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SCAD-PENALIZED REGRESSION IN HIGH-DIMENSIONAL
PARTIALLY LINEAR MODELS

BY HUILIANG XIE AND JIAN HUANG

University of Miami and University of Iowa

We consider the problem of simultaneous variable selection and estima-
tion in partially linear models with a divergent number of covariates in the
linear part, under the assumption that the vector of regression coefficients
is sparse. We apply the SCAD penalty to achieve sparsity in the linear part
and use polynomial splines to estimate the nonparametric component. Un-
der reasonable conditions, it is shown that consistency in terms of variable
selection and estimation can be achieved simultaneously for the linear and
nonparametric components. Furthermore, the SCAD-penalized estimators of
the nonzero coefficients are shown to have the asymptotic oracle property, in
the sense that it is asymptotically normal with the same means and covari-
ances that they would have if the zero coefficients were known in advance.
The finite sample behavior of the SCAD-penalized estimators is evaluated
with simulation and illustrated with a data set.

1. Introduction. Consider a partially linear model (PLM)

Y = X′β + g(T ) + ε,

where β is a p × 1 vector of regression coefficients associated with X, and g is
an unknown function of T . In this model, the mean response is linearly related to
X, while its relation with T is not specified up to any finite number of parameters.
This model combines the flexibility of nonparametric regression and parsimony of
linear regression. When the relation between Y and X is of main interest and can
be approximated by a linear function, it offers more interpretability than a purely
nonparametric model.

We consider the problem of simultaneous variable selection and estimation in
the PLM when p is large, in the sense that p → ∞ as the sample size n → ∞.
For finite-dimensional β , several approaches have been proposed to estimate β
and g. Examples include the partial spline estimator [Wahba (1984), Engle et al.
(1986) and Heckman (1986)] and the partial residual estimator [Robinson (1988),
Speckman (1988) and Chen (1988)]. Under appropriate assumptions about the
smoothness of g and the structure of X, these estimators of β were shown to be√

n-consistent and asymptotically normal. It was also shown that the estimators of
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g can converge at the optimal rate in the purely nonparametric regression deter-
mined in Stone (1980, 1982). Fan and Li (2004) considered variable selection in
the semiparametric models in the context of longitudinal data analysis, assuming a
framework with a fixed set of covariates as n increases. In these studies, either the
dimension of the covariate vector X was fixed or the problem of variable selection
in X via penalization was not considered. However, the results for the PLM with
a finite-dimensional β and those for the semiparametric models in general are not
applicable to the PLM with a divergent number of covariates. Indeed, it appears
that there is no systematic theoretical investigation of estimation in semiparametric
models with a high-dimensional parametric component.

We are particularly interested in β when it is sparse, in the sense that many of
its elements are zero. Our work is motivated by biomedical studies that investigate
the relationship between a phenotype of interest and genomic measurements such
as microarray data. In many such studies, in addition to genomic measurements,
other types of measurements, such as clinical or environmental covariates, are also
available. To obtain unbiased estimates of genomic effects, it is necessary to take
into account these covariates. Assuming a sparse model is often reasonable with
genomic data. This is because, although the total number of measurements can be
large, the number of important ones is usually relatively small. In these problems,
selection of important covariates is often one of the most important goals in the
analysis. The p → ∞ framework allows us to address the concerns as to how
the nonparametric term is going to affect the estimation and variable selection of
β , and whether the rate at which the nonparametric estimator converges can be
maintained with a divergent p.

We use the SCAD method to achieve simultaneous consistent variable selec-
tion and estimation of β . The SCAD method is proposed by Fan and Li (2001)
in a general parametric framework for variable selection and efficient estimation.
This method uses a specially designed penalty function, the smoothly clipped ab-
solute deviation (hence the name SCAD), as adopted in Fan and Li (2004). We
estimate the nonparametric component g using the partial residual method with
the B-spline bases. The resulting estimator of β maintains the oracle property of
the SCAD-penalized estimators in parametric settings. Here, the oracle property
means that the estimator can correctly select the nonzero coefficients with prob-
ability converging to one, and that the estimators of the nonzero coefficients are
asymptotically normal with the same means and covariances that they would have
if the zero coefficients were known in advance. Therefore, an oracle estimator is
asymptotically as efficient as the ideal estimator assisted by an oracle who knows
which coefficients are nonzero. Meanwhile, convergence of the estimator of g in
the SCAD-penalized partially linear regression still reaches the optimal global rate.

Investigations on the asymptotic properties of penalized estimation in paramet-
ric models when the number of covariates is fixed include Knight and Fu (2000)
and Fan and Li (2001). Fan and Peng (2004) considered the same problem when
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the number of parameters diverges, where they showed that there exist local max-
imizers of the penalized likelihood that have an oracle property. Huang, Horowitz
and Ma (2008) studied the bridge estimators with a divergent number of covari-
ates in a linear regression model and showed that the bridge estimators have an
oracle property if the bridge index is strictly between 0 and 1. Several recent
studies have considered the asymptotic properties of the LASSO method in high-
dimensional settings. Examples include: Meinshausen and Buhlmann (2006), van
de Geer (2008), Zhang and Huang (2008) and Zhao and Yu (2006). In these stud-
ies, the convexity property of the LASSO penalty is critical to the results. However,
since the SCAD penalty is not convex, the methods that utilize convexity are not
applicable in the present setting. Furthermore, the PLM models we consider here
are semiparametric. The asymptotic analysis of such semiparametric models in
high-dimensional settings appears to be considerably more complicated than those
in the linear regression models.

The rest of this article is organized as follows. In Section 2, we define the
SCAD-penalized estimator (β̂n, ĝn) in the PLM, abbreviated as SCAD-PLM esti-
mator hereafter. The main results for the SCAD-PLM estimator are given in Sec-
tion 3, including the consistency and oracle property of β̂n, as well as the rate of
convergence of ĝn. Section 4 deals with computing the PLM-SCAD estimator. The
finite sample behavior of this estimator is illustrated with simulation studies and
a real data example in Section 5. Extensions and concluding remarks are given in
Section 6. The proofs are relegated to the Appendix.

2. Penalized estimation in PLM with the SCAD penalty. To make it ex-
plicit that the covariates and regression coefficients depend on n, we write the
PLM

Yi = X(n)′
i β(n) + g(Ti) + εi, i = 1, . . . , n,

where (X(n)
i , Ti, Yi) are independent and identically distributed as (X(n), T ,Y ),

and εi is independent of (X(n)
i , Ti), with mean 0 and variance σ 2. We assume that

T takes values in a compact interval, and, for simplicity, we assume this interval
to be [0,1]. Let Y = (Y1, . . . , Yn)

′, and let X
(n) = (Xij ,1 ≤ i ≤ n,1 ≤ j ≤ pn) be

the n × pn design matrix associated with β(n). In sparse models, the pn covari-
ates can be classified into two categories: the important ones whose corresponding
coefficients are nonzero and the trivial ones that actually are not present in the
underlying model. For convenience of notation, we write

β(n) = (
β

(n)′
1 ,β

(n)′
2

)′
,(1)

where β
(n)′
1 = (β

(n)
1 , . . . , β

(n)
kn

) and β
(n)′
2 = (0, . . . ,0). Here kn(≤pn) is the number

of nontrivial covariates. Let mn = pn − kn be the number of zero coefficients.
We use the polynomial splines to approximate g. For a positive integer Mn,

let �n = {ξnν}Mn

ν=1 be a partition of [0,1] into Mn + 1 subintervals Inν =
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[ξnν, ξn,ν+1) :ν = 0, . . . ,Mn − 1 and InMn = [ξnMn,1]. Here, ξn0 = 0
and ξn,Mn+1 = 1. Denote the largest mesh size of �n, max0≤ν≤Mn{ξn,ν+1 − ξnν},
by �n. Throughout the article, we assume �n = O(M−1

n ). Let Sm(�n) be
the space of polynomial splines of order m with simple knots at the points
ξn1, . . . , ξnMn . This space consists of all functions s with these two properties:

(i) restricted to any interval Inν (0 ≤ ν ≤ Mn), s is a polynomial of order m;
(ii) if m ≥ 2, s is m − 2 times continuously differentiable on [0,1].

