 20 0.0750 0.0525 0.2099 —0.0019  0.0577 0.2307

40 40 0.0227 0.0127 0.2028 —0.0206  0.0187 0.2992

80 80 0.0052 0.0024 0.1544 —0.0206  0.0047 0.3007

160 160 0.0014 0.0006 0.1499 —0.0126  0.0012 0.3065

320 320 0.0003 0.0001 0.1447 —0.0074  0.0003 0.3407
(©)n=2p

20 40 0.0251 0.0134 0.0534 —0.0182  0.0205 0.0821

40 80 0.0049 0.0028 0.0447 —0.0175  0.0052 0.0834

80 160 0.0015 0.0007 0.0428 —0.0115  0.0014 0.0865

160 320 0.0004 0.0002 0.0434 —0.0067  0.0004 0.0920

320 640 0.0000 0.0000 0.0412 —0.0038  0.0001 0.0932

overspecification as in Section 6.1. Additionally, we note that as p, n(p) — oo,
the correct model order is estimated consistently. Table 7 demonstrates that, as be-
fore, the parameter vector is estimated with greater accuracy as the dimensionality
of the system is increased. The parameter estimates appear to be asymptotically
unbiased and normally distributed as before.

7. Inferential aspects of spiked covariance matrix models. Consider co-
variance matrix models whose eigenvalues are of the form A; > Ay > .-+ > Ap >
Ak+1="-+=Ap = A.Such models arise when the signal occupies a k-dimensional
subspace and the noise has covariance AI. Such models are referred to as spiked
covariance matrix models. When k < p, then for large p, for vy defined as in
Proposition 3.1, the matrix Qg may be constructed from the moments of the
(null) Wishart distribution [Dumitriu and Rassart (2003)] instead, which are given
by

k—1
ol (kN (k=1
7.1 ol =k cf—(.>< )
1) k ; JH1\ j
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F1G. 3.  Normal probability plots of the estimates of a and t (true values: a =2, t =0.5) for the
example in Section 5. (a) @: p = 320,n = 640. (b) 7: p =320, p = 640. (c) a@: p = 320, n = 640
(real-valued). (d) 7: p =320, n = 640 (real-valued).

where ¢ = p/n. Thus, for g =2, Qg is given by

B 2 22c 2X3(c + e
(7.2) Qo =QA—E [2,\3(C+ De 2A4(2c2+5c+2)0]
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FI1G. 4. Performance of estimation algorithm when model order has been overspecified and S is
complex. The population covariance matrix X = 2X which corresponds in (1.2)toa; =1,and t] =1
for arbitrary ay. We run the estimation algorithm assuming that ay = 1 and estimate a := aj and
t:=11 in (1.2). (a) MSE: 4. (b) MSE: £. (c) QQ plot: Test statistic in (4.5) for p =320 = 2n. (d) Em-

pirical CDF of t:n = p/2.
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TABLE 6
Performance of estimation algorithm when model order has been overspecified and S is complex

a a i f Sphericity 2 Block  Amax test Amax test
)/ n Bias Bias xp Bias Bias xp acceptance acceptance (full) (half)
(@)n=p/2

10 5 03523 35232 —0.1425 —1.4246  0.9820 0.9801 1.0000 0.9698
20 10 0.1997 3.9935 —0.1157 —2.3148  0.9783 0.9838 0.9998 0.9710
40 20 0.1078 4.3114 —-0.0783 —3.1336  0.9795 0.9870 0.9958 0.9713
80 40 0.0545 4.3561 —0.0463 —3.7018  0.9765 0.9873 0.9838 0.9720
160 80 0.0272 4.3530 —0.0251 —4.0175  0.9743 0.9828 0.9763 0.9643
320 160 0.0141 4.5261 —0.0133 —4.2580  0.9805 0.9885 0.9753 0.9675

