
The Annals of Statistics
2008, Vol. 36, No. 5, 2319–2343
DOI: 10.1214/07-AOS548
© Institute of Mathematical Statistics, 2008

LOCAL ANTITHETIC SAMPLING WITH SCRAMBLED NETS

BY ART B. OWEN

Stanford University

We consider the problem of computing an approximation to the inte-
gral I = ∫

[0,1]d f (x) dx. Monte Carlo (MC) sampling typically attains a root

mean squared error (RMSE) of O(n−1/2) from n independent random func-
tion evaluations. By contrast, quasi-Monte Carlo (QMC) sampling using care-
fully equispaced evaluation points can attain the rate O(n−1+ε) for any ε > 0
and randomized QMC (RQMC) can attain the RMSE O(n−3/2+ε), both un-
der mild conditions on f .

Classical variance reduction methods for MC can be adapted to QMC.
Published results combining QMC with importance sampling and with con-
trol variates have found worthwhile improvements, but no change in the error
rate. This paper extends the classical variance reduction method of antithetic
sampling and combines it with RQMC. One such method is shown to bring
a modest improvement in the RMSE rate, attaining O(n−3/2−1/d+ε) for any
ε > 0, for smooth enough f .

1. Introduction. Many problems in science and engineering require multidi-
mensional quadratures. There we seek the value of an integral I = ∫

[0,1]d f (x) dx.
The integrand f subsumes any transformations necessary to account for noncu-
bic domains, or integration with respect to a nonuniform density. Monte Carlo
sampling is often employed for these problems. Its basic form uses an estimate
Î = (1/n)

∑n
i=1 f (xi), where xi are simulated independent draws from U [0,1]d .

When f is in L2, then Monte Carlo has a root mean squared error (RMSE) at the
familiar O(n−1/2) rate.

Monte Carlo integration can be improved by the use of variance reduction meth-
ods. Well-known techniques include stratification, importance sampling, control
variates and antithetic sampling. These are described in texts such as Glasser-
man [10] and Fishman [8].

In stratification, the sample points x1, . . . , xn are made more uniformly distrib-
uted than they would be by chance. This idea of choosing points more uniformly
than they would be by chance underlies quasi-Monte Carlo (QMC) sampling which
can be thought of as an extreme version of stratification. Deterministic QMC meth-
ods can attain an error rate of O(n−1+ε), while randomized versions can achieve
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an RMSE of O(n−3/2+ε), both under mild smoothness conditions on f , for any
ε > 0.

It is interesting to investigate whether variance reduction techniques from MC
bring any advantages to the QMC setting. Chelson [3] and Spanier and Maize [27]
have investigated QMC with importance sampling. Hickernell, Lemieux and
Owen [12] have studied the combination of QMC with control variates. This paper
considers a combination of QMC with antithetic sampling.

Antithetic sampling improves Monte Carlo by exploiting spatial structure in f .
Each point x ∈ [0,1]d is coupled with another x̃, commonly obtained as x̃ = 1 − x

interpreted componentwise. In practice, we average f̃ (xi) = (f (xi) + f (x̃i))/2
at n/2 points xi . If f (x) is linear in x, then f̃ (xi) = I and I can be estimated
without error. When f (x) is nearly linear or nearly antisymmetric [i.e., f (x) −
I

.= I − f (x̃)], then antithetic sampling can bring a great reduction in RMSE,
although the rate remains n−1/2. In local antithetic sampling, described below, the
point x̃ is always close to x. Since smooth functions are locally linear in the Taylor
approximation sense, local antithetic sampling can be much better than antithetic
sampling for small d .

This paper considers several ways of combining antithetic sampling and ran-
domized digital nets. The main result is that one such method, a box folding
scheme, reduces the RMSE to O(n−3/2−1/d+ε). The improvement in rate is mod-
est and diminishes with d . But it compares favorably with ordinary antithetic sam-
pling which only changes the constant in the RMSE, and changes it for the worse
for some f . The other variance reduction methods from MC (control variates and
importance sampling) only act on the constant and do not improve the RMSE rate
when applied to randomized QMC.

The improvement we find is the same factor n−1/d from classic results of
Haber [11]. Haber gets an RMSE rate of O(n−1/2−1/d) for cubically stratified
sampling and it improves to O(n−1/2−2/d) for a locally antithetic version of that
sampling.

The outline of this paper is as follows. Section 2 summarizes background in-
formation on scrambled nets, which are a form of randomized quasi-Monte Carlo
sampling. Section 3 introduces some new notions of d-dimensional folding op-
erations used to introduce local antithetic properties into digital nets, and pro-
poses three specific methods. Section 4 illustrates several reflection net sampling
schemes on a two-dimensional integrand studied by [25]. The root mean squared
errors seem to follow a n−2 rate. The next sections are devoted to showing that one
of the methods, box folding, attains an RMSE of O(n−3/2−1/d+ε). Section 5 recaps
the variance for scrambled net quadrature of smooth functions. It corrects an error
in the proof of the O(n−3/2(logn)(d−1)/2) RMSE rate from [21]. It also extends
the proof there to a wider collection of digital nets and uses a weaker smoothness
condition than the earlier paper had. Section 6 builds on Section 5 to prove that the
RMSE of the box folding scheme is O(n−3/2−1/d(logn)(d−1)/2) in d dimensions.
More smoothness is required for this result than for the unreflected scrambled nets.
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Section 7 presents the box folding scheme as a hybrid of a monomial cubature rule
with scrambled net sampling. Finally, it discusses how one might make use of these
findings in higher dimensional problems of low effective dimension.

2. Background and notation. Scrambled nets are a particular form of ran-
domized quasi-Monte Carlo sampling. The monograph [17] by Niederreiter is the
definitive source for quasi-Monte Carlo sampling. Randomized quasi-Monte Carlo
sampling was surveyed by Lemieux and L’Ecuyer [15]. Scrambled nets were first
proposed in [19].

We use superscripts for components, so x, xi ∈ [0,1]d have components xj

and x
j
i respectively for j = 1, . . . , d . The set {1, . . . , d} is abbreviated 1 :d . If

u ⊆ 1 :d , then its complement {1 ≤ j ≤ d | j /∈ u} is written as −u.
We often have to extract and combine components from one or more points in

[0,1]d . When we extract the components xj for j ∈ u ⊆ 1 :d , we use xu to denote
the result. When x, z ∈ [0,1]d and we want to combine xu with z−u, we write it as
xu : z−u. Thus, xu : z−u is the point y ∈ [0,1]d with yj = xj for j ∈ u and yj = zj

for j /∈ u.

2.1. Quasi-Monte Carlo. Like plain Monte Carlo, quasi-Monte Carlo sam-
pling estimates an integral I = ∫

[0,1]d f (x) dx by the average Î = 1
n

∑n
i=1 f (xi)

taken over points xi ∈ [0,1]d . QMC aims to be better than random by selecting xi

to be even more uniformly distributed than random points typically are. To quan-
tify the nonuniformity of x1, . . . , xn, consider the local discrepancy function

δ(x) = 1

n

n∑
i=1

1xi∈[0,x] − Vol([0, x])(1)

for x ∈ [0,1]d . The star discrepancy of x1, . . . , xn is

D∗
n(x1, . . . , xn) = sup

x∈[0,1]d
|δ(x)|.(2)

When d = 1, then D∗
n reduces to the Kolmogorov–Smirnov distance between the

empirical distribution of xi and the U [0,1] distribution. The Koksma–Hlawka in-
equality [13] is

|Î − I | ≤ D∗
n(x1, . . . , xn)‖f ‖HK,(3)

where ‖f ‖HK is the total variation of f in the sense of Hardy and Krause. It is
possible to construct xi so that D∗

n ≤ Cd(logn)d−1/n for n > 1. With such con-
structions, |Î − I | = O(n−1+ε) holds for all ε > 0, under the mild condition that
‖f ‖HK < ∞. Thus, QMC has a far better asymptote than MC.
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2.2. Digital nets. Digital nets attain their low discrepancy by being simulta-
neously stratified for many different stratifications of [0,1]d . Those stratifications
are defined through hyper-rectangular subsets known as elementary intervals.