According to Corollary 4.10 in Schumaker (1981), there is a local basis {Bnw,1 ≤
w ≤ qn} for Sm(�n), where qn = Mn + m is the dimension of Sm(�n). Let

Z(t;�n)
′ = (Bn1(t), . . . ,Bnqn(t))

and Z
(n) be the n × qn matrix whose ith row is Z(Ti;�n)

′. Any s ∈ Sm(�n) can
be written s(t) = Z(t;�n)

′a(n) for a qn × 1 vector a(n). We try to find the s in
Sm(�n) that is close to g. Under reasonable smoothness conditions, g can be well
approximated by elements in S. Thus, the problem of estimating g becomes that
of estimating a(n).

Given a > 2 and λ > 0, the SCAD penalty at θ is

pλ(θ;a) =
⎧⎨⎩

λ|θ |, |θ | ≤ λ,
−(θ2 − 2aλ|θ | + λ2)/[2(a − 1)], λ < |θ | ≤ aλ,
(a + 1)λ2/2, |θ | > aλ.

The SCAD penalty is continuously differentiable on (−∞,0) ∪ (0,∞) but sin-
gular at 0. Its derivative vanishes outside [−aλ, aλ]. As a consequence, SCAD
penalized regression can produce sparse solutions and unbiased estimates for large
coefficients. More details of the penalty can be found in Fan and Li (2001).

The penalized least squares objective function for estimating β(n) and a(n) with
the SCAD penalty is

Qn

(
b(n),a(n);λn, a,�n,m

)
(2)

= ∥∥Y − X
(n)b(n) − Z

(n)a(n)
∥∥2 + n

pn∑
j=1

pλn

(
b

(n)
j ;a).

Let (
β̂

(n)

n , α̂(n)
n

)= arg minQn

(
b(n),a(n);λn, a,�n,m

)
.

The SCAD-PLM estimators of β and g are β̂n and ĝn(t) ≡ Z(t;�n)
′α̂(n)

n , respec-
tively.

The polynomial splines were also used by Huang (1999) in the partially lin-
ear Cox models. Some computational conveniences were also discussed there. We
limit our search for the estimate of g to the space of polynomial splines of order m,
instead of the larger space of piecewise polynomials of order m, with the goal to
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find a smooth estimator of g. Unlike the basis pursuit in nonparametric regression,
no penalty is imposed on the estimator of the nonparametric part, as our interest
lies in the variable selection with regard to the parametric part.

For any b(n), the a(n) that minimizes Qn necessarily satisfies

Z
(n)′

Z
(n)a(n) = Z

(n)′(Y − X
(n)′b(n)).

Let P
(n)
Z = Z

(n)(Z(n)′
Z

(n))−1
Z

(n)′ be the projection matrix of the column space of
Z

(n). The profile objective function of the parametric part becomes

Q̃n

(
b(n);λn, a,�n,m

)= ∥∥(I −P
(n)
Z
)(

Y−X
(n)b(n))∥∥2 +n

pn∑
j=1

pλn

(
b

(n)
j ;a).(3)

Then, β̂
(n)

n = arg min Q̃n(b(n);λn, a,�n,m). Because the profile objective func-
tion does not involve a(n) and has an explicit form, it is useful for both theoretical
investigation and computation. We will use it to established the asymptotic prop-

erties of β̂
(n)

n . Computationally, this expression can be used to first obtain β̂
(n)

n .
Then, α̂

(n)
n can be computed using the resulting residuals as the response for the

covariate matrix Z
(n).

3. Asymptotic properties of the PLM-SCAD estimator. In this section we
state the results of the asymptotic properties of the PLM-SCAD estimator. First,
we define some notation. Let θ

(n)
j (t) = E[X(n)

j |T = t] for j = 1, . . . , pn. Let

the pn × pn conditional variance-covariance matrix of (X(n)|T = t) be 
(n)(t).
Let e(n) = X(n) − E[X(n)|T ]. We can write 
(n)(t) = Var(e(n)|T = t). Denote
the unconditional variance-covariance matrix of e(n) by �(n). We have �(n) =
E[
(n)(T )]. We assume the following conditions on the smoothness of g and
θ

(n)
j ,1 ≤ j ≤ pn.

CONDITION 1. There are absolute constants γθ > 0 and Mθ > 0, such that

sup
n≥1

sup
1≤j≤pn

∣∣θ(rθ )
nj (t2) − θ

(rθ )
nj (t1)

∣∣≤ Mθ |t2 − t1|γθ for 0 ≤ t1, t2 ≤ 1,

and the degree of the polynomial spline m − 1 ≥ rθ . Let sθ = rθ + γθ .

CONDITION 2. There exists an absolute constant σ4e, such that, for all n and
1 ≤ j ≤ pn,

E
[
e
(n)
j

4∣∣T ]≤ σ4e almost surely.

CONDITION 3. There are absolute constants γg > 0 and Mg > 0, such that∣∣g(rg)(t2) − g(rg)(t1)
∣∣≤ Mg|t2 − t1|γg for 0 ≤ t1, t2 ≤ 1,

with rg ≤ m − 1. Let sg = rg + γg .
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As in nonparametric regression, we allow Mn → ∞, but Mn = o(n). In ad-
dition, we assume that the tuning parameter λn → 0 as n → ∞. This is the as-
sumption adopted in nonconcave penalized regression [Fan and Peng (2004)]. For
convenience, all the other conditions required for the conclusions in this section
are listed here.

(A1) (a) limn→∞ p2
n/n = 0; (b) limn→∞ p2

nM
2
n/n2 = 0; (c) limn→∞ pn/

M
sθ
n = 0.
(A2) The smallest eigenvalue of �(n), denoted by λmin(�

(n)), satisfies

lim inf
n→∞ λmin

(
�(n))= cλ > 0.

(A3) λn = o(k
−1/2
n ).

(A4) lim infn→∞ min1≤j≤kn |β(n)
j | = cβ > 0.

(A5) Let λmax(�
(n)) be the largest eigenvalue of �(n). (a) lim

√
pnλmax(�(n))/

(
√

nλn) = 0; (b) lim
√

pnλmax(�(n))/(M
sg
n λn) = 0.

(A6) Suppose for all t in [0,1], tr(
(n)
11 (t)) ≤ tr(
(n)

u,11) and the latter satisfies

lim
√

tr(
(n)
u,11)M

−sg
n = 0 and lim tr(
(n)

u,11)Mn/n = 0.

(A7) lim
√

nM
−(sg+sθ )
n = 0.

THEOREM 1 (Consistency of β̂
(n)

). Under (A1)–(A2),∥∥β̂(n) − β(n)
∥∥= OP

(√
pn/n + M

−sg
n +√knλn

)
.

Thus, under (A1)–(A3), ‖β̂(n) − β(n)‖ P−→ 0.