(byn=p
10 10 0.2087 2.0867 —0.1123 —1.1225 0.9793 0.9768 0.9998 0.9675
20 20 0.1050 2.0991 —-0.0753 —1.5060 0.9773 0.9845 0.9965 0.9723
40 40 0.0558 2.2312 —0.0470 —1.8807 0.9850 0.9898 0.9898 0.9743
80 80 0.0283 2.2611 —0.0255 —2.0410 0.9813 0.9868 0.9773 0.9710
160 160 0.0137 2.1990 —0.0130 —2.0811 0.9805 0.9870 0.9790 0.9613
320 320 0.0067 2.1455 —0.0067 —2.1568 0.9775 0.9835 0.9608 0.9603

(cyn=2p
10 20 0.1067 1.0674 —-0.0717 —0.7171 0.9790 0.9810 0.9993 0.9708
20 40 0.0541 1.0811 —0.0442 —0.8830 0.9753 0.9858 0.9890 0.9708
40 80 0.0290 1.1581 —0.0257 —1.0272 0.9743 0.9845 0.9830 0.9695
80 160 0.0140 1.1161 —-0.0131 —1.0497 0.9763 0.9850 0.9743 0.9658
160 320 0.0071 1.1302 —0.0068 —1.0883 0.9778 0.9830 0.9703 0.9578
320 640 0.0036 1.1549 —0.0035 —1.1237 0.9758 0.9833 0.9598 0.9608

The population covariance matrix ¥ = 2I which corresponds in (1.2) to a; =1, and #; = 1 for
arbitrary a,. We run the estimation algorithm assuming that a; = 1 and estimate @ := a5 and t :=1]
in (1.2).

This substitution is motivated by Bai and Silverstein’s analysis [Bai and Silver-
stein (2004)] where it is shown that when k is small relative to p, then the
second-order fluctuation distribution is asymptotically independent of the “spikes.”
When the multiplicities of the spike are known (say 1), then we let ; = 1/p
and compute the moments ozf accordingly. The estimation problem thus reduces
to

(7.3) 0= arg min VoTQ)TlVe with ¢ = dim(vg) =dim(9) + 1,
0cO
where A is an element of @ when it is unknown.
Consider the problem of estimating the magnitude of the spike for the model
in(1.2)witht; =1/p, anAd ar = 1 known and a; = 10 unknown sothat§ =a =a;.
We obtain the estimate @ from (7.3) with A = 1 wherein the moments a,f given



Performance of parameter estimation algorithm when model order has to be estimated as well and S is complex

TABLE 7

p n Prk=1) a Pr(k=2) a @ f
(@n=p/2

20 10 0.968 1.4867 £0.1105 0.032 1.8784 +0.7384 0.8785 £ 0.6376 0.5675 £ 0.2650

40 20 0.940 1.4985 £ 0.0567 0.060 2.0287 £ 0.7244 0.6929 -+ 0.6010 0.6041 + 0.3165

80 40 0.700 1.4990 & 0.0274 0.300 2.0692 + 0.4968 0.7604 + 0.4751 0.5624 + 0.2965
160 80 0.199 1.4998 +0.0142 0.801 2.0199 £ 0.2780 0.9062 + 0.2841 0.5311 4 0.2084
320 160 0.001 1.4999 = 0.0069 0.999 2.0089 + 0.1398 0.9763 £ 0.1341 0.5076 = 0.1239
480 240 - 1.4999 4 0.0046 1 2.0004 + 0.0967 0.9847 +0.0918 0.5076 = 0.0887

(byn=p

20 20 0.915 1.4867 £ 0.0806 0.085 1.9229 £ 0.5675 0.6747 £ 0.5748 0.6293 £ 0.2962

40 40 0.736 1.4987 4 0.0381 0.264 1.9697 +0.3719 0.7685 £ 0.4199 0.5920 = 0.2644

80 80 0.190 1.5005 £+ 0.0197 0.810 2.0021 +0.2273 0.9287 4 0.2323 0.5310 & 0.1856
160 160 0.004 1.4997 = 0.0099 0.996 1.9908 £ 0.1108 0.9771 £ 0.0995 0.5162 £ 0.0973
320 320 - 1.5000 = 0.0048 1 2.0001 % 0.0548 0.9960 % 0.0469 0.5024 % 0.0492
480 480 - 1.5000 + 0.0033 1 2.0018 £ 0.0363 1.0002 £+ 0.0310 0.4991 + 0.0327

cyn=2p

20 40 0.743 1.4972 £ 0.0556 0.257 1.9124 4 0.3044 0.7835 £ 0.3756 0.6087 & 0.2424

