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ROBUSTNESS OF MULTIPLE TESTING PROCEDURES
AGAINST DEPENDENCE

BY SANDY CLARKE AND PETER HALL

University of Melbourne

An important aspect of multiple hypothesis testing is controlling the sig-
nificance level, or the level of Type I error. When the test statistics are not
independent it can be particularly challenging to deal with this problem, with-
out resorting to very conservative procedures. In this paper we show that, in
the context of contemporary multiple testing problems, where the number of
tests is often very large, the difficulties caused by dependence are less serious
than in classical cases. This is particularly true when the null distributions of
test statistics are relatively light-tailed, for example, when they can be based
on Normal or Student’s t approximations. There, if the test statistics can fairly
be viewed as being generated by a linear process, an analysis founded on the
incorrect assumption of independence is asymptotically correct as the number
of hypotheses diverges. In particular, the point process representing the null
distribution of the indices at which statistically significant test results occur
is approximately Poisson, just as in the case of independence. The Poisson
process also has the same mean as in the independence case, and of course
exhibits no clustering of false discoveries. However, this result can fail if
the null distributions are particularly heavy-tailed. There clusters of statisti-
cally significant results can occur, even when the null hypothesis is correct.
We give an intuitive explanation for these disparate properties in light- and
heavy-tailed cases, and provide rigorous theory underpinning the intuition.

1. Introduction. Classical properties of simultaneous hypothesis testing, er-
ror rate and false-discovery rate are well understood. They have been explored
extensively, in both practice and theory, in the context of independent tests. How-
ever, for a range of contemporary applications, multiple testing problems differ
substantially from the conventional. For instance, the number, ν say, of tests is
often far greater than the number of data, n, in the samples from which test sta-
tistics are computed. There is also potential for a degree of dependence among
samples, even though the data within a sample can often fairly be assumed to be
independent.

By way of contrast, in classical settings the value of ν is relatively small, and
critical points are only moderately large (equivalently, p-values are only modestly
small). Here a major, noticeable impact of dependence is that it results in clusters
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of rejections. That is, if a test is rejected for a particular value of an index, then
there are likely to be further rejections for tests that have nearby indices (assuming
that index order reflects dependence). This can impact significantly on the accuracy
of multiple testing procedures.

One approach to alleviating the difficulties caused by dependence is to use tech-
niques based on Bonferroni’s inequality. However, such bounds are quite conser-
vative, and if they could be avoided, then greater precision would result. In some
settings, where positive dependence is present, corrections of Bonferroni type are
unnecessary [see Benjamini and Yekutieli (2001) for discussion], but in general the
nature of dependence is not known reliably. Moreover, even in the case of positive
dependence it is of interest to know whether the test is genuinely conservative, as
indicated by conventional theoretical arguments, or whether its level accuracy is
virtually the same as in the case of independent data. Efron (2007) has suggested
correlation corrections for large-scale simultaneous hypothesis testing.

One might expect the same difficulties and questions to arise in contemporary
testing problems, where ν is much greater than n. (In some of these problems, typ-
ical values of ν and n are 10,000 and 20, resp.) Indeed, there is reason to suspect
that difficulties could increase with increasing ν, since it can be particularly diffi-
cult to model accurately the extremes of dependent data processes. Additionally,
inaccuracies become more obvious as the amount of information about a model
increases.

However, it turns out that sometimes, although not always, the problem is ac-
tually simpler in the contemporary, “ν much larger than n” case. For example,
in cases where test statistics have light-tailed distributions, the difficulties caused
by dependence tend to retreat as the number of simultaneous tests increases. The
number of clusters of false discoveries declines, and the distribution of critical-
point exceedences closely resembles its counterpart for independent data. Only for
very heavy-tailed data is this property violated; for dependent data, when the dis-
tribution of the test statistic is light-tailed and the number of simultaneous tests is
very large, methods that would normally be recommended only for independent
data can give good control of error rate and false-discovery rate.

This result can be explained intuitively by noting that, in the case of light-tailed
marginal distributions, exceedences above a high level occur only because neigh-
boring disturbances are fortuitously aligned. Indeed, since the tail is light, then it is
highly unlikely that a single disturbance is so great as to carry the process close to,
or over, the level for several different indices. Instead different, moderately large
disturbances reinforce one another, by chance, at a particular index. However, at
adjacent indices the circumstances that led to alignment change. As a result the
propensity for level exceedence quickly diminishes, and even disappears. Conse-
quently, clusters of exceedences seldom arise. That is, the pattern of exceedences
appears as though it was produced by a sequence of independent tests, and as a
result, both generalized family-wise error rate, and false-discovery rate, can be
controlled by appealling to standard arguments for independent tests.
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On the other hand, when test statistics have heavy-tailed distributions it is pos-
sible for a single disturbance to be so great that it carries the value of a test statistic
over a high level for several indices in a row. In such cases, clusters of exceedences
occur, and methods based on independent data are not adequate for controlling er-
ror rates.

These arguments and properties, especially those in the light-tailed setting, are
applicable only to exceedences of high levels. Very high levels are relevant only
when the number of simultaneous tests is very large, and so the properties tend not
to be noticed in conventional multiple testing problems, where the number of tests
is relatively small.

In this paper we develop rigorous arguments, using linear-process models for
test statistics, to capture in theory the ideas discussed above. We show that if the
test statistic distribution has tails that decay like exp(−Cxγ ), for constants C,γ >

0, then the tails can be regarded as “light” (in the context of the discussion above)
when γ ≥ 1; they are “heavy” when 0 < γ < 1. However, even in the latter case
the problem has many of the characteristics of the light-tailed context, unless there
are ties among the weights in the linear process. Only in very heavy-tailed cases,
where the distribution of the test statistic decreases at a polynomial rather than
exponential rate in the tails, are methods based on independent data seen to be
inadequate.

Moreover, even in these heavy-tailed contexts the independent-data approach
can provide good results for large-but-not-too-large ν. A case in point is that where
the test statistic is a Student’s t ratio. There, although the extreme tails of the
test statistic distribution are typically regularly varying (e.g., when the sampling
distribution is Gaussian), large-deviation properties show that less extreme parts
of the tail are well approximated by the function exp(−Cxγ ) for γ = 2 [see, e.g.,
Shao (1999) and Wang (2005)]. As a result, good performance can be obtained, in
the case of dependent t-statistics, by arguing as though the data are independent.

There is a particularly broad and deep literature on multiple testing proce-
dures, only a part of it confined to statistics journals. Review-type contributions
include those of Hochberg and Tamhane (1987), who expounded work on multiple
comparisons up to the mid-1980s; Pigeot (2000), who surveyed conceptual issues
in multiple testing; Dudoit, Shaffer and Boldrick (2003), who reviewed multiple
hypothesis testing in microarray settings; Bernhard, Klein and Hommel (2004),
who discussed literature on global and multiple testing; and [Lehmann and Ro-
mano (2005), Chapter 9], who discussed multiple hypothesis testing in the context
of hypothesis testing more generally.