This theorem establishes the consistency of the PLM-SCAD estimator of the
parametric part, without the local restriction in Theorem 1 of Fan and Peng (2004)
and Theorem 2 of Fan and Li (2004). (A1) requires the number of covariates con-
sidered not to increase at rates faster than

√
n and M

1/sθ
n . (A2) is a requirement for

model identifiability. It assumes that �(n) is positive definite, so that no random
variable of the form

∑pn

j=1 cjX
(n)
j , where cj ’s are constants, can be functionally

related to T . When pn increases with n, �(n) needs to be bounded away from any
singular matrix. The assumption about λn, (A3), says that λn should converge to 0
fast enough so that the penalty would not introduce any bias. The rate at which
λn goes to 0 only depends on kn. It is interesting to note that the smoothness in-
dex sg of g and the number of spline bases Mn affects the rate of convergence of

β̂
(n)

by contributing a term M
−sg
n . When pn is bounded and no SCAD penalty is

imposed (λn = 0), the convergence rate is O(n−1/2 + M
−sg
n ), which is consistent

with Theorem 2 of Chen (1988).
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Corresponding to the partition in (1), write β̂
(n) = (β̂

(n)′
1 , β̂

(n)′
2 )′, where β̂

(n)′
1

and β̂
(n)′
2 are vectors of length kn and mn, respectively. The theorem below shows

that all the covariates with zero coefficients can be detected simultaneously with
probability tending to 1, provided that λn does not converge to 0 too fast.

THEOREM 2 (Variable selection in X(n)). Assume all the e
(n)
j ’s support sets

are contained in a compact set in R. Under (A1)–(A5), limn→∞ P(β̂
(n)

2 = 0) = 1.

(A5) puts restriction on the largest eigenvalue of �(n). In general, λmax(�
(n)) =

O(pn), as can be seen from

λmax
(
�(n))< tr

(
�(n))≤ pn

√
σ4e.

There is the question of whether there exists a λn that satisfies both (A3) and (A5).
It can be checked that, if pn = o(n1/3), there exists λn, such that (A3) and (A5)
hold. When kn is bounded, the existence of such λn only requires that pn =
o(n1/2). This relaxation also holds for the case when λmax(�

(n)) is bounded from
above.

By Theorem 2, β̂
(n)

2 degenerates at 0mn , with probability converging to 1. We

now consider the asymptotic distribution of β̂
(n)

1 . According to the partition of β(n)

in (1), write X
(n) and �(n) in the block form:

X
(n) = (

X
(n)
1︸︷︷︸

n×kn

X
(n)
2︸︷︷︸

n×mn

)
, �(n) =

( kn mn

kn �
(n)
11 �

(n)
12

mn �
(n)
21 �

(n)
22

)
.

Let An be a nonrandom ι × kn matrix with full row rank, and


n = n2An

[
X

(n)′
1

(
I − P

(n)
Z
)
X

(n)
1

]−1
�

(n)
11

[
X

(n)′
1

(
I − P

(n)
Z
)
X

(n)
1

]−1A′
n.

THEOREM 3 (Asymptotic distribution of β̂
(n)

). Suppose that all the support
sets of e

(n)
j ’s are contained in a compact set in R, j = 1, . . . , pn. Then, un-

der (A1)–(A7),
√

n
−1/2
n An

(
β̂

(n)

1 − β
(n)
1

) d−→ N(0ι, σ
2Iι).(4)

The asymptotic distribution result can be used to construct asymptotic confidence
intervals for any fixed number of coefficients simultaneously.

In (4), we used the inverse of X
(n)′
1 (I − P

(n)
Z )X

(n)
1 and that of 
n. Under as-

sumption (A2), by Theorem 4.3.1 in Wang and Jia (1993), the smallest eigenvalue
of �

(n)
11 is no less than cλ and bounded away from 0. By Lemma 1 in the Appendix,

X
(n)′
1 (I − P

(n)
Z )X

(n)
1 is invertible with probability tending to 1. The invertibility of


n then follows from the full row rank restriction on An.
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(A6) may appear a little abrupt. It requires
∑kn

j=1 Var(e(n)
j |T = t) to be less than

the trace of a kn × kn matrix 

(n)
u,11 as t ranges over [0,1], which is considerably

weaker than the assumption that 

(n)
u,11 − 


(n)
11 (t) is a nonnegative definite matrix

for any t ∈ [0,1]. We can also replace tr(
(n)
u,11) by kn in the assumption, since

for all t ,
∑kn

j=1 Var(e(n)
j |T = t) ≤ kn

√
Ce. (A7) requires that g and θ

(n)
j be smooth

enough. Intuitively, a smooth g makes it easier to estimate β . The smoothness
requirement on θ

(n)
j also makes sense, since this helps to remove effect of T on

X
(n)
j , and the estimation of β is based on the relationship

Y − E[Y |T ] = (X − E[X|T ])β + ε.

We now consider the consistency of ĝn. Suppose that T is an absolutely contin-
uous random variable on [0,1] with density fT . We use the L2 distance

‖ĝn − g‖T =
{∫ 1

0
[ĝn(t) − g(t)]2fT (t) dt

}1/2

.

This is the measure of distance between two functions that were used in Stone
(1982, 1985). If our interest is confined to the estimation of β(n), we should choose
large Mn, unless computing comes into consideration. However, too large an Mn

would introduce too much variation and is detrimental to the estimation of g.

THEOREM 4 (Rate of convergence of ĝn). Suppose Mn = o(
√

n), fT (t) is
bounded away from 0 and infinity on [0,1] and E[ε4] < ∞. Under (A1)–(A5),

‖ĝn − g‖T = OP

(
kn/

√
n +√Mn/n +√knM

−sg
n

)
.

In the special case of bounded kn, Theorem 4 simplifies to the well-known
result in nonparametric regression: ‖ĝn − g‖T = OP (

√
Mn/n + M

−sg
n ). When

Mn ∼ n−1/(2sg+1), the convergence rate is optimal. However, the feasibility of such

a choice requires sg > 1/2. To have the asymptotic normality of β̂
(n)

1 hold simul-
taneously, we also need sθ > 1/2. In the diverging kn case, the rate of convergence
is determined by kn, pn, Mn, sg and sθ jointly. With appropriate sg , sθ and pn, the

rate of convergence can be n−1/2kn + k
1/(4sg+2)
n n−sg/(2sg+1).

4. Computation. The computation of the PLM-SCAD estimator involves the
choice of λn. We first consider the estimation, as well as the standard error approx-
imation of the estimator with a given λn, and then describe the generalized cross
validation approach to choose appropriate λn in the PLM.

The computation of (β̂
(n)

, ĝn) requires the minimization of (2). The projection
approach adopted here converts this problem to the minimization of (3). In partic-
ular, given m and a partition �n, a basis of Sm(�n) is given by (Bn1, . . . ,Bnqn).



HIGH-DIMENSIONAL PLM 681

The basis functions are evaluated at Ti, i = 1, . . . , n, and form Zn. In Splus
or R, this can be realized with the bs function. Regress each column of X

(n)

and Y on Zn separately. Denote the residuals by X̃
(n) and Ỹ. The minimiza-

tion of (3) is now a nonconcave penalized regression problem, with observa-
tions (X̃(n), Ỹ). So, the minorize–maximize (MM) algorithm described in Hunter

and Li (2005) can be used to compute β̂
(n)

. We also standardize the columns of
X̃

(n), so the covariates with smaller variations will not be discriminated against.

Once we have computed β̂
(n)

, the value of g at any t ∈ [0,1] is estimated by

ĝn(t) = Z(t;�n)
′(Z(n)′

Z
(n))−1

Z
(n)′(Y − X

(n)β̂
(n)

).

The standard errors of the nonzero components of β̂
(n)

can be derived from the
Hessian matrix. For details, see Hunter and Li (2005) or Fan and Li (2001).

We choose λn by minimizing the generalized cross validation score [Wahba
(1990)] and fix a = 3.7, as suggested by Fan and Li (2001). Our preference of
GCV over CV stems from as much its computation advantage as its comparable
performance to CV in model selection, which have been discussed in Tibshirani
(1996) and Kim, Kim and Kim (2006).