This section defines these elementary intervals and some digital nets and digital
sequences. Throughout we use b to denote an integer base in which to represent
real numbers, d to represent the dimension, kj to represent some nonnegative in-
teger powers of b and tj to represent some nonnegative integer translations.

DEFINITION 1. Let b ≥ 2 and d ≥ 1 be integers. Let κ = (k1, . . . , kd) and
τ = (t1, . . . , td) be d-vectors of integers for which kj ≥ 0 and 0 ≤ tj < bkj . Then
the set

Bκ,τ =
d∏

j=1

[
tj

bkj
,
tj + 1

bkj

)
is a base b elementary interval.

If one fixes κ and varies τ , the sets Bκ,τ provide a tiling of [0,1)d . The tilings
of the three illustrations in Figure 1 are of this type.

The volume of Bκ,τ is b−|κ|, where |κ| = k1 + · · · + kd . The closure of Bκ,τ ,
defined by replacing the half open intervals in Definition 1 by closed intervals, is
denoted Bκ,τ . The center of Bκ,τ and of Bκ,τ is the point cκ,τ with c

j
κ,τ = (tj +

1/2)/bkj .
When one or more of the kj is 0, then the corresponding factors of B reduce

to [0,1). Let u ⊆ 1 :d and let κ be a vector of length |u| indexed by j ∈ u, with
component kj for j ∈ u. Similarly, let τ have components tj for j ∈ u. Then

Bu,κ,τ ≡ ∏
j∈u

[
tj

bkj
,
tj + 1

bkj

) ∏
j /∈u

[0,1)

will be used below. The center of Bu,κ,τ is the point cu,κ,τ with

cj
u,κ,τ =

⎧⎨⎩
tj + 1/2

bkj
, j ∈ u,

1
2 , j /∈ u.

The elementary interval Bκ,τ in Definition 1 has volume b−|κ|. Ideally it should
get nb−|κ| of the sample points x1, . . . , xn. If that happens for one vector κ , we
have a stratified sample with one stratum for each τ . Digital nets attain such strat-
ification for multiple κ simultaneously.

DEFINITION 2. For integers m ≥ q ≥ 0, b ≥ 2 and d ≥ 1, a sequence of points
x1, . . . , xbm ∈ [0,1)d is a (q,m,d)-net in base b if every base b elementary interval
in [0,1)d of volume bq−m contains precisely bq points of the sequence.
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The parameter q defines the quality of the net, with smaller values implying
better equidistribution, and q = 0 being the very best when it is attainable. The
minT system [24] identifies the best known nets (smallest q) given the values of
m, d and b. The net property is enough to ensure low discrepancy:

THEOREM 1. If x1, . . . , xn are a (q,m,d)-net in base b, then

n × D∗
n(x1, . . . , xn) ≤ 1

(d − 1)!
(
b/2�

logb

)d−1
(logn)d−1 + O(bq(logn)d−2)

for n > 1, where the implied constant in the error term depends only on b and d .

PROOF. This is from Theorem 4.10 of [17]. The multiple of (logn)d−1 can be
reduced somewhat when d = 2 and b is even, or when d = 3,4 and b = 2. �

Some constructions of digital nets are extensible. They let us increase n, keeping
the stratification property and retaining the earlier function evaluations.

DEFINITION 3. For integers q ≥ 0, b ≥ 2, and d ≥ 1, an infinite sequence of
points xi ∈ [0,1)d for i ≥ 1 is a (q, d)-sequence in base b if every subsequence
xrbm+1, . . . , xrbm+bm , for integers m ≥ q and r ≥ 0, is a (q,m,d)-net in base b.

It is convenient to work with the first n = λbm points of the sequence. Should
they prove inadequate, one can increase λ or, more generally, use ñ = λ̃bm̃ ≥ n.
The points of the new larger rule include all those of the previous rule. Thus,
(q, d)-sequences provide extensible integration rules. They automatically satisfy
the (λ, q,m,d)-net property:

DEFINITION 4. For integers m ≥ q ≥ 0, b ≥ 2, 1 ≤ λ < b and d ≥ 1, a se-
quence of points x1, . . . , xλbm ∈ [0,1)d is a (λ, q,m,d)-net in base b if every base
b elementary interval in [0,1)d of volume bq−m contains precisely λbq points of
the sequence and no b-ary box in [0,1)d of volume bq−m−1 contains more than bq

points of the sequence.

A relaxed (λ, q,m, s)-net in base b is as above, except that λ ≥ b is allowed and
boxes of volume bq−m−1 may have more than bq points of the sequence.

2.3. Random digital scrambles. In scrambled digital net quadrature we take
a digital net a1, . . . , an ∈ [0,1]d and apply a randomizing transformation to this
ensemble to produce points x1, . . . , xn ∈ [0,1]d with two properties: each xi is in-
dividually U [0,1]d distributed, and x1, . . . , xn are collectively a digital net with
probability 1. The first property makes the sample average Î = 1

n

∑n
i=1 f (xi) an

unbiased estimate of I . The second property means that Î inherits the good accu-
racy properties of digital nets.
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Some such randomized nets were presented in [19] where it was also shown that
scrambled digital sequences remain digital sequences with probability one. The
original motivation for randomizing nets was that it allowed independent repli-
cations for the purposes of estimating error. That randomization can improve the
error rate was at first a surprise, but is now understood as an error cancellation
phenomenon.

Randomizations of nets typically use the same random procedure on each point
ai in order to yield the corresponding xi , and so we need only describe the ran-
domization of a single point a ∈ [0,1]d . Furthermore, the randomizations applied
to components a1 through aj are typically chosen to be statistically independent.
And so we only need to describe the randomization of a single point a ∈ [0,1].

It is beyond the scope of this article to explain how randomization of nets is
able to achieve the two defining properties. For that one can consult the proposal of
Owen [19], it’s derandomization by Matoušek [16], and the survey of Lemieux and
L’Ecuyer [15]. We can, however, look at the mechanics of some randomizations.

To scramble the point a ∈ [0,1), we first write it out in base b as a =∑∞
k=1 a(k)b

−k , where a(k) ∈ {0,1, . . . , b−1}. Some values of a have two represen-
tations, one ending in infinitely many zeros and the other ending in b−1’s. In such
cases we use the representation ending in zeros. For this reason we do not scramble
the value a = 1, and so scrambled nets actually produce points xi ∈ [0,1)d from
points ai ∈ [0,1)d . This presents no problem. The standard net constructions yield
points in [0,1)d and

∫
[0,1)d f (x) dx = ∫

[0,1]d f (x) dx.
The scrambled version of a is the point x = ∑∞

k=1 x(k)b
−k for digits x(k) ∈

{0,1, . . . , b − 1} obtained by random permutation schemes applied to the a(k).
In practice, the expansion of x is truncated.