Among contributions related to this paper, Hochberg and Benjamini (1990)
pointed to the need for procedures that are more powerful than classical mul-
tiple comparison methods, and suggested new, generally applicable techniques;
Rom (1990) introduced methods based on modified Bonferroni arguments;
Dunnett and Tamhane (1995) discussed step-up methods for multiple testing in the
presence of correlation; Wright (1992) developed p-value adjustments based on
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Bonferroni’s bounds; Benjamini and Hochberg (2000, 1995) proposed approaches
to false-discovery rate in multiple testing; Blair, Troendle and Beck (1996) intro-
duced methods for controlling family-wise error rates in multiple procedures;
Brown and Russell (1997) suggested corrections for multiple testing; Olejnik
et al. (1997) compared Bonferroni-type methods; Sarkar and Chang (1997) dis-
cussed multiple testing in the presence of positive dependence; Finner and Roters
(1998, 1999, 2000) gave asymptotic theory for an increasingly large number of
hypothesis tests, and (2002) discussed the expected number of Type I errors in
multiple testing problems; Holland and Cheung (2002) discussed robustness of
family-wise error rate; Kesselman, Cribbie and Holland (2002) suggested ways of
controlling level accuracy over a large number of hypothesis tests; Genovese and
Wasserman (2004) proposed new, stochastic process-based methods for control-
ling false-discovery rate in multiple testing; Lehmann, Romano and Shaffer (2005)
developed optimality theory for multiple testing; Rosenberg, Che and Chen (2006)
suggested multiple hypothesis testing methods in a genomic setting; Sarkar (2006)
obtained new results on false-discovery rates for single-step, multiple testing pro-
cedures; Schmidt and Stadtmüller (2006) and Schmidt (2007) discussed upper-
tailed dependence; and Yekutieli et al. (2006) developed new approaches to the
treatment of multiplicity in the setting of microarray analysis.

The issue of overall error rate, as distinct from the error rate of individual
tests, was taken up by Godfrey (1985), who drew attention to the tendency to en-
hance the significance of treatment effects if the overall error rate is not controlled.
See also [Smith et al. (1987), Pocock, Hughes and Lee (1987), Gotzsche (1989),
Ludbrook (1991), Ottenbacher (1991a, 1991b, 1998) and Ottenbacher and Bar-
rett (1991)], who discussed Type I error rate, and problems with its assessment, in
the evaluation of multiplicity in medical-research literature.

2. Error rate and false-discovery rate. Suppose we conduct ν tests, based
on the respective values of the random variables X1, . . . ,Xν . Here, Xi typically
represents a test statistic computed from the ith of a sequence of samples. We
reject the ith null hypothesis, H0i , representing, for example, the hypothesis that
the “center” (e.g., the mean) of the population from which the ith sample is drawn
equals zero, if Xi > t ; if Xi ≤ t , then we do not reject H0i . Let N , a random
variable, denote the number of rejected hypotheses:

N =
ν∑

i=1

I (Xi > t).(2.1)

If each of H01, . . . ,H0ν is correct, and if we view the sequence of ν tests as a test
of the simultaneous hypothesis H0 that each of the component hypotheses H0i is
true, then the significance level of the simultaneous test equals the probability that
N ≥ 1. This is the family-wise error rate (FWER) of the procedure. For example,
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if 0 < α < 1 and we define β = − log(1 − α); if we choose t , in (2.1), to satisfy

P0(X > t) = β

ν
+ o(ν−1)(2.2)

and if

the random variables Xi are independent and identically distributed as X;(2.3)

then the family-wise error rate converges to α as ν increases: P0(N ≥ 1) → α.
Here and in (2.2), P0 denotes probability computed under H0.

The assumption in (2.3) that the test statistics Xi are identically distributed can
be relaxed without much difficulty. For example, if Xi is a Student’s t-statistic,
then it is permissible for Xi to be based on a sample of size ni drawn from a
distribution Fi , both depending on i, provided the sample sizes and distributions
do not vary too greatly with i. However, the assumption of independence in (2.3)
is critical to our argument at this point.

More generally, it is of interest to determine the probability that we make
at least k false discoveries, that is, P0(N ≥ k), where k ≥ 1 can be arbitrary.
This is the generalized family-wise error rate (GFWER). If t satisfies (2.2), and
if (2.3) holds, then N is asymptotically Poisson-distributed with mean β , and so as
ν → ∞,

P0(N ≥ k) →
∞∑

j=k

βj

j ! e−β.(2.4)

An alternative, false-discovery rate (FDR) approach, developed by Simes
(1986), Hommell (1988), Hochberg (1988) and Benjamini and Hochberg (1995),
involves a step-down procedure but can be framed in a similar way to GFWER.
[See also Sarkar (1998) and Sen (1999).] In particular, for i ≥ 1 let t1 > t2 > · · ·
denote a sequence depending on ν and with the property, analogous to (2.2), that

P0(X > ti) = iβ

ν
+ o(ν−1).(2.5)

[Thus, t in (2.2) is here denoted by t1.] Write Ni for the number of values Xi

that lie in the interval (ti, ti−1], where we take t0 = ∞. The event that the step-
down method of Benjamini and Hochberg (1995) does not reject any of the hy-
potheses H0i , for 1 ≤ i ≤ k, is equivalent to the event that, for each i in the latter
range, Xi = X(ν−j+1) ≤ tj , where X(1) ≤ · · · ≤ X(ν) represent the order statis-
tics of the sequence X1, . . . ,Xν . In particular, if k denotes the largest j for which
X(ν−j) ≤ tj−1, then H0i is rejected for each i such that Xi = X(ν−j+1), where
1 ≤ j ≤ k.

This indicates that, to describe properties of the false-discovery rate approach,
we need to understand not just the distribution of N , defined at (2.1), but more
generally the distribution of

N(k) =
ν∑

i=1

I (Xi > tk).



MULTIPLE TESTING 337

Note that N(k) = N1 + · · · + Nk , where

Ni =
ν∑

j=1

I (ti ≤ Xj < ti−1).(2.6)

Assuming that both (2.3) and (2.5) hold, the random variables N1, . . . ,Nk are
asymptotically independent and Poisson-distributed with mean β . Therefore, the
probability that the null hypotheses corresponding to the k largest values of Xi are
all rejected under the FDR approach, when they are in fact all correct, is given by

P0
(
N(i) ≥ i for 1 ≤ i ≤ k

) → P(Q1 + · · · + Qi ≥ i for 1 ≤ i ≤ k),(2.7)

where Q1, . . . ,Qk are independent and identically Poisson-distributed with
mean β . It can be shown from the lemma of Benjamini and Hochberg (1995),
page 293, that the probability on the right-hand side of (2.7) is dominated by β ,
for each k ≥ 1. Of course, this is useful only if β < 1.

In conventional treatments of error rate and false-discovery rate problems, the
right-hand sides of (2.2) and (2.5) would generally be replaced by 1 − (1 − β)1/ν

and iβ/ν, respectively, reflecting an assumption that the null distribution of X

is known exactly. By way of comparison, (2.2) and (2.5) countenance a certain
amount of error in our knowledge of the distribution.

The key approximation properties needed to interpret GFWER and FDR in prac-
tice are (2.4) and (2.7), which describe the probability of making at least k false
discoveries when using the respective methods. In both cases the assumption of
independence, in (2.3), is crucial; without it the Poisson approximations may be
poor. Our aim is to explore the extent to which the approximations can be rendered
invalid by dependence. The context of family-wise error rate is relatively transpar-
ent, and so we shall pay greatest attention to that, although giving explicit results
in the setting of false-discovery rate.