Note that here we use fixed partition �n and m in estimating the nonparamet-
ric component g. Data-driven choice of them may be desirable, which inevitably
requires a good estimator of β(n). In our simulations, m = 4 (cubic splines) and
Mn ≤ 3 with even partition of [0,1] serves the purpose well.

5. Numerical studies. In this section, we illustrate the PLM-SCAD estima-
tor’s finite sample properties with examples. Examples 1 is a simulated example,
and Example 2 explores a real data set. Throughout, we use m = 4, Mn = 3 and
the sample quantiles of Ti’s as the knots.

EXAMPLE 1. In this study, we simulate n = 100 points Ti, i = 1, . . . ,100,
from the uniform distribution on [0,1]. For each i, eij ’s are simulated to be nor-
mally distributed with autocorrelated variance structure AR(ρ), such that

Cov(eij , eil) = ρ|j−l|, 1 ≤ j, l ≤ 10.

Xij ’s are then formed as follows:

Xi1 = sin(2Ti) + ei1, Xi2 = (0.5 + Ti)
−2 + ei2,

Xi3 = exp(Ti) + ei3, Xi5 = (Ti − 0.7)4 + ei5,

Xi6 = Ti(1 + T 2
i )−1 + ei6, Xi7 =√

1 + Ti + ei7,

Xi8 = log(3Ti + 8) + ei8, Xij = eij , j = 4,9,10.

The response Yi is computed as

Yi =
10∑

j=1

Xijβij + g(Ti) + εi, i = 1, . . . ,100,
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where βj = j , 1 ≤ j ≤ 4, βj = 0, 5 ≤ j ≤ 10, and εi ’s are sampled from N(0,1).
For each ρ = 0,0.2,0.5,0.8, we generated N = 100 data sets. For comparison,
we apply the SCAD penalized regression method, treating Ti as a linear predic-
tor like Xij ’s. The corresponding estimator is abbreviated as LS-SCAD estimator.
Also, profile least squares without variable selection (PLM), profile least squares
using AIC for variable selection (PLM-AIC) and partially linear regression using
Lasso (PLM-LASSO) are applied for comparison. We investigate two different
g(·) functions: Scenario 1, g(t) = cos(t), and Scenario 2, g(t) = cos(2πt).

The results are summarized in Tables 1 and 2. Columns 3–6 in Table 1 are
the averages of the estimates of βj , j = 1, . . . ,4, respectively. Column 7 is the
number of estimates of βj , 5 ≤ j ≤ 10, that are 0, averaged over 100 simulations,
and their medians are given in column 8. Column 9 only makes sense for the
LS-SCAD estimator. It gives the percentage of times in the 100 simulations in
which the coefficient estimate of T equals 0. Model errors are computed as (β̂ −
β)′ Cov(X)(β̂ − β). Their medians are listed in the last column, followed by the
model errors’ standard deviations in parentheses.

In Scenario 1, the nonparametric part g(T ) = cos(T ) can be fairly well ap-
proximated by a linear function on [0,1]. As a result, the LS-SCAD estimator
is expected to give good estimates. It is shown in Table 1 that the estimates
of βj ,1 ≤ j ≤ 4, are all very close to the underlying values. LS-SCAD and
PLM-SCAD pick out the covariates with zero coefficients efficiently. LS-SCAD
has similar performance to the PLM-AIC and PLM-SCAD in variable selection.
On average, each time 83% of the covariates with zero coefficients are selected,
and none of the covariates with nonzero coefficients are incorrectly chosen as triv-
ial in the 100 simulations. PLM-LASSO already significantly shrinks the estimates
before detecting all the coefficients equal to 0. In each design setting, about 2/3
of the time, the LS-SCAD method attributes no effect to T , which does have a
quasi-linear effect on Y . This is due to the relatively small variation caused in
g(T ) (with a range less than 0.5), compared with the random variation. Despite
this, it performs best with respect to the model error associated with the X part.
PLM-SCAD outperforms PLM-AIC in model errors and is more competent than
PLM-LASSO in variable selection.

In Scenario 2, g(T ) = cos(2πT ). This change in g(T ) makes it hard to have a
linear approximation of g(T ) on [0,1]. So, the LS-SCAD estimator is expected to
fail in this situation. Besides, the variation in g(·) (with a range of 2) is relatively
large compared to the variation in the error term. Thus, misspecification of g(T )

introduces bias in estimating β . In columns 3–6, with respect to the LS-SCAD es-
timator, the estimates of the nonzero coefficients are clearly biased, and the biases
become larger as the correlation between covariates increases.

Table 2 summarizes the performance of the sandwich estimator of the stan-
dard error of the PLM-SCAD estimator for Scenario 1. Columns 2, 4, 6 and 8 are
the standard errors of βj ,1 ≤ j ≤ 4, in the 100 simulations, respectively, while
columns 3, 5, 7 and 9 are the average of the standard deviation estimates of these
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TABLE 1
Example 1, comparison of estimators

Estimator ρ β1 β2 β3 β4 K ˜K %(ĝ(T ) = 0) MME(×10−2) (SD)

Scenario 1
LS-SCAD 0 0.982 2.006 2.981 4.002 4.66 5 70 5.48 (4.41)

0.2 1.003 1.997 2.980 3.998 4.36 5 53 6.95 (5.11)

0.5 1.012 1.997 2.974 4.014 4.40 5 57 7.63 (6.24)

0.8 1.034 2.004 2.938 4.028 4.61 5 66 9.74 (10.23)

PLM 0 0.988 1.984 3.001 4.005 0 0 0 11.62 (5.91)

0.2 1.015 1.970 3.004 3.998 0 0 0 12.03 (5.69)

0.5 1.026 1.965 3.005 3.996 0 0 0 12.29 (6.47)

0.8 1.048 1.948 3.008 3.994 0 0 0 15.19 (11.40)

PLM-AIC 0 0.989 1.984 2.998 4.005 4.89 5 0 9.22 (5.89)

0.2 1.019 1.969 3.007 3.998 4.75 5 0 9.44 (5.88)

0.5 1.027 1.964 3.009 4.001 4.78 5 0 10.32 (6.45)

0.8 1.046 1.949 3.009 4.005 4.81 5 0 13.19 (10.78)

PLM-LASSO 0 0.937 1.934 2.946 3.952 2.42 2 0 8.00 (5.89)

0.2 0.971 1.935 2.971 3.951 2.48 2 0 8.98 (5.31)

0.5 0.991 1.947 2.992 3.951 2.92 3 0 8.44 (5.68)

0.8 1.045 1.939 3.011 3.928 3.56 4 0 10.52 (10.58)

PLM-SCAD 0 0.988 1.985 2.999 4.004 4.49 5 0 6.27 (5.50)

0.2 1.017 1.970 3.007 3.997 4.46 5 0 6.78 (5.11)

0.5 1.027 1.965 3.009 3.998 4.69 5 0 7.56 (6.07)

0.8 1.045 1.948 3.014 4.001 4.78 5 0 12.33 (11.03)

Scenario 2
LS-SCAD 0 0.923 2.147 3.066 3.997 4.55 5 67 14.53 (9.47)

0.2 0.925 2.145 3.033 3.968 4.55 5 72 12.05 (10.72)

0.5 0.857 2.216 3.005 3.935 4.43 5 58 15.74 (17.65)

0.8 0.606 2.559 2.916 3.871 4.64 5 23 59.70 (59.16)

PLM 0 0.988 1.984 3.001 4.005 0 0 0 11.65 (5.93)

0.2 1.015 1.970 3.004 3.998 0 0 0 11.97 (5.70)