There are b! distinct permutations of {0,1, . . . , b − 1}. In a uniform random
permutation of this set, each permutation has probability b!. The method in [19]
uses a great many uniform random permutations to scramble a. One permutation is
applied to the first digit yielding x(1) = π1(a(1)). For the kth digit a(k), one of bk−1

independent uniform random permutations is used to make x(k), chosen based on
the value of 
bk−1a�.

The original randomization is computationally burdensome, requiring consid-
erable storage. Matoušek [16] found an alternative and less costly scrambling,
by derandomization. We describe that and several other scramblings here. Some
more scramblings are described in [23] from which the permutation and scram-
bling nomenclature used here is taken.

DEFINITION 5. If b is a prime number, then a linear random permutation of
{0,1, . . . , b − 1} has the form π(a) = h × a + g modb, where h ∈ {1, . . . , b − 1}
and g ∈ {0,1, . . . , b − 1} are independent random variables uniformly distributed
over their respective ranges.

Linear permutations are restricted to prime b because otherwise there are
nonzero h for which h × a + g is not a permutation. For example, consider b = 4
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and h = 2. Linear permutations have a generalization, via Galois field arithmetic,
to bases that are prime powers, but we do not use them here.

DEFINITION 6. For a prime base b, an affine matrix scramble takes the form

x(k) = Ck +
k∑

j=1

Mkja(j) modb,

where Ck and Mkj are in {0,1, . . . , b − 1}.
We will consider affine matrix scrambles in which the Ck are independent uni-

formly distributed elements of {0,1, . . . , b − 1}, independent of the elements Mkj .
Such scrambles always have x ∼ U [0,1] regardless of a and Mkj .

The matrix scrambles we consider differ in the structure of the matrix M . In
each case M is lower triangular and invertible. Invertibility is required so that
distinct points a lead to distinct points x. The structures that we consider for M

can be represented as⎛⎜⎜⎜⎜⎜⎝
h1
g21 h2
g31 g32 h3
g41 g42 g43 h4
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
h1
g2 h1
g3 g2 h1
g4 g3 g2 h1
...

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

(4) ⎛⎜⎜⎜⎜⎜⎝
h1
h1 h2
h1 h2 h3
h1 h3 h3 h4
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

where h’s are sampled from {1,2, . . . , b − 1} and g’s are sampled from {0,1, . . . ,

b − 1}. Within each matrix, entries with the same symbol are identical and entries
with different symbols are sampled independently. The matrices in (4) describe
respectively, random linear scrambling of [16], I -binomial scrambling of [30] and
affine striped matrix (ASM) sampling from [23].

Random linear scrambling leads to the same sampling variance as the original
net scrambling in [19] (called “nested uniform scrambling”) but requires much less
storage. I -binomial scrambling also leads to the same sampling variance but does
so with still less storage.

The ASM scrambling is not variance equivalent to nested uniform scrambling.
In the case d = 1, ASM attains an RMSE of O(n−2), when f ′′(x) is bounded,
which is better than the rate O(n−3/2) from other scrambles, though not as good
as the rate O(n−5/2) that Haber’s method gets for d = 1.

Our strategy for improving randomized nets is to build in directly some d-di-
mensional versions of locally antithetic sampling. The local antithetic sampling
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strategy is implemented by adjoining to the scrambled net certain reflections of
sample points.

2.4. ANOVA. For a function f ∈ L2[0,1]d , the ANOVA decomposition is
available to quantify the extent to which f depends primarily on lower dimen-
sional projections of the input space. Informally it is like embedding a regular Kd

grid in [0,1]d , running an ANOVA on that grid and letting K → ∞. The ANOVA
of [0,1]d was introduced by Hoeffding [14], figures in the Efron–Stein inequality
[6], and was independently discovered by Sobol’ [26]. For more details and the
early history of the ANOVA decomposition, see [29].

We write f (x) = ∑
u⊆1 : d fu(x), where fu(x) is a function of x that depends on

x only through xu. To get fu, we subtract strict sub-effects fv for v � u and then
average the residual over x−u. Specifically,

fu(x) =
∫

f (x) dx−u − ∑
v�u

fv(x).(5)

The ANOVA terms are orthogonal in that
∫

fu(x)fv(x) dx = 0 for subsets u �= v.
Letting σ 2

u = ∫
fu(x)2 dx, we find that σ 2 = ∑

|u|>0 σ 2
u .

2.5. Smoothness and mixed partial derivatives. This section introduces our
notion of smoothness for f and records some elementary consequences of the
definition for later use. The mixed partial derivative of f taken once with respect
to xj for each j ∈ u is denoted by ∂u with the convention that ∂∅f (x) = f (x).

DEFINITION 7. The real valued function f (x) on [0,1]d is smooth if ∂uf (x)

is continuous on [0,1]d for all u ⊆ 1 :d .

REMARK 1. There are |u|! orders in which the mixed partial derivative
∂uf (x) can be interpreted. The continuity conditions in Definition 7 are strong
enough to ensure that all orderings give the same function.

LEMMA 1. If f is smooth, then ∂ufu(x) is continuous for all u ⊆ 1 :d .

PROOF. The details are omitted to save space. The key is to prove by induction
on |u| that ∂u

∫
f (x) dx−u = ∫

∂uf (x) dx−u. �

We also need a version of the fundamental theorem of calculus. For points a, b ∈
[0,1]d , define their rectangular hull as the Cartesian product

rect[a, b] =
d∏

j=1

[min(aj , bj ),max(aj , bj )].

For d = 1, if f has a continuous derivative f ′ on the interval rect[c, x], then
f (x) = f (c) + ∫

[c,x] f ′(y) dy, with the interpretation that
∫
[c,x] means − ∫

[x,c]
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when c > x. For general d and smooth f , we have

f (x) = ∑
u⊆{1,...,d}

∫
[cu,xu]

∂uf (c−u :yu) dyu.(6)

Here
∫
[cu,xu] denotes ± ∫

rect[cu,xu] where the sign is negative if and only if cj > xj

holds for an odd number of indices j ∈ u. The term for u = ∅ equals f (c) under
a natural convention.

More generally, let w ⊆ {1, . . . , d} and suppose that ∂uf is continuous for u ⊆
w. Then

f (x) = ∑
u⊆w

∫
[cu,xu]

∂uf (x−w : cw−u :yu) dyu.(7)

For v ⊆ u ⊆ {1, . . . , d}, let ∂u,vf denote the partial derivative of f u taken once
with respect to each xj for j ∈ v. That is, f u,v is f differentiated with respect to
xj twice for j in v and once for j in u − v.

DEFINITION 8. The real valued function f (x) on [0,1]d is doubly smooth if
∂u,vf (x) is continuous on [0,1]d for all v ⊆ u ⊆ 1 :d .

3. b-ary reflections and folds. Antithetic sampling is implemented via reflec-
tions about the center point of [0,1]d . To induce various local antithetic properties,
we will use reflections of a point x about the center of an elementary interval con-
taining x.

The case d = 1 is simplest. The point x ∈ [0,1) belongs to the interval
[tb−k, (t + 1)b−k), where t = t (x) = 
bkx�. The center of this interval is c =
ck(x) = (t + 1/2)b−k . The kth order reflection of x is Rk(x) = 2ck(x) − x. The
value k = 0 corresponds to the simple reflection 1 − x.