3. Conditions under which clustering occurs, or fails to occur.

3.1. Models for clustering and for the process Xi . If tests of the hypothe-
ses H0i are conducted independently of one another, then there is no evidence of
clustering of level exceedences. In particular, if the random variables Xi are inde-
pendent and have infinite upper tails, then, trivially,

for each i0 ≥ 1 P(Xi > x for some i with 1 ≤ |i| ≤ i0 | X0 > x) → 0(3.1)

as x → ∞. We shall define (asymptotic) clustering to occur if (3.1) fails.
Rather than take the Xi’s to be independent, we shall model them by a moving

average:

Xi = ∑
k

θkεi+k,(3.2)
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where the θk’s are constants and the random variables εi , for −∞ < i < ∞, are
independent and identically distributed. Motivated by simplicity, and by the fact
that our definition of clustering involves only fixed, finite values of i0 in (3.1), we
shall take the moving average to be of finite order:

θk = 0 for all but a finite number of values of k, and θk �= 0 for some k.(3.3)

Of course, all our results can be extended to the setting of infinite-order moving
averages with sufficiently rapidly decreasing weights θk , and in particular, all of
the θk’s can be nonzero. We confine attention to the finite-order case only for con-
venience.

The model (3.2) is admittedly rudimentary. However, a more detailed treatment,
starting from a “time series” model for the data and, through that, constructing a
model for the statistics Xi , requires specific information about the definition of the
test statistic. The choice at (3.2) is appropriate if the test is being conducted about
a mean when the variance is known, and in particular if Xi = n−1/2 ∑

1≤j≤n Vij ,
where

Vij = μi + ∑
k

θkε
′
i+k,j for 1 ≤ i ≤ ν and 1 ≤ j ≤ n,(3.4)

μi = E(Vij ) and the disturbances ε′
ij are all independent and identically distrib-

uted with zero expected value. Here, (3.2) holds if we take

εi = n−1
∑

1≤j≤n

ε′
ij ,(3.5)

these variables being independent and identically distributed. The null and alterna-
tive hypotheses under test using the statistic Xi are H0i :μi = 0 and H1i :μi > 0,
respectively.

3.2. Sufficient conditions for no clustering. We first state a simple, sufficient
condition for (3.1). Let the linear process Xi be as at (3.2), let Kj denote the
set of integers k such that θk−j �= 0, and put K(j) = Kj ∩ K0. We ask that the
independent and identically distributed disturbances εi satisfy

for each v > 0 and each j �= 0
P(

∑
k∈K(j) θkεk > u − v)

P (
∑

k∈K0
θkεk > u)

→ 0(3.6)

as u → ∞.

Let 1 ≤ I1 < I2 < · · · denote the indices i for which Xi > t , where t is as in (2.2).

THEOREM 3.1. If (3.3) and (3.6) hold, then so too does (3.1).

THEOREM 3.2. If (2.2) and (3.1) hold, then, for each constant C > 0, the
point process I1ν

−1, I2ν
−1, . . . , restricted to the interval [0,C], converges weakly,

as ν → ∞, to a homogeneous Poisson process on [0,C], with intensity β .



MULTIPLE TESTING 339

Theorem 3.2 implies that N , at (2.1), is Poisson-distributed with mean β . The
argument leading to Theorem 3.2 also shows that, if (2.5) and (3.1) hold, then for
each i ≥ 1 the random variables N1, . . . ,Ni , introduced at (2.6), are independent
and identically Poisson-distributed with mean β . Together these results establish
the correctness of the crucial Poisson approximations (2.4) and (2.7).

As noted in Section 2, these results also hold if X1,X2, . . . are independently
distributed. Therefore, under conditions (2.5) and (3.1), exceedences of the level t

by the linear process X1,X2, . . . have the same first-order asymptotic properties
they would enjoy if the Xi ’s were independent and identically distributed random
variables with the same marginal distribution as the linear process. In particular, the
Introduction of dependence does not produce any first-order evidence of clustering.

Therefore, calibrating the tests using methodology based on the assumption
of independence is adequate if the null distribution of the stochastic process Xi

is close to that of a linear process, if the number of simultaneous tests is suffi-
ciently large, and if (3.1) holds. In the next section we shall show that (3.6), and
hence (3.1), prevails if the marginal distribution of Xi is light-tailed.

3.3. No clustering occurs for light-tailed distributions. Here we show that,
under the moving-average model defined at (3.2) and (3.3), no clustering occurs
[i.e., (3.1) holds] if the distribution tails decrease like exp(− const. xγ ) where
γ ≥ 1. Therefore, testing can proceed as though the test statistics Xi are inde-
pendent, which of course they are not.

The case where γ > 1 is relatively straightforward; there we need assume only
that, for a constant C > 0, the density f of the distribution of ε satisfies, as x → ∞,

f (x) = exp{o(xγ )} exp(−Cxγ ).(3.7)

A sufficient condition for (3.7) is the following: For constants C,C1 > 0 and
C2 ≥ 0,

f (x) ∼ C1x
C2 exp(−Cxγ )(3.8)

as x → ∞.

THEOREM 3.3. If the process X1,X2, . . . is determined by (3.2); if the density
of ε exists and satisfies (3.7) with γ > 1, or satisfies (3.8) with γ = 1; and if the
weights θk are all nonnegative and satisfy (3.3); then (3.6), and hence also (3.1),
hold.

The assumption that the weights θk are all nonnegative is important, in that
without it, properties of the lower tail of the distribution of ε would have to be taken
into account. [Conditions (3.7) and (3.8) address only the upper tail.] Depending
on behavior of the lower tail, if one or more of the θk’s is negative, then first-order
asymptotic theory can be quite different from that discussed in Theorems 3.3–3.5.
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For example, if the negative θk’s form a set {θk ≡ −ω, for k ∈ A}, where ω > 0;
and if the density of the lower tail of the distribution of ε satisfies

f (−x) ∼ C3x
C4 exp(−C5x

γ1)

as x → ∞, where C3,C5 > 0, C4 ≥ 0 and 0 < γ1 < 1 < γ ; then the pattern of
exceedences of t [where t still has the property at (2.2)] is first-order equivalent to
that for quite a different process Xi , for which the only nonzero moving-average
weights are θk ≡ ω for k ∈ A, and where the distribution of ε satisfies (3.8) with
(C,C1,C2, γ ) there replaced by (C5,C3,C4, γ1). For such a process, clustering
can occur; see Theorem 3.4 below. Thus, by allowing negative weights and choos-
ing the lower-tail distribution appropriately, we can substantially alter the pattern
of level exceedences.

The case of Student’s t-statistic is related to the model (3.2), but differs in im-
portant respects. One of these is the potential for the tails of the distribution of Xi

to become lighter as the “group size,” that is, the size of the dataset used to compute
an individual Xi , increases. We shall discuss this issue in Section 3.6.

Theorem 3.3 includes the case where the autoregression is a Gaussian process.
In particular it implies that, in the Gaussian setting, clustering does not occur un-
less, for example, the strength of dependence of the process Xi is permitted to
increase with ν. We shall take up this issue in Section 3.7, showing that correla-
tions must converge to 1 at least as fast as (logν)−1 if clustering is to be present in
asymptotic terms.