0.5 1.026 1.965 3.005 3.996 0 0 0 12.31 (6.49)

0.8 1.048 1.948 3.008 3.994 0 0 0 15.17 (11.41)

PLM-AIC 0 0.989 1.984 2.998 4.005 4.89 5 0 9.39 (5.92)

0.2 1.019 1.969 3.007 3.998 4.75 5 0 9.44 (5.93)

0.5 1.027 1.964 3.009 4.001 4.78 5 0 10.17 (6.48)

0.8 1.046 1.949 3.009 4.005 4.81 5 0 13.17 (10.75)

PLM-LASSO 0 0.937 1.934 2.946 3.952 2.44 2.5 0 7.99 (5.91)

0.2 0.971 1.935 2.971 3.951 2.46 3 0 8.93 (5.32)

0.5 0.991 1.947 2.992 3.951 2.90 3 0 8.44 (5.72)

0.8 1.045 1.939 3.011 3.928 3.53 4 0 10.62 (10.56)

PLM-SCAD 0 0.988 1.985 2.999 4.004 4.49 5 0 6.29 (5.54)

0.2 1.017 1.970 3.007 3.997 4.46 5 0 6.76 (5.10)

0.5 1.027 1.965 3.009 3.998 4.69 5 0 7.57 (6.09)

0.8 1.045 1.948 3.014 4.001 4.78 5 0 12.70 (11.02)
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TABLE 2
Example 1, standard errors of the PLM-SCAD estimates

ρ SD(β1) ŝe(β1) SD(β2) ŝe(β2) SD(β3) ŝe(β3) SD(β4) ŝe(β4)

0 0.0954 0.0947 0.1062 0.0975 0.0988 0.0970 0.1058 0.0966
0.2 0.1003 0.0965 0.0911 0.1007 0.1067 0.0993 0.1113 0.0991
0.5 0.1132 0.1102 0.1128 0.1249 0.1264 0.1248 0.1318 0.1139
0.8 0.1590 0.1608 0.1922 0.2062 0.2024 0.2073 0.2116 0.1773

coefficients, obtained via the Hessian matrices. It is seen that the sandwich estima-
tor of the standard error works well, though it slightly underestimates the sampling
variation.

We have also examined the behavior of the PLM-SCAD estimator of g(·) in
Scenario 2. The estimator performs well and is globally close to the true curves
(plot not shown). In particular, its performance gets better as ρ decreases.

EXAMPLE 2. The PLM-SCAD estimation is implemented in the analysis of
the workers’ wage data from Berndt (1991). This data set contains the wage infor-
mation of 534 workers and their education, living region, gender, race, occupation
and marriage status information. Also given are their years of experience. It is not
appropriate to assume a linear relationship between years of experience and wage
level. However, the main concern is how important the other variables are to wage.
In particular, we consider

Yi = g(Ti) +
14∑

j=1

Xijβj + εi, i = 1, . . . ,534,

where Yi is the ith worker’s wage, Ti is his years of experience, Xij is his j th
variable and εi ’s are i.i.d variables with mean 0 and finite variance. There are 14
covariates besides the years of experience. Brief description of the variables, as
well as the PLM-SCAD estimates of βj ’s, can be found in Table 3. As a compari-
son, the estimates of βj from the unpenalized PLM and Lasso-penalized PLM are
given in the third and fourth columns, respectively. PLM-SCAD selects 10 of the
14 covariates, while PLM-LASSO keeps 12.

6. Discussion. In this paper, we studied the SCAD-penalized method for vari-
able selection and estimation in the PLM with a divergent number of covariates.
B-spline basis functions are used for fitting the nonparametric part. Variable selec-
tion and coefficient estimation in the parametric part are achieved simultaneously.
The oracle property of the PLM-SCAD estimator of the parametric part was es-
tablished, and consistency of the PLM-SCAD estimator of the nonparametric part
was shown.
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TABLE 3
Wage data example

Variable Description ̂β (SE) ̂βLASSO (SE) ̂βSCAD (SE)

X1 Number of years of education 0.621 (0.102) 0.616 (0.086) 0.645 (0.092)

X2 1 = southern region, 0 = other −0.451 (0.417) −0.313 (0.221) −0.206 (0.153)

X3 1 = Female, 0 = Male −1.956 (0.417) −1.790 (0.334) −2.010 (0.388)

X4 1 = union member, 1.602 (0.508) 1.343 (0.382) 1.374 (0.419)

0 = nonmember
X5 1 = black, 0 = other −0.869 (0.574) −0.516 (0.284) −0.428 (0.233)

X6 1 = Hispanic, 0 = other −0.588 (0.868) −0.088 (0.060) 0 (−)
X7 1 = management, 0 = other 3.433 (0.796) 2.909 (0.523) 3.316 (1.021)

X8 1 = sales, 0 = other −0.498 (0.855) −0.311 (0.192) −0.057 (0.047)

X9 1 = clerical, 0 = other 0.149 (0.683) 0 (−) 0 (−)
X10 1 = service, 0 = other −0.468 (0.680) −0.494 (0.275) −0.223 (0.148)

X11 1 = professional, 0 = other 2.143 (0.731) 1.781 (0.432) 2.011 (0.526)

X12 1 = manufacturing, 0 = other 1.162 (0.595) 0.799 (0.329) 0.843 (0.278)

X13 1 = construction, 0 = other 0.678 (0.962) 0.075 (0.048) 0 (−)
X14 1 = married, 0 = other −0.008 (0.421) 0 (−) 0 (−)

Notes. Columns 3–5 are the estimates of βj , j = 1, . . . ,14. Their corresponding standard errors are
given in parentheses following them.

We have focused on the case where there is one variable in the nonparametric
part. Nonetheless, this may be extended to the case of d covariates T1, . . . , Td .
Specifically, consider the model

Y = X(n)′β(n) + g(T1, . . . , Td) + ε.(5)

The PLM-SCAD estimator (β̂
(n)

, ĝn) can be obtained via

min
(b(n)∈Rpn ,φ∈S)

{
n∑

i=1

(
Yi − X(n)′

i b(n) − φ
)2 + n

pn∑
j=1

pλn

(
b

(n)
j ;a)}.

Here, S is the space of all the d-variate functions on [0,1]d that meet some require-
ment of smoothness. In particular, we can take S to be the space of the products
of the B-spline basis functions, then project X

(n) and Y onto this space with this
basis and perform the SCAD-penalized regression to Ỹ on X̃

(n). This has already
been discussed in Friedman (1991). However, for large d and moderate sample
size, even with very small Mn, this model may suffer from the “curse of dimen-
sionality.”

A more parsimonious extension is the partially linear additive model (PLAM)

Y = μ + X(n)′β(n) +
d∑

l=1

gl(Tl) + ε,(6)

where E[gl(Tl)] = 0 holds for l = 1, . . . , d . To estimate β and gl , for each Tl , we
first determine the partition �nl . For simplicity, we assume that the numbers of
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knots are Mn and the mesh sizes are O(M−1
n ) for all l. Suppose that X and Y are

centered. The PLAM–SCAD estimator (β̂
(n)

, ĝn1, . . . , ĝn1) is then defined to be
the minimizer of

n∑
i=1

[
Yi − X(n)′

i b(n) −
d∑

l=1

φl(Til)

]2

+ n

pn∑
j=1

pλn

(
b

(n)
j ;a),

subject to
∑n

i=1 φl(Til) = 0 and φl is an element of Sm(�nl).

Under the assumptions similar to those for the PLM-SCAD estimator, β̂
(n)

can
be shown to possess the oracle property. Furthermore, if the joint distribution of
(T1, . . . , Td) is absolutely continuous and its density is bounded away from 0 and
infinity on [0,1]d , following the proof of Lemma 7 in Stone (1985) and that of
Theorem 4 here, we can obtain the same global consistency rate for each additive
component, that is,

‖ĝnl − gl‖Tl
= OP

(
kn/

√
n +√Mn/n +√knM

−sg
n

)
, l = 1, . . . , d.

