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CONSISTENCY OF SUPPORT VECTOR MACHINES FOR
FORECASTING THE EVOLUTION OF AN UNKNOWN ERGODIC
DYNAMICAL SYSTEM FROM OBSERVATIONS WITH UNKNOWN

NOISE

BY INGO STEINWART AND MARIAN ANGHEL

Los Alamos National Laboratory

We consider the problem of forecasting the next (observable) state of an
unknown ergodic dynamical system from a noisy observation of the present
state. Our main result shows, for example, that support vector machines
(SVMs) using Gaussian RBF kernels can learn the best forecaster from a se-
quence of noisy observations if (a) the unknown observational noise process
is bounded and has a summable α-mixing rate and (b) the unknown ergodic
dynamical system is defined by a Lipschitz continuous function on some
compact subset of R

d and has a summable decay of correlations for Lip-
schitz continuous functions. In order to prove this result we first establish a
general consistency result for SVMs and all stochastic processes that satisfy
a mixing notion that is substantially weaker than α-mixing.

Let us assume that we have an ergodic dynamical system described by the se-
quence (F n)n≥0 of iterates of an (essentially) unknown map F :M → M , where
M ⊂ R

d is compact and the corresponding ergodic measure μ is assumed to be
unique. Furthermore, assume that all observations x̃ of this dynamical system
are corrupted by some stationary, R

d -valued, additive noise process E = (εn)n≥0
whose distribution ν we assume to be independent of the state, but otherwise un-
known, too. In other words all possible observations of the system at time n ≥ 0
are of the form

x̃n = Fn(x0) + εn,(1)

where x0 is a true but unknown state at time 0. Now, given an observation of the
system at some arbitrary time, our goal is to forecast the next observable state (we
will see later that under some circumstances this is equivalent to forecasting the
next true state), that is, given x + ε we want to forecast F(x) + ε′, where ε and ε′
are the observational errors for x and its successor F(x). Of course, if we know
neither F nor ν, then this task is impossible, and hence we assume that we have a
finite sequence T = (x̃0, . . . , x̃n−1) of noisy observations from a trajectory of the
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dynamical system, that is, all x̃i , i = 0, . . . , n − 1, are given by (1) for a conjoint
initial state x0. Now, informally speaking, our goal is to use T to build a forecaster
f : Rd → R

d whose average forecasting performance on future noisy observations
is as small as possible. In order to render this goal more precisely we need a loss
function L : Rd → [0,∞) such that

L
(
F(x) + ε′ − f (x + ε)

)
gives a value for the discrepancy between the forecast f (x + ε) and the ob-
served next state F(x) + ε′. In the following, we always assume implicitly
that small values of L(F(x) + ε′ − f (x + ε)) correspond to small values of
‖F(x) + ε′ − f (x + ε)‖2, where ‖ ·‖2 denotes the Euclidean distance in R

d . Now,
by the stationarity of E , the average forecasting performance is given by the L-risk

RL,P (f ) :=
∫ ∫

L
(
F(x) + ε1 − f (x + ε0)

)
ν(dε)μ(dx),(2)

where ε = (εi)i≥0 and P := ν ⊗ μ. Obviously, the smaller the risk the better the
forecaster is, and hence we ideally would like to have a forecaster f ∗

L : R
d → R

d

that attains the minimal L-risk

R∗
L,P := inf{RL,P (f )|f : Rd → R

d measurable}.(3)

Now assume that we have a method L that assigns to every training set T a fore-
caster fT . Then the method L achieves our goal asymptotically, if it is consistent
in the sense of

lim
n→∞RL,P (fT ) = R∗

L,P ,(4)

where the limit is in probability P .
To the best of our knowledge, the forecasting problem described by (1)–(4)

has not been considered in the literature, and even the observational noise model
itself has only been considered sporadically, though it clearly “captures important
features of many experimental situations” [27]. Moreover, most of the existing
work on the observational noise model deals with the question of denoising [17,
23–27, 35]. In particular, [25–27] provide both positive and negative results on the
existence of consistent denoising procedures.

In [32] a related forecasting goal is considered for the least squares loss and
stochastic processes of the form Zi+1 := F(Zi) + εi+1, i ≥ 0, where (F i) is a
dynamical system and (εi) is some additive and centered i.i.d. dynamical noise.
In particular, consistency of two histogram-based methods is established if (a)
F :M → M is continuous and (εi) is bounded, or (b) F is bounded and εi is ab-
solutely continuous. Note that the first case shows that in the absence of dynamical
and observational noise there is a method which can learn to identify F whenever
it is continuous but otherwise unknown. However, it is unclear how to extend the
methods of [32] to deal with observational noise.
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Variants of the forecasting problem for general stationary ergodic processes
(Zi) have been extensively studied in the literature. One often considered variant
is static autoregression (see [22], page 569, and the references therein) where the
goal is to find sequences f̂m(Z−1, . . . ,Z−m) of estimators that converge almost
surely to E(Z0|Z−1, . . . ,Z−∞), which is known to be the least squares optimal
one-step-ahead forecaster using an infinite past of observations. However, even if
forecasters using a longer history of observations are considered in (2)–(4), the
goal of static autoregression cannot be compared to our concept of consistency.
Indeed, in static autoregression the goal is to find a near-optimal prediction for x̃0
using the previously observed x̃−1, . . . , x̃−m of the same trajectory, whereas our
goal is to use the observations to build a predictor which predicts near optimal
for arbitrary future observations. In machine learning terminology, static autore-
gression is thus an “on-line” learning problem whereas our notion of consistency
defines a “batch” learning problem.

Learning methods for estimating E(Z0|Z−1, . . . ,Z−∞) in a sense similar to (4)
are considered by, for example, [29, 30]; unfortunately these methods require α-
or β-mixing conditions for (Zi) that cannot be satisfied by nontrivial dynamical
systems. Finally, a result by Nobel [31] shows that there is no method that is uni-
versally consistent for classification and regression problems where the data is
generated by an arbitrary stationary ergodic process (Zi). In particular this result
shows that our general consistency Theorem 2.4 cannot be extended to such (Zi).

If the observational noise process E is mixing in the ergodic sense, then it is
not hard to check that the process described by (1) is ergodic and hence it satisfies
a strong law of large numbers by Birkhoff’s theorem. Using the recent results in
[39], we then see that there exists a support vector machine (see the next section
for a description) depending on F and E which is consistent in the sense of (4).
However, [39] does not provide an explicit method for finding a consistent SVM
even if both F and E are known. Consequently, it is fair to say that though SVMs
do not have principal limitations for the forecasting problem described by (1)–(4),
there is currently no theoretically sound way to use them. The goal of this work
is to address this issue by showing that certain SVMs are consistent for all pairs
(F,E) of Lipschitz continuous F and bounded E that have a sufficiently fast decay
of correlations for Lipschitz continuous functions. In particular, we show that these
SVMs are consistent for all uniformly smooth expanding or hyperbolic dynamics
F and all bounded i.i.d. noise processes E .

The rest of this work is organized as follows: In Section 1 we recall the definition
of support vector machines (SVMs). Then, in Section 2, we present a consistency
result for SVMs and general stochastic processes that have a sufficiently fast decay
of correlations. This result is then applied to the above forecasting problem in
Section 3, where we also briefly review some dynamical systems with a sufficiently
fast decay of correlations. Possible future extensions of this work are discussed in
Section 4. Finally, the proofs of the two main results can be found in Sections 5
and 6, respectively.
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1. Support vector machines. The goal of this section is to briefly describe
support vector machines, which were first introduced by [7, 15] as a method for
learning binary classification tasks. Since then, they have been generalized to other
problem domains such as regression and anomaly detection, and nowadays they
are considered to be one of the state-of-the-art machine learning methods for these
problem domains. For a thorough introduction to SVMs, we refer the reader to the
books [16, 36, 42].

Let us begin by introducing some notation related to SVMs. To this end,
let us fix two nonempty closed sets X ⊂ R

d and Y ⊂ R, and a measurable
function L :X × Y × R → [0,∞), which in the following is called loss func-
tion (note that this is a more general concept of a loss function than the infor-
mal notion of a loss function used in the introduction). For a finite sequence
T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n and a function f :X → R, we define the
empirical L-risk by

RL,T (f ) := 1

n

n−1∑
i=0

L(xi, yi, f (xi)).

Moreover, for a distribution P on X × Y , we write

RL,P (f ) :=
∫
X×Y

L(x, y, f (x)) dP (x, y)

and R∗
L,P := inf{RL,p(f )|f : Rd → R

d measurable} for the L-risk and mini-
mal L-risk associated to P . Now, let H be the reproducing kernel Hilbert space
(RKHS) of a measurable kernel k :X × X → R (see [1] for a general theory of
such spaces). Given a finite sequence T ∈ (X × Y)n and a regularization parame-
ter λ > 0, support vector machines construct a function fT,λ,H :X → R satisfying

λ‖fT,λ,H ‖2
H + RL,T (fT,λ,H ) = inf

f ∈H

(
λ‖f ‖2

H + RL,T (f )
)
.(5)

In the following we are mainly interested in the commonly used Gaussian RBF
kernels kσ :X × X → R defined by

kσ (x, x′) := exp(−σ 2‖x − x′‖2
2), x, x′ ∈ X,

where X ⊂ R
d is a nonempty subset and σ > 0 is a free parameter called the

width. We write Hσ(X) for the corresponding RKHSs, which are described in
some detail in [40]. Finally, for SVMs using a Gaussian kernel kσ , we write
fT,λ,σ := fT,λ,Hσ (X) in order to simplify notation.

It is well known that if L is a convex loss function in the sense that
L(x, y, · ) : R → [0,∞) is convex for all (x, y) ∈ X×Y , then there exists a unique
fT,λ,H . Moreover, in this case (5) becomes a strictly convex optimization problem
which can be solved by, for example, simple gradient descent algorithms. However,
for specific losses, including the least squares loss, other more efficient algorith-
mic approaches are used in practice; see [36, 41–43]. Let us now introduce some
additional properties of loss functions:
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DEFINITION 1.1. A loss function L :X × Y × R → [0,∞) is called:

(i) Differentiable if L(x, y, · ) : R → [0,∞) is differentiable for all (x, y) ∈
X × Y . In this case the derivative is denoted by L′(x, y, · ).

(ii) Locally Lipschitz continuous if for all a ≥ 0 there exists a constant ca ≥ 0
such that for all x ∈ X, y ∈ Y and all t, t ′ ∈ [−a, a] we have

|L(x, y, t) − L(x, y, t ′)| ≤ ca|t − t ′|.
In this case the smallest possible constant ca is denoted by |L|a,1.

(iii) Lipschitz continuous if |L|1 := supa≥0 |L|a,1 < ∞.

With the help of these definitions we can now summarize assumptions on the
loss function L that we will use frequently.

ASSUMPTION L. The loss L :X × Y × R → [0,∞) is convex, differen-
tiable and locally Lipschitz continuous in the above sense, and it also satisfies
L(x, y,0) ≤ 1 for all (x, y) ∈ X × Y . Moreover, for the derivative L′ there exists
a constant c ∈ [0,∞) such that for all (x, y, t), (x′, y′, t ′) ∈ X × Y × R we have
|L′(x, y,0)| ≤ c and

|L′(x, y, t) − L′(x′, y′, t ′)| ≤ c‖(x, y, t) − (x′, y′, t ′)‖2.(6)

Note that combining the two assumptions on L′ yields |L′(x, y, t)| ≤ c(1 + |t |)
for all (x, y, t) ∈ X × Y × R, and from this it is not hard to conclude that |L|a,1 ≤
c(1 + a) for all a > 0.