40 80 0.217 1.5002 + 0.0286 0.783 1.9707 £ 0.1797 0.9361 £ 0.1659 0.5444 + 0.1458

80 160 - 1.4996 £ 0.0139 1 1.9925 = 0.0975 0.9847 £ 0.0781 0.5116 = 0.0807
160 320 - 1.4999 & 0.0071 1 1.9975 £ 0.0485 0.9959 £ 0.0369 0.5034 % 0.0401
320 640 - 1.5001 + 0.0035 1 1.9994 + 0.0232 0.9993 +0.0178 0.5008 + 0.0193
480 960 - 1.4999 4 0.0024 1 1.9998 £ 0.0161 0.9996 + 0.0125 0.5003 £ 0.0135

The population covariance matrix has parameters ap =2, a; =1 and ¢ = 0.5 as in (1.2). The algorithm in (4.10) with dim(v) =2k for k =1,2,...,5

was used to estimate the model order k and the associated 2k — 1-dimensional parameter vector @ = (ay, ..

were computed over 1000 Monte Carlo trials.

., ag,t1, ... tx—1). Numerical results shown

HONHIFIANI-NIDIH TVOLLSLLVLS

LL8T
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TABLE 8
Algorithm performance for different values of p (dimension of observation vector) and n (number of
samples)—both real and complex case

Complex case Real case
) n Bias MSE MSE x p Bias MSE MSE x p
@n=p

10 10 —0.5528 9.3312 93.3120 —0.5612 18.4181 184.1808

20 20  —0.2407 4.8444 96.8871 —0.2005 9.6207 192.4143

40 40 —0.1168 2.5352 101.4074 —0.0427 4.9949 199.7965

80 80  —0.0833 1.2419 99.3510 —0.03662 2.4994 199.9565
160 160  —0.0371 0.6318 101.0949 0.03751 1.2268 196.3018
320 320 —0.0125 0.3186 101.9388 0.04927 0.6420 204.4711

byn=15p

10 15 —0.3343 6.6954 66.9537 —0.3168 12.7099 127.0991

20 30 —0.1781 3.2473 64.9454 —0.1454 6.4439 128.8798

40 60 —0.1126 1.6655 66.6186 —0.08347 3.2470 129.88188

80 120 —0.0565 0.8358 66.8600 —0.02661 1.6381 131.04739
160 240  —0.0287 0.4101 65.6120 0.02318 0.8534 136.5475
320 480  —0.0135 0.2083 66.6571 0.02168 0.4352 139.2527

(©)n=2p

10 20 —0.2319 4.9049 49.0494 —0.2764 9.6992 96.9922

20 40  —0.1500 2.5033 50.0666 —0.1657 4.6752 93.5043

40 80  —0.0687 1.2094 48.3761 —0.03922 2.5300 101.2007

80 160  —0.0482 0.6214 49.7090 —0.02426 1.2252 98.0234
160 320 —0.0111 0.3160 50.5613 0.01892 0.6273 100.3799
320 640 —0.0139 0.1580 50.5636 0.02748 0.3267 104.5465
by

—l+a+
(742) ad=—12TP
p
a2 ) -2 2 2 2 2
s p pc—+c ac+cp+p p+2pac—+a“c
(74b) a3 = :
p

are obtained by plugging in t = 1/p into (5.1).

Table 8 summarizes the estimation performance for this example. Note the 1/p
scaling of the mean squared error and how the complex case has half the mean
squared error. The estimates produced are asymptotically normal as seen in Fig-
ure 5.