One way to compute the PLAM-SCAD estimator is the following. First, form the
B-spline basis {Bnw,1 ≤ w ≤ qn} as follows: the first Mn +m− 1 components are
the B-spline basis functions corresponding to T1 ignoring the intercept, the second
Mn + m − 1 components corresponding to T2, and so on. The intercept is the last
component. So here, qn = dMn + dm − d + 1. Now computation can proceed in a
similar way to that for the PLM-SCAD estimator.

Our results require that pn < n. While this condition is often satisfied in appli-
cations, there are important settings in which it is violated. For example, in studies
with microarray data as covariate measurements, the number of genes (covariates)
is typically greater than the sample size. Without any further assumptions on the
structure of covariate matrix, the regression parameter is in general not identifi-
able if pn > n. It is an interesting topic of future research to identify conditions
under which the PLM-SCAD estimator achieves consistent variable selection and
asymptotic normality, even when pn > n.

APPENDIX

Before embarking on proving the asymptotic results, we give an overview of
how the proofs are related to those in Fan and Peng (2004). In their work, the sub-
ject under study is a local minimizer of the objective function. We look for con-
ditions when the global minimizer enjoys the desirable properties. In the absence
of a nonparametric term, Huang, Horowitz and Ma (2008) solved this problem for
the bridge estimator. Identifiability of each component in X is a basic requirement
in both works. The partial residual approach changes the partially linear model to
a linear model by smoothing out the effect of T . Identifiability requires that none
of the components in X or any of their linear combinations vanish after smooth-
ing. With a divergent p, uniformness among the components of X in smoothness
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is necessary. Once a certain convergence rate is assured, the proofs for Theorems
2 and 3 are similar to their proofs for consistent variable selection and efficient
estimation. The proof of Theorem 4 combines the results in Stone (1985) about
the convergence rate of nonparametric regression and the oracle property obtained
in this paper.

We now give the proofs of the results stated in Section 3. Write

X
(n) = (Xij ) i = 1, . . . , n

j = 1, . . . , pn

= (
θ

(n)
j (Ti)

)
i = 1, . . . , n

j = 1, . . . , pn

+ (e(n)
ij

)
i = 1, . . . , n

j = 1, . . . , pn

� θ (n)(T) + En,

and I − P
(n)
Z is written as W for simplicity.

LEMMA 1. Under (A1), ‖X
(n)′WX

(n)/n − �(n)‖ P−→ 0.

PROOF. For simplicity, write A(n) = X
(n)′WX

(n)/n and C(n) = A(n) − �(n).
Note that X

(n)
·j = e(n)

·j + θnj (T), where e(n)
·j = (e

(n)
1j , . . . , e

(n)
nj )′.

∣∣C(n)
j l

∣∣= ∣∣∣∣(e(n)′
·j e(n)

·l
n

− �
(n)
jl

)
+ e(n)′

·j P
(n)
Z e(n)

·l
n

+ e(n)′
·j Wθ

(n)
l (T)

n

+ e(n)′
·l Wθ

(n)
j (T)

n
+ θ

(n)
j (T)′Wθ

(n)
l (T)

n

∣∣∣∣.
By Condition 2, E[n−1e(n)′

·j e(n)
·l − �

(n)
jl ]2 = n−1 Var(e(n)

j e
(n)
l ) ≤ n−1σ4e, since

E
[
n−1e(n)′

·j P
(n)
Z e(n)

·j
]2 = n−2E

{
E
[(

e(n)′
·j P

(n)
Z e(n)

·j
)2|Z(n)]}

= n−2E

{
n∑

i=1

n∑
i′=1

n∑
ι=1

n∑
ι′=1

Pii′Pιι′E
[
e
(n)
ij e

(n)
i′j e

(n)
ιj e

(n)
ι′j |Z(n)]},

and

Pii′Pιι′E
[
e
(n)
ij e

(n)
i′j e

(n)
ιj e

(n)
ι′j |Z(n)]=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

PiiPιι

(n)
jj (Ti)


(n)
jj (Tι), i = i′ 
= ι = ι′,

P 2
ii′


(n)
jj (Ti)


(n)
jj (Ti′), i = ι 
= i′ = ι′,

P 2
ii′


(n)
jj (Ti)


(n)
jj (Ti′), i = ι′ 
= i ′ = ι,

P 2
iiE
[
e
(n)
ij

4|Ti

]
, i = i′ = ι = ι′,

0, otherwise,

together with 

(n)
jj (Ti) ≤ σ

1/2
4e and P

(n)
Z,ii ≤ 1, we have

E
[
n−1e(n)′

·j P
(n)
Z e(n)

·j
]2 ≤ n−2σ4e

{
E
[
tr2(P (n)

Z
)]+ 2E

[
tr
(
P

(n)
Z

2)]}
+ n−2σ4eE

[
tr
(
P

(n)
Z
)]

≤ n−2σ4e(q
2
n + 3qn).
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By Corollary 6.21 in Schumaker (1981) and the properties of least square regres-
sion,

E
[
n−1θ

(n)
j (T)Wθ

(n)
j (T)

]≤ C1Mθ(�n)
2sθ ,

where C1 is a constant determined only by rθ . By the Cauchy–Schwarz inequality
and Cr inequality, we have∥∥C(n)

∥∥2 = OP (p2
n/n + p2

nM
2
n/n2 + p2

nM
−2sθ
n ).

The convergence follows from (A1). �

LEMMA 2. E[tr(X(n)′WX
(n))] = O(npn).

PROOF. We have

E
[
tr
(
X

(n)′WX
(n))]

= E
[
tr
([

E
(n) + θ (n)(T)

]′W[
E

(n) + θ (n)(T)
])]

= E
[
tr
(
E

(n)′WE
(n) + 2E

(n)′Wθ (n)(T) + θ (n)(T)′Wθ (n)(T)
)]

= E
{
E
[
tr
(
E

(n)′WE
(n) + 2E

(n)′Wθ (n)(T) + θ (n)(T)′Wθ (n)(T)
)|T]}

= E
{
E
[
tr
(
E

(n)′WE
(n))|T]}+ E

[
tr
(
θ (n)(T)′Wθ (n)(T)

)]
≤ E

{
E
[
tr
(
E

(n)′WE
(n))|T]}+ C1npnMθM

−2sθ
n

= E

{
E

[ pn∑
j=1

e(n)′
·j We(n)

·j
∣∣∣T]}+ C1npnMθM

−2sθ
n

= E

[ pn∑
j=1

tr
(
W


(n)
jj (T)

)]+ C1npnMθM
−2sθ
n

≤ npnσ
1/2
4e + C1npnMθM

−2sθ
n , tr(AB) ≤ λmax(B) tr(A).

Here, 

(n)
jj (T) = diag(


(n)
jj (T1), . . . ,


(n)
jj (Tn)). �

PROOF OF THEOREM 1. Let ε = (ε1, . . . , εn)
′ and g(T) = (g(T1), . . . ,

g(Tn))
′. Since β̂

(n)
minimizes Qn(b(n)), it necessarily holds that Qn(β̂

(n)
) ≤

Qn(β
(n)). Rewriting this inequality, we have∥∥WX

(n)(β̂(n) − β(n))∥∥2 − 2
(
ε + g(T)

)′WX
(n)(β̂(n) − β(n))≤ nkn

2
(a + 1)λ2

n.