Since the Assumption L is rather complex let us now illustrate it for two partic-
ular classes of loss functions used in many SVM variants.

EXAMPLE 1.2. A loss L :X×Y ×R → [0,∞) of the form L(x, y, t) = ϕ(yt)

for a suitable function ϕ : R → R and all x ∈ X, y ∈ Y := {−1,1} and t ∈ R, is
called margin-based. Obviously, L is convex, continuous, (locally) Lipschitz con-
tinuous or differentiable if and only if ϕ is. In addition, convexity of L implies local
Lipschitz continuity of L. Furthermore, recall that [6] showed that L is suitable for
binary classification tasks if and only if ϕ is differentiable at 0 with ϕ′(0) < 0.

Let us now consider Assumption L. Obviously, the first part is satisfied if and
only if ϕ is convex and differentiable, and also satisfies ϕ(0) ≤ 1. Note that the
latter can always be ensured by rescaling ϕ. Furthermore, we have L′(x, y, t) =
yϕ′(yt) and by considering the cases y = y′ and y �= y′ separately we see that (6)
is satisfied if and only if ϕ′ is Lipschitz continuous and satisfies

|ϕ′(t) + ϕ′(t ′)| ≤ c(1 + |t + t ′|), t, t ′ ∈ R,

for a constant c > 0. Finally, the condition |L′(x, y,0)| = |ϕ′(0)| ≤ c is always sat-
isfied for sufficiently large c. From these considerations we conclude that the clas-
sical SVM losses ϕ(t) = (1 − t)+ and ϕ(t) = (1 − t)2+, where (x)+ := max{0, x},
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do not satisfy Assumption L, whereas the least square loss and the logistic loss
defined by ϕ(t) = (1 − t)2 and ϕ(t) = ln(1 + exp(−t)), respectively, fulfill As-
sumption L.

EXAMPLE 1.3. A loss L :X×Y ×R → [0,∞) of the form L(y, t) = ψ(y− t)

for a suitable function ψ : R → R and all x ∈ X, y ∈ Y ⊂ R and t ∈ R, is called
distance-based. Recall that distance-based losses such as the least squares loss
ψ(r) = r2, Huber’s insensitive loss ψ(r) = min{r2,max{1,2|r| − 1}}, the logistic
loss ψ(r) = ln((1 + er)2e−r )− ln 4 or the ε-insensitive loss ψ(r) = (|r| − ε)+ are
usually used for regression.

In order to consider Assumption L we assume that Y is a compact subset of R.
Then it is easy to see that the first part of Assumption L is satisfied if and only
if ψ is convex and differentiable, and also satisfies supy∈Y ψ(y) ≤ 1. Note that
the latter can always be ensured by rescaling ψ since the convexity of ψ implies
its continuity. Furthermore, we have L′(x, y, t) = −ψ ′(y − t), and hence we see
that (6) is satisfied if and only if ψ ′ is Lipschitz continuous. Finally, every convex
and differentiable function is continuously differentiable and hence we can always
ensure |L′(x, y,0)| = |ψ ′(y)| ≤ c. From these considerations we immediately see
that all of the above distance-based losses besides the ε-insensitive loss satisfy
Assumption L.

2. Consistency of SVMs for a class of stochastic processes. The goal of this
section is to establish consistency of SVMs for a class of stochastic processes hav-
ing a uniform decay of correlations for Lipschitz continuous functions. This result
will then be used to establish consistency of SVMs for the forecasting problem and
suitable combinations of dynamical systems F and noise processes E .

Let us begin with some notation. To this end, let us assume that we have a
probability space (
,A,μ), a measurable space (Z,B) and a measurable map
T : 
 → Z. Then σ(T ) denotes the smallest σ -algebra on 
 for which T is
measurable. Moreover, μT denotes the T -image measure of μ, which is defined
by μT (B) := μ(T −1(B)), B ⊂ Z measurable. Recall that a stochastic process
Z := (Zn)n≥0, that is, a sequence of measurable maps Zn : 
 → Z, n ≥ 0, is
called identically distributed if μZn = μZm for all n,m ≥ 0. In this case we
write P := μZ0 in the following. Moreover, Z is called second-order stationary
if μ(Zi1+i ,Zi2+i ) = μ(Zi1 ,Zi2 ) for all i1, i2, i ≥ 1, and it is said to be stationary if
μ(Zi1+i ,...,Zin+i ) = μ(Zi1 ,...,Zin ) for all n, i, i1, . . . , in ≥ 1.

The following definition introduces the correlation sequence for stochastic
processes that will be used throughout this work.

DEFINITION 2.1. Let (
,A,μ) be a probability space, (Z,B) be a measur-
able space, Z be a Z-valued, identically distributed process on 
 and P := μZ0 .
Then for ψ,ϕ ∈ L2(P ) the nth correlation, n ≥ 0, is defined by

corZ,n(ψ,ϕ) :=
∫



ψ(Z0) · ϕ(Zn)dμ −
∫
Z

ψ dP ·
∫
Z

ϕ dP.
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Obviously, if Z is an i.i.d. process, we have corZ,n(ψ,ϕ) = 0 for all ϕ,ψ ∈
L2(P ) and n ≥ 0, and this remains true if ψ ◦ Z0 and ϕ ◦ Zn are only uncorre-
lated. Consequently, if limn→∞ corZ,n(ψ,ϕ) = 0 the corresponding speed of con-
vergence provides information about how fast ψ ◦ Z0 becomes uncorrelated from
ϕ ◦ Zn. This idea has been extensively used in the statistical literature in terms of,
for example, the α-mixing coefficients

α(Z, n) := sup
A∈F 0−∞
B∈F ∞

n

|μ(A ∩ B) − μ(A)μ(B)|,

where F
j
i is the initial σ -algebra of Zi, . . . ,Zj . These and related (stronger) coef-

ficients together with examples including, for example, certain Markov chains,
ARMA processes, and GARCH processes are discussed in detail in the sur-
vey article [10] and the books [8, 11, 21]. Moreover, for processes Z satisfying
α(Z, n) ≤ cn−α for some constant c > 0 and all n ≥ 1 it was recently described in
[39] how to find a regularization sequence (λn) for which the corresponding SVM
is consistent. Unfortunately, however, it is well known that every nontrivial ergodic
dynamical system is not α-mixing, that is, it does not satisfy limn→∞ α(Z, n) = 0,
and therefore the result of [39] cannot be used to investigate consistency for the
forecasting problem. On the other hand, various dynamical systems enjoy a uni-
form decay rate over smaller sets of functions such as Lipschitz continuous func-
tions (see Section 3 for some examples). This leads to the following definition:

DEFINITION 2.2. Let (
,A,μ) be a probability space, Z ⊂ R
d be a compact

set, Z be a Z-valued, identically distributed process on 
 and P := μZ0 . More-
over, let (γi)i≥0 be a strictly positive sequence converging to 0. Then Z is said to
have a decay of correlations of the order (γi) if for all ψ,ϕ ∈ Lip(Z) there exists
a constant κψ,ϕ ∈ [0,∞) such that

| corZ,i(ψ,ϕ)| ≤ κψ,ϕγi, i ≥ 0,(7)

where Lip(Z) denotes the set of all Lipschitz continuous f :Z → R.

Recall (see, e.g., Theorem 4.13 in Vol. 3 of [11]) that for every Z-valued, iden-
tically distributed process Z and all bounded functions ψ,ϕ :Z → R we have

| corZ,i(ψ,ϕ)| ≤ 2π‖ψ‖∞‖ϕ‖∞α(Z, i), i ≥ 1.

Since Lipschitz continuous functions on compacta are bounded, we hence see that
α-mixing processes have a decay of correlations of the order (α(Z, i)). In Sec-
tion 3 we will present some examples of dynamical systems that are not α-mixing
but have a nontrivial decay of correlations.

Let us now summarize our assumptions on the process Z which we will make
in the rest of this section.
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ASSUMPTION Z. The process Z = (Xi, Yi)i≥0 is defined on the probability
space (
,A,μ) and is X × Y -valued, where X ⊂ R

d and Y ⊂ R are compact
subsets. Moreover Z is second-order stationary.

Finally, we will need the following mutually exclusive assumptions on the reg-
ularization sequence and the kernel width of SVMs:

ASSUMPTION S1. For a fixed strictly positive sequence (γi)i≥0 converging to
0 and a locally Lipschitz continuous loss L the monotone sequences (λn) ⊂ (0,1]
and (σn) ⊂ [1,∞) satisfy limn→∞ λn = 0, supn≥1 e−σn |L|

λ
−1/2
n ,1

< ∞,

sup
n≥1

λnσ
4d
n

|L|
λ

−1/2
n ,1

< ∞ and lim
n→∞

|L|3
λ

−1/2
n ,1

σ 2
n

nλ4
n

n−1∑
i=0

γi = 0.

ASSUMPTION S2. For a fixed strictly positive sequence (γi)i≥0 converging
to 0 and a locally Lipschitz continuous loss L the sequences (λn) ⊂ (0,1] and
(σn) ⊂ [1,∞) satisfy limn→∞ λnσ

d
n = 0,

lim
n→∞

λnσ
4d
n

|L|
λ

−1/2
n ,1

= ∞ and lim
n→∞

σ 2+12d
n

nλn

n−1∑
i=0

γi = 0.

ASSUMPTION S3. For a fixed strictly positive sequence (γi)i≥0 converging to
0 and a locally Lipschitz continuous loss L the monotone sequences (λn) ⊂ (0,1]
and (σn) ⊂ [1,∞) satisfy limn→∞ λn = 0, limn→∞ e−σn |L|

λ
−1/2
n ,1

= ∞,

sup
n≥1

λnσ
4d
n

|L|
λ

−1/2
n ,1

< ∞ and lim
n→∞

|L|6
λ

−1/2
n ,1

e−2σn

nλ4
n

n−1∑
i=0

γi = 0.

REMARK 2.3. In order to illustrate the Assumptions S1, S2 and S3, let us
assume for simplicity that L is Lipschitz continuous; the case that L is the least
squares loss will be considered in Remark 3.4. Now note that for Lipschitz con-
tinuous losses Assumption S3 cannot be satisfied and hence it suffices to consider
Assumptions S1 and S2.

Let us first assume
∑

i≥0 γi < ∞ as well as λn := n−α and σn := nβ for n ≥ 1
and constants α > 0 and β ≥ 0. Then Assumption S1 is met if α ≥ 4dβ and 4α +
2β < 1, whereas Assumption S2 is met if dβ < α < 4dβ and α + (2 + 12d)β < 1.
In particular, for β = 0 Assumption S1 is met if 0 < α < 1/4, whereas Assump-
tion S2 cannot be met in this case.

Finally, we consider a milder assumption on the decay of correlations, namely
n−1 ∑n−1

i=0 γi ≤ c(1 + lnn)−1, for a constant c > 0 and all n ≥ 1. Obviously, this
is satisfied if we assume that (γi) has some arbitrary polynomial decay. Let us
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consider the sequences λn := (1 + lnn)−α and σn := (1 + lnn)β for n ≥ 1 and
α > 0 and β ≥ 0. Then Assumption S1 is met if α ≥ 4dβ and 4α+2β < 1, whereas
Assumption S2 is met if dβ < α < 4dβ and α + (2 + 12d)β < 1. In particular, for
β = 0 Assumption S1 is met if 0 < α < 1/4, while Assumption S2 cannot be met.