3.4. Clustering can sometimes occur if 0 < γ < 1. The case where (3.7)
or (3.8) holds, and 0 < γ < 1, is relatively complex. There, if the largest θk oc-
curs for a unique value of k, then (3.1) holds. That is, the probability that there
exists a cluster of exceedences converges to zero as the exceedence level, x, in-
creases. In this instance, if ν is sufficiently large, the dependent test statistics Xi

can be treated as though they were independent, without serious problems arising.
However, if there are ties for the largest θk , then the probability of a cluster does

not converge to zero. In this case, if the number of tied values equals q , then the
probability that the size of the cluster of exceedences also equals q , converges to 1
as the exceedence level increases.

To indicate why the case γ < 1 is so different, we treat the instance where
θ1 = · · · = θr and each other θk vanishes. In this setting, having ε1 + · · · + εr > x

implies that, with high probability, one of the values of ε1, . . . , εr is very close to x,
or greater than x, and the other values are all significantly smaller than x. (Here
and below we assume that x is large.) That is, just one of the εi ’s is responsible for
the level exceedence, and its influence can persist, through weights in the moving
average, to ensure that εj+1 + · · · + εj+r > x for values of j other than simply
j = 0.
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By way of comparison, if γ > 1 and ε1 + · · · + εr > x, then it is highly likely
that this is achieved through all of the εk’s being of order x; and that, if just one
of the εi ’s is exchanged for another, the inequality fails. Therefore in this case,
if ε1 + · · · + εr > x, then it is unlikely that εj+1 + · · · + εj+r > x for values of
j �= 0. Therefore clustering can occur if γ < 1, but is relatively unlikely if γ > 1.
Our proofs in Section 5 involve verification of general versions of these properties,
which underpin the intuitive arguments given in Section 1.

Next we formally state a result describing the case 0 < γ < 1. Write r for any
integer that is not less than the difference between the least, and largest, values of k

for which θk �= 0, and let M denote the number of values j with |j | ≤ r , for which
Xj > x.

THEOREM 3.4. Assume that (a) the weights θk are all nonnegative and sat-
isfy (3.3), and (b) the density f of the distribution of ε exists and satisfies (3.7)
for a value of γ in the range 0 < γ < 1. If, in addition, (c) there is no tie for the
largest θk , then (i) (3.1) holds. On the other hand, if (a) and (b) hold, although
with (3.8) replacing (3.7) in (b) and, instead of (c), (d) exactly q ≥ 2 of the values
of θk tie for the maximum, then (ii) P(M = q | X0 > x) → 1 as x → ∞.

It follows from Theorems 3.2 and 3.4 that if (2.5) and (a)–(c) in Theorem 3.4
hold, then the random variable N , at (2.1), is asymptotically Poisson with mean β;
and likewise, that the random variables N1, . . . ,Nk , defined at (2.6), are asymp-
totically independent and Poisson with mean β . This shows that, asymptotically,
clusters do not occur, and establishes the correctness of the key Poisson approxi-
mations, (2.4) and (2.7), borrowed from the case where the Xi’s are independent.

However, if (c) in Theorem 3.4 fails, and is replaced there by (d), then with
probability converging to 1, clusters exist and are of size q . Moreover, q−1N is
asymptotically Poisson, and q−1N1, . . . , q

−1Nk are asymptotically independent
and Poisson, with mean β/q in each case. Therefore (2.4) and (2.7) fail in this
case. For example, (2.7) should be replaced by the result,

P0
(
N(i) ≥ i for 1 ≤ i ≤ k

) → P(qQ1 + · · · + qQi ≥ i for 1 ≤ i ≤ k),

where Q1, . . . ,Qk are independent and Poisson with mean β/q . The fact that
q−1N and q−1Ni , rather than N and Ni , are independent and Poisson, follows
using part (ii) of Theorem 3.4 and the fact that the probability that a cluster over-
laps the end of the interval 1,2, . . . , ν converges to zero as ν → ∞.

To appreciate intuitively why, in the paragraph above, the Poisson mean equals
β/q rather than β , note that (2.2) and (2.5) imply that νE(N) → β and νE(Ni) →
β as ν → ∞. However, each time an exceedence occurs it is, with probability
converging to 1, accompanied by q − 1 other exceedences, and so if the number of
clusters has mean β1, then β1q = β , that is, β1 = β/q .
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3.5. Clustering in the case of Pareto-type distributions of disturbances. Here
we assume that, for constants C,ρ > 0,

P(ε > x) ∼ Cx−ρ(3.9)

as x → ∞. More generally, C could be replaced by a slowly varying function of X.
In these settings the probability that a cluster of exceedences occurs is bounded
away from zero, as the exceedence level increases, regardless of ties among the
moving-average weights.

To describe the distribution of cluster size, let θ(1) ≥ · · · ≥ θ(m) denote a ranking
of the m nonzero θi ’s. Define θ(q) = 0 for q > m and pq = (θ

ρ
(q) − θ

ρ
(q+1))/θ

ρ
(1).

Let M0 denote a random variable for which P(M0 = q) = pq . Note that if all the
nonzero θi’s are equal, then P(M0 = m) = 1. Our next theorem asserts that the
distribution of M0 is the limiting distribution of cluster size. Given x > 0, write M

for the number of values j with |j | ≤ r , for which Xj > x, and define M1 to have
the distribution of M given that M ≥ 1.

THEOREM 3.5. If (3.9) holds, and if the weights θk are all nonnegative and
satisfy (3.3), then P(M1 = q) → P(M0 = q) as x → ∞.

Theorem 3.5 implies that both (2.4) and (2.7) fail in the forms given there. We
now outline modifications to (2.4) and (2.7) that are necessary if those results are
to hold in the setting of (3.9).

Put μ = E(M0), let Q and Q1,Q2, . . . be independent and identically Poisson-
distributed random variables with mean β/μ, and let M1,M2, . . . and Mj
, for
j ≥ 1 and 
 ≥ 1, be independent random variables each with the distribution of M0.
In cases where (3.9) holds, (2.4) and (2.7) should be replaced by, respectively,

P0(N ≥ k) → P

(
Q∑

i=1

Mi ≥ k

)
,(3.10)

P0
(
N(i) ≥ i for 1 ≤ i ≤ k

) → P

(
i∑

j=1

Qj∑

=1

Mj
 ≥ i for 1 ≤ i ≤ k

)
.(3.11)

In principle the Pareto parameter ρ, and the constants θk in the linear-process
model, also can be estimated from data, and hence the distribution of M0 can be
estimated. This leads to estimators of the right-hand sides of (3.10) and (3.11).
However, this approach to statistical analysis will generally not be straightfor-
ward.

3.6. The case of Student’s t-statistic. The model (3.2) for Xi is directly ap-
propriate when the test statistic is a sample mean, but in other cases it is only an
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approximation. For example, in the context of two-channel microarrays, Xi would
be a Studentized mean. In this setting, suppose data Vi1, . . . , Vin are generated as
at (3.4), and consider the test that rejects H0i :μi = 0, in favor of H1i :μi > 0, if
Yi > t , where

Yi = n−1/2 ∑
1≤j≤n Vij

{n−1 ∑
1≤j≤n V 2

ij − (n−1 ∑
1≤j≤n Vij )2}1/2

(3.12)

is a conventional t-statistic. If n is large, then the distribution of Yi under H0i

can be approximated by the distribution of Xi , at (3.2), on taking εi to be given
by (3.5). Moreover, as n increases the distribution of Yi becomes more light-
tailed, and so high-level exceedences by the Yi’s should become less clustered.
Perhaps surprisingly, “large” n can be very much less than ν [it is sufficient that
logν = o(n) as n diverges], and the tails of the distribution of ε can be relatively
heavy (only E|ε|3 < ∞ is required), without damaging the property that high-level
crossings are asymptotically independent. Also, depending on the weights θk , the
level, t , at which these properties occur can be substantially lower than in the set-
ting of Theorems 3.1–3.3. These results make substantial use of special properties
of t-statistics, and will be given elsewhere.