7.1. Limitations. Consider testing for the hypothesis that ¥ = I using real val-
ued observations. For the model in (1.2), which is equivalent to testing § = (1, 1),
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FIG. 5. Normal probability plots of the spiked magnitude estimate (true value = 10).
(a) p =320, n =640 (complex S). (b) p =320, n = 640 (real S).
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from the discussion in Section 4.3, we form the test statistic
. T—1
(7.5) Hsph. :h(0) = vy Q, "ve,

where Qg is given by (7.2) with 8 = 1 since the observations are real valued, A = 1
and

TrS—p

= 2
Vo TrSz—p<1+§)—<E—l>§ ’

where ¢ = p/n, as usual. We set a threshold y = 5.9914 so that we accept the
sphericity hypothesis whenever /(@) < y. This corresponds to the 95th percentile
of the X22 distribution. Table 9(a) demonstrates how the test is able to accept the
identity covariance hypothesis when Xy =1 at a rate close to the 5% significance
level it was designed for. Table 9(b) shows the acceptance of the sphericity hypoth-
esis when Xy = diag(10, 1, ..., 1) instead.

Results were tabulated over 4000 Monte-Carlo trials. Table 10 illustrates the
performance of the sphericity test proposed by Ledoit and Wolf (2002) which con-
sists of forming the test statistic

np[1 Pl 3> P

TABLE 9
The identity covariance hypothesis is rejected when the test statistic in (7.5) exceeds the 5%
significance level for the )(2 distribution with 2 degress of freedom, that is, whenever h(6) > 5.9914

n=10 n=20 n=40 n=380 n =160 n =320 n =640

(a) Empirical probability of accepting the identity covariance hypothesis when X9 =1

p=10 0.9329 0.9396 0.9391 0.9411 0.9410 0.9464 0.9427
p=20 0.9373 0.9414 0.9408 0.9448 0.9411 0.9475 0.9450
p=40 0.9419 0.9482 0.9487 0.9465 0.9467 0.9451 0.9495
p =280 0.9448 0.9444 0.9497 0.9496 0.9476 0.9494 0.9510
p =160 0.9427 0.9413 0.9454 0.9505 0.9519 0.9473 0.9490
p =320 0.9454 0.9468 0.9428 0.9451 0.9515 0.9499 0.9504

(b) Empirical probability of accepting the identity covariance hypothesis
when Xy =diag(10,1,...,1)

p=10 0.0253 0.0003 - - - - -
p=20 0.0531 0.0029 - - - - -
p=40 0.1218 0.0093 - - - - -
p =280 0.2458 0.0432 0.0080 - - - -

p =160 0.4263 0.1466 0.0002 - - - -
p =320 0.6288 0.3683 0.0858 0.0012 - - -
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TABLE 10
The identity covariance hypothesis is rejected when the Ledoit—Wolf test statistic in (7.6) exceeds
the 5% significance level for the %2 distribution with p(p + 1)/2 degrees of freedom

n=10 n=20 n=40 n=280 n =160 n=320 n =640

(a) Empirical probability of accepting the hypothesis X = I using the Ledoit—Wolf test

p=10 0.9483 0.9438 0.9520 0.9493 0.9510 0.9553 0.9465
p=20 0.9498 0.9473 0.9510 0.9513 0.9498 0.9495 0.9423
p=40 0.9428 0.9545 0.9468 0.9448 0.9488 0.9460 0.9478
p =280 0.9413 0.9490 0.9513 0.9540 0.9480 0.9500 0.9460
p =160 0.9438 0.9495 0.9475 0.9520 0.9508 0.9543 0.9448
p =320 0.9445 0.9475 0.9493 0.9490 0.9485 0.9468 0.9453

(b) Empirical probability of accepting the identity covariance hypothesis
when X = diag(10, 1, ..., 1) using the Ledoit—Wolf test

p=10 0.0345 0.0008 - - - - -
p=20 0.0635 0.0028 - - - - -
p=40 0.1283 0.0130 -
p =280 0.2685 0.0450 0.0008 - - - -
p =160 0.4653 0.1575 0.0070 - - - -
p =320 0.6533 0.3700 0.0773 0.0010

and rejecting for large values above a threshold that is determined by using the
asymptotic chi-squared approximation. Note how when p/n is large, both tests er-
roneously accept the identity covariance hypothesis an inordinate number of times.
The faulty inference provided by the test based on the methodologies developed is
best understood in the context of the following result.