The illustrations above show that both Assumptions S1 and S2 consist of two
contrary conditions, namely one which implies that λn tends to 0 and another one
which ensures that this speed is not too fast. Roughly speaking, the first condition
guarantees that the approximation error tends to zero (see Lemma 5.4), but since
this simultaneously means that the statistical error becomes larger, the second con-
dition is needed to ensure that the latter error still tends to zero (see the proof of
Theorem 2.4). This trade-off between approximation and statistical error is typical
for consistent learning algorithms (see the books [19] and [22] for several such
examples).

With the help of these assumptions we can now establish the announced consis-
tency of SVMs.

THEOREM 2.4. Let Z = (Xi, Yi)i≥0 be a stochastic process satisfying As-
sumption Z. We write P := μ(X0,Y0) and assume that Z has a decay of correlations
of some order (γi). In addition, let L :X × Y × R → [0,∞) be a loss satisfying
Assumption L. Then for all sequences (λn) ⊂ (0,1] and (σn) ⊂ [1,∞) satisfying
Assumptions S1, S2 or S3 and all ε ∈ (0,1] we have

lim
n→∞μ

(
ω ∈ 
 :

∣∣RL,P

(
fTn(ω),λn,σn

) − R∗
L,P

∣∣ > ε
) = 0,

where Tn(ω) := ((X0(ω),Y0(ω)), . . . , (Xn−1(ω),Yn−1(ω))) and fTn(ω),λn,σn is the
SVM forecaster defined by (5).

Theorem 2.4 in particular applies to stochastic processes that are α-mixing with
rate (γi). However, the Assumptions S1, S2 and S3 ensuring consistency are sub-
stantially stronger than the ones obtained in [39] for such processes. On the other
hand, there are interesting stochastic processes that are not α-mixing but still en-
joy a reasonably fast decay of correlations. Since we are mainly interested in the
forecasting problem we will delay the discussion of such examples to the next
section.

3. Consistency of SVMs for the forecasting problem. In this section we
present our main result, which establishes the consistency of SVMs for the fore-
casting problem described by (1)–(4) if the dynamical system enjoys a certain
decay of correlations. In addition, we discuss some examples of such systems.

We begin by first revisiting our informal problem description given in the intro-
duction. To this end, let M ⊂ R

d be a compact set and F : M → M be a map such
that the dynamical system D := (F i)i≥0 has a unique ergodic measure μ. More-
over, let E = (εi)i≥0 be a R

d -valued stochastic process which is (stochastically)
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independent of D . Then the process that generates the noisy observations (1) is
(F i + εi)i≥0. In particular, a sequence of observations (x̃0, . . . , x̃n) generated by
this process is of the form (1) for a conjoint initial state. Now recall that, given an
observation of the system at some arbitrary time, our goal is to forecast the next
observable state. Consequently, we will use the training set

Tn(x, ε) := ((x̃0, x̃1), . . . , (x̃n−1, x̃n))
(8)

= ((
x + ε0,F (x) + ε1

)
, . . . ,

(
Fn−1(x) + εn−1,F

n(x) + εn

))
whose input/output pairs are consecutive observable states. Now note that a single
sample (F i−1(x) + εi−1,F

i(x) + εi) depends on the pair (εi, εi+1) and thus we
have to consider the process of such pairs. The following assumption summarizes
the needed requirements of the process N := ((εi, εi+1))i≥0.

ASSUMPTION N. For the R
2d -valued stochastic process N there exist a con-

stant B > 0 and a probability measure ν on [−B,B]dN0 such that the coordi-
nate process E := (π0 ◦ Si)i≥0 is stationary with respect to ν and satisfies N =
(π0 ◦ Si,π0 ◦ Si+1)i≥0, where S denotes the shift operator (xi)i≥0 �→ (xi+1)i≥0
and π0 denotes the projection (xi)i≥0 �→ x0.

Before we state our main result we note that the input variable x + ε and the
output variable F(x) + ε′ are d-dimensional vectors. Consequently, our notion of
a loss introduced in Section 1 needs a refinement which captures the ideas of the
introduction. To this end we state the following assumption:

ASSUMPTION LD. For the function L : Rd → [0,∞) there exists a distance-
based loss satisfying Assumption L such that its representing function ψ : R

d →
[0,∞) has a unique global minimum at 0 and satisfies

L(r1, . . . , rd) = ψ(r1) + · · · + ψ(rd), (r1, . . . , rd) ∈ R
d .(9)

Obviously, if L satisfies Assumption LD, then L is a loss in the sense of the
introduction. Moreover note that the specific form (9) makes it possible to consider
the coordinates of the output variable separately. Consequently, we will use the
forecaster

f̄T ,λ,σ := (
fT (1),λ,σ , . . . , fT (d),λ,σ

)
,(10)

where fT (j),λ,σ is the SVM solution obtained by considering the distance-based
loss defined by ψ and T (j) := ((x̃0, πj (x̃1)), . . . , (x̃n−1, πj (x̃n))) which is ob-
tained by projecting the output variable of T onto its j th-coordinate via the co-
ordinate projection πj : Rd → R. In other words, we build the forecaster f̄T ,λ,σ by
training d different SVMs on the training sets T (1), . . . , T (d).

With the help of these preparations we can now present our main result, which
establishes consistency for such a forecaster.
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THEOREM 3.1. Let M ⊂ R
d be a compact set, F :M → M be a Lipschitz

continuous map such that the dynamical system D := (F i)i≥0 has a unique er-
godic measure μ, and N be a stochastic process satisfying Assumption N. Assume
that both processes D and N have a decay of correlations of the order (γi). More-
over, let L : Rd → [0,∞) be a function satisfying Assumption LD. Then for all se-
quences (λn) ⊂ (0,1] and (σn) ⊂ [1,∞) satisfying Assumptions S1, S2 or S3 and
all ε ∈ (0,1] we have

lim
n→∞μ ⊗ ν

(
(x, ε) ∈ M × [−B,B]dN :

∣∣RL,P

(
f̄Tn(x,ε),λn,σn

) − R∗
L,P

∣∣ > ε
) = 0,

where Tn(x, ε) is defined by (8) and the risks are given by (2) and (3).

Note that if E is an i.i.d. process, then N has a decay of correlations of any
order. Moreover, if E is α-mixing with mixing rate (γi), then N has a decay of
correlations of order (γi). Finally, if D has a decay of correlations (γ ′

i ) and N has
a decay of correlations (γ ′′

i ), then they obviously both have a decay of correlations
(γi), where γi := max{γ ′

i , γ
′′
i }. In particular, noise processes having slowly decay-

ing correlations will slow down learning even though the system D may have a
fast decay of correlations.

Let us now discuss some examples of classes of dynamical systems enjoying
at least a polynomial decay of correlations. Since the existing literature on such
systems is vast these examples are only meant to be illustrations for situations
where Theorem 3.1 can be applied and are not intended to provide an overview of
known results. However, compilations of known results can be found in the survey
articles [3, 28] and the book [2].

EXAMPLE 3.2 (Smooth expanding dynamics). Let M be a compact connected
Riemannian manifold and F :M → M be C1+ε for some ε > 0. Furthermore as-
sume that there exist constants c > 0 and λ > 1 such that

max{‖DFn
x (v)‖ :x ∈ M,v ∈ TxM with ‖v‖ = 1} ≥ cλn

for all n ≥ 0, where TxM denotes the tangent space of M at x and DFn
x denotes

the derivative of Fn at x. Then it is a classical result that F possesses a unique
ergodic measure which is absolutely continuous with respect to the Riemannian
volume. Moreover, it is well known (see, e.g., [33] and the references mentioned
in [28], Theorem 5) that there exists a τ > 0 such that the dynamical system has
decay of correlations of the order (e−τ i). Generalizations of this result to piece-
wise smooth and piecewise (non)-uniformly expanding dynamics are discussed in
[3]. Finally, [28], Theorem 10, recalls results (together with references) for non-
uniformly expanding dynamics having either exponential or polynomial decay of
correlations.
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EXAMPLE 3.3 (Smooth hyperbolic dynamics). If F is a topologically mixing
C1+ε Anosov or Axiom A diffeomorphism, then it is well known (see, e.g., [9, 34])
that there exists a τ > 0 such that the dynamical system has a decay of correlations
of the order (e−τ i). Moreover, Baldi [3] lists various extensions of this result to, for
example, smooth nonuniformly hyperbolic systems and hyperbolic systems with
singularities.

Besides these classical results and their extensions, Baldi [3] also compiles a
list of “parabolic” or “intermittent” systems having a polynomial decay.

Let us now consider the forecasting problem for the least squares loss. To this
end we first observe that the function L(r) := ‖r‖2

2, r ∈ R
d , satisfies Assump-

tion LD since the least squares loss satisfies Assumption L as we have discussed
in Example 1.3. Let us now additionally assume that the noise is pairwise inde-
pendent (i.e., εi and εi′ are independent if i �= i′) and centered [i.e., it satisfies
Eε∼νπ0(ε) = 0]. For a forecaster f = (f1, . . . , fd) : Rd → R

d we then obtain

RL,P (f ) =
∫ ∫ d∑

j=1

(
πj

(
F(x) + ε1

) − fj (x + ε0)
)2

ν(dε)μ(dx)

=
∫ ∫ d∑

j=1

(
πj (F (x)) − fj (x + ε0)

)2
ν(dε)μ(dx) +

∫
‖ε0‖2

2 ν(dε)

=: RL,P (f ) +
∫

‖ε0‖2
2 ν(dε),

where πj : R
d → R denotes the j th coordinate projection. Consequently, a fore-

caster f that approximately minimizes the L-risk is also an approximate forecaster
of the true next state in the sense of RL,P (·). Before we combine this observation
with Theorem 3.1 let us first rephrase Assumptions S1, S2 and S3 for the least
squares loss.

ASSUMPTION S1-LS. For a strictly positive sequence (γi)i≥0 converging to 0
the monotone sequences (λn) ⊂ (0,1] and (σn) ⊂ [1,∞) satisfy limn→∞ λn = 0,
supn≥1 e−σnλ

−1/2
n < ∞,

sup
n≥1

λnσ
8d/3
n < ∞ and lim

n→∞
σ 2

n

nλ
11/2
n

n−1∑
i=0

γi = 0.

ASSUMPTION S2-LS. For a strictly positive sequence (γi)i≥0 converging to
0 the sequences (λn) ⊂ (0,1] and (σn) ⊂ [1,∞) satisfy limn→∞ λnσ

d
n = 0,

lim
n→∞λnσ

8d/3
n = ∞ and lim

n→∞
σ 2+12d

n

nλn

n−1∑
i=0

γi = 0.
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ASSUMPTION S3-LS. For a strictly positive sequence (γi)i≥0 converging to 0
the monotone sequences (λn) ⊂ (0,1] and (σn) ⊂ [1,∞) satisfy limn→∞ λn = 0,
limn→∞ e−σnλ

−1/2
n = ∞,

sup
n≥1

λnσ
8d/3
n < ∞ and lim

n→∞
e−σn

nλ7
n

n−1∑
i=0

γi = 0.

