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DIMENSION REDUCTION BASED ON CONSTRAINED
CANONICAL CORRELATION AND VARIABLE FILTERING1

BY JIANHUI ZHOU AND XUMING HE

University of Virginia and University of Illinois

The “curse of dimensionality” has remained a challenge for high-
dimensional data analysis in statistics. The sliced inverse regression (SIR)
and canonical correlation (CANCOR) methods aim to reduce the dimension-
ality of data by replacing the explanatory variables with a small number of
composite directions without losing much information. However, the esti-
mated composite directions generally involve all of the variables, making
their interpretation difficult. To simplify the direction estimates, Ni, Cook and
Tsai [Biometrika 92 (2005) 242–247] proposed the shrinkage sliced inverse
regression (SSIR) based on SIR. In this paper, we propose the constrained
canonical correlation (C3) method based on CANCOR, followed by a simple
variable filtering method. As a result, each composite direction consists of
a subset of the variables for interpretability as well as predictive power. The
proposed method aims to identify simple structures without sacrificing the de-
sirable properties of the unconstrained CANCOR estimates. The simulation
studies demonstrate the performance advantage of the proposed C3 method
over the SSIR method. We also use the proposed method in two examples for
illustration.

1. Introduction. For data sets with a large number of variables, the well-
known “curse of dimensionality” poses a challenge to most statistical methods.
Dimension reduction methods are often used to reduce dimensionality, enabling
regression or classification to be performed in a parsimonious way.

We consider a regression setting where the univariate response y is related to
the explanatory variable xp×1 through K linear combinations of x and an unknown
function f . One way to describe the model is

y = f (xT β1, x
T β2, . . . , x

T βK, ε),(1)

where ε is the random error independent of x, K is the smallest integer for
model (1) to hold, and βi are a set of effective dimension reduction (e.d.r.) di-
rections as in [11]. Following [2], the subspace Sy|x = span{β1, . . . , βK} ⊆ R

p

is called the central dimension reduction subspace (DRS). The central DRS
is unique, even though the sets of e.d.r. directions, which span the central
DRS, can be taken differently when K ≥ 2. Given the central DRS Sy|x , we
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use the K-dimensional projection of x onto Sy|x , instead of x itself, in the
model.

To estimate the dimensionality K and the central DRS, the sliced inverse re-
gression (SIR) method is proposed by [11] to summarize the explanatory variables
into a smaller number of linear projections. Compared to the principal compo-
nent analysis that summarizes the information contained in the explanatory vari-
ables, SIR takes into account extra information contained in the response variable.
The sliced average variance estimation (SAVE) method is proposed by [5], and
it is shown that it captures a larger portion of the central DRS than SIR by [4].
To achieve exhaustive estimation of the central DRS, simple contour regression
(SCR) and general contour regression (GCR) are proposed by [9]. Assuming an
additive random error in model (1), the (conditional) minimum average variance
estimation (MAVE) method is proposed in [20] by minimizing an objective func-
tion that involves both the direction estimation and the nonparametric function
estimation. Other dimension reduction methods in the literature include the ordi-
nary least squares (OLS) by [14] , the principal Hessian directions (PHD) by [12],
and the canonical correlation (CANCOR) method by [8].

When K < p, a reduction in dimensionality is achieved through model (1), but
each effective direction usually involves all of the explanatory variables. When p

is large and the variables in x are of different scales, the estimated linear combina-
tions xT β̂i are difficult to interpret, which makes them less useful in the analyses
following dimension reduction. Attempts have been made to address this problem.
For single-index models, which are a special case of model (1), an AIC-based crite-
rion is proposed by [16] to select the relevant variables and the smoothing parame-
ter for estimating the unknown function simultaneously. In the general framework
of model (1), the shrinkage sliced inverse regression (SSIR) method is developed
in [17] by employing the LASSO approach of [19]. In SSIR, the central DRS Sy|x
is estimated by span{diag(α̃)B̂}, where span{M} denotes the subspace spanned by
the columns of the matrix M , B̂ corresponds to the estimated central DRS span{B̂}
of SIR in [3], and the shrinkage indices α̃ are determined through a LASSO regres-
sion subject to an L1-norm constraint on α̃.