If the base b expansion of x ∈ [0,1) is x = ∑∞

=1 x(
)b

−
 with each x(
) ∈
{0,1, . . . , b − 1}, using trailing 0’s when x has two base b representations, then

Rk(x) =
k∑


=1

x(
)b
−
 +

∞∑

=k+1

(
b − 1 − x(
)

)
b−
.(8)

The reflection Rk leaves the first k digits of x unchanged and it flips the trailing
digits.

By convention, we take Rk(1) = limx→1 Rk(x) = 1 − 1/bk . Under this con-
vention we find that limk→∞ Rk(x) = x holds uniformly in x. The reflection is
nearly idempotent because Rk(Rk(x)) = x unless x = tb−k for an integer t with
0 ≤ t < bk −1. Note that a reflection of a reflection is not generally a reflection. For
instance, when x is not of the form tb−k , then R7(R3(x)) flips digits 4 through 7
inclusive of x and leaves all other digits unchanged.

It is useful to consider transformations in which some components of x are
reflected, while others get an identity transformation. For simplicity, we adopt the
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special value k = −1, sometimes displayed simply as −, to denote the identity
transformation, so that R−1(x) = x for x ∈ [0,1].

DEFINITION 9. For the vector κ = (k1, . . . , kd) with kj ∈ {−1,0,1, . . .}, the
reflection Rκ of x ∈ [0,1]d is defined by

Rκ(x) = z ∈ [0,1]d, where zj = Rkj
(xj ).(9)

Figure 1 illustrates some reflections R(1,2) and R(–,2) for x ∈ [0,1)2 with b = 2,
as well as a box fold described below. Geometrically, a reflection of x has some
components symmetric about the center of an elementary interval containing x and
all other components equal to the corresponding ones of x.

Recall that the center of the elementary interval Bκ,τ is the point

cκ,τ =
(

t1 + 1/2

bk1
, . . . ,

td + 1/2

bkd

)
.(10)

For a vector κ = (k1, . . . , kd) with kj ≥ 0, the point x ∈ [0,1)d belongs to the
elementary interval Bκ,τ for τ = τ(κ, x) = 
bκx�, with the multiplication and floor
operators taken componentwise. For such κ , the reflection Rκ(x) may be written

Rκ(x) = 2cκ,τ (κ,x) − x.

Notice that Rκ(x) has some points of discontinuity whenever maxj kj ≥ 1 because
then cκ,τ (κ,x) jumps when x crosses the boundary of certain base b elementary
intervals.

DEFINITION 10. Let x1, . . . , xn ∈ [0,1)d and let Rκ be a b-ary reflection. The
folded sequence Fκ(x1, . . . , xn) is the sequence z1, . . . , z2n ∈ [0,1)d with zi = xi

for i = 1, . . . , n and zi = Rκ(xi−n) for i = n + 1, . . . ,2n.

FIG. 1. This figure illustrates some base b = 2 digital reflections as described in the text. The left
panel shows 8 elementary intervals, one of which contains a solid point with its R(1,2) reflection.
The center panel shows 8 elementary intervals, one of which has a point with its R(3,−) reflection.
The right panel shows 4 elementary intervals, one of which includes a solid point x with the other
three points of its box reflection F(1,−)(F(−,1)(x)).
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If Fκ(Fκ ′(x1, . . . , xn)) and Fκ ′(Fκ(x1, . . . , xn)) are both well defined, then they
both have the same points, but possibly in a different order. In this sense, folding
is commutative. If r folds have been applied, then the sample size is 2rn, perhaps
including some points multiple times.

For folding to improve on a digital net, it should produce a local antithetic prop-
erty within elementary intervals of volume comparable to bq−m. To see why, con-
sider the alternatives, taking q = 0 for simplicity. If reflections take place within
elementary intervals of volume b−r � b−m, then some elementary intervals of vol-
ume b−r have two nearly identical sampling points, while most have none. Con-
versely, reflections within elementary intervals of volume b−r � b−m are not “lo-
cal enough” to get the best error rate. In particular, if r is constant while m → ∞,
then one cannot expect an improved convergence rate, though the leading constant
might be better than without folding.

For κ = (k1, . . . , kd) with kj ∈ {−1,0,1, . . .}, let κ+ have components k+
j =

max{kj ,0} and put |κ+| = ∑d
j=1 k+

j . Then for x ∈ Bκ+,τ of volume b−|κ+|, Rκ(x)

is in the closed elementary interval Bκ+,τ . For reflections of a digital net, we should
use κ with |κ+| close to m − q . When the reflections get finer as m increases, then
the reflected scrambled nets will not ordinarily be extensible.

Here we present three methods for inducing local antithetic properties in some
(q,m,2)-nets. They are given in increasing order with respect to the number of
reflections required.

3.1. Reflection nets. The reflection net takes the form Fκ(x1, . . . , xn), where
x1, . . . , xn is a (λ, q,m,d)-net in base b and κ is a vector of d nonnegative integers
summing to q − m. The reflection net is a (relaxed) (2λ,q,m,d)-net in base b.

For d = 2 and q = 0, we use κ = (k1, k2), where each kj
.= m/2, specifically,

k1 =
⌊
m + 1

2

⌋
and k2 = m − k1.(11)

These reflections treat each component of x nearly equally, and reflect within ele-
mentary intervals of volume 1/n.

3.2. Box folded nets. The asymptotic error of scrambled net quadrature
from [21] is governed by the norm of the mixed partial derivative ∂1:df . The reflec-
tion net may be thought of as averaging the function f̃ (x) = (f (x)+f (Rκ(x)))/2
over a sample of n values of a scrambled net. The function f̃ (x) has a mixed par-
tial derivative almost everywhere, when f does. If j ∈ u, then ∂Rκ(xj )/∂xj = −1
at almost all points, and we find that mixed partial derivatives of f̃ of odd order
largely cancel, while those of even order are averaged. For d = 2, the dominant
term in the error comes from ∂{1,2}f , which is of even order and so does not cancel.
Therefore, we consider another scheme that averages

f̃ (x) = 1
4

(
f (x) + f

(
R(k1,−)(x)

) + f
(
R(−,k2)(x)

) + f
(
R(k1,k2)(x)

))
,



2330 A. B. OWEN

over n points, with k1 and k2 as in (11). To construct these points, we apply two
folds as in F(k1,−)(F(−,k2)(x1, . . . , xn)). The image F(k1,−)(F(−,k2))(x) is made up
of 4 points, symmetric about the center of a box containing x. One such quadruple
is shown in Figure 1.

3.3. Monomial nets. A greedier reflection strategy folds together all of

R(0,m),R(1,m−1), R(2,m−2), . . . ,R(m,0).

When these m + 1 folds are applied to a (0,m,2)-net in base b, the resulting
points correctly integrate any f that is a sum of piece-wise linear functions linear
within elementary intervals of volume bm or larger. Such “monomial nets” extend
the local antithetic property of Haber’s stratification schemes to all elementary
intervals of volume b−m, not just those from one vector κ . The cost is that the
sample size is multiplied by 2m+1, going from bm to 2(2b)m. When b = 2 the cost
is 2n2 function evaluations instead of n. For b > 2, the cost grows superlinearly
in n, but more slowly than the square of n:

2(2b)m = 2(2b)logb(n) = 21+logb(n)n = 2n1+logb(2).