REMARK 3.4. In order to illustrate the Assumptions S1-LS, S2-LS and
S3-LS, let us first assume

∑
i≥0 γi < ∞ as well as λn := n−α and σn := nβ for n ≥

1 and constants α > 0 and β ≥ 0. Then Assumption S1-LS is met if 3α ≥ 8dβ > 0
and 11α + 4β < 2, whereas Assumption S2-LS is met if α + (2 + 12d)β < 1 and
dβ < α < 8

3dβ . Finally Assumption S3-LS is satisfied if β = 0 and 0 < α < 1/7.

Let us now consider the milder assumption n−1 ∑n−1
i=0 γi ≤ c(1 + lnn)−1 which

has already been considered in Remark 2.3 for Lipschitz continuous losses. To this
end, we again consider the sequences λn := (1 + lnn)−α and σn := (1 + lnn)β

for n ≥ 1 and constants α > 0 and β ≥ 0. Then Assumption S1-LS is met if 3α ≥
8dβ > 0 and 11α+4β < 2, whereas Assumption S2-LS is met if α+(2+12d)β <

1 and dβ < α < 8
3dβ . Finally Assumption S3-LS is satisfied if β = 0 and 0 < α <

1/7.

With these preparations we can now state a result showing that SVMs using
a least squares loss can be used to forecast the next true state of the dynamical
system if the observational noise is sufficiently benign.

COROLLARY 3.5. Let M ⊂ R
d be a compact set and F :M → M be a Lip-

schitz continuous map such that the dynamical system D := (F i)i≥0 has a unique
ergodic measure μ. Moreover, let E = (εi)i≥0 be an i.i.d. process of [−B,B]d -
valued and centered random variables. Assume that D has a decay of correla-
tions of the order (γi). Moreover, let L : Rd → [0,∞) be defined by L(r) := ‖r‖2

2,
r ∈ R

d . Then for all sequences (λn) ⊂ (0,1] and (σn) ⊂ [1,∞) satisfying Assump-
tions S1-LS, S2-LS or S3-LS and all ε ∈ (0,1] we have

lim
n→∞μ ⊗ ν

(
(x, ε) ∈ M × [−B,B]dN :

∣∣RL,P

(
f̄Tn(x,ε),λn,σn

) − R
∗
L,P

∣∣ > ε
) = 0,

where R
∗
L,P := inf{RL,P (f )|f : Rd → R

d measurable}.

It is interesting to note that the above corollary does not require the noise to be
symmetric. Instead it only requires centered noise, that is, the observations are not
systematically biased in a certain direction.

Let us end this section with the following remark that rephrases Theorem 3.1
and its corollary for situations with summable decays of correlations.
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REMARK 3.6 (Universal consistency). If the sequence (γi) bounding the cor-
relation is summable, that is,

∑
γi < ∞, then the Assumptions S1, S2, S3, S1-LS,

S2-LS and S3-LS are independent of both the dynamical system and the obser-
vational noise process. Consequently, using sequences satisfying one of these as-
sumptions yields an SVM which is consistent for all such pairs of dynamical sys-
tems and observational noise processes. In other words, such an SVM can learn
the optimal forecaster without knowing specifics of the dynamical systems and
the observational noise. To be a bit more specific, let us assume, for example, that
we use the least squares loss and sequences λn := n−α and σn := nβ , n ≥ 1, for
fixed α and β satisfying 3α ≥ 8dβ > 0 and 11α + 4β < 2. Then the corresponding
SVM is consistent for all bounded observational noise processes having a sum-
mable α-mixing rate and all ergodic dynamical systems on M which are defined
by a Lipschitz continuous F :M → M and have a summable decay of correlations.
Note that this class of dynamical systems includes, but is not limited to, smooth
uniformly expanding or hyperbolic dynamics. Finally, if the noise process is also
i.i.d. and centered then this SVM actually learns to forecast the next true state.

It is interesting to note that a similar consistency result holds for all noise
processes having a polynomial decay of α-mixing coefficients and all ergodic dy-
namical systems on M which are defined by a Lipschitz continuous F :M → M

and have a polynomial decay of correlations. Indeed, for such combinations SVMs
using sequences λn := (1 + lnn)−α and σn := (1 + lnn)β with, for example, fixed
α and β satisfying 3α ≥ 8dβ > 0 and 11α + 4β < 2 are consistent.

4. Discussion. The goal of this work was to show that, in principle, support
vector machines can learn how to predict one-step-ahead noisy observation of a
dynamical system without knowing specifics of the dynamical system or the obser-
vational noise besides a certain, rather general stochasticity. However, there remain
several open questions which can be subject to further research:

More general losses and kernels. In the statistical part of our analysis, we used
an approach which is based on a “stability” argument. However, it is also possible
to use a “skeleton” argument based on covering numbers, instead. Utilizing the
latter, it seems possible to relax the assumptions on the loss L by making stronger
assumptions on both (λn) and (σn). A particular loss which is interesting in this
direction would be the ε-insensitive loss used in classical SVMs for regression.
Another possible extension of our work is considering different kernels, such as
the kernels that generate Sobolev spaces. In fact, we only focused on Gaussian
RBF kernels since these kernels are the most commonly used in practice.

Learning rates. So far we have only shown that the risk of the SVM solution
converges to the smallest possible risk. However, for practical considerations the
speed of this convergence is of great importance, too. The proof we utilized al-
ready gives such learning rates if a quantitative version of the Approximation
Lemma 5.4 is available, which is possible if, for example, quantitative assump-
tions on the smoothness of F and the regularity of ν are made. However, since we
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conjecture that the statistical part of our analysis is not sharp we have not presented
a corresponding result. In this regard we note that recently [14] established a con-
centration result for piecewise regular expanding and topologically mixing maps
of the interval [0,1], which is substantially stronger than our elementary Cheby-
shev inequality of Lemma 5.8. We believe that such a concentration result can be
used to substantially sharpen the statistical part of our analysis.

Perturbed dynamics. Another extension of the current work is to consider sys-
tems that are perturbed by some noise. Our general consistency result in Theo-
rem 2.4 suggests that such an extension is possible whenever the perturbed system
has a decay of correlations. In this regard we note that for some perturbed systems
of expanding maps the decay of correlations has already been bounded in [5], and
it would be interesting to investigate whether they can be used to prove consistency
of SVMs.

Longer past. So far, we have only used the present observation to forecast the
next observation, but it is not hard to see that in almost any system/noise combi-
nation the minimal risk R∗

L,P reduces if one uses additional past observations. On
the other hand it appears that the learning problem becomes harder in this case
since we have to approximate a function which lives on a higher dimensional in-
put space, and hence there seems to be a trade-off for finite sample sizes. While
investigating this trade-off in more detail seems to be possible with the techniques
developed in this work, we again assume that the statistical part of our analysis is
not sharp enough to obtain a meaningful picture of this trade-off.

5. Proof of Theorem 2.4. The goal of this section is to prove Theorem 2.4.
Since the proof requires several preliminary results, we divided this section into
subsections, which provide these prerequisites.

5.1. Some basics on the decay of correlations. The main goal of this section
is to establish some uniform bounds on the sequence of correlations.

Let us begin introducing some notation. To this end, we fix a probability space
(
,A,μ), a measurable space (Z,B) and a Z-valued, identically distributed
process on 
. For P := μZ0 and ψ,ϕ ∈ L2(P ) we then write corZ(ψ,ϕ) :=
(corZ,n(ψ,ϕ))n≥0 for the sequence of correlations of ψ and ϕ. Clearly, this gives a
bilinear map corZ :L2(P )×L2(P ) → �∞, which in the following is called the cor-
relation operator. The following key theorem, which goes back to an unpublished
note [13] of Collet (see also page 101 in [4]), can be used to establish continuity
of the correlation operator. Before we present this result let us first recall that a
Banach space E is said to be continuously embedded into the Banach space F if
E ⊂ F and the natural inclusion map id :E → F is continuous.

THEOREM 5.1. Let (
,A,μ) be a probability space, (Z,B) be a measur-
able space, Z be a Z-valued, identically distributed process on 
 and P := μZ0 .
Moreover, let E1 and E2 be Banach spaces that are continuously embedded into



856 I. STEINWART AND M. ANGHEL

L2(P ) and let F be a Banach space that is continuously embedded into �∞. If for
all ψ ∈ E1 and all ϕ ∈ E2 the correlation operator satisfies

corZ(ψ,ϕ) ∈ F,

then there exists a constant c ∈ [0,∞) such that

‖ corZ(ψ,ϕ)‖F ≤ c · ‖ψ‖E1‖ϕ‖E2, ψ ∈ E1, ϕ ∈ E2.

For the sake of completeness the proof of this key result can be found in the
Appendix. The most obvious examples of Banach spaces F in the above theorem
are the spaces �p . However, in the literature on dynamical systems results on the
sequence of correlations are usually stated in the form∣∣corZ,n(ψ,ϕ)

∣∣ ≤ κψ,ϕγn, n ≥ 0,

where (γn) is a strictly positive sequence converging to 0 and κψ,ϕ is a constant
depending on ψ and ϕ. To apply Theorem 5.1 in this situation we obviously need
Banach spaces which capture such a behavior of corZ( · , · ). Therefore, let us fix a
strictly positive sequence γ := (γn)n≥0 such that limn→∞ γn = 0. For a sequence
b := (bn) ⊂ R we define

‖b‖�(γ ) := sup
n≥0

|bn|
γn

.

Moreover, we write

�(γ ) := {
(bn) ⊂ R :‖(bn)‖�(γ ) < ∞}

.

The following lemma establishes some basic properties of (�(γ ),‖ · ‖�(γ )).

LEMMA 5.2. The pair (�(γ ),‖ · ‖�(γ )) is a Banach space continuously em-
bedded into �∞ and we have ‖id :�(γ ) → �∞‖ ≤ ‖γ ‖∞.

PROOF. The fact that (�(γ ),‖ · ‖�(γ )) is a normed space is elementary to
prove. Moreover, we have

‖b‖�(γ ) = sup
n≥0

|bn|
γn

≥ sup
n≥0

|bn|
‖γ ‖∞

= ‖b‖∞
‖γ ‖∞

,

and hence we find ‖id :�(γ ) → �∞‖ ≤ ‖γ ‖∞. Finally, let (b(i))i≥1 be a Cauchy
sequence in �(γ ). The previous step shows that it is also a Cauchy sequence in
�∞, and by the completeness of �∞ there consequently exists a sequence b :=
(bn) ∈ �∞ such that limi→∞ ‖b(i) − b‖∞ = 0. Let us now fix an ε > 0. Then there
exists an index i0 ≥ 0 such that for all i, j ≥ i0 we have ‖b(i) − b(j)‖�(γ ) ≤ ε.
Consequently, for fixed N ≥ 0 we have

sup
n=0,...,N

|b(i)
n − b

(j)
n |

γn

≤ ∥∥b(i) − b(j)
∥∥
�(γ ) ≤ ε,
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and by taking the limit j → ∞ we conclude

sup
n=0,...,N

|b(i)
n − bn|

γn

≤ ε.

However, N was arbitrary and hence we find ‖b(i) − b‖�(γ ) ≤ ε for all i ≥
i0. In other words we have shown that (b(i))i≥1 converges to b in ‖ · ‖�(γ ).