In this paper, we propose an approach to reduce the number of variables appear-
ing in the CANCOR directions, aiming to explore possible sparsity in the e.d.r.
directions through both dimension reduction and variable selection. We describe
the constrained canonical correlation (C3) method in Section 2 by imposing the
L1-norm constraint on the e.d.r. direction estimates in CANCOR. In Section 3,
a variable filtering procedure is proposed to threshold the estimated coefficients
to reduce the number of nonzero coefficients in the direction estimates by C3.
The final values of the nonzero coefficients are then re-estimated by CANCOR
on the relevant subset of variables. Simulation studies are conducted in Section 4,
and two data sets, the car price data and the Boston housing data, are analyzed in
Section 5. Concluding remarks about the proposed method can be found in Sec-
tion 6.
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2. Constrained canonical correlation.

2.1. CANCOR revisited. Using the B-spline basis functions generated for the
response variable, the CANCOR method, which is asymptotically equivalent to
SIR, is proposed by [8]. Suppose that the range of y is a bounded interval [a, b].
Given kn internal knots in [a, b] and the spline order m, we generate m + kn

B-spline basis functions. Under the linearity condition of [11], CANCOR esti-
mates a set of e.d.r. directions by estimating the canonical variates between the
B-spline basis functions and x. Since the generated m+kn B-spline basis functions
sum to 1, we use in CANCOR the first m + kn − 1 basis functions of y, π(y) =
(π1(y), . . . , πm+kn−1(y))T . Given n observations, (Yi,Xi), of the random vari-
ables (y, x), let Xn×p = (X1, . . . ,Xn)

T and �n×(m+kn−1) = (π(Y1), . . . , π(Yn))
T

be the two data matrices containing the predictor values and the B-spline basis
function values. The CANCOR method is then to estimate the canonical correla-
tions between the columns of X and the columns of �. The dimensionality of the
central DRS is selected by performing the following sequential tests on the num-
ber of nonzero canonical correlations, H0,s :γs > γs+1 = 0 versus H1,s :γs+1 > 0
for s = 0,1, . . . , p − 1, where γs are the asymptotic canonical correlations be-
tween π(y) and x in decreasing order. For details on the test statistic, see [8].
The dimensionality estimate K̂ is the smallest s such that H0,s is not rejected.
The directions β̂i in the estimated canonical variates xT β̂i , corresponding to the
nonzero correlations, are the estimated e.d.r. directions. The estimated central DRS
is Ŝy|x = span{β̂1, . . . , β̂K̂

}.
Using the standardized variables z = �

−1/2
xx [x − E(x)], where E(x) and �xx

are mean and covariance of x, it is shown in [8] that CANCOR is based on
Cov[E(z|y)], which is the same as the kernel matrix in SIR. Letting (λi, ηi),
i = 1,2, . . . , p, be the eigenvalues in decreasing order and the corresponding
eigenvectors of the matrix Cov[E(z|y)], the canonical correlations between πi(y)

and x are γi = λ
1/2
i , and the canonical directions βi = �

−1/2
xx ηi , corresponding to

the nonzero eigenvalues λi , are contained in the central DRS Sy|x , assuming the
linearity condition of [11].

The CANCOR method actually solves an optimization problem that sequen-
tially finds the directions βi with the maximum correlations between xT βi and
some functions of y. If the canonical correlations are strictly monotone, then the
CANCOR approach leads to the unique identification of the directions βi , not just
the space spanned by those directions. The directions βi have their own interpre-
tations, regardless of whether model (1) holds.

2.2. Constrained CANCOR. To estimate the first constrained e.d.r. direction,
we solve the following nonlinear constrained canonical correlation (C3) problem,
where ‖β‖L1 will be used throughout the paper for the L1-norm of any vector β .
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PROBLEM 1.

Maximize αT �̂πxβ,

subject to αT �̂ππα = 1; βT �̂xxβ = 1; ‖β‖L1 ≤ t.

In Problem 1, the matrix �̂πx is taken to be the sample covariance matrix be-
tween π(y) and x, and �̂ππ and �̂xx the sample variance-covariance matrices of
π(y) and x, respectively. The maximizer of Problem 1 for a given t is denoted as
(α̂c

1, β̂
c
1), and the maximal correlation is γ̂ c

1 = α̂cT
1 �̂πxβ̂

c
1 . The criterion of select-

ing the value of t will be discussed later in this section.
One salient point about Problem 1 is that it does not use the inverse of the sample

covariance matrix �̂xx . Even if the number of variables p is greater than n, the
constrained problem will generally have a unique solution for small t , while the
unconstrained problem admits possibly infinitely many solutions. When there are
multiple candidates to achieve the same correlation, the constrained optimization
favors the candidate directions with sparse coefficients.