4. Example from Sloan and Joe. To illustrate the three locally antithetic
strategies for nets, we consider an integrand studied by Sloan and Joe [25],

g(x) = x2 exp(x1x2), x = (x1, x2) ∈ [0,1]2.

This function is bounded and has infinitely many continuous derivatives. We can
expect it to have all the smoothness that any of the reflection techniques discussed
above might be able to exploit. Also, there are no symmetries or antisymmetries
that would make reflection methods exact for this function.

This function has mean I = ∫ 1
0

∫ 1
0 g(x1, x2) dx1dx2 = e − 2, and variance

σ 2 = (3 − e)(7e − 11)/8. Using Mathematica, one can find that the ANOVA mean
squares for the main effects are

σ 2{1} = 1
3

(
(10 − e)e − 15 + 2Ei(1) − 2Ei(2) + log(4)

)
and

σ 2{2} = (3 − e)(e − 1)/2,

where Ei is the exponential integral function, Ei(z) = − ∫ ∞
−z t−1e−t dt. The relative

variances (sensitivity indices) of the ANOVA terms are

σ 2{1}
σ 2

.= 0.0729,
σ 2{2}
σ 2

.= 0.8561 and
σ 2{1,2}
σ 2

.= 0.0710.

This function has a meaningfully large bivariate term accounting for about 7.1
percent of the variance, and so it is not a nearly additive function.
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For this paper, we consider a scaled version of g, namely,

f (x) = x2 exp(x1x2)

e − 2
, x = (x1, x2) ∈ [0,1]2.(12)

With this scaling,
∫

f (x) dx = 1 and so absolute and relative errors coincide.
All of the integration techniques we consider here are based on the construction

of (0,m,2)-nets given by Faure [7]. The bases used were b = 2,3,5,7. The points
were either unscrambled, ASM scrambled, or given a random linear scrambling.
Nested uniform and I-Binomial scrambling were not tried because they have the
same variance as random linear scrambling. For each base and scrambling method,
reflection nets, box nets and monomial nets were tried.

The monomial nets did not perform very well, most likely because of the super-
linear (in n) sample size that they required. In some instances they were slightly
better than the original (0,m,2)-nets, but not nearly as good as the other methods.
For the other methods, over values of n up to the first power of b larger than 2000,
the base 2 methods were almost always the best. Accordingly, we work with b = 2
and then extend the computations out to n = 217. For methods with reflections, the
sample sizes go out to 218, while for box folds, the sample sizes go to 219.

Figure 2 shows the error for this function with the methods described above.
For deterministic methods, the absolute error is shown. For randomized methods,
the root mean squared error from 300 independent replications is shown. The up-
per left panel shows, from top to bottom, the error for unscrambled, random linear
scrambled and ASM scrambled Faure points. The Faure points lie very close to
the O(n−1) reference line, with no apparent evidence of a logarithmic factor. The
matrix scrambled points are close to the O(n−3/2) reference line. The ASM scram-
bled points seem to follow O(n−3/2) at first, then approach the O(n−2) reference
before leveling out.

The upper right panel shows the same three methods, with a reflection incorpo-
rated. The curve for ASM scrambling keeps crossing the n−2 reference line. The
curve for random linear scrambling lies just below the n−3/2 reference. The curve
for reflection without scrambling has a prominent flat spot for n ≤ 32,768. Then it
gets much better at 65,536.

The lower left panel shows the three methods with box symmetry. Here the
curve for random linear scrambling lies between the references for n−3/2 and n−2

and ends up roughly parallel to the latter. The curve for ASM scrambling ends up
below the n−2 reference line. The curve for the box symmetrized Faure sequence
follows the one for random linear scrambling, but has an error that is not monotone
in n.

For each kind of symmetry, the ASM scrambling seems to give the best results
on this function. The lower right panel shows all three ASM methods. From top
to bottom at the right of that panel they are for the original points, reflected points
and boxed points.

From this example it is clear that reflection strategies have potential to bring
improvements and may even yield a rate better than O(n−3/2). There are also some
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FIG. 2. Shown are absolute errors for the Faure sequence and sample RMSEs from 300 replica-
tions for scrambled versions, in the quadrature example of Section 4. The lower right panel is for
ASM scrambling: unreflected (solid), reflected (dashed) and box (dotted). The other panels depict
unscrambled (solid), linearly scrambled (dashed) and ASM scrambled (dotted) results. All panels
have reference lines proportional to labeled powers of n.

prominent flat spots and reversals in the errors. In the next sections we investigate
box reflections and show that it can improve the error rate.

5. Variance for scrambled digital nets. The error rate analysis for box re-
flection of scrambled digital nets builds on the analysis for unreflected scrambled
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nets. This section recaps some needed material for completeness, widens the gen-
erality, and corrects an error in the original proof.

We begin by recapping a base b Haar wavelet multiresolution of functions on
[0,1)d . For more details, see [20] and [21].

First define the univariate mother wavelets for x ∈ R:

ψc(x) = b1/21
bx�=c − b−1/21
x�=0, c = 0,1, . . . , b − 1.

The familiar (b = 2) Haar wavelet decomposition only needs one mother wavelet
because it has ψ0 = −ψ1. The general setting considered here requires more than
one mother wavelet. Next, for nonnegative integers k and t < bk define dilated and
translated versions for x ∈ [0,1),

ψktc(x) = bk/2ψc(b
kx − t),

= b(k+1)/21
bk+1x�=bt+c − b(k−1)/21
bkx�=t

≡ b(k+1)/2Nk,t,c(x) − b(k−1)/2Wk,t (x).

The functions N and W are indicators of relatively narrow and wide intervals
respectively, where the base b is understood. Each ψktc is a narrow rectangular
spike minus another one that is b times as wide, but 1/b times as high.

The wavelets for d ≥ 1 are tensor products of functions of the form ψktc. For
u ⊆ 1 : d , let κ be a |u|-vector of integers kj ≥ 0 for j ∈ u. Similarly, let τ be a
|u|-vector of nonnegative integers tj < bkj for j ∈ u. Notice that for κ to be well
defined a set u must be understood, and τ depends similarly on both u and κ .
To avoid cluttered notation, we do not write κ(u) or τ(u, κ). The d variate Haar
wavelets in base b take the form

ψuκτγ (x) = ∏
j∈u

ψkj tj cj
(xj ),

with ψ{}()()()(x) = 1 by convention.
The multiresolution of f ∈ L2[0,1)d is

f (x) = ∑
u

∑
κ

∑
τ

∑
γ

〈ψuktg, f 〉ψuktg(x),

〈ψuktg, f 〉 =
∫

ψuktg(x)f (x) dx,

where each summation is over all possible values for its argument, beginning with
all subsets u of {1, . . . , d}.

It is convenient to write f (x) = ∑
u

∑
κ νuκ(x), where

νuκ(x) = ∑
τ

∑
γ

〈ψuκτγ , f 〉ψuκτγ (x).

The function νuk(x) is a step function constant within elementary intervals of the
form Bu,κ,τ .

If x1, . . . , xn are obtained by making a nested uniform (or random linear or
I-binomial) scramble of points a1, . . . , an ∈ [0,1)d in base b, then the variance of
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Î = n−1 ∑n
i=1 f (xi) is

1

n

∑
|u|>0

∑
κ

�u,κσ 2
u,κ ,(13)

where

σ 2
u,κ =

∫
νu,κ(x)2 dx,

and the “gain coefficients” are given by

�u,κ = 1

n(b − 1)|u|
n∑

i=1

n∑
i′=1

∏
j∈u

(
b1
bkj +1

a
j
i �=
bkj +1

a
j

i′ �
− 1
bkj a

j
i �=
bkj a

j

i′ �
)
.