Let δn = n−1/2[X(n)′WX
(n)]1/2(β̂

(n) − β(n)), and

ωn = n−1/2[
X

(n)′WX
(n)]−1/2

X
(n)′W

(
ε + g(T)

)
.
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Then, ‖δn − ωn‖2 ≤ ‖ωn‖2 + 0.5kn(a + 1)λ2
n. By the Cr inequality,

‖δn‖2 ≤ 2(‖δn − ωn‖2 + ‖ωn‖2) ≤ 4‖ωn‖2 + kn(a + 1)λ2
n.

Examine

‖ωn‖2 = n−1(ε + g(T))′WX
(n)[

X
(n)′WX

(n)]−1
X

(n)′W
(
ε + g(T)

)
� In1 + In2 + In3,

where

In1 = n−1ε′WX
(n)[

X
(n)′WX

(n)]−1
X

(n)′Wε,

In2 = 2n−1ε′WX
(n)[

X
(n)′WX

(n)]−1
X

(n)′Wg(T),

In3 = n−1g(T)′WX
(n)[

X
(n)′WX

(n)]−1
X

(n)′Wg(T).

Now, In1 = E[E(In1|X(n),T)]OP (1) = pnn
−1OP (1). By the property of projec-

tion matrices,

In3 ≤ n−1g(T)′Wg(T) = M
−2sg
n O(1).

Thus, ‖ωn‖2 = OP (pn/n + M
−2sg
n ). Furthermore,∥∥β̂(n) − β(n)
∥∥2 = OP (pn/n + M

−2sg
n + knλ

2
n)

follows from Lemma 1 with (A2). Thus, (A3) immediately leads to the consistency.
�

LEMMA 3 (Rate of convergence). Suppose (A1)–(A4) hold. Then,∥∥β̂(n) − β(n)
∥∥= OP

(√
pn/n + √

pn/M
sg
n

)
.

PROOF. Let un = √
pn/n+M

−sg
n +√

knλn. When un = o(min1≤j≤kn |β(n)
j |),

with probability tending to 1, min1≤j≤kn |β̂(n)
j | > aλn. Given a sequence

{hn :hn > 0} that converges to 0, partition Rpn \ {0pn} into shells {Sn,l, l =
0,1, . . .}, where Sn,l = {b(n) : 2l−1hn ≤ ‖b(n) − β(n)‖ < 2lhn}. Then,

P
(∥∥β̂(n)

n − β(n)
∥∥≥ 2Lhn

)
≤ o(1) + ∑

l>L

2lhn≤2L1un

P
(
β̂

(n)

n ∈ Sn,l,
∥∥C(n)

∥∥≤ c/2
)

≤ o(1) + ∑
l>L

2lhn≤2L1un

P

(
inf

b(n)∈Sn,l

Qn

(
b(n))≤ Qn

(
β(n)),∥∥C(n)

∥∥≤ cλ

2

)
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≤ o(1) +∑
l>L

P

(
sup

b(n)∈Sn,l

2
(
ε + g(T)

)′WX
(n)(b(n) − β(n))

≥ inf
b(n)∈Sn,l

(
b(n) − β(n))′

X
(n)′WX

(n)(b(n) − β(n)),
∥∥C(n)

∥∥≤ cλ

2

)
≤∑

l>L

P

(
sup

b(n)∈Sn,l

(
ε + g(T)

)′WX
(n)(b(n) − β(n))≥ 22l−4ncλh

2
n

)
+ o(1),

since

E sup
b(n)∈Sn,l

∣∣(ε + g(T)
)′WX

(n)(b(n) − β(n))∣∣
≤ 2lhn

√
E
[(

ε + g(T)
)′WX(n)X(n)′W

(
ε + g(T)

)]
≤ 2l+1/2hn

√
E
[
ε′WX(n)X(n)′Wε

]+ E
[
g(T)′WX(n)X(n)′Wg(T)

]
≤ 2l+1/2hn

√
C3npn + E

[
g(T)′Wg(T) tr

(
X(n)X(n)′W

)]
≤ 2lhnC4

(√
npn + n

√
pnM

−sg
n

)
.

Continuing the previous arguments, by the Markov inequality,

P
(∥∥β̂(n)

n − β(n)
∥∥≥ 2Lhn

)≤ o(1) +∑
l>L

C5(
√

pn + √
npnM

−sg
n )

2l−4hn

√
n

.

This shows that ‖β̂(n) − β(n)‖ = OP (
√

pn/n + √
pn/M

sg
n ). �

PROOF OF THEOREM 2. Consider the partial derivatives of Qn(β
(n) + v(n)).

We assume ‖v(n)‖ = OP (
√

pn/n + √
pnM

−sg
n ). Suppose the support sets of e

(n)
j

are all contained in a compact set [−Ce,Ce]. For j = kn + 1, . . . , pn, if ‖v(n)‖ ≤
λn,

∂Qn(β
(n) + v(n))

∂ v
(n)
j

= 2X
(n)′
·j WX

(n)v(n) + 2X
(n)′
·j W

(
ε + g(T)

)+ nλn sgn
(
v

(n)
j

)
� IIn1,j + IIn2,j + IIn3,j .

max
kn+1≤j≤pn

|IIn1,j | = 2
∣∣X(n)′

·j WX
(n)v(n)

∣∣
≤ 2

∥∥v(n)
∥∥ max

kn+1≤j≤pn

∥∥X(n)′
·j WX

(n)
∥∥
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≤ (√
pn/n + √

pnM
−sg
n

)
OP (1)

× max
kn+1≤j≤pn

∥∥WX
(n)
·j
∥∥λ1/2

max
(
X

(n)′WX
(n))

= (√
pnn + n

√
pnM

−sg
n

)
OP (1)

√
λmax

(
�(n)

)+ oP (1)

=
√

pn(n + n2M
−2sg
n )λmax

(
�(n)

)
OP (1).

So, this term is dominated by 1
2 IIn3,j , as long as

lim

√
nλn√

pnλmax(�(n))
= ∞ and lim

λnM
sg
n√

pnλmax(�(n))
= ∞,

both of which are stated in (A5). To sift out all the trivial components, we need

P

(
max

kn+1≤j≤pn

|IIn2,j | > nλn/2
)

→ 0.

This is also implied by (A5), as can be seen from

P

(
max

kn+1≤j≤pn

|IIn2,j | > nλn/2

)

≤ 2E[maxkn+1≤j≤pn |IIn2,j |]
nλn

≤
2
√∑pn

j=kn+1 E[II2
n2,j ]

nλn

≤ 2
√

2
√∑pn

j=kn+1{E[ε′WX
(n)
j X

(n)′
j Wε] + E[g(T)′WX

(n)
j X

(n)′
j Wg(T)]}

nλn

≤ C1

√
nmn + nM

−2sg
n nmn

nλn

.

The proof is now complete. �

PROOF OF THEOREM 3. Let An be any ι × kn matrix with full row rank and

n = AnA′

n. From the variable selection conclusion, with probability tending to 1,
we have

β̂
(n)

1 − β
(n)
1 = [

X
(n)′
1 WX

(n)
1

]−1
X

(n)′
1 W

(
g(T) + ε

)
.
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We consider the limit distribution of

Vn = n−1/2
−1/2
n An�

(n)
11

−1/2[
X

(n)′
1 WX

(n)
1

](
β̂

(n)

1 − β
(n)
1

)
= n−1/2
−1/2

n An�
(n)
11

−1/2
X

(n)′
1 W

(
g(T) + ε

)
� In1 + In2,

where

In1 = n−1/2
−1/2
n An�

(n)
11

−1/2
X

(n)′
1 Wg(T)

and

In2 = n−1/2
−1/2
n An�

(n)
11

−1/2
X

(n)′
1 Wε.