3.7. The case of a highly correlated Gaussian process. The reader will have
noticed that the strength of dependence permitted by the model (3.2) is reasonably
low, and might well ask: “Just how strong does dependence have to be before
clustering becomes apparent?” Our purpose in Section 3.7 is to respond to that
question. In the context of processes for which dependence decays to zero over a
finite range, the answer is, “The point at which clustering is noticed is where the
correlation between nearby Xi’s is 1 − const.(logν)−1/2 + o{(log ν)−1/2}.” This is
not especially strong correlation; for each η > 0 it is weaker than 1 − const. ν−η.

There exist real-world processes where dependence at neighboring indices i can
be very strong. Consider, for example, the case of speckle imaging in astronomy,
where noise correlation at neighboring pixels can be particularly high. This has a
significant effect on the potential for resolving (or for successfully testing for the
existence of) faint light sources in the heavens.

To model these processes we shall take the variables εi , in the moving average
at (3.2), to be independent N(0,1) random variables, and the weights θk to be
given by

θ−k = c

k∏
j=0

ρk for k ≥ 0, θk = 0 for k ≥ 1,(3.13)

where the constants ρk are nonnegative, and c > 0 is chosen so that varXi = 1 for
each i. If each ρk = ρ, not depending on k, then Xi is an autoregression of order 1:
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Xi = ρXi + (1 − ρ2)1/2εi . We shall instead take

ρ0 = 1, ρk = 1 − akδ + o(δ) for 1 ≤ k ≤ r,
(3.14)

ρk = 0 for k ≥ r + 1,

where δ = δ(ν) ↓ 0 as ν → ∞, and a1, . . . , ar are nonnegative constants.
Define

cj = 1

r + 1

r∑
k=0

(ak+1 + · · · + ak+j ).(3.15)

Then, cov(Xi,Xi−j ) = 0 for j ≥ r + 1, whereas for 0 ≤ j ≤ r ,

cov(Xi,Xi−j ) = 1 − cj δ + o(δ).(3.16)

These properties, and the fact that δ decreases with increasing ν, imply that Xi1

and Xi2 are very highly correlated if |i1 − i2| ≤ r , but are independent otherwise.
We shall give the limiting distribution of cluster size in this setting. To do so,

define I to be the set of 2r integers between −r and r , excluding zero; and let Zi ,
for i ∈ I, denote 2r Normally distributed random variables with zero means and
covariance matrix  = (σij ), where

σij = cov(Zi,Zj ) = c|i| + c|j | − c|i−j |

and cj is as at (3.15). Write � to denote either “>” or “<,” and let S = (�i

: i ∈ I) be a sequence of such inequalities. Of course, there are just 22r distinct
sequences S. Given a constant d > 0, and given a particular sequence S, define

π(S) =
∫ ∞

0
P

(
Zi �i dc|i| − d−1z for 1 ≤ |i| ≤ r

)
e−z dz.

For 0 ≤ k ≤ 2r , let π0
k equal the sum of π(S) over all sequences S that contain just

k “>” signs and 2r − k “<” signs. Define πk = πk(ν) to equal the probability that
exactly k out of the 2r values of Xi , for i ∈ I, exceed t , conditional on X0 > t .

THEOREM 3.6. If the errors εi are independent Normal N(0,1), so that the
process Xi , defined at (3.2), is Gaussian; if the weights θk are given by (3.13),
and the coefficients ρk are given by (3.14), with a1, . . . , ar ≥ 0; if c1, . . . , ck are
defined in terms of a1, . . . , ak by (3.15); and if t and δ−1 both diverge as ν → ∞,
with δ1/2t → d , where 0 ≤ d ≤ ∞; then, for 0 ≤ k ≤ 2r , πk → π0

k if 0 < d < ∞,
πk → 0 if d = ∞, and πk → 1 if d = 0.

Note that, when X has a normal N(0,1) distribution, the value of t defined
by (2.2) satisfies t ∼ (2 logν)1/2 as ν increases. Therefore the condition invoked
in Theorem 3.6, that δ1/2t → d for some finite and nonzero d , is equivalent
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to the correlation between neighboring Xi ’s equalling 1 − const.(logν)−1/2 +
o{(logν)−1/2}.

4. Numerical properties. Our simulations were based on two different mod-
els. In model 1 the test statistic Xi was that given at (3.2), with ε simulated from a
Student’s t distribution. Model 2 was the Student’s t-statistic model at (3.12) with
n = 10; we took the distribution of ε to itself be Student’s t . In both models the
number of nonzero θk’s (which we shall call r) was taken to equal 1 (indepen-
dence), 3, 10 or 50, and the nonzero θk’s were taken equal to one another.

The number, ν, of tests was 500, 1000, 2000, 5000 or 10,000 for both models.
A range of tail weights was achieved by varying the number of degrees of free-
dom for the distribution of ε; we included infinity, thereby addressing the case of
normally distributed ε. These were scaled so that var(Xi) = 1 in each case. The
chosen critical values were based on controlling the FWER in the one-sided case
with α = 0.05. Each simulation involved 10,000 repetitions.

“Clustering tendency” can be characterized in terms of the value of N , that
is, the number of rejected hypotheses. If the hypothesis tests are genuinely inde-
pendent, then most realizations have N equal to 0 or 1; the proportion of real-
izations for which N > 1 is only 0.0013. However, as the effects of dependence
become more pronounced, leading to greater clustering, the event N > 1 becomes
more common, with a corresponding decrease in the number of events for which
N = 1. Therefore a succinct way of reporting the effect that tail-weight of the er-
ror distribution has on clustering tendency is to graph the proportion of clusters
for which N > 1 of those for which N > 0, against number of degrees of free-
dom (df).

This is the approach taken in Figures 1 and 2, which summarize these results.
In both figures, panels (a) through (d) represent the different values of r (1, 3, 10
or 50, resp.). The horizontal axis gives the number of degrees of freedom, and each
separate line represents a different number of tests, ν.

As Figure 1 indicates, in the case of model 1 there is a clear decrease in cluster-
ing as tail-weight decreases for r = 3, 10 and 50. This reflects the results in The-
orem 3.3, for example. There is also a slightly less clear, but nevertheless present,
decrease in clustering as ν increases, particularly for normally distributed ε. While
these trends are present for all values of r , by the time r is as large as 10 the
strength of dependence has increased so much that the decrease in clustering with
decreasing tail-weight is noticeably slower. See, for example, the panels of Fig-
ure 1 corresponding to r = 10,50.

Reflecting the conclusions reached in Section 3.6, Figure 2 indicates that there
is very little clustering under model 2 for r = 3, even for heavy-tailed ε. There is
still clustering for long-range dependency, which persists in the light-tailed case,
although it decreases as ν increases.