For the identifiability of the ith (i ≥ 2) constrained e.d.r. directions, we re-
quire them to be uncorrelated with the previously estimated directions, that is,
the ith (i ≥ 2) constrained e.d.r. direction is estimated by solving the following
constrained optimization problem for (α̂c

i , β̂
c
i ), and γ̂ c

i = α̂cT
i �̂πxβ̂

c
i .

PROBLEM 2.

Maximize αT �̂πxβ,

subject to αT �̂ππα = 1; βT �̂xxβ = 1; ‖β‖L1 ≤ t;
αT �̂ππ α̂c

l = 0; βT �̂xxβ̂
c
l = 0; l = 1, . . . , i − 1.

Starting from Problem 1 and solving Problem 2 iteratively over i, we get a
set of the constrained e.d.r. direction estimates {β̂c

i } for i = 1, . . . , K̂ , where K̂

is the number of significant e.d.r. directions determined by the sequential tests
in CANCOR or any pre-determined dimensionality for the problem. The tuning
constant t is expected to vary with i, as detailed in the next subsection.

Note that without the L1-norm constraint ‖β‖L1 ≤ t , Problems 1 and 2 indeed
estimate the canonical correlations between π(y) and x. Under the constraint,
some coefficients in the direction estimates β̂c

i shrink toward 0. To illustrate that
the L1-norm constraint favors sparse coefficients of β̂c

i , we discuss the effect of
the constraint in Problem 1 in the 2-dimensional space as shown in Figure 1.

In Figure 1, we assume �̂xx = I2 and β = (β1, β2). The circle is the contour
defined by βT �̂xxβ = (β1)2 + (β2)2 = 1, and the squares are defined by |β1| +
|β2| = t for t = 1.5, 1.2 and 1.0, respectively. In CANCOR, we search for the
estimate of β on the whole circle to maximize the correlation. In C3, the feasible
region of β is the part of the circle lying in the square defined by t . When t gets
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FIG. 1. Constraint effect in 2D space.

smaller, the coefficients of the points in the feasible region are closer to being
sparse. As shown in Figure 1, when t is decreased to 1, the feasible region shrinks
to the four points (±1,0) and (0,±1). Similarly in the general p-dimensional
space, when t gets smaller, the points in the feasible region defined by t move
toward sparser coordinates.

For selecting the tuning parameter t in Problem 1 or 2, we first study the range of
t in which the L1-norm constraint takes effect. When each explanatory variable in
x ∈ R

p is standardized to variance 1, the matrix �̂xx has diagonal elements 1 and
off-diagonal elements between −1 and 1. Thus, we have ‖β‖2

L1
≥ βT �̂xxβ = 1.

When t = 1, only the unit vectors, such as (0, . . . ,0,±1,0, . . . ,0), are in the fea-
sible region. When t < 1, the feasible region is empty and the optimization prob-
lem does not have a solution. Therefore, the tuning parameter t should not be less
than 1 for a meaningful L1-norm constraint. On the other hand, when t ≥ t0, where
t0 = ‖β̂i‖L1 and β̂i is the unconstrained e.d.r. direction estimate by CANCOR, the
maximizer is always β̂i . Therefore, the tuning parameter t should be in the interval
[1, t0].