From the “multiresolution ANOVA,” σ 2 = ∑
u

∑
κ σ 2

u,κ . Therefore, the variance of
ordinary Monte Carlo sampling has the form (13) with all �u,κ = 1. The variance
reduction from randomized nets arises from �u,κ � 1 for some u and κ without
allowing �u,κ � 1 for any u and κ . In particular, if a1, . . . , an are a (λ, q,m,d)-net
in base b, then �u,κ = 0 if m − q ≥ |u| + |κ|.

THEOREM 2. Let a1, . . . , an be a (0,m,d)-net in base b ≥ 2. Then

0 ≤ �u,κ ≤
(

b

b − 1

)min(d−1,m)

≤
(

b

b − 1

)b−1

≤ e
.= 2.718.

Let a1, . . . , an be a (λ,0,m,d)-net in base b ≥ 2. Then

0 ≤ �u,κ ≤ e + 1 .= 3.718.

Let a1, . . . , an be a (λ, q,m,d)-net in base b ≥ 2. Then

0 ≤ �u,κ ≤ bq

(
b

b − 1

)d−1
.

PROOF. The first part is from [20], the second is from [21], and the third is
from [22]. �

Theorem 2 shows some upper bounds on gain coefficients for nets. Sharper,
but more complicated bounds are available from intermediate stages of the proofs,
particularly the ones in [22]. Still sharper bounds are available in [18] and in [31].

5.1. Scrambled net variance for smooth functions. There is an error in the way
that the O(· · ·) terms are gathered in Lemma 1 of [21]. This section repairs the
proof of the O(n−3 log(n)d−1) result for the variance of scrambled net integrals of
smooth functions. In the process, a more general result is obtained, using a weaker
definition of smoothness than in the original paper, and covering nets with nonzero
quality parameter and relaxed versions of (λ, q,m,d)-nets.

The proof follows the lines of [21]. Lemmas 2 and 3 here replace Lemmas 1
and 2 there, respectively.
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LEMMA 2. Suppose that f is a smooth function on [0,1]d . For b ≥ 2 and
u ⊆ {1, . . . , d}, let κ and τ be |u|-tuples of nonnegative integers with components
kj and tj < bkj for j ∈ u. Then

|〈f,ψuκτγ 〉| ≤
(

b − 1

b

)|u|
b−(3|κ|+|u|)/2 sup

x∈Bu,κ,τ

|∂ufu(x)|.(14)

PROOF. From the definitions,

〈f,ψuκτγ 〉
= 〈fu,ψuκτγ 〉
= b−(|κ|+|u|)/2

∫
fu(x)ψuκτγ (x) dx

= b−(|κ|+|u|)/2
∫

fu(x)
∏
j∈u

bkj+1(
Nkj tj cj

(xj ) − b−1Wkj tj (x
j )

)
dx.(15)

Next, fu(x) depends on x only through xu. Applying (7) to fu, we may write

fu(x) = ∑
v⊆u

∫
[cv

uκτ ,xv]
∂vfu(c

−v
uκτ :yv) dyv.(16)

If v �= u, then the corresponding term in (16) does not depend on xu−v and is
therefore orthogonal to Nkj tj cj

(xj ) − b−1Wkj tj (x
j ) for j ∈ u − v. Accordingly,

we may replace fu in (15) by the v = u term from (16). Also, the integrand in (15)
vanishes for x /∈ Buκτ . Putting these together, we find that b(|κ|+|u|)/2〈f,ψuκτγ 〉
equals∫ ∫

[cu
uκτ ,xu]

∂ufu(c
−u
uκτ :yu) dyu

∏
j∈u

bkj+1(
Nkj tj cj

(xj ) − b−1Wkj tj (x
j )

)
dx

≤ sup
xu∈Buκτ

∣∣∣∣∫[cu
uκτ ,xu]

∂ufu(c
−u
uκτ :yu) dyu

∣∣∣∣
×

∫ ∏
j∈u

bkj+1|Nkj tj cj
(xj ) − b−1Wkj tj (x

j )|dx

= (2 − 2/b)|u| sup
xu∈Buκτ

∣∣∣∣∫[cu
uκτ ,xu]

∂ufu(c
−u
uκτ : yu) dyu

∣∣∣∣.
By Lemma 1, ∂ufu is continuous, and so by the mean value theorem, there is a
point z ∈ Buκτ with∣∣∣∣∫[cu

uκτ ,xu]
∂ufu(c

−u
uκτ :yu) dyu

∣∣∣∣ = Vol(rect[cu
uκτ , x

u])|∂ufu(z)|

≤ 2−|u|b−|κ||∂ufu(z)|.
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The factor b−|κ| is the volume of a |u|-dimensional elementary interval containing
both cu

uκτ and xu. The factor 2−|u| arises because cu
uκτ is at the center of this

elementary interval and xu is in some sub-interval defined by cu
uκτ and one of the

corners of that elementary interval. Finally,

|〈f,ψuκτγ 〉| ≤ (1 − 1/b)|u|b−(3|κ|+|u|)/2 sup
z∈Buκτ

|∂ufu(z)|. �

LEMMA 3. Under the conditions of Lemma 2,

σ 2
uκ ≤ 2|u|

(
b − 1

b

)3|u|
b−2|κ|‖∂ufu‖2∞.(17)

PROOF. The supports of ψuκτγ and ψuκτ ′γ ′ are disjoint unless τ = τ ′, and so

ν2
uκ(x) = ∑

τ

∑
γ

∑
γ ′

〈f,ψuκτγ 〉〈f,ψuκτγ ′ 〉ψuκτγ (x)ψuκτγ ′(x).

Now

σ 2
uκ =

∫
ν2
uκ(x) dx

= ∑
τ

∑
γ

∑
γ ′

〈f,ψuκτγ 〉〈f,ψuκτγ ′ 〉
∫

ψuκτγ (x)ψuκτγ ′(x) dx

= ∑
τ

∑
γ

∑
γ ′

〈f,ψuκτγ 〉〈f,ψuκτγ ′ 〉 ∏
j∈u

(1cj=c′
j
− b−1)

≤
(

b − 1

b

)2|u|
b−3|κ|−|u| ∑

τ

sup
z∈Buκτ

|∂ufu(z)|2
∑
γ

∑
γ ′

∏
j∈u

|1cj=c′
j
− b−1|

≤
(

b − 1

b

)2|u|
b−3|κ|−|u|

(∑
τ

sup
z∈Buκτ

|∂ufu(z)|2
)(

b−1∑
c=0

b−1∑
c′=0

|1cj=c′
j
− b−1|

)|u|

= 2|u|
(

b − 1

b

)3|u|
b−3|κ| ∑

τ

sup
z∈Buκτ

|∂ufu(z)|2

≤ 2|u|
(

b − 1

b

)3|u|
b−2|κ|‖∂ufu‖2∞. �

THEOREM 3. Let x1 through xn be the points of a randomized relaxed
(λ, q,m,d)-net in base b. Suppose that as n → ∞ with λ and q fixed, that all
of the gain coefficients of the net satisfy �uκ ≤ G < ∞. Then for smooth f ,

V (Î ) = O

(
(logn)d−1

n3

)
.
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PROOF. If |κ| + |u| ≤ m − q , then the digital net property of x1, . . . , xn yields
�uκ = 0. Otherwise, we have �uκ ≤ G, and so

V (Î ) ≤ G

n

∑
|u|>0

∑
|κ|>(m−q−|u|)+

σ 2
uκ

≤ G

n

∑
|u|>0

∑
|κ|>(m−q−|u|)+

2|u|
(

b − 1

b

)3|u|
‖∂ufu‖2∞b−2|κ|

≤ G′

n

∑
|u|>0

∑
|κ|>(m−q−|u|)+

b−2|κ|,(18)

where

G′ = G2|u|
(

b − 1

b

)3|u|
max|u|>0

‖∂ufu‖2∞.