PROPOSITION 7.1. Let S denote a sample covariance matrix formed from
an p x n matrix of Gaussian observations whose columns are independent of each
other and identically distributed with mean 0 and covariance X. Denote the eigen-
values of X by A1 > Ay> 2 A > AMyp1=-=Arp=2A Let l; denote the jth
largest eigenvalue of R. Then as p,n — oo with ¢,, = p/n — c € (0, 00),

A
,\j<1+xjj/\>, if 2 > A1+ 2),
M1+ 0%, ifhj < 2(1+V0),

where j =1, ..., k and the convergence is almost surely.

(1.7) l; —

PROOF. See Baik and Silverstein (2006), Paul (2005), Baik, Ben Arous and
Péché (2005). O

Since the inference methodologies we propose in this paper exploit the distri-
butional properties of traces of powers of the sample covariance matrix, Proposi-
tion 7.1 pinpoints the fundamental inability of the sphericity test proposed to reject
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the hypothesis ¥ =1 whenever (for large p, n)

)Lifl'i‘\/z.
n

For the example considered, A; = 10, so that the above condition is met whenever
p/n > c¢; = 81. For p/n on the order of ¢;, the resulting inability to correctly
reject the identity covariance hypothesis can be attributed to this phenomenon and
the fluctuations of the largest eigenvalue.

Canonically speaking, eigen-inference methodologies which rely on traces of
powers of the sample covariance matrix will be unable to differentiate between
closely spaced population eigenvalues in high-dimensional, sample sized starved
settings. This impacts the quality of the inference in a fundamental manner that
is difficult to overcome. At the same time, however, the results in Baik and Sil-
verstein (2006), Paul (2005), Baik, Ben Arous and Péché (2005) suggest that if
the practitioner has reason to believe that the population eigenvalues can be split
into several clusters about a; & a;+/p/n, then the use of the model in (1.2) with
a block subspace structure, where the individual blocks of sizes py, ..., px are
comparable to p, is justified. In such situations, the benefit of the proposed eigen-
methodologies will be most apparent and might motivate experimental design that
ensures that this condition is met.

8. Extensions and lingering issues. In the development of the estimation
procedures in this article, we ignored the correction term for the mean that ap-
pears in the real covariance matrix case (see Proposition 3.1). This was be-
cause Bai and Silverstein expressed it as a contour integral which appeared
challenging to compute [see (1.6) in Bai and Silverstein (2004)]. It is desir-
able to include this extra term in the estimation procedure if it can be com-
puted efficiently using symbolic techniques. The recent work of Anderson and
Zeitouni (2006), despite its ambiguous title, represents a breakthrough on this and
other fronts.

Anderson and Zeitouni encode the correction term in the coefficients of a power
series that can be directly computed from the limiting moment series of the sample
covariance matrix [see Theorem 3.4 in Anderson and Zeitouni (2006)]. Further-
more, they have expanded the range of the theory for the fluctuations of traces of
powers of large Wishart-like sample covariance matrices, in the real sample covari-
ance matrix case, to the situation when the entries are composed from a broad class
of admissible non-Gaussian distributions. In such a scenario, the correction term
takes into account the fourth moment of the distribution [see (5) and Theorems 3.3
and 3.4 in Anderson and Zeitouni (2006)]. This latter development might be of
use in some practical settings where the non-Gaussianity is well characterized. We
have yet to translate their results into a computational recipe for determining the
correction term though we intend to do so at a later date. We plan to make a soft-
ware implementation based on the principles outlined in this paper available for
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download. The numerical results presented show the consistency of the proposed
estimators; it would be of interest to establish this analytically and identify con-
ditions in the real covariance matrix case, where ignoring the correction term in
the mean can severely degrade the quality of estimation. The issue of how a lo-
cal test that exploits global information, of the sort proposed by El Karoui (2007),
compares to the global test developed in this article in terms of hypothesis dis-
criminatory power is an unresolved question of great interest. A more systematic
investigation is needed of the efficacy of various model order selection techniques
for the problem considered.
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