2.3. Computational issues. Starting from t = t0, we search for the value of t

in each problem iteratively by decreasing t by a small amount �t in each iteration.
Given the value of t in each iteration, the constrained direction β̂c

i and the max-
imum correlation γ̂ c

i are estimated. When t gets smaller, more coefficients in β̂c
i

tend to shrink toward 0. As t is decreased to 1, only one variable will be involved
in the estimated xT β̂c

i . However, we usually need to stop decreasing t before it
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reaches 1, because the maximum correlation may have decreased too much when
t is too small. To balance the simplicity of the estimated direction with the loss
in the correlation, we propose to stop decreasing t when the maximum correlation
drops below a lower confidence limit of the canonical correlation. The limiting
distributions of the sample canonical correlations can be found in [15]. However,
those distributions do not apply directly in our setting. The positive news is that
the accuracy (in confidence level) of such a confidence limit is not so critical for
our purpose, and we prefer to use easy approximations based on the following
Fisher’s transformation. Given the estimated canonical correlation γ̂i , we trans-
fer it to ρ̂i = (1/2) log[(1 + γ̂i)/(1 − γ̂i)], whose distribution could be approxi-
mated by the normal distribution with standard deviation 1/

√
n − 3. Thus, we use

ρ̂i − Z1−α/
√

n − 3 as the 100(1 − α)% lower confidence limit of the transformed
canonical correlation, where Z1−α is the 100(1 − α)% quantile of the standard
normal distribution. Accordingly, the lower confidence limit of the ith canoni-
cal correlation could be approximated by (exp(2τi) − 1)/(exp(2τi) + 1), where
τi = ρ̂i − Z1−α/

√
n − 3. We stop decreasing t in the iterative process when the

corresponding maximum correlation falls below the lower confidence limit given
above. The value of t in the iteration just before the above process is stopped is
selected for Problem 1 or 2, and the corresponding direction estimate β̂c

i is taken
as the estimated ith constrained e.d.r. direction. The two parameters, �t and α, are
user-specified. In this paper, we use as default α = 0.005 and �t = 0.05.

Problems 1 and 2 are nonlinear constrained optimization problems with an
L1-norm constraint. Most of the existing algorithms for solving the constrained
optimization problems need a pair of initial directions for α and β , and there
is no guarantee that the global maximum will be found through iteration. In the
C3 method, we use the unconstrained e.d.r. directions α̂i and β̂i estimated by
CANCOR as the initial directions for solving Problems 1 and 2. In the iterative
process for selecting the value of t , the constrained direction estimates in the pre-
vious iteration are used as the initial directions in the next iteration when t is
deceased by �t . Since the unconstrained e.d.r. directions correspond to the global
maxima, the proposed scheme greatly reduces the chance of hitting a local max-
imum in the iterations. Furthermore, we always know what to expect from the
maximum correlation, so it is easy to know when a poor local maximum is found.

2.4. Consistency. Throughout we assume that �xx > 0, and that the nonzero
eigenvalues of Cov[E(z|y)] are distinct, that is, γ1 > γ2 > · · · > γK > 0. In this
setting, the canonical directions βi (i ≤ K) are uniquely identified, in contrast to
those in model (1). Obviously, the directions βi defined through CANCOR are
not necessarily part of those in model (1), unless a well-known linearity condition
holds on the distribution of x (see [11]). We believe that the composite directions
βi are useful even when model (1) does not hold. Letting kn be the number of
internal knots used in the spline, we have:
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THEOREM 1. Assume that �xx > 0, γ1 > · · · > γK > 0 for some K , and that
the following conditions A1–A4 hold.

A1: The marginal density of y is bounded away from 0 and infinity on [a, b].
A2: kn → ∞ and kn = o(n2/3) as n → ∞.
A3: E(‖x‖4) < ∞.
A4: Each component of E(z|y) is a function on [a, b] with bounded derivative;

Then we have β̂c
i

P→ βi for i ≤ K .

Note that conditions A1–A4 are sufficient for the consistency of the constrained
canonical correlation estimates, but the assumption of distinct eigenvalues γi , i =
1, . . . ,K is there to ensure the consistency of the constrained direction estimates.
Since the direction estimates from C3 will not be taken as the final estimates, we
shall defer the results on asymptotic distributions to the next section.