Because we are interested in the limit as m → ∞, we may suppose that m > d +q .
For such large m,

∑
|κ|>(m−q−|u|)+

b−2|κ| =
∞∑

r=m−q−|u|+1

b−2r

(
r + |u| − 1

|u| − 1

)
,

where the binomial coefficient is the number of |u|-vectors κ of nonnegative inte-
gers that sum to r . Making the substitution s = r − m + q + |u|,∑

|κ|>(m−q−|u|)+
b−2|κ|

= b−2m+2q+2|u|
∞∑

s=1

b−2s

(
s + m − q − 1

|u| − 1

)

≤ λ2

n2

b2q+2|u|

(|u| − 1)!
∞∑

s=1

b−2s(s + m − q − 1)|u|−1

≤ λ2

n2

b2q+2|u|

(|u| − 1)!
∞∑

s=1

b−2s
|u|−1∑
j=0

( |u| − 1
j

)
sj (m − q − 1)|u|−1−j

≤ λ2

n2 b2(q+|u|−1)
|u|−1∑
j=0

(m − q − 1)|u|−1−j

j !(|u| − 1 − j)!
∞∑

s=1

b−2(s−1)sj

≤ λ2

n2 |u|b2(q+|u|−1)m|u|−1
∞∑

s=1

b−2(s−1)s|u|−1

= O
(
n−2 log(n)|u|−1)

,(19)
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because the infinite sum converges, m ≤ logb(n) and |u| ≤ d . The theorem follows
upon substituting the bound (19) into (18). �

6. Scrambled net variance with box folding. This section investigates the
effects of reflection schemes on scrambled net variance. Reflections are written as
Rρ , where ρ is a d vector of integers rj ≥ −1. As before, we let κ denote a scale
for the multiresolution analysis.

In Section 5.1 the coefficients 〈f,ψuκτγ 〉 are bounded in terms of mixed partial
derivatives of f taken once with respect to each component xj for j ∈ u. Reflec-
tion is a piece-wise differentiable operation. The function Rρ(x) is discontinuous
at x if xj = tb−rj holds for some j with rj > 0 and some positive integer t < brj .
In the interior of the pieces, reflection of xj reverses the sign of the derivative with
respect to xj . This sign reversal can be exploited to produce a cancellation effect
that reduces a bound on 〈f,ψuκτγ 〉.

To simplify some expressions, we define the composite function f ρ by f ρ(x) =
f (Rρ(x)). At almost all points x ∈ [0,1]d the chain rule gives

∂uf ρ(x) = (−1)sgn(ρ)∂uf (Rρ(x)),(20)

where sgn(ρ) = ∑d
j=1 1rj≥0 counts the number of reflections in ρ. The factor

∂uf (Rρ(x)) in the right-hand side of (20) is the partial derivative of f , evalu-
ated at the point z = Rρ(x), and not the partial derivative of f ◦ Rρ evaluated at
x, which appears on the left-hand side.

DEFINITION 11. In d dimensions, a box folding scheme is an average of 2d

reflections as described below. Start with ρ = (r1, . . . , rd), where each rj ≥ 0. For

 = 0, . . . ,2d − 1, let ρ
 be the d vector of integer components r
j ∈ {rj ,−1} with
r
j = rj if and only if the j th base 2 digit of 
 is one. Then the box fold scheme is

Ĩ = 1

2d

2d−1∑

=0

1

n

n∑
i=1

f ρ
(xi) = 1

n

n∑
i=1

f̃ (xi),

where f̃ (x) = 2−d ∑2d−1

=0 f ρ
(x).

Sometimes it is more convenient to index the reflections by 2d subsets v ⊆
{1, . . . , d}. Let v = v(
) denote the subset where j ∈ v if and only if the j th binary
digit of 
 is a one. Taking ρv to mean ρ
 where v = v(
), we may write f̃ (x) =
2−d ∑

v⊆1:d f ρv (x). From the definition of v, we find that sgn(ρv) = (−1)|v|.
To get ANOVA components of f̃ , we need the ANOVA components of f ρ .

Lemma 4 below shows that reflection commutes with the operation of taking
ANOVA components.
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LEMMA 4. Let f be an L2 function on [0,1]d . Let f ρ(x) = f (Rρ(x)), where
ρ is a d vector of integers rj ≥ −1 for j = 1, . . . , d . Let u ⊆ {1, . . . , d}. Then

f ρ
u (x) = fu(Rρ(x)).(21)

PROOF. The proof follows by induction on |u|. �

The bounds for 〈f,ψuκτγ 〉 in Section 5.1 made use of differentiability of f ,
which we cannot assume for f ρ . The derivation as far as equation (15) does follow
for f ρ and so 〈f ρ,ψuκτγ 〉 equals

b−(|κ|+|u|)/2
∫

f ρ
u (x)

∏
j∈u

bkj+1(
Nkj tj cj

(xj ) − b−1Wkj tj (x
j )

)
dx.(22)

The next step in the derivation of bounds for 〈f,ψuκτγ 〉 required ∂uf at points of
Buκτ , and ∂uf ρ does not necessarily exist.

The setting is simplest if the scale κ is finer than the reflection ρ. Suppose that
u = {1, . . . , d} and that kj ≥ rj for j = 1, . . . , d . This specifically includes cases
with rj = −1 that designate no reflection for component j . Then, for smooth f ,
∂ufρ is uniformly continuous on the interior of Buκτ . Letting cuκτ be the center of
Buκτ as before, we find that

〈f ρ,ψuκτγ 〉
=

∫ ∫
[cu

uκτ ,xu]
∂uf ρ

u (c−u
uκτ :yu) dyu ψuκτγ (x) dx

= (−1)sgn(ρ)
∫ ∫

[cu
uκτ ,xu]

∂ufu(c
−u
uκτ :Rρ(y)u) dyu ψuκτγ (x) dx

= (−1)sgn(ρ)
∫ ∫

[cuκτ ,x]
∂ufu(Rρ(y)) dy ψuκτγ (x) dx,(23)

where at the last step we use u = 1 :d and −u = ∅.

LEMMA 5. Suppose that f is a doubly smooth function on [0,1]d . Let ρ =
(r1, . . . , rd) with integers rj ≥ 0. Take |ρ| = ∑d

j=1 rj , and let f̃ be defined by the
box folding scheme of Definition 11. For b ≥ 2 and u = {1, . . . , d}, let κ , τ and γ

be d-tuples of nonnegative integers with components kj ≥ rj , tj < bkj , and cj < b

respectively, for j = 1, . . . , d . Then

|〈f̃ ,ψuκτγ 〉| ≤ b−|ρ|
(

b − 1

b

)−d

b−(3|κ|+|u|)/2‖∂u,ufu‖∞.(24)

PROOF. Because κ is on a finer scale than all of the reflections ρ
, equation
(23) holds for each of them. Therefore,

〈f̃ ,ψuκτγ 〉 = 1

2d

∫ ∫
[cuκτ ,x]

∑
v⊆1:d

(−1)|v|∂ufu(Rρv (y)) dy ψuκτγ (x) dx.