�

Combining the above lemma with Theorem 5.1 we immediately obtain the fol-
lowing corollary:

COROLLARY 5.3. Let (
,A,μ) be a probability space, (Z,B) be a measur-
able space, Z be a Z-valued, identically distributed process on 
 and P := μZ0 .
Moreover, let E1 and E2 be Banach spaces that are continuously embedded
into L2(P ). In addition, let γ := (γn)n≥0 be a strictly positive sequence such
that limn→∞ γn = 0. If for all ψ ∈ E1 and all ϕ ∈ E2 there exists a constant
κψ,ϕ ∈ [0,∞) such that

| corZ,n(ψ,ϕ)| ≤ κψ,ϕγn

for all n ≥ 0, then there exists a constant c ∈ [0,∞) such that

| corZ,n(ψ,ϕ)| ≤ c‖ψ‖E1 · ‖ϕ‖E2 · γn, ψ ∈ E1, ϕ ∈ E2, n ≥ 0.

5.2. Some properties of Gaussian RBF kernels. In this subsection we establish
some properties of Gaussian RBF kernels which will be heavily used in the proof
of Theorem 2.4. Let us begin with an approximation result.

LEMMA 5.4. Let X ⊂ R
d and Y ⊂ R be compact subsets, L : X × Y × R →

[0,∞) be a convex locally Lipschitz continuous loss and P be a probability mea-
sure on X × Y such that RL,P (0) < ∞. Then for all sequences (λn) ⊂ (0,1] and
(σn) ⊂ [1,∞) satisfying

lim
n→∞λnσ

d
n = 0,(11)

we have

lim
n→∞

(
inf

f ∈Hσn(X)
λn‖f ‖2

Hσn(X) + RL,P (f )

)
= R∗

L,P .

PROOF. For σ > 0 we write R∗
L,P,Hσ (X) := inf{RL,P (f ) : f ∈ Hσ(X)}.

Since L is locally Lipschitz continuous and RL,P (0) < ∞, the discussion after
(4) in [38] shows that it is a P -integrable Nemitski loss in the sense of [38]. Now
recall (see [37]) that Hσ(X) is universal, that is, it is dense in C(X), and hence
[38], Corollary 1, shows R∗

L,P,Hσ (X) = R∗
L,P for all σ > 0. Let us now fix an
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ε > 0. The above discussion then shows that there exists an fε ∈ H1(X) such that
RL,P (fε) ≤ R∗

L,P + ε. Furthermore, by (11) there exists an n0 ≥ 0 such that

λnσ
d
n ≤ ε‖fε‖−2

H1(X), n ≥ n0.

Since σn ≥ 1 we also know fε ∈ Hσn(X) and ‖fε‖2
Hσn(X) ≤ σd

n ‖fε‖2
H1(X) by [40],

Corollary 6, and therefore we obtain

inf
f ∈Hσn(X)

λn‖f ‖2
Hσn(X) + RL,P (f ) ≤ λn‖fε‖2

Hσn(X) + RL,P (fε) ≤ R∗
L,P + 2ε

for all n ≥ n0. From this we easily deduce the assertion. �

Before we establish the next result let us recall that a function f :X → R on a
subset X ⊂ R

d is called Lipschitz continuous if there exists a constant c ∈ [0,∞)

such that |f (x)−f (x′)| ≤ c‖x −x′‖2 for all x, x′ ∈ X. In the following the small-
est such constant is denoted by |f |1 and the set of all Lipschitz continuous func-
tions is denoted by Lip(X). Moreover, recall that if X is compact then Lip(X)

together with the norm ‖f ‖Lip(X) := max{‖f ‖∞, |f |1} forms a Banach space. In
this case Lip(X) is also closed under multiplication. Indeed, for f,g ∈ Lip(X) and
x, x′ ∈ X we have

|f (x)g(x) − f (x′)g(x′)| ≤ ‖f ‖∞ · |g|1|x − x′| + |f |1 · ‖g‖∞|x − x′|
and hence we obtain fg ∈ Lip(X) with |fg|1 ≤ ‖f ‖∞ · |g|1 + |f |1 · ‖g‖∞. Our
next result shows that every function in Hσ(X) is Lipschitz continuous.

LEMMA 5.5. Let X ⊂ R
d be a nonempty set and σ > 0. Then every f ∈

Hσ(X) is Lipschitz continuous with |f |1 ≤ √
2σ‖f ‖Hσ (X).

PROOF. Let us write � :X → Hσ(X) for the canonical feature map defined
by �(x) := kσ (x, ·). Now recall that � satisfies the reproducing property

f (x) = 〈�(x), f 〉, x ∈ X,f ∈ Hσ(X),

and hence in particular kσ (x′, x) = 〈�(x),�(x′)〉 for all x, x′ ∈ X. Using these
equalities together with 1 − e−t ≤ t for t ≥ 0 we obtain

|f (x) − f (x′)| = |〈�(x) − �(x′), f 〉|
≤ ‖f ‖Hσ (X) · ‖�(x) − �(x′)‖Hσ (X)

= ‖f ‖Hσ (X)

√
〈�(x),�(x)〉 + 〈�(x′),�(x′)〉 − 2〈�(x),�(x′)〉

= ‖f ‖Hσ (X)

√
2 − 2 exp(−σ 2‖x − x′‖2

2)

≤ √
2σ‖f ‖Hσ (X)‖x − x′‖2,

that is, we have proved the assertion. �
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In the following we consider certain orthonormal bases (ONBs) of Hσ(X). To
this end, let us first recall that in [40], Theorem 5, it was shown that (en)n≥0, where
en : R → R is defined by

en(x) :=
√

2nσ 2n

n! xne−σ 2x2
, x ∈ R,(12)

forms an ONB of Hσ(R). Moreover, it was shown that if X ⊂ R has a nonempty
interior, the restrictions of en to X form an ONB of Hσ(X). The following lemma
establishes upper bounds on ‖en‖∞ if X is a closed interval.

LEMMA 5.6. Let σ > 0 and a > 0 be fixed real numbers and (en)n≥0 be the
ONB of Hσ([−a, a]), where en is defined by the restriction of (12) to [−a, a]. Then
we have ‖en‖∞ ≤ (2πn)−1/4 for all n ≥ 1 and

‖en‖∞ ≤
√

2na2nσ 2n

n! e−a2σ 2
(13)

for all n ≥ 2a2σ 2. In addition, for n ≥ 8ea2σ 2 we have( ∞∑
i=n+1

‖ei‖2∞

)1/2

≤
(

2

π(n + 1)

)1/4

2−(n+1)e−a2σ 2
,(14)

and for aσ ≥ 1 we also have( ∞∑
i=0

‖ei‖2∞

)1/2

≤ √
6aσ .(15)

PROOF. Elementary calculus shows

e′
n(x) =

√
2nσ 2n

n! xn−1e−σ 2x2
(n − 2σ 2x2)

for all n ≥ 1 and x ∈ R. From this we conclude e′
n(x

∗) = 0 if and only if x∗ =
±

√
n

2σ 2 or x∗ = 0. Therefore it is not hard to see that the function defined in (12)

attains its global extrema at x∗ = ±
√

n
2σ 2 , and hence we obtain

‖en‖∞ ≤
√

nn

n! e
−n/2 ≤

√
nn

√
2πnnne−n

e−n/2 = (2πn)−1/4

for all n ≥ 1 by Stirling’s formula. Moreover, n ≥ 2a2σ 2 implies |x∗| ≥ a and, in
this case, it is not hard to see that the function |en| actually attains its maximum at
±a. From these considerations we conclude (13).
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For the proof of (14) we recall that the remainder of the Taylor series of the
exponential function satisfies

∞∑
i=n+1

yi

i! ≤ 2
|y|n+1

(n + 1)!
for |y| ≤ 1 + n/2. Since n ≥ 8ea2σ 2 implies 2a2σ 2 ≤ 1 + n/2, we consequently
obtain

∞∑
i=n+1

‖ei‖2∞ ≤
∞∑

i=n+1

2ia2iσ 2i

i! e−2a2σ 2 ≤ 2n+2a2(n+1)σ 2(n+1)

(n + 1)! e−2a2σ 2

≤ 2
2n+1a2(n+1)σ 2(n+1)e(n+1)

√
2π(n + 1)(n + 1)(n+1)

e−2a2σ 2

≤
(

2

π(n + 1)

)1/2

4−(n+1)e−2a2σ 2
.

From this we easily deduce (14). Finally, for the proof of (15), we observe

�8ea2σ 2�∑
i=0

‖ei‖2∞ ≤ 1 + (2π)−1/2 +
�8ea2σ 2�∑

i=2

(2πi)−1/2

≤ 1 + (2π)−1/2 + (2π)−1/2
∫ 8ea2σ 2+1

1
x−1/2 dx

≤ 1 + (2π)−1/2 + (e/π)−1/24aσ

≤ 3/2 + 4aσ.

Combining this estimate with (14), we then obtain

∞∑
i=0

‖ei‖2∞ =
�8ea2σ 2�∑

i=0

‖ei‖2∞ +
∞∑

i=�8ea2σ 2�+1

‖ei‖2∞

≤ 3/2 + 4aσ +
(

2

π(�8ea2σ 2� + 1)

)1/2

4−(�8ea2σ 2�+1)e−2a2σ 2

≤ 3/2 + 4aσ +
(

1

8eπa2σ 2

)1/2

4−8ea2σ 2
e−2a2σ 2

≤ 2 + 4aσ,

and from the latter we easily obtain (15). �

Our next goal is to generalize the above result to the multi-dimensional case.
To this end, recall that the tensor product f ⊗ g :X × X → R of two functions
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f,g :X → R is defined by f ⊗ g(x, x′) := f (x)g(x′), x, x′ ∈ X. Obviously, for
bounded functions we have ‖f ⊗ g‖∞ = ‖f ‖∞‖g‖∞.

For a multi-index η = (n1, . . . , nd) ∈ N
d
0 we use the notation η ≥ n if ni ≥ n for

all i = 1, . . . , d . Moreover, we write

eη := en1 ⊗ · · · ⊗ end
, η = (n1, . . . , nd) ∈ N

d
0 ,(16)

where eni
is defined by (12). Then [40], Theorem 5, shows that (eη)η∈N

d
0

is an

ONB of Hσ(Rd) and the restrictions of the members of this ONB to [−a, a]d
form an ONB of Hσ([−a, a]d). The following lemma generalizes the estimates of
Lemma 5.6 to this multi-dimensional ONB.

COROLLARY 5.7. For σ > 0 and a > 0 satisfying aσ ≥ 1 and d ∈ N, let
(eη)η∈N

d
0

be the restriction of the ONB (16) to [−a, a]d . Then for n ≥ 8ea2σ 2 we
have ( ∑

η∈N
d
0

∃i:ηi>n

‖eη‖2∞

)1/2

≤ √
de−a2σ 2

(6aσ)(d−1)/2
(

2

π(n + 1)

)1/4
2−(n+1).

PROOF. Using ‖ei1 ⊗ · · · ⊗ eid ‖∞ = ‖ei1‖∞ · · · ‖eid ‖∞ we obtain

∑
η∈N

d
0

∃i:ηi>n

‖eη‖2∞ ≤ d

∞∑
i1=n+1

∞∑
i2=0

. . .