3. Variable filtering and final estimates. As demonstrated in Figure 1, the
L1-norm constraint helps to shrink the e.d.r. direction estimates toward the sparse
regions in R

p , but exact zero coefficients in β̂c
i are not aimed at. To remove the

variables with no or very marginal effects on the e.d.r. directions, we propose to
threshold the coefficients in β̂c

i through a variable filtering procedure.
The proposed variable filtering procedure is simple and iterative. At each itera-

tion, one more coefficient of β̂c
i is set to be 0 according to the magnitudes of the

coefficients in absolute value. Recall that the x variables are standardized individ-
ually. Given the constrained e.d.r. direction estimates α̂c

i and β̂c
i from Problem 1 or

Problem 2, the proposed variable filtering procedure involves the following steps:

1. Let d = p.
2. Define a new direction β̂ ′c

i (d) by keeping the largest d coefficients of β̂c
i in

absolute value and setting the other (p − d) coefficients to be 0. Find β̂
p
i (d)

as the projection of β̂ ′c
i (d) into the space Bi , the set of all β such that:

(i) βT �̂xxβ̂
c
j = 0, j ≤ i − 1, (ii) the set of zero coefficients in β is the same

as that in β̂ ′c
i (d) and (iii) βT �̂xxβ = 1.

3. Compute the correlation, rd = Corr(π(y)T α̂c
i , x

T β̂
p
i (d)), and the BIC-type cri-

terion, BIC(d) = n log(1 − r2
d ) + d log(n).

4. Let d = d − 1. Repeat steps 2–4 until d = 0.

Performing the above variable filtering procedure, we get a sequence of BIC(d)

as d decreases from p to 0. Let d0 be the integer at which BIC(d) is minimized.
Then, the p − d0 smallest coefficients of β̂c

i in absolute value are set to 0. This
proposed variable filtering procedure is a simplified variable selection procedure.
In variable filtering, at most p possibilities are considered, which makes it feasible
to do even when p is large.

Whenever d < i in Step 2, the projection β̂
p
i (d) is usually a zero vector, and

in those cases we set rd = 0. Therefore, the number of nonzero coefficients for βi
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will be no fewer than i by our variable filtering algorithm. This is not an undesir-
able feature, as it might be unwise to be aggressively dropping variables if a large
number of dimensions will be needed in the model. In most applications, we may
be looking for the cases of K � p; the restriction of d ≥ i on the results for βi is
mild.

It is important to note that the proposed variable filtering procedure should be
applied to the constrained direction estimates by the C3 method. If it is applied di-
rectly to the unconstrained direction estimates, it will not be effective, as shown in
the first example in Section 5, mainly because the sizes of the coefficients are often
“distorted” by collinearity of the variables in the unconstrained direction estimates.
Variable selection in the unconstrained problem would be a harder problem.

To aim for higher correlation, we propose re-estimation of the directions after
variable filtering: the variables selected for any of the first K̂ constrained direc-
tions are combined, and the CANCOR method is performed on those variables
alone. Then, the final estimate of βi , now denoted as β̂

f
i , is obtained by taking the

estimates from re-estimation for its nonzero coefficients and by keeping the zero
coefficients as determined in the variable filtering stage. The following theorem
concerns the asymptotic behavior of the final direction estimates.

THEOREM 2. Assume that �xx > 0 and γ1 > · · · > γK > 0 for some K .

(i) Under conditions A1–A4 in Theorem 1, the proposed filtering procedure
will select all of the variables with nonzero coefficients in βi (i = 1,2, . . . ,K) with
probability tending to 1 as n → ∞.

(ii) Suppose βi = (βi,1, βi,2, . . .), where βi,1 is a vector that contains the
nonzero coefficients of βi and βi,j = 0 (j ≥ 2) are the remaining individual com-
ponents. If condition A2 is strengthened to the following A′

2, A′
2: k2

n/n → 0 and

k4
n/n → ∞; then for i = 1, . . . ,K ,

√
n(β̂

f
i,1 − βi,1) has the same limiting dis-

tribution as
√

n(β̂i,1 − βi,1), and
√

n|β̂f
i,j − βi,j | is stochastically dominated by√

n|β̂i,j − βi,j | for any j ≥ 2.

We refer to [8] for the limiting distribution of
√

n(β̂i − βi) under the uncon-
strained CANCOR method. In parametric settings, penalized likelihoods with L1
constraints have been studied by earlier authors such as [6] and [7]. Here, a mea-
sure of correlation takes the role of a likelihood, and the nonparametric compo-
nent (in the case of kn increasing with n) complicates the analysis. Indeed, the
proposed dimension reduction is a combination of constrained canonical correla-
tion (C3), variable filtering, and re-estimation. The step in C3 moves the estimated
direction closer to βi under sparsity, which enables us to perform model selection
through a simple variable filtering scheme. Re-estimation following variable fil-
tering updates the direction estimates to achieve the highest possible correlation
with a function of y. Theorem 2 shows that our proposed direction estimates are
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designed to explore the sparsity in βi with the same or better asymptotic efficiency
than the CANCOR estimates.