The case of nonequal θk was considered; the cases with larger r behaved like
those with smaller r if the number of large θk’s was small.
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FIG. 1. Clustering when test statistics are distributed as moving averages. (a) One nonzero value of θk ; (b) three nonzero values of θk ; (c) ten nonzero
values of θk ; (d) fifty nonzero values of θk (for clarity, the horizontal axis is logarithmic).
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FIG. 2. Clustering when test statistics are t-statistics computed from moving-average data. (a) One nonzero value of θk ; (b) three nonzero values of θk ;
(c) ten nonzero values of θk ; (d) fifty nonzero values of θk (for clarity, the horizontal axis is logarithmic).
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5. Technical arguments.

5.1. Proof of Theorem 3.1. To derive (3.1) it suffices to show that, for each j

for which Kj is a proper subset of K0, P(Xj > x | X0 > x) → 0. To this end, put

U = ∑
k∈Kj∩K̃0

θk−j εk, V = ∑
k∈Kj∩K0

θk−j εk,

where K̃0 denotes the complement of K0. Then U is independent of both V

and X0, and so

P(Xj > x | X0 > x)

= P(U + V > x | X0 > x)
(5.1)

≤ P(u + V > x | X0 > x) + P(U > u)

≤ P(u + V > x)

P (X0 > x)
+ P(U > u).

The ratio P(u + V > x)/P (X0 > x) has the same form as the ratio of probabil-
ities in (3.6), with (u, v) there replaced here by (x, u). Hence, by (3.6), the far
right-hand side of (5.1) converges to P(U > u) as x → ∞. Since this is true for
arbitrarily large u, then the far left-hand side of (5.1) converges to zero as x → ∞.
This proves (3.1).

5.2. Proof of Theorem 3.2. Let the integer 
 be so large that, for some j ,
the only θk’s for which θk �= 0 are included in the set θj+1, . . . , θj+
; and let
m = m(ν) ≥ 1 denote an integer satisfying m � ν as ν → ∞. Divide the indices
1, . . . ,m into B blocks, each of length b = b(ν), where b → ∞ and b/ν → 0 as
ν increases; with consecutive blocks separated by “spacers” of length 
; in such a
way that X1, . . . ,Xb and Xm−b+1, . . . ,Xm denote the first and last block, respec-
tively. (This neat fit of the blocks, and their separating spacers, into the interval
[1,m] may require a slight increase in m, but since b/ν → 0, then the fit may be
achieved without damaging the property m � ν.) Define Jj = 1 (resp., Kj = 1)
if Xi > t for some integer i in the j th block (in the j th spacer), and put Jj = 0
(Kj = 0) otherwise. Then J1, J2, . . . are independent random variables [call this
property (P1)], as too are K1,K2, . . . . Let J(b) denote the set of indices j such
that K(j) is a proper subset of K0 and |j | ≤ b. If b diverges to infinity sufficiently
slowly, then, by (3.1), and as ν → ∞,

P {Xj > t for some j ∈ J(b) | X0 > t} → 0.(5.2)

Let MJ and MK denote the number of nonzero Jj ’s, and number of nonzero
Kj ’s, respectively. Markov’s inequality, (2.2), and the fact that b → ∞ as ν → ∞,
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can be used to show that as ν increases, P(MK = 0) → 1 [call this property (P2)]
and

lim
k→∞ lim sup

ν→∞
P(MJ ≥ k) = 0.(5.3)

Result (5.3) implies that the probability that MJ ≤ k can be made arbitrarily close
to 1, uniformly in ν, by choosing k sufficiently large but fixed. This property,
and (5.2), imply that, with probability converging to 1 as ν → ∞, none of the
blocks enjoys more than a single exceedence; call this property (P3). Together,
(P2) and (P3) imply that, with probability converging to 1 as ν → ∞, the number
of indices i, for 1 ≤ i ≤ m, such that Xi > t , equals the number of indices j , for
1 ≤ j ≤ B , such that Jj = 1. Call this property (P4).

The Poisson property stated in the theorem, but for the interval [0,m/ν] rather
than [0,C], follows from (P1) and (P4). By taking m = m(ν) to be so large that
m/ν ≥ C for all sufficiently large ν, we complete the proof of the theorem. This
argument does not immediately give the mean of the Poisson distribution. How-
ever, simple calculations from (2.2) show that P(Jj = 1) = bβν−1 + o(bν−1), not
depending on j . From this result, and the fact that B ∼ ν/b, follows the claim in
the theorem that the limiting Poisson process has intensity β .

5.3. Proof of Theorem 3.3. First we assume that γ > 1. Without loss of gener-
ality, the constant C in (5.3) equals 1. We shall prove that in this case, if θ1, . . . , θr

are nonnegative constants, at least one of them positive, and if ε1, . . . , εr are inde-
pendent and identically distributed random variables for which the density satis-
fies (3.7), then

P(x) ≡ P

(
r∑

k=1

θkεk > x

)
= exp

{
−

(
r∑

k=1

θ
γ/(γ−1)
k

)−(γ−1)

xγ + o(xγ )

}
.(5.4)

Result (3.6) follows directly.
Let U denote the set of points (u1, . . . , ur) such that

∑
k θkuk > 1 and each

uk ≥ 0. It can be deduced from (3.7) that, as x → ∞,

P(x) = exp{o(xγ )}
∫
U

exp{−(u
γ
1 + · · · + uγ

r )xγ }du1 · · · dur .

A Lagrange multiplier argument shows that the minimum of u
γ
1 +· · ·+u

γ
r , subject

to
∑

k θkuk ≥ 1 and each uk ≥ 0, occurs when uk = C1θ
1/(γ−1)
k and equals C

γ−1
1 ,

where C−1
1 = ∑

k θ
γ/(γ−1)
k . Therefore, (5.4) holds.

Next we treat the case γ = 1. It suffices to assume that C = 1 and P(ε > 0) = 1.
Suppose too that, among the positive weights θ1, . . . , θr , there are just d distinct
values of θk , given by ω1 > · · · > ωd > 0, and that these are repeated s1, . . . , sd
times, respectively. Thus, s1 + · · · + sd equals the number, r , of integers k for
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which θk is nonzero. Then, writing du for either du1 · · · dur or du1 · · · dud , de-
pending on occasion, we have

p1(x) ≡ P

(
r∑

k=1

θkεk > x

)

�
∫

θ1u1+···+θrur>x,
u1,...,ur>0

(
r∏

k=1

u
C2
k

)
exp{−(u1 + · · · + ur)}du

�
∫

ω1u1+···+ωdud>x,
u1,...,ud>0

(
d∏

k=1

u
sk(C2+1)−1
k

)
exp{−(u1 + · · · + ud)}du

=
∫

u1>(x/ω1)−(ω2u2+···+ωrur )/ω1,
u1,...,ud>0

(
d∏

k=1

u
sk(C2+1)−1
k

)

× exp{−(u1 + · · · + ud)}du
(5.5)

� xs1(C2+1)−1

×
∫

ω2u2+···+ωrur≤x,
u2,...,ud>0

(
d∏

k=2

u
sk(C2+1)−1
k

)

× exp[−{xω−1
1 + (1 − ω−1

1 ω2)u2

+ · · · + (1 − ω−1
1 ωd)ud}]du2 · · · dud

� xs1(C2+1)−1 exp(−x/ω1).