∞∑
id=0

d∏
j=1

‖eij ‖2∞

= d

( ∞∑
i=n+1

‖ei‖2∞

)( ∞∑
i=0

‖ei‖2∞

)d−1

≤ d

(
2

π(n + 1)

)1/2

2−2(n+1)e−2a2σ 2
(6aσ)d−1

by Lemma 5.6. From this we immediately obtain the assertion. �

5.3. A concentration inequality in RKHSs. In this subsection we will establish
a concentration inequality for RKHS-valued functions and for processes which
have a certain decay of correlations. This concentration result will then be the key
ingredient in the statistical analysis of the proof of Theorem 2.4.

Let us begin by recalling a simple inequality that will be used several times:

LEMMA 5.8. Let Z = (Zi)i≥0 be a second-order stationary Z-valued process
on (
,A,μ). Then for P := μZ0 , f ∈ L2(P ), n ≥ 1 and δ > 0 we have

μ

(
ω ∈ 
 :

∣∣∣∣∣1

n

n−1∑
i=0

f ◦ Zi(ω) − EP f

∣∣∣∣∣ ≥ δ

)
≤ 2

nδ2

n−1∑
i=0

corZ,i(f, f ).(17)
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For the following results we have to introduce more notation: Given a bounded
measurable kernel k :X × X → R with RKHS H , we write � :X → H , �(x) :=
k(x, · ) for the canonical feature map. Moreover, for a bounded measurable func-
tion h :X × Y → R and a distribution P on X × Y we write EP h� for the
Bochner integral (see [20]) of the H -valued function h�. Similarly, given T :=
((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n we write

ET h� := 1

n

n∑
i=1

h�(xi, yi)(18)

for the empirical counterpart of EP h�. In order to motivate the following results
we further mention that the proof of Theorem 2.4 will heavily rely on the estimate

‖fP,λ,H − fT,λ,H‖H ≤ 1

λ
‖EP hλ� − ET hλ�‖H ,

where fP,λ,H is the SVM solution (see Theorem 5.12 for an exact definition) one
obtains by replacing the empirical risk RL,T (·) with the true risk RL,P (·) in (5)
and hλ is a function independent of the training set T . Consequently, our next goal
is to estimate terms of the form ‖EP h�−ET h�‖H . To this end, we begin with the
following lemma which, roughly speaking, will be used to reduce RKHS-valued
functions to R-valued functions.

LEMMA 5.9. Let H be the separable RKHS of a bounded measurable kernel
k :X × X → R, let � :X → H be the corresponding canonical feature map and
(ei)i≥0 be an ONB of H . Moreover, let Y be another measurable space, P and Q

be probability measures on X × Y and h ∈ L1(P ) ∩ L1(Q). Then for all n ≥ 0 we
have

‖EP h� − EQh�‖H

≤
(

n∑
i=0

|EP hei − EQhei |2
)1/2

+
( ∞∑

i=n+1

‖ei‖2∞

)1/2

(EP |h| + EQ|h|).

PROOF. Let us define Sn :H → H by
∑

i≥0〈f, ei〉ei �→ ∑n
i=0〈f, ei〉ei . Then

we have

‖Sn�(x) − �(x)‖2
H =

∥∥∥∥∥
∞∑

i=n+1

〈�(x), ei〉ei

∥∥∥∥∥
2

H

=
∞∑

i=n+1

|〈�(x), ei〉|2

=
∞∑

i=n+1

|ei(x)|2
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by the reproducing property and hence we obtain

‖EP h� − EQh�‖H

≤ ‖EP h� − EP hSn�‖H + ‖EP hSn� − EQhSn�‖H

+ ‖EQhSn� − EQh�‖H

≤ EP |h|‖� − Sn�‖H + ‖EP hSn� − EQhSn�‖H

+ EQ|h|‖� − Sn�‖H

≤ ‖EP hSn� − EQhSn�‖H +
( ∞∑

i=n+1

‖ei‖2∞

)1/2

× (EP |h| + EQ|h|).
Moreover, using the reproducing property we have 〈EP h�, ei〉 = EP hei and
〈EQh�,ei〉 = EQhei , and thus we conclude

‖EP hSn� − EQhSn�‖2
H =

n∑
i=0

|〈EP h� − EQh�,ei〉|2 =
n∑

i=0

|EP hei − EQhei |2.

Combining this equality with the previous estimate, we find the assertion. �

Before we can establish the concentration inequality for RKHS-valued func-
tions, we finally need the following simple lemma.

LEMMA 5.10. For d ≥ 1 and t > 18d ln(d) we have t−1/42−t ≤ t−2d .

PROOF. Obviously, it suffices to show

t ln 2 + (1/4 − 2d) ln t ≥ 0.(19)

Let us first prove the case d = 1. Then (19) reduces to the assertion h(t) := t ln 2−
7
4 ln t ≥ 0. To establish the latter, note that we have h′(t) = ln 2 − 7

4 t−1 and hence
h′(t∗) = 0 holds if and only if t∗ = 7

4 ln 2 . Simple considerations then show that
h has its only global minimum at t∗ and therefore we have h(t) ≥ h(t∗) ≥ 7

4 −
7
4 ln( 7

ln 16) > 0.
Let us now consider the case d ≥ 2. To this end we fix a t > 18d ln(d). Then

there exists a unique x > 18 with t = x d ln(d), and hence we obtain

t ln 2 + (1/4 − 2d) ln t = x d ln(d) ln 2 + 1/4 ln(x d ln(d)) − 2d ln(x d ln(d))

> x d ln(d) ln 2 − 2d ln(x d ln(d))

= d
(
x ln(d) ln 2 − 2 lnx − 2 lnd − 2 ln(ln(d))

)
> d

(
x ln(d) ln 2 − 2

lnd

ln 2
lnx − 2 lnd − 2 lnd

)

= d ln(d)

(
x ln 2 − 2

ln 2
lnx − 4

)
,
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where in the last estimate we used d ≥ 2. Now it is elementary to check that x �→
x ln 2 − 2

ln 2 lnx − 4 is increasing on [2(ln 2)−2,∞) and since 18 ln 2 − 2
ln 2 ln 18 −

4 > 0, we then obtain (19). �

THEOREM 5.11. For σ > 0 and a > 0 satisfying aσ ≥ 1 and d ≥ 1, let
� : [−a, a]d → Hσ([−a, a]d) be the canonical feature map of the Gaussian RBF
kernel and let (eη)η∈N

d
0

be the ONB of Hσ([−a, a]d) which is considered in
Corollary 5.7. In addition, let Y be a measurable space and let Z = (Xi, Yi)i≥0

be a [−a, a]d × Y -valued process on (
,A,μ) that is second-order station-
ary. Furthermore, let (γi)i≥0 be a strictly positive sequence converging to zero,
h : [−a, a]d × Y → R be a bounded measurable function and Kh ∈ [1,∞) be a
constant such that

corZ,i(heη, heη) ≤ Khγi(20)

for all i ≥ 0, η ∈ N
d
0 . Then for all ε > 0 satisfying both ε ≤ (1 + 8ea2σ 2)−2d and

ε ≤ (18d lnd)−2d and all n ≥ 1 we have

μ
(
ω ∈ 
 :

∥∥EP h� − ETn(ω)h�
∥∥
H ≤ ε

)

≥ 1 − 2(1 + (1/(8ea2σ 2))dKhC
3
aσ,d,h

nε3

n−1∑
i=0

γi,

where ETn(ω)h� denotes the empirical Bochner integral (18) with respect to the
data set Tn(ω) := (Z0(ω), . . . ,Zn−1(ω)), and

Caσ,d,h :=
(

1 + 1

8ea2σ 2

)d/2

+ 2
√

de−a2σ 2
(6aσ)(d−1)/2‖h‖∞.

PROOF. Let us write

δ :=
(

ε

Caσ,d,h

)5/4

.

Using Caσ,d,h ≥ (1 + 1
8ea2σ 2 )d/2 ≥ 1 and ε ≤ (1 + 8ea2σ 2)−2d we then find δ ≤

(1 + 8ea2σ 2)−5d/2, and consequently, there exists a natural number m ≥ 8ea2σ 2

such that (m + 1)−5d/2 ≤ δ < m−5d/2. Moreover, for later use we note that using
Caσ,d,h ≥ 1 and ε ≤ (18d lnd)−2d yields δ−2/5d ≥ 18d lnd . Let us now consider
an ω ∈ 
 such that ∣∣EP heη − ETn(ω)heη

∣∣ < δ(21)
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for all η ∈ {0, . . . ,m}d . By Lemma 5.9 and Corollary 5.7 we then obtain∥∥EP h� − ETn(ω)h�
∥∥
H

≤
( ∑

η≤m

∣∣EP heη − ETn(ω)heη

∣∣2)1/2

+
( ∑

η∈N
d
0

∃i:ηi>m

‖eη‖2∞

)1/2(
EP |h| + ETn(ω)|h|)

≤ (m + 1)d/2 δ + 2
√

de−a2σ 2
(6aσ)(d−1)/2

(
2

π(m + 1)

)1/4

2−(m+1)‖h‖∞

≤
(

1 + 1

8ea2σ 2

)d/2

δ4/5 + 2
√

de−a2σ 2
(6aσ)(d−1)/2δ1/(10d)2−δ−2/(5d)‖h‖∞,

where in the last step we used the inequalities 8ea2σ 2 ≤ m < δ−2/(5d) ≤ m + 1.
Using Lemma 5.10 for t := δ−2/(5d) we consequently obtain∥∥EP h� − ETn(ω)h�

∥∥
H

≤
((

1 + 1

8ea2σ 2

)d/2

+ 2
√

de−a2σ 2
(6aσ)(d−1)/2‖h‖∞

)
δ4/5 = ε.

Moreover, by Lemma 5.8 and a simple union bound argument we see that the prob-
ability of ω satisfying (21) for all η ∈ {0, . . . ,m}d simultaneously is not smaller
than

1 − ∑
η∈{0,...,m}d

2

nδ2

n−1∑
i=0

corZ,i(heη, heη).

In addition, we have

∑
η∈{0,...,m}d

2

nδ2

n−1∑
i=0

corZ,i(heη, heη) ≤ 2(m + 1)d

nδ2

n−1∑
i=0

Khγi,

and since 8ea2σ 2 ≤ m < δ−2/(5d) we further estimate

2(m + 1)d

nδ2 ≤ 2(1 + 1/(8ea2σ 2))dmd

nδ2 ≤ 2(1 + 1/(8ea2σ 2))d

nδ12/5

= 2(1 + 1/(8ea2σ 2))dC3
aσ,d,h

nε3 .

Combining these estimates we then obtain the assertion. �
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5.4. Proof of Theorem 2.4. For the proof of Theorem 2.4 we need some final
preparations. Let us begin with the following result on the existence and unique-
ness of infinite sample SVMs which is a slight extension of similar results estab-
lished in [12, 18]:

THEOREM 5.12. Let L :X × Y × R → [0,∞) be a convex, locally Lipschitz
continuous loss function satisfying L(x, y,0) ≤ 1 for all (x, y) ∈ (X × Y), and
let P be a distribution on X × Y . Furthermore, let H be a RKHS of a bounded
measurable kernel over X. Then for all λ > 0 there exists exactly one element
fP,λ,H ∈ H such that

λ‖fP,λ,H‖2
H + RL,P (fP,λ,H ) = inf

f ∈H
λ‖f ‖2

H + RL,P (f ).(22)

Furthermore, we have ‖fP,λ,H ‖H ≤ λ−1/2.

Note that the above theorem in particular yields ‖fT,λ,H‖H ≤ λ−1/2 by con-
sidering the empirical measure associated to a training set T ∈ (X × Y)n. The
following result which was (essentially) shown in [12, 18] describes the stability
of the empirical SVM solutions.