The BIC-type criterion used in variable filtering is chosen to mimic the Bayesian
information criterion, but it cannot be identified as the exact or approximate BIC
in the usual sense. Rather, this choice is in part based on our empirical experi-
ence. The asymptotic results in Theorem 2 remain valid for a wide range of model
selection criteria that balance correlation rd with complexity d .

4. Simulation studies. We perform 4 simulation studies in this section to
study the performance of the proposed dimension reduction method, which con-
sists of C3, variable filtering and re-estimation. For convenience, in the simulation
studies and in the examples in Sections 4 and 5, we will simply refer to the pro-
posed dimension reduction as the C3 method. To compare the C3 method with the
shrinkage sliced inverse regression (SSIR) method proposed in [17], we specify
the settings of the first 3 studies to be the same as those in their paper.

As reviewed in Section 1, SSIR estimates a shrinkage index ζ = (ζ1, . . . , ζp)

subject to ‖ζ‖L1 ≤ t . The central DRS Sy|x is estimated by span{diag(ζ̃ )B̂} in
SSIR, where ζ̃ is the estimate of ζ by SSIR and B̂ is the matrix with columns as
the e.d.r. direction estimates by SIR. The estimated shrinkage indices ζ̃ compress
some rows of B̂ to 0, and the corresponding variables will not be involved in the
dimension reduction results. There are four criteria used in SSIR for selecting the
value of their tuning parameter t : the generalized cross validation (GCV) criterion,
Akaike’s information criterion (AIC), the Bayesian information criterion (BIC)
and the residual information criterion (RIC). We refer to [17] for details on SSIR
and those criteria.

In implementing C3, we varied α in the set {0.025,0.01,0.005,0.0025} in the
selection of the tuning parameter t , but found that the results were quite robust.
For brevity, the results with α = 0.01 and 0.005 are reported here. To solve the
optimization problems, we used an R interface with the FORTRAN subroutine
VF13AD in the Harwell Subroutine Library. Other packages such as PROC NLP
in SAS may be used for the same purpose.

In each study, we generate 100 data sets of the sample size 60 or 120. To gen-
erate the B-spline basis functions π(y), the quadratic spline (order m = 3) with
kn = 4 internal knots is used. Accordingly, we use I = 7 slices in SSIR such that
m + kn = I . Since the explanatory variables are generated from normal distri-
butions, the linearity condition holds in each study. The average numbers of 0
coefficients in the estimated constrained e.d.r. directions are summarized.

STUDY 1.

y = x1 + x2 + x3 + 0.5ε,

where x = (x1, . . . , x24)
T ∼ N(0, I24), ε ∼ N(0,1), and x and ε are independent.

In this study, the true direction is β1 = (1,1,1,0, . . . ,0)T with 21 zero coefficients.
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TABLE 1
Summary of Study 1

Method C3 SSIR

Criterion α = 0.01 α = 0.005 GCV AIC BIC RIC

Sample size n = 60
A3 0.00 0.00 0.00 0.00 0.00 0.00
(SE) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

A21 20.73 20.80 20.00 19.94 20.95 20.99
(SE) (0.06) (0.05) (0.11) (0.11) (0.02) (0.01)

Sample size n = 120
A3 0.00 0.00 0.00 0.00 0.00 0.00
(SE) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

A21 21.00 21.00 20.35 20.34 20.99 21.00
(SE) (0.00) (0.00) (0.08) (0.08) (0.01) (0.00)

Table 1 summarizes the average number of zero coefficients, as well as the corre-
sponding standard errors, in diag(α̃)β̂1 estimated by SSIR and in β̂

f
1 estimated

by C3, where:

• A3 is the average number of zero coefficients out of the first 3 coefficients in
diag(α̃)β̂1 for SSIR or in β̂

f
1 for C3;

• A21 is the average number of zero coefficients out of the last 21 coefficients in
diag(α̃)β̂1 or in β̂

f
1 .

Note that for the true direction β1, we have A3 = 0 and A21 = 21.