Result (5.5) gives an asymptotic expression for the denominator in (3.6). An
asymptotic formula for the probability in the numerator, equal to p2(u−v) say, can
be derived similarly. To appreciate the conclusion of those calculations, let K(j)

denote the set of indices k in Kj for which θk = ω1, and put K[j ] = K(j)∩K(0).
Then, for j �= 0, K[j ] is a proper subset of K[0] = K(0). If K[j ] is empty, then
p2(x) = O(e−x/ω) for a constant ω ∈ (0,ω1). If K[j ] contains at most s1 − 1
(≥ 1) elements, then p2(x) = O{xs1(C2+1)−2 exp(−x/ω1)}. It follows from these
properties and (5.5) that, for each v, p2(u − v)/p1(u) → 0 as u → ∞. Therefore
(3.6) holds. This establishes Theorem 3.3 in the case γ = 1.

5.4. Proof of Theorem 3.4. In order to prove (i) it suffices to show that, for
each j �= 0,

P(X0 > x,Xj > x)

P (X0 > x)
→ 0(5.6)
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as x → ∞. To achieve this end we shall derive upper and lower bounds for the
numerator and denominator, respectively, on the left-hand side.

Let r denote the number of nonzero values of θk , choose B > 0 so large that a ≡
P(0 ≤ ε ≤ B) > 0, write ω1 and ω2 for the largest and second-largest, respectively,
values of θk , and put C3 = (r − 1)ω2B/ω1. Then, since 0 < γ < 1,

P(X0 > x) ≥ P {ω1ε > x − (r − 1)ω2B}ar−1

= exp{−C(xω−1
1 − C3)

γ + o(xγ )}(5.7)

= exp{−C(x/ω1)
γ + o(xγ )}.

Next we derive an upper bound to the numerator in (5.6). We may assume,
without loss of generality, that Xi = θ1εi+1 + · · · + θrεi+r , where θ1θr �= 0. We
shall also suppose that r ≥ 2; the case r = 1 is straightforward. Let J denote a large
positive integer, and given −∞ < j < ∞, put Ij = (j/J, (j + 1)/J ]x. Define
ε′
k = θkεk and Ejk = {ε′

k ∈ Ij }, and let ξ ∈ (0,1) be a constant. Suppose that the
unique maximum of θk occurs at k = 
. Then,

P(X0 > x and εk > ξx for some k ∈ [1, r] with k �= 
)

≤ ∑
i : 1≤i≤r,

i �=


P

(
r∑

k=1

ε′
k > x, ε′

i > ξx

)

≤ ∑
i : 1≤i≤r,

i �=


∑
j1,...,jr :

j1+···+jr+r≥J

P

(
{ε′

i > ξx} ∩
r⋂

k=1

Ejkk

)

= ∑
i : 1≤i≤r,

i �=


∑
j1,...,jr :

j1+···+jr+r≥J

P (ε′
i > ξx,Eji i)

∏
k : 1≤k≤r,

k �=i

P (Ejkk)(5.8)

≤ exp{o(xγ )} ∑
i : 1≤i≤r,

i �=


∑
j1,...,jr≥0

j1+···+jr+r≥J

exp[−Cxγ max{(ξ/ω2)
γ ,

(ji/J θi)
γ }]

× exp

{
−Cxγ

∑
k : 1≤k≤r,

k �=i

(jk/J θk)
γ

}
.

If i �= 
, then the minimum of
∑

k : k �=i(uk/θk)
γ , subject to

∑
k uk = v and each

uk ≥ 0, occurs when u
 = v and uk = 0 for k �= 
. Hence, given ξ > 0, and η > 0
sufficiently small, we may choose J so large that, uniformly in 1 ≤ i ≤ r with
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i �= 
,

∑
j1,...,jr≥0:

j1+···+jr+r≥J

exp

[
−Cxγ max{(ξ/ω2)

γ , (ji/J θi)
γ }

− Cxγ
∑

k : 1≤k≤r,

k �=i

(jk/J θk)
γ

]
(5.9)

= O[exp{−(1 + η)C(x/ω1)
γ }].

Combining (5.8) and (5.9) we deduce that, for each ξ ∈ (0,1), there exists η =
η(ξ) > 0 for which, as x → ∞,

P(X0 > x and εk > ξx for some k ∈ [1, r] with k �= 
)
(5.10)

= O[exp{−(1 + η)C(x/ω1)
γ }] = O[exp{−C(x/ω)γ }],

where 0 < ω < ω1.
Let 0 < ξ,η < 1 and define y = x − (r − 2)ξ and ω3 = ω1 +ω2. Then, for each

i �= 0 and for J sufficiently large, the argument leading to (5.9) gives

P(X0 > x,Xi > x, and εk ≤ ξx for all k ∈ [1, r] ∪ [1 − i, r − i]
except for k = 
 or k = 
 + i)

≤ P(θ
ε
 + θ
+iε
+i > y and θ
−iε
 + θ
ε
+i > y)
(5.11)

≤ P {(θ
 + θ
−i)ε
 + (θ
 + θ
+i)ε
+i > 2y}

= O

( ∑
j1,j2≥0:

j1+j2+2>J

exp[−(1 − η)C(2y/ω3)
γ {(j1/J )γ + (j2/J )γ }]

)

= O[exp{−(1 − η)C(2y/ω3)
γ }] = O[exp{−C(x/ω)γ }],

where ω can be taken in (0,ω1) if η is chosen sufficiently small. Combining (5.10)
and (5.11) we deduce that, for some 0 < ω < ω1,

P(X0 > x,Xj > x) = O[exp{−C(x/ω)γ }].(5.12)

Result (5.6), and hence part (i) of Theorem 3.4, follows from (5.7) and (5.12).
Next we derive part (ii) of Theorem 3.4. Let 
 denote one of the q distinct values

of k for which θk = max{θ1, . . . , θr}; write I for the set of indices i such that
1 ≤ |i| ≤ r ; let I(
) be the set of q − 1 indices i ∈ I which are such that θ
−i = θ
;
and let I′(
) be the complement of I(
) in I. Let �i , for i ∈ I, be a sequence
composed of the inequalities < or >, as in Section 3.7. Then, the probability p(I)
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that Xi �i x for each i ∈ I, and that, in addition, X0 > x, is given by

p(I) =
∫

I

{ ∑
1≤k≤r : k+i �=


θkuk+i + θ
−iu
 �i x for i ∈ I(
),

r∑
k=1

θkuk+i �i x for i ∈ I′(
),
∑

1≤k≤r : k �=


θkuk + θ
u
 > x

}

×
{ 2r∏

k=−2r

f (uk)

}
du−2r · · · du2r .

Part (ii) of Theorem 3.4 can be derived by evaluating this integral, changing vari-
able appropriately. The argument is outlined below.

Write u′ for the vector with components u−2r , . . . , u2r , except that u
 is ex-
cluded. Let C, C1 and C2 be as in (3.8). Then, changing variable from u
 to
v = θ
u
/x, we have, as x → ∞,

p(I) = x

θ


∫
I

{
1

x

∑
1≤k≤r : k+i �=


θkuk+i + v �i 1 for each i ∈ I(
),

1

x

r∑
k=1

θkuk+i �i 1 for each i ∈ I′(
), 1

x

∑
1≤k≤r : k �=


θkuk + v > 1

}

×
{∏

k �=


f (uk)

}
f

(
vx

θ


)
du′ dv

= x

θ


∫
I {v �i 1 for each i ∈ I(
),0 �i 1 for each i ∈ I′(
), v > 1}

×
{∏

k �=


f (uk)

}
f

(
vx

θ


)
du′ dv + o[xC2+1−γ exp{−C(x/θ
)

γ }]

= x

θ


I {�i equals > for each i ∈ I(
), �i equals < for each i ∈ I′(
)}

×
∫ ∞

1
f

(
vx

θ


)
dv + o[xC2+1−γ exp{−C(x/θ
)

γ }]
= I {�i equals > for each i ∈ I(
), �i equals < for each i ∈ I′(
)}

× C−1C1(x/θ
)x
C2+1−γ exp{−C(x/θ
)

γ }
+ o[xC2+1−γ exp{−C(x/θ
)

γ }].
A similar but simpler argument shows that, as x → ∞,

P(X0 > x) ∼ C−1C1(x/θ
)x
C2+1−γ exp{−C(x/θ
)

γ }.
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Therefore, p(I) ∼ P(X0 > x) if “�i equals > for each i ∈ I(
), and �i equals
< for each i ∈ I′(
)”; while p(I) = o{P(X0 > x)} if the property in quotation
marks fails. This result implies that P(M = q,X0 > x) ∼ P(X0 > x), which is
equivalent to part (ii) of Theorem 3.4.