2340 A. B. OWEN

For y ∈ [0,1]d , let k = k(y) ∈ [0,1]d be the center point through which the reflec-
tion Rρ with ρ = (r1, . . . , rd) operates on y. That is, kj = b−rj (
brj yj� + 1/2).
Because κ is finer than ρ, the same center k applies for all y ∈ [cuκτ , x]. Then the
j th component of Rρv (y) is 2kj − yj if j ∈ v and is yj otherwise. Therefore,∑

v⊆u

(−1)|v|∂ufu

(
(2k − y)v :y−v) = Vol(rect[y,2k − y])∂u,ufu(z),

where z = z(y) ∈ rect[y,2k − y]. The volume of rect[y,2k − y] is at most b−|ρ|
and so following the argument from Lemma 2,

〈f̃ ,ψuκτγ 〉 ≤ (1 − 1/b)−db−|ρ|b−(3|κ|+|u|)/2‖∂u,ufu‖∞. �

The factor b−|ρ| in (24) underlies the improvement that a box reflection can
bring. For a scrambled (λ, q,m,d)-net in base b, if we choose ρ so that |ρ| = m−
q , then the coefficients 〈f̃ ,ψuκτγ 〉 with κ finer than ρ are O(b−3|κ|/2−|ρ|) instead
of O(b−3|κ|/2). Coarse terms with |κ| + |u| ≤ m − q do not contribute to the error,
so the dominant error terms have |κ|+|u| = m−q +1. In the next theorem we will
deal with those terms by taking |ρ| = m − q . Choosing |ρ| = m − q , the largest
contributing coefficients are O(b−3|κ|/2−|ρ|) = O(b−3m/2−m) = O(n−5/2) instead
of O(b−3|κ|/2) = O(b−3m/2) = O(n−3/2). Following the derivation in Section 5.1,
the terms σ 2

uκ are then of order O(b−3m) = O(n−3) instead of O(b−2m) = O(n−2)

and so each of them contributes O(n−4) to the variance instead of O(n−3). The
variance under box folding does not generally end up as O(n−4+ε) though, be-
cause there are also contributions from terms κ where κ is not finer than ρ.

THEOREM 4. Let x1 through xn be points of a randomized relaxed (λ, q,m,

d)-net in base b. Suppose that the quality parameter q remains fixed as n tends
to infinity through values λbm for fixed λ and that none of the gain coefficients of
the net is larger than G < ∞. Then for doubly smooth f , under box folding by
ρ = (r1, . . . , rd) where

rj =
{ 
(m − q)/d� + 1, j ≤ (m − q) − d
(m − q)/d�


(m − q)/d�, otherwise,

we find that

V (Ĩ ) = O

(
(logn)d−1

n3+2/d

)
as n → ∞.

PROOF. First we consider coefficients 〈f̃ ,ψuκτγ 〉 for the highest order subset
u = {1, . . . , d}. Let w = w(κ) = {j ∈ u | kj ≥ rj }. If w = ∅, then

∑
j∈u kj ≤∑

j∈u(rj − 1) = m − q − d . Then |κ| + |u| = m − q , so that �uκ = 0 by the
balance property of the digital net. Therefore, we restrict attention to w with |w| >
0. Lemma 5 treated the case with w = u and with κ finer than ρ.
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For x in the support of ψuκτγ , the function f̃ is differentiable with respect to xj

for j ∈ w. We may apply equation (7) to each f ρv , keeping only the ∂w term
because the others are orthogonal to ψuκτγ . The result shows that 2d〈f̃ ,ψuκτγ 〉 is∫ ∑

v⊆1 : d

f ρv
u (x)ψuκτγ (x) dx

=
∫ ∑

v⊆1:d

∫
[cw

wκτ ,xw]
∂wf ρv

u (x−w :yw)dyw ψuκτγ (x) dx

=
∫ ∑

v1⊆−w

∫
[cw

wκτ ,xw]
∑

v2⊆w

∂wf
ρv1∪v2
u (x−w :yw)dyw ψuκτγ (x) dx,(25)

after decomposing v into its intersections v1 and v2 with w and −w respectively.
The summation inside of (25) may be written as∑

v2⊆w

(−1)|v2|∂wfu

(
Rρv1∪v2

(x)−w :Rρv1∪v2
(y)w

)
= Vol(rect[yw,2kw

v1
− yw])∂w,wfu(Rρv1∪v2

(x)−w : zw),

where for j ∈ w, k
j
v1 = b−rj (
brj yj� + 1/2) and zw ∈ rect[yw,2kw

v1
− yw]. Be-

cause Vol(rect[yw,2kw
v1

− yw]) ≤ b−∑
j∈w rj , we find that box reflection results in

a coefficient 〈f̃ ,ψuκτγ 〉 with an upper bound on the order of b−∑
j∈w rj smaller

than the bound for 〈f,ψuκτγ 〉.
This coefficient reduction is b−∑

j∈w rj = O(b−m|w|/d) = O(n−|w|/d). Because
we only need to consider nonempty w, the reduction is O(n−1/d). The effect
is to reduce the bound for σ 2

uκ by O(n−2/d) and then the same counting ar-
gument as in Theorem 3 shows that the contribution of fu to the variance is
O((logn)d−1/n3+2/d).

Now consider variance contribution of fv for v ⊂ {1, . . . , d} with 1 ≤ |v| < d .
The sum (1/n)

∑n
i=1 f̃v(xi) is a box fold of a scrambled relaxed (λbd−|v|, q,m,

|v|)-net in base b for estimating the mean of the fully |v|-dimensional function
g(xv) = fv(x

v : 0−v) obtained by ignoring the −v components of x. Accordingly,
it makes a variance contribution that is O((logn)|v|−1/n3+2/|v|). The variance of
the sum cannot be of higher order than O((logn)d−1/n3+2/d). �

7. Discussion. In this paper we have seen that scrambled net quadrature can
be profitably combined with antithetic sampling to reduce variance. This result
then fits in with the work of [12] who combined quasi-Monte Carlo with control
variates and [27] and [3] who both looked at quasi-Monte Carlo in combination
with importance sampling. The best numerical results were for ASM scrambling
combined with box reflections, but we have no theoretical results for that combi-
nation.
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The foldings of scrambled nets studied here may also be viewed as a hybrid
of digital nets and a monomial cubature rule. The 2d -fold symmetry used by box
folding takes each sample point in the net and uses it to generate the points of a
cubature. It is one of many cubature rules that might be made to work with digital
nets. For background and catalogues of cubature rules, see [4, 5] and [28].

The conclusions of Theorems 3 and 4 both hold if λ and q are allowed to fluc-
tuate as n increases, so long as both remain below finite upper bounds.

A larger improvement from local antithetic sampling may be possible if we
can identify s < d input variables that are much more important than the others,
and apply reflections only to them. In some cases we can even re-engineer the
integrand to make a small number of variables much more important than they are
in the nominal encoding. For an example of such a technique with an integrand
with respect to a high dimensional geometric Brownian motion, see [1] and [2].
Many more examples are presented in [9].

Acknowledgments. I thank Harald Niederreiter, Christiane Lemieux, a ref-
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