STUDY 2.

y = x1/{0.5 + (x2 + 1.5)2} + 0.2ε,

where x = (x1, . . . , x24)
T ∼ N(0, I24), ε ∼ N(0,1), and x and ε are independent.

In this study, the true central DRS is the subspace spanned by β1 = (1,0, . . . ,0)T

and β2 = (0,1,0, . . . ,0)T . Letting B̃ = diag(α̃)(β̂1, β̂2) estimated by SSIR and
B̂f = (β̂

f
1 , β̂

f
2 ) estimated by C3, Table 2 summarizes the averages A2 and A22,

where:

• A2 is the average number of zero rows out of the first 2 rows in B̃ for SSIR or
in B̂f for C3;

• A22 is the average number of zero rows out of the last 22 rows in B̃ or in B̂f .

Here, a zero row is a row vector with all elements equal to 0. Note that for the
matrix B = (β1, β2) corresponding to the true central DRS, A2 = 0 and A22 = 22.
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TABLE 2
Summary of Study 2

Method C3 SSIR

Criterion α = 0.01 α = 0.005 GCV AIC BIC RIC

Sample size n = 60
A2 0.14 0.14 0.02 0.02 0.07 0.17
(SE) (0.03) (0.03) (0.01) (0.01) (0.03) (0.04)

A22 18.48 18.93 6.70 6.27 14.23 18.62
(SE) (0.23) (0.17) (0.25) (0.25) (0.26) (0.16)

Sample size n = 120
A2 0.00 0.00 0.00 0.00 0.00 0.00
(SE) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

A22 19.44 19.45 7.66 7.29 15.48 19.80
(SE) (0.14) (0.15) (0.27) (0.27) (0.23) (0.14)

STUDY 3.

y = x1/{0.5 + (x2 + 1.5)2} + 0.2ε,

where ε ∼ N(0,1), x ∈ N(0,�) with �ij = 0.5|i−j | for 1 ≤ i, j ≤ 24, and ε and x

are independent. The averages A2 and A22 defined in Study 2 are summarized in
Table 3 with A2 = 0 and A22 = 22 corresponding to the true central DRS.

STUDY 4.

y = x1 + · · · + x24 + 0.5ε,

TABLE 3
Summary of Study 3

Method C3 SSIR

Criterion α = 0.01 α = 0.005 GCV AIC BIC RIC

Sample size n = 60
A2 0.27 0.33 0.07 0.07 0.18 0.22
(SE) (0.04) (0.05) (0.03) (0.03) (0.04) (0.04)

A22 18.94 19.37 5.79 5.28 14.35 18.52
(SE) (0.18) (0.18) (0.28) (0.28) (0.26) (0.17)

Sample size n = 120
A2 0.18 0.25 0.01 0.01 0.03 0.06
(SE) (0.04) (0.04) (0.01) (0.01) (0.02) (0.02)

A22 20.10 20.22 6.77 6.29 14.65 18.62
(SE) (0.11) (0.10) (0.24) (0.24) (0.24) (0.16)
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TABLE 4
Summary of Study 4

Method C3 SSIR

Criterion α = 0.01 α = 0.005 GCV AIC BIC RIC

Sample size n = 60
A 0.00 0.00 6.82 6.39 13.61 17.36
(SE) (0.00) (0.00) (0.21) (0.21) (0.18) (0.17)

Sample size n = 120
A 0.00 0.00 0.15 0.09 5.91 13.81
(SE) (0.00) (0.00) (0.04) (0.03) (0.24) (0.19)

where x = (x1, . . . , x24)
T ∼ N(0, I24), ε ∼ N(0,1), and x and ε are independent.

The true direction is β1 = (1,1, . . . ,1)T . Table 4 summarizes A that is the average
number of zero coefficients in diag(α̃)β̂1 for SSIR or in β̂

f
1 for C3. Note that for

the true direction β1, we have A = 0.

In Studies 1–3, the residual information criterion (RIC) has the best overall per-
formance among the four criteria of SSIR in identifying the relevant explanatory
variables and filtering out the irrelevant variables. The proposed C3 method works
competitively to SSIR with RIC. However, in Study 4 where all of the variables are
relevant, the C3 method misses none of them while SSIR with RIC misses more
than half of them on average. In Study 4, the AIC and GCV criteria in SSIR out-
perform BIC and RIC, although they still do not perform as well as the proposed
C3 method.