5.5. Proof of Theorem 3.5. Without loss of generality, Xi = θ1εi+1 + · · · +
θrεi+r for each i, where θ1θr �= 0. Let c1 > 0 be fixed but arbitrarily large, and
define I1 = (−∞,−c1], I2 = (−c1, c1], I3 = (c1, x/r], and I4 = (x/r,∞). Put
ε′
k = θkεk and Ejk = {ε′

k ∈ Ij }, for j = 1, . . . ,4. If none of ε′
1, . . . , ε

′
r is in I4,

then X0 < x. Moreover, the probability, p(k, x) say, that just k of ε′
1, . . . , ε

′
r are

in I4, satisfies p(k, x) � x−kρ as x → ∞. Therefore, if we define E0 = {X0 > x},
E4 = {exactly one of E41, . . . ,E4r holds} and E5 = E0 ∩ E4, then, as x → ∞,

P(E0 \ E5) = O(x−2ρ).(5.13)

Put E6i = E1i ∪ E3i and E6 = {at least one of E61, . . . ,E6r holds}. Then,

P(E5 ∩ E6) ≤ ∑∑
i1 �=i2

P(E4i1 ∩ E6i2) ≤ ∑∑
i1 �=i2

P(θi1ε > x/r)P (θi2 |ε| > c1)

≤ B1x
−ρP (|ε| > c1 min θ−1

i ),

where B1 > 0 does not depend on c1. Therefore,

lim
c1→∞ lim sup

x→∞
xρP (E5 ∩ E6) = 0.

Combining this result and (5.13), and defining E7 = E0 ∩E4 ∩ Ẽ6, where Ẽ6 denotes
the complement of E6, we have,

lim
c1→∞ lim sup

x→∞
xρP (E0 \ E7) = 0.(5.14)

Let c2 denote any fixed real number, and define E8i = {ε′
j ∈ (−c1, c1] for each

j ∈ [1, r] for which j �= i}, and

E9 = E9(c1, c2, x) =
r⋃

i=1

{ε′
i > x + c2} ∩ E8i .

Since

E7 = {X0 > x} ∩ {exactly one of E41, . . . ,E4r holds}
∩ {none of E61, . . . ,E6r holds},

then
r⋃

i=1

{ε′
i > x + (r − 1)c1} ∩ E8i ⊆ E7 ⊆

r⋃
i=1

{ε′
i > x − (r − 1)c1} ∩ E8i .(5.15)
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However, for each i ∈ [1, r] and each c3 > 0,

P(x − c3 ≤ ε′
i ≤ x + c3) = o(x−ρ)(5.16)

as x → ∞. Writing � for the symmetric-difference binary operator, and combin-
ing (5.14)–(5.16), we deduce that

lim
c1→∞ lim sup

x→∞
xρP (E0�E9) = 0.(5.17)

Let Rj(c1, x), for j ≥ 1, denote a function of c1 and x satisfying

lim
c1→∞ lim sup

x→∞
xρRj (c1, x) = 0,

let θ(1) ≥ · · · ≥ θ(m) denote a ranking of the m nonzero θi’s, define θ(q) = 0 for
q > m and put

E(j) =
r⋃

i=1

[{θiεi+j > x}

∩ {−c1 < θkεk+j ≤ c1 for each k ∈ [1, r] for which k �= i}].
Then E(0) = E9(c1,0, x), and so, by (5.17),

P(M = q)

= P(Xj > x for exactly q values of j satisfying |j | ≤ r)

= P {E(j) holds for exactly q values of j satisfying |j | ≤ r}
+ R1(c1, x)(5.18)

=
m∑

i=1

P {ε > θ−1
i−j x for exactly q values of j satisfying |j | ≤ r}

+ R2(c1, x)

= Cx−ρm
(
θ

ρ
(q) − θ

ρ
(q+1)

) + R3(c1, x).

Result (5.18) implies that P(M1 = q) → pq , which is identical to P(M0 = q),
completing the proof of Theorem 3.5.

5.6. Proof of Theorem 3.6. Let U1 = (X−r , . . . ,X−1,X1, . . . ,Xr)
T and U2 =

X0, and define U = (UT
1 ,U2)

T, a (2r + 1)-vector. Partition the covariance matrix,
, of U in the ratio 2r : 1, meaning that the top left-hand corner matrix, 11 say,
is 2r × 2r , the upper right-hand and lower left-hand matrices, 12 and 21, are
r × 1 and 1 × r , and the lower right-hand corner matrix is 1 × 1 and equals 1. In
this notation, U1, conditional on U2 = u, is Normal N(12u,11 − 1221). In
view of (3.16), (12)i1 = 1 − c|i|δ + o(δ), (11)ij = 1 − c|i−j |δ + o(δ) and

(1221)ij = {
1 − c|i|δ + o(δ)

}{
1 − c|j |δ + o(δ)

}
= 1 − δ

(
c|i| + c|j |

) + o(δ),
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and so (11 −1221)ij = 1δ + o(δ), where (1)ij = c|i| + c|j | − c|i−j |. There-
fore, conditional on U2 = u, δ−1/2(U1 − 12u) is Normal N(0,2), where 2 =
1 + o(1) and does not depend on u. Hence, taking Z = (Z−r , . . . ,Z−1,Z1, . . . ,

Zr) to be Normal N(0,2), we have:

P(Xi �i t for 1 ≤ |i| ≤ r|X0 > t)

=
∫ ∞
t

P (Xi �i t for 1 ≤ |i| ≤ r|X0 = u)duP (X0 ≤ u | X0 > t)

= t

∫ ∞
t

P (Xi �i t for 1 ≤ |i| ≤ r|X0 = u) exp
{−1

2(u2 − t2)
}
du + o(1)

=
∫ ∞
t

P (Xi �i t for 1 ≤ |i| ≤ r|X0 = t + vt−1)

× exp
(−v − 1

2v2t−2)
dv + o(1)

=
∫ ∞

0
P

[{
1 − c|i|δ + o(δ)

}
(t + vt−1)

+ {1 + o(1)}δ1/2Zi �i t for 1 ≤ |i| ≤ r
]
e−v dv + o(1)

=
∫ ∞

0
P

(
Zi �i δ1/2tc|i| − δ−1/2t−1v for 1 ≤ |i| ≤ r

)
e−v dv + o(1)

= π(S) + o(1).

Adding over sequences S that include just k “>” signs, we deduce that πk → π0
k .
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