Note that the conclusion of Theorem 3 is equivalent to Vn
d→ N(0ι, σ

2Iι). The first
term In1 is a oP (1) term under (A6) and (A7), as shown in

In1 = n−1/2
−1/2
n An�

(n)
11

−1/2
E

(n)′
1 Wg(T)

+ n−1/2
−1/2
n An�

(n)
11

−1/2
θ

(n)′
1 (T)Wg(T),

= IIn1 + IIn2,

where

‖IIn1‖2 = E‖IIn1‖2OP (1)

= n−1E
[
g(T)′WE

(n)
1 �

(n)
11

−1/2
A′

n

−1
n An�

(n)
11

−1/2
E

(n)′
1 Wg(T)

]
OP (1)

= n−1E
{
g(T)′WE

[
E

(n)
1 �

(n)
11

−1/2
A′

n

−1
n An�

(n)
11

−1/2
E

(n)′
1 |T]Wg(T)

}
× OP (1)

≤ n−1E
{
g(T)′WE

[
E

(n)
1 �

(n)
11

−1
E

(n)′
1 |T]Wg(T)

}
OP (1)

= n−1E
{
g(T)′W Diag

(
tr
(
�

(n)
11

−1



(n)
11 (T1)

)
, . . . ,

tr
(
�

(n)
11

−1



(n)
11 (Tn)

))
Wg(T)

}
OP (1)

≤ n−1‖Wg(T)‖2 tr
(



(n)
u,11

)
= tr

(



(n)
u,11

)
M

−2sg
n OP (1) = oP (1)

and

‖IIn2‖2 ≤ n−1‖Wg(T)‖2λmax
(
Wθ

(n)
1 (T)�

(n)
11

−1
Wθ

(n)′
1

)
≤ n−1‖Wg(T)‖2∥∥Wθ

(n)
1

∥∥2 = n−1nM
−2sg
n nM−2sθ

n O(1)

= nM
−2(sg+sθ )
n O(1).
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Decompose the second term In2 as

In2 = n−1/2
−1/2
n An�

(n)
11

−1/2
E

(n)′
1 ε − n−1/2
−1/2

n An�
(n)
11

−1/2
E

(n)′
1 P

(n)
Z ε

+ n−1/2
−1/2
n An�

(n)
11

−1/2
θ

(n)′
1 (T)Wε,

= IIIn1 + IIIn2 + IIIn3.

Actually, the last two terms above are trivial:

‖IIIn2‖2 = n−1OP (1)E
[
tr
(
P

(n)
Z E

(n)
1 �

(n)
11

−1/2
A′

n

−1
n An�

(n)
11

−1/2
E

(n)′
1 P

(n)
Z
)]

≤ n−1OP (1)E
[
tr
(
P

(n)
Z E

(n)
1 �

(n)
11

−1
E

(n)′
1 P

(n)
Z
)]

= n−1OP (1)E
[
tr
(
P

(n)
Z E

(n)
1 E

(n)′
1

)]
≤ n−1OP (1) tr

(



(n)
u,11

)
E
[
tr
(
P

(n)
Z
)]

= tr
(



(n)
u,11

)
Mn/nOP (1) = oP (1).

‖IIIn3‖2 = n−1OP (1)E
[
tr
(
Wθ

(n)
1 (T)�

(n)
11

−1
θ

(n)′
1 (T)W

)]
= knM

−2sθ
n OP (1) = oP (1).

So we focus on IIIn1 = n−1/2

−1/2
n An�

(n)
11

−1/2
E

(n)′
1 ε, since

Var(IIIn1) = E
[
Var
(
IIIn1|X(n),T

)]= σ 2Iι

and the infinitely small condition holds, provided E[ε4] < ∞, and by the

Lindeberg–Feller central limit theorem we have IIIn1
d→ N(0ι, σ

2Iι). The con-
clusion follows from the Slutsky’s theorem. �

LEMMA 4. Sequences of random variables An and random vectors Bn satisfy
E[A2

n|Bn] = OP (u2
n), where {un} is a sequence of positive numbers. Then, An =

OP (un).

PROOF. For any ε > 0, there is some M1, such that P(E[A2
n|Bn] > M1u

2
n) <

ε/2. Let M2
2 = 2M1/ε. Then,

P(|An| > M2un) ≤ P(|An| > M2un,E[A2
n|Bn] ≤ M1u

2
n)

+ P(E[A2
n|Bn] > M1u

2
n)

< E
[
1(|An|>M2un)1(E[A2

n|Bn]≤M1u
2
n)

]+ ε/2

= E
{
1(E[A2

n|Bn]≤M1u
2
n)E

[
1(|An|>M2un)|Bn

]}+ ε/2

≤ E

[
1(E[A2

n|Bn]≤M1u
2
n)

E[A2
n|Bn]

M2
2u2

n

]
+ ε/2

≤ ε.
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The arbitrariness of ε implies the conclusion. �

PROOF OF THEOREM 4. The nonparametric component g(·) at a point t ∈
[0,1] is estimated with

ĝn(t) = Z(t;�n)
′(

Z
(n)′

Z
(n))−1

Z
(n)′(Y − X

(n)β̂
(n))

.

With probability tending to 1,

ĝn(t) − g(t) = Z(t;�n)
′(

Z
(n)′

Z
(n))−1

Z
(n)′(Y − X

(n)
1 β̂

(n)

1
)− g(t)

= Z(t;�n)
′(

Z
(n)′

Z
(n))−1

Z
(n)′g(T) − g(t)

+ Z(t;�n)
′(

Z
(n)′

Z
(n))−1

Z
(n)′ε

− Z(t;�n)
′(

Z
(n)′

Z
(n))−1

Z
(n)′θ (n)

1 (T)
(
β̂

(n)

1 − β
(n)
1

)
− Z(t;�n)

′(
Z

(n)′
Z

(n))−1
Z

(n)′
E

(n)
1

(
β̂

(n)

1 − β
(n)
1

)
� In1 + In2 + In3 + In4.

Consider ‖ĝn − g‖2
T = ∫ [ĝn(t) − g(t)]2fT (t) dt . Without further assumptions,

by Lemma 9 in Stone (1985), ‖In1‖2
T = OP (M

−2sg
n ). When Mn = o(

√
n), by

Lemma 4 in Stone (1985),

E[‖In2‖2
T |T] = OP (Mn/n) and hence ‖In2‖2

T = OP (Mn/n).

When {θ(n)
j (·), n ≥ 1,1 ≤ j ≤ kn} are uniformly bounded on [0,1],

‖In3‖2
T ≤ ∥∥Z(t;�n)

′(
Z

(n)′
Z

(n))−1
Z

(n)′θ (n)
1 (T)

∥∥2
T

∥∥β̂(n)

1 − β
(n)
1

∥∥2

≤ [O(kn) + OP (knM
−2sθ
n )] [OP (1)M

−2sg
n + kn/nOP (1)]

= OP (1)(knM
−2sg
n + k2

nn
−1).

Similarly,

‖In4‖2
T ≤ ∥∥Z(t;�n)

′(
Z

(n)′
Z

(n))−1
Z

(n)′
E

(n)
1

∥∥2
T

∥∥β̂(n)

1 − β
(n)
1

∥∥2

= ∥∥β̂(n)

1 − β
(n)
1

∥∥2∥∥Z(t;�n)
′(

Z
(n)′

Z
(n))−1

Z
(n)′

E
(n)
1

∥∥2
T

≤ OP (knMn/n)[OP (1)M
−2sg
n + kn/nOP (1)]

= OP (1)(M
1−2sg
n kn/n + Mnk

2
n/n2).

To sum up, when kn = o(
√

n), we have ‖ĝn − g‖2
T = OP (k2

n/n + Mn/n +
knM

−2sg
n ). �
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