THEOREM 5.13. Let X be a separable metric space, L :X×Y ×R → [0,∞)

be a convex, locally Lipschitz continuous loss function satisfying L(x, y,0) ≤ 1
for all (x, y) ∈ (X × Y) and let P be a distribution on X × Y . Furthermore, let
H be the RKHS of a bounded continuous kernel k :X × X → R and let � :X →
H be the corresponding canonical feature map. Then for all λ > 0 the function
hλ :X × Y → R defined by

hλ(x, y) := L′(x, y, fP,λ(x)), (x, y) ∈ X × Y,(23)

is bounded and satisfies and

‖fP,λ,H − fT,λ,H‖H ≤ 1

λ
‖EP hλ� − ET hλ�‖H , T ∈ (X × Y)n.(24)

PROOF OF THEOREM 2.4. Obviously, it suffices to consider sets X of the form
X = [−a, a]d for some a ≥ 1. For σ > 0 and λ > 0 we write hλ,σ for the function
we obtain by Theorem 5.13 for H := Hσ(X). By the local Lipschitz continuity of
L, ‖kσ‖∞ ≤ 1, Theorem 5.12 and (24) we then have

|RL,P (fT,λ,σ ) − RL,P (fP,λ,σ )|
(25)

≤ |L|λ−1/2,1

λ
‖EP hλ,σ� − ET hλ,σ�‖Hσ (X)
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for all σ > 0, λ > 0 and all T ∈ (X × Y)n. Moreover, using (23), (6) and
Lemma 5.5 we have

|hλ,σ (x, y) − hλ,σ (x′, y′)|
= |L′(x, y, fP,λ,σ (x)) − L′(x′, y′, fP,λ,σ (x′))|
≤ c · (|x − x′|2 + |y − y′|2 + |fP,λ,σ (x) − fP,λ,σ (x′)|2)1/2

≤ c · (|x − x′|2 + |y − y′|2 + 2σ 2‖fP,λ,σ ‖2
Hσ (X)|x − x′|2)1/2

≤ 2cσλ−1/2‖(x, y) − (x′, y′)‖2

for all σ ≥ 1, λ ∈ (0,1] and all (x, y), (x′, y′) ∈ X × Y . Consequently, we find
|hλ,σ |1 ≤ 2cσλ−1/2. Moreover, we have

|hλ,σ (x, y)| = |L′(x, y, fP,λ,σ (x))| ≤ sup
|t |≤λ−1/2

|L′(x, y, t)| ≤ |L|λ−1/2,1(26)

for all λ > 0 and all (x, y) ∈ X × Y . Let us now write e
(σ)
η for the ηth element,

η ∈ N
d
0 , of the ONB of Hσ(X) considered in Corollary 5.7. Combining the above

estimates with Lemma 5.5 and the trivial bound ‖e(σ)
η ‖∞ ≤ ‖e(σ)

η ‖Hσ (X) ≤ 1 we
obtain ∣∣hλ,σ e(σ)

η

∣∣
1 ≤ |hλ,σ |1

∥∥e(σ)
η

∥∥∞ + ‖hλ,σ‖∞
∣∣e(σ)

η

∣∣
1 ≤ 5cσλ−1/2

for all λ ∈ (0,1] and σ ≥ 1, where in the last step we used the estimate |L|a,1 ≤
c(1 + a), a > 0, which we derived after Assumption L. Since we further have
‖hλ,σ e

(σ)
η ‖∞ ≤ ‖hλ,σ‖∞ ≤ 2cλ−1/2, we find ‖hλ,σ e

(σ)
η ‖Lip(X×Y ) ≤ 5cσλ−1/2.

Moreover, by Corollary 5.3 we may assume without loss of generality that κψ,ϕ

is of the form κψ,ϕ = cZ‖ψ‖Lip(X×Y )‖ϕ‖Lip(X×Y), where cZ is a constant only
depending on Z and (γi). Consequently, we obtain∣∣ corZ,i

(
hλ,σ e(σ)

η , hλ,σ e(σ)
η

)∣∣ ≤ 25cZc2λ−1σ 2γi

for all σ ≥ 1, λ ∈ (0,1], and η ∈ N
d
0 , that is, (20) is satisfied for Khλ,σ := c̃λ−1σ 2,

where σ ≥ 1, λ ∈ (0,1], and c̃ is a constant independent of λ and σ . For n ≥ 1 and
ε > 0 satisfying both

ε ≤ (1 + 8ea2σ 2)−2d |L|λ−1/2,1λ
−1(27)

and ε ≤ (18d lnd)−2d , Theorem 5.11 together with (25) and (26) thus yields

μ
(
ω ∈ 
 :

∣∣RL,P

(
fTn(ω),λ,σ

) − RL,P (fP,λ,σ )
∣∣ > ε

)
(28)

≤ 2c̃(1 + 1/(8ea2σ 2))dC̃3
λ,σ,d,a|L|3

λ−1/2,1σ
2

ε3nλ4

n−1∑
i=0

γi,
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where C̃λ,σ,d,a := (1 + 1
8ea2σ 2 )d/2 + 2

√
de−a2σ 2

(6aσ)(d−1)/2|L|λ−1/2,1. Using the

fact that the function x �→ e−x2+xx(d−1)/2 is bounded on [0,∞) we further obtain

C̃λn,σn,d,a ≤ Cd(1 + e−aσn |L|
λ

−1/2
n ,1

),(29)

where Cd is a constant only depending on d . Let us now consider the case where
Assumption S1 is fulfilled. Then we have Cd,a := supn≥1 C̃λn,σn,d,a < ∞ and

ε0 := inf
n≥1

(1 + 8ea2σ 2
n )−2d |L|

λ
−1/2
n ,1

λ−1
n > 0,

and hence (27) is satisfied for all ε ∈ (0, ε0]. Moreover, by the remark after As-
sumption L we have |L|λ−1/2,1 ≤ c(1 + λ−1/2) for all λ > 0 and hence the first
and third assumption of S1 together with σn ≤ σn+1 imply limn→∞ λnσ

d
n = 0.

By Lemma 5.4 we thus find limn→∞ RL,P (fP,λn,σn) = R∗
L,P . Consequently, (28)

shows that for sufficiently large n and ε ∈ (0, ε0] we have

μ
(
ω ∈ 
 :

∣∣RL,P

(
fTn(ω),λn,σn

)−R∗
L,P

∣∣ > 2ε
) ≤ 2(d+1)/2c̃C3

d,a

|L|3
λ

−1/2
n ,1

σ 2
n

ε3nλ4
n

n−1∑
i=0

γi,

and hence we obtain the assertion by the last condition of Assumption S1.
Let us now consider the case where Assumption S2 is fulfilled. Then it is

easy to see that the second assumption of S2 implies limn→∞ σ−4d
n |L|

λ
−1/2
n ,1

= 0,

which in turn yields supn≥1 e−σn |L|
λ

−1/2
n ,1

< ∞. From this we conclude Cd,a :=
supn≥1 C̃λn,σn,d,a < ∞ by (29). Moreover, a simple consideration shows we have
εn := (1 + 8ea2σ 2

n )−2d |L|
λ

−1/2
n ,1

λ−1
n → 0. For a fixed ε > 0 we thus have εn ≤ ε

for all sufficiently large n. Therefore we find

μ
(
ω ∈ 
 :

∣∣RL,P

(
fTn(ω),λn,σn

) − R∗
L,P

∣∣ > 2ε
)

≤ 2(d+1)/2c̃C3
d,a

|L|3
λ

−1/2
n ,1

σ 2
n

ε3
nnλ4

n

n−1∑
i=0

γi ≤ C̃d,a

σ 2+12d
n

nλn

n−1∑
i=0

γi

for all sufficiently large n, where C̃d,a is a constant only depending on d and a.
From this estimate we obtain the assertion by the last condition of Assumption S2.

Finally, let us consider the case where Assumption S3 is satisfied. Using (29)
and a ≥ 1 we then obtain for sufficiently large n and ε ∈ (0, ε0] that

μ
(
ω ∈ 
 :

∣∣RL,P

(
fTn(ω),λn,σn

) − R∗
L,P

∣∣ > 2ε
) ≤ C̃d

e−3σn |L|6
λ

−1/2
n ,1

σ 2
n

ε3nλ4
n

n−1∑
i=0

γi ,

where C̃d is a constant only depending on d . �
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6. Proof of Theorem 3.1. For the proof of Theorem 3.1 we need to bound the
correlation sequences for stochastic processes which are the sum of a dynamical
system and an observational noise process. This is the goal of the following results.
We begin with a lemma which computes the correlation of a joint process from the
correlations of its components.

LEMMA 6.1. Let X = (Xi)i≥0 be an X-valued, identically distributed process
defined on (
,A,μ) and Y = (Yi)i≥0 be a Y -valued, identically distributed
stochastic process defined on (�,B, ν). Then the process Z = (Zi)i≥0 defined
on (
 × �,A ⊗ B,μ ⊗ ν) by Zi := (Xi, Yi) is identically distributed with
P := (μ ⊗ ν)Z0 = μX0 ⊗ νY0 . Moreover, for ψ,ϕ ∈ L2(P ) we have

corZ,i(ψ,ϕ) = Eν corX,i (ψ( · , Y0), ϕ( · , Yi)) + EμEμ corY,i (ψ(X0, ·), ϕ(X′
0, ·)),

where X′
0 is an independent copy of X0.

PROOF. The first assertion regarding P is obvious. For the second assertion
we fix an independent copy X′ = (X′

i )i≥0 of X. Then an easy calculation using
the fact that both X and Y are identically distributed yields

corZ,i(ψ,ϕ)

= EμEνψ(X0, Y0)ϕ(Xi, Yi) − EμEνψ(X0, Y0) · EμEνϕ(X0, Y0)

= EμEνψ(X0, Y0)ϕ(Xi, Yi) − EμEμEνψ(X0, Y0)ϕ(X′
0, Yi)

+ EμEμEνψ(X0, Y0)ϕ(X′
0, Yi) − EμEνψ(X0, Y0) · EμEνϕ(X0, Y0)

= Eν

(
Eμψ(X0, Y0)ϕ(Xi, Yi) − EμEμψ(X0, Y0)ϕ(X′

0, Yi)
)

+ EμEμEνψ(X0, Y0)ϕ(X′
0, Yi) − EμEμ(Eνψ(X0, Y0) · Eνϕ(X′

0, Y0))

= Eν

(
Eμψ(X0, Y0)ϕ(Xi, Yi) − Eμψ(X0, Y0) · Eμϕ(X0, Yi)

)
+ EμEμ(Eνψ(X0, Y0)ϕ(X′

0, Yi) − Eνψ(X0, Y0) · Eνϕ(X′
0, Y0))

= Eν corX,i (ψ(·, Y0), ϕ(·, Yi)) + EμEμ corY,i(ψ(X0, ·), ϕ(X′
0, ·)),

that is, we have proved the assertion. �

The following elementary lemma establishes the Lipschitz continuity of a cer-
tain type of function which is important when considering the process that gener-
ates noisy observations of a dynamical system.

LEMMA 6.2. Let M ⊂ R
d be a compact subset and F :M → M be a Lip-

schitz continuous map. For B > 0 and a fixed j ∈ {1, . . . , d} we write X :=
M + [−B,B]d , Y := πj (X) and Z := X × Y , where πj : Rd → R denotes the j th
coordinate projection. For h ∈ Lip(Z) and x ∈ M , ε0, ε1 ∈ [−B,B]d we define the
function h̄ :M × [−B,B]2d → R by

h̄(x, ε0, ε1) := h
(
x + ε0, πj

(
F(x) + ε1

))
.(30)
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Then for all x ∈ M and ε0, ε1 ∈ [−B,B]d we have

‖h̄(x, ·, ·)‖Lip([−B,B]2d ) ≤ (
1 + ‖F‖Lip(M)

)‖h‖Lip(Z),

‖h̄(·, ε0, ε1)‖Lip(M) ≤ ‖h‖Lip(Z).

PROOF. For (ε0, ε1), (ε
′
0, ε

′
1) ∈ [−B,B]d × [−B,B]d we obviously have∣∣h(

x + ε0, πj

(
F(x) + ε1

)) − h
(
x + ε′

0, πj

(
F(x) + ε′

1
))∣∣

≤ ‖h‖Lip(Z)

(‖ε0 − ε′
0‖2

2 + ∣∣πj

(
F(x) + ε1

) − πj

(
F(x) + ε′

1
)∣∣2)1/2

≤ ‖h‖Lip(Z)‖(ε0, ε1) − (ε′
0, ε

′
1)‖2.

Analogously, for x, x′ ∈ M we have∣∣h(
x + ε0, πj

(
F(x) + ε1

)) − h
(
x′ + ε0, πj

(
F(x′) + ε1

))∣∣
≤ ‖h‖Lip(Z)

(‖x − x′‖2
2 + ∣∣πj

(
F(x) + ε1

) − πj

(
F(x′) + ε1

)∣∣2)1/2

≤ ‖h‖Lip(Z)

(
1 + ‖F‖Lip(M)

)‖x − x′‖2.

From these estimates we easily obtain the assertions. �

The next theorem bounds the correlation for functions defined by (30).

THEOREM 6.3. Let M ⊂ R
d be compact and F :M → M be Lipschitz con-

tinuous such that the dynamical system X := (F i)i≥0 has an ergodic measure μ.
Moreover, let γ = (γi)i≥0 be a strictly positive sequence converging to zero such
that

corX(ψ,ϕ) ∈ �(γ ), ψ,ϕ ∈ Lip(M).(31)

Furthermore, let E = (εi)i≥0 be a second-order stationary, [−B,B]d -valued
process on (�,B, ν) such that the [−B,B]2d -valued process Y = (Yi)i≥0 on
(�,B, ν) that is defined by Yi(ϑ) = (εi(ϑ), εi+1(ϑ)), i ≥ 0, ϑ ∈ �, satisfies

corY(ψ,ϕ) ∈ �(γ ), ψ,ϕ ∈ Lip([−B,B]2d).(32)

For a fixed j ∈ {1, . . . , d} we write X := M + [−B,B]d , Y := πj (X), and
Z := X × Y . Define the process Z̄ = (Zi)i≥0 on (
 × �,A ⊗ B,μ ⊗ ν) by
Z̄i = (F i, εi, εi+1), i ≥ 0. Then for all ψ,ϕ ∈ Lip(Z) we have

corZ̄(ψ̄, ϕ̄) ∈ �(γ ),

where ψ̄ and ϕ̄ are defined by (30).
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PROOF. Let cX and cY be the constants we obtain by applying (31) and (32)
to Corollary 5.3. Moreover, since E is second-order stationary, we observe that
Y is identically distributed. Applying Lemma 6.1 to the processes X and Y then
yields

| corZ̄,i (ψ̄, ϕ̄)|
≤ |Eν corX,i (ψ̄(·, Y0), ϕ̄(·, Yi))|

+ |Ex∼μEx′∼μ corY,i(ψ̄(F 0(x), ·), ϕ̄(F 0(x′), ·))|
≤ cXEν‖ψ̄(·, ε0, ε1)‖Lip(M)‖ϕ̄(·, εi, εi+1)‖Lip(M) · γi

+ cYEx∼μEx′∼μ‖ψ̄(x, ·)‖Lip([−B,B]2d )‖ϕ̄(x′, ·)‖Lip([−B,B]2d ) · γi

≤ cX‖ψ‖Lip(Z)‖ϕ‖Lip(Z) · γi

+ cY
(
1 + ‖F‖Lip(M)

)‖ψ‖Lip(Z)‖ϕ‖Lip(Z) · γi,

where in the last step we used Lemma 6.2. �

Note that for using the estimate of Theorem 6.3 in Lemma 5.8 it is necessary
that the process Y be second-order stationary. Obviously, the latter is satisfied if
the process E is stationary.

PROOF OF THEOREM 3.1. For a fixed j ∈ {1, . . . , d} we write X := M +
[−B,B]d and Y := πj (X). Moreover, we define the X × Y -valued process
Z = (Xi, Yi)i≥0 on (M × [−B,B]dN,μ ⊗ ν) by Xi := F i + π0 ◦ Si and Yi :=
πj (F

i+1 +π0 ◦Si+1), and in addition, we write P (j) := (μ⊗ ν)(X0,Y0). Let us fur-
ther consider the M ×[−B,B]2d -valued stationary process Z̄ := (F i,π0 ◦Si,π0 ◦
Si+1) which is defined on (M × [−B,B]dN,μ ⊗ ν). For ψ,ϕ ∈ Lip(X × Y),
Theorem 6.3 together with our decay of correlations assumptions then shows
| corZ̄,i (ψ̄, ϕ̄)| ≤ κψ,ϕγi for all i ≥ 0, where κψ,ϕ ∈ [0,∞) is a constant indepen-
dent of i. Moreover, our construction ensures corZ,i(ψ,ϕ) = corZ̄,i(ψ̄, ϕ̄) for all
i ≥ 0 and hence Theorem 2.4 yields

μ ⊗ ν
(
(x, ε) ∈ M × [−B,B]dN :

∣∣RL,P (j)

(
f

T
(j)
n (x,ε),λn,σn

) − R∗
L,P (j)

∣∣ > ε
) → 0

for n → ∞ and all ε > 0. Using Assumption LD and the definition (10) we then
easily obtain the assertion. �

APPENDIX: PROOF OF THEOREM 5.1

In the following, BE denotes the closed unit ball of a Banach space E. Recall
that a linear operator S : E → F acting between two Banach spaces E and F is
continuous if and only if it is bounded, that is, ‖S‖ := supx∈BE

‖Sx‖ < ∞. Our
first goal is to recall another equivalent condition which in practice is often easier
to check. To this end, we need the following definition:
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DEFINITION A.1. Let E and F be Banach spaces and S :E → F be a linear
map. Then S is said to have a closed graph if for all x ∈ E, y ∈ F and all sequences
(xn) ⊂ E satisfying xn → x and Sxn → y we have Sx = y.

Obviously, every continuous linear operator has a closed graph. The following
fundamental result from functional analysis known as the closed graph theorem
shows the converse implication.

THEOREM A.2. Let E and F be Banach spaces and S :E → F be a linear
map that has a closed graph. Then S is continuous.

Our next goal is to establish an analogous result for bilinear maps. To this
end, we first recall the principle of uniform boundedness, which is also known
as Banach–Steinhaus theorem.

THEOREM A.3. Let E and F be Banach spaces, A be a nonempty set, and
Sα : E → F , α ∈ A, be bounded linear operators such that

sup
α∈A

‖Sαx‖ < ∞

for all x ∈ E. Then we even have supα∈A supx∈BE
‖Sαx‖ < ∞.

Let us now recall that a map S :E1 × E2 → F between Banach spaces E1, E2
and F is called bilinear if the maps S(x1, ·) :E2 → F and S(·, x2) :E1 → F are
linear for all x1 ∈ E1 and x2 ∈ E2. In order to state a closed graph theorem for
bilinear maps we also need a notion which describes a closed graph property for
bilinear maps:

DEFINITION A.4. Let E1, E2 and F be Banach spaces and S :E1 × E2 → F

be a bilinear map. Then S is said to have a partially closed graph if the linear maps
S(x1, ·) :E2 → F and S(·, x2) :E1 → F have closed graphs for all x1 ∈ E1 and
x2 ∈ E2.

With these preparations we can now state and prove the announced closed graph
theorem for bilinear maps:

THEOREM A.5. Let E1, E2 and F be Banach spaces and S :E1 × E2 → F

be a bilinear map that has a partially closed graph. Then there exists a constant
c ∈ [0,∞) such that

‖S(x1, x2)‖F ≤ c‖x1‖E1 · ‖x2‖E2, x1 ∈ E1, x2 ∈ E2.
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PROOF. By the closed graph theorem the maps S(x1, ·) :E2 → F and
S(·, x2) :E1 → F are bounded linear operators for all x1 ∈ E1 and x2 ∈ E2. In
particular, the boundedness of the operators S(·, x2) :E1 → F yields

sup
x1∈BE1

‖S(x1, x2)‖ < ∞, x2 ∈ E2.

Applying the principle of uniform boundedness to the family of bounded operators
(S(x1, ·))x1∈BE1

thus shows

c := sup
x1∈BE1

sup
x2∈BE2

‖S(x1, x2)‖ < ∞.

Using the bilinearity of S we then obtain the assertion. �

With these preparations we can now present the proof of Theorem 5.1.

PROOF OF THEOREM 5.1. Obviously, corZ :E1 × E2 → F is a well-defined
bilinear operator. In view of Theorem A.5 it suffices to show that this operator
has a partially closed graph. We begin by showing that corZ(ψ, ·) : E2 → F has a
closed graph for all ψ ∈ E1. To this end let us fix some ψ ∈ E1, ϕ ∈ E2, a sequence
b := (bn)n≥0 ∈ F and a sequence (ϕi)i≥1 ⊂ E2 such that limi→∞ ‖ϕi − ϕ‖E2 = 0
and

lim
i→∞‖ corZ(ψ,ϕi) − b‖F = 0.(33)

Obviously, corZ(ψ, ·) :E2 → F has a closed graph if corZ(ψ,ϕ) = b. To show
this equality we first observe that for fixed n ≥ 0 and i → ∞ we have∣∣∣∣

∫
Z

ϕi dP −
∫
Z

ϕ dP

∣∣∣∣ ≤ ‖ϕ − ϕi‖L1(P ) ≤ ‖id :E2 → L2(P )‖ · ‖ϕ − ϕi‖E2

and ∣∣∣∣
∫



ψ(Z0) · ϕ(Zn)dμ −
∫



ψ(Z0) · ϕi(Zn) dμ

∣∣∣∣
≤ ‖ψ‖L2(P ) · ‖ϕ − ϕi‖L2(P )

≤ ‖ψ‖L2(P ) · ‖id :E2 → L2(P )‖ · ‖ϕ − ϕi‖E2 .

From this we conclude limi→∞ corZ,n(ψ,ϕi) = corZ,n(ψ,ϕ) for the nth coordi-
nate of sequences of correlations. Moreover, F is continuously included in �∞
and hence (33) implies limi→∞ corZ,n(ψ,ϕi) = bn for all n ≥ 0. Combining these
considerations yields corZ,n(ψ,ϕ) = bn for all n ≥ 0, that is, we have shown that
corZ(ψ, ·) :E2 → F has a closed graph. Since the fact that all corZ(·, ϕ) :E1 → F

have a closed graph can be shown completely analogously, the proof is complete.
�
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