According to Shi and Tsai [18], the RIC criterion has a greater penalty func-
tion on the effective number of parameters than the AIC and BIC criteria. Thus,
as shown in the simulation studies, SSIR with RIC usually compresses more coef-
ficients to be 0 than SSIR with AIC or BIC. Therefore, in Studies 1–3 when only
a small number of variables are involved in the central DRS, the RIC criterion
helps filter out the irrelevant variables, but in Study 4 when all of the variables are
involved, the RIC criterion is too aggressive, underscoring the difficulty in doing
well for both types of situations. In C3, instead of just penalizing the number of
parameters, we monitor the decrease in the correlation, the objective function in
CANCOR, which has a very intuitive appeal and makes it easy to outperform other
criteria. In Study 4, excluding any of the variables will drive the correlation out of
the lower limit of the confidence interval. As a result, C3 correctly picks up all of
the variables.

In summary, the selection criteria in SSIR have varied performance, but the
proposed C3 method competes favorably with the best criterion used in SSIR, and
has a smaller risk for being overly aggressive. The simulation studies also show
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that the performance of both SSIR and C3 can be improved as the sample size
increases.

5. Examples. In this section, we apply the proposed C3 method to two stud-
ies, the car price data and the Boston housing data.

5.1. Example on car prices. In the car price data analyzed in [16], the non-
negotiable transaction prices (y) of 25 different family saloons, together with their
nine attributes, are recorded. Those nine attributes are mileage per gallon (x1),
horsepower (x2), length (x3), width (x4), weight (x5), height (x6), satisfaction (x7),
reliability (x8) and overall evaluation (x9). Applying C3 to the car price data, we
aim to select a subset of the attributes to explain the variation among the transac-
tion prices.

The nine attribute variables are standardized to mean 0 and variance 1. For es-
timating the dimensionality K in model (1), the sequential tests are performed
with different numbers of slices (I ) in SIR and different numbers of internal knots
(kn) with quadratic spline (order m = 3) in CANCOR. To make the estimates K̂

by SIR and CANCOR comparable, the numbers I and kn are matched such that
I = m + kn. The dimensionality estimates by SIR and CANCOR with different I

and kn, respectively, are summarized in Table 5. The estimate by SIR is sensitive
to the number of slices while the estimate by CANCOR is robust against the num-
ber of internal knots. Thus, we select the CANCOR estimate K̂ = 1, and estimate
the first constrained e.d.r. direction using C3. For generating the B-spline basis
functions based on y, the quadratic spline with kn = 4 internal knots is used.

The first canonical correlation corresponding to the direction estimate β̂1 by
CANCOR is 0.950 with the approximated 99.5% lower confidence limit 0.858.
The iterative process described in Section 2 selects the tuning parameter t = 1.10.
The corresponding constrained direction estimate at t = 1.10 yields the correlation
0.872, and has two nonzero coefficients selected by the variable filtering proce-
dure. Using the two selected variables, the constrained direction is re-estimated as
described in Section 3. The re-estimated constrained direction β̂

f
1 yields the corre-

lation 0.905. The direction estimates β̂1 and β̂
f
1 by CANCOR and C3, respectively,

are standardized to unit length, and are shown in Table 6.

TABLE 5
Dimensionality estimates for the car price data

SIR CANCOR

I 3 4 5 6 7 8 kn 0 1 2 3 4 5
K̂ 1 2 1 0 0 0 K̂ 1 1 1 1 1 1
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TABLE 6
Direction estimates by CANCOR and C3 for the car price data

x1 x2 x3 x4 x5 x6 x7 x8 x9

β̂1 0.056 0.329 −0.472 0.434 −0.032 0.136 0.647 −0.142 −0.138

β̂
f
1 0 0.588 0 0 0 0 0.809 0 0

Back to the original scale of the variables, the estimated linear combination
corresponding to β̂

f
1 is 0.046x2 + 0.999x7. The selected variables are horsepower

(x2) and satisfaction (x7) by the proposed C3 method. In [16], the SIR method
is applied to the car price data, and the variables are ordered according to the
direction estimate by SIR. Based on the ordering, a total number of 9 nested
models are considered, and an AIC-based model selection criterion for single-
index models is applied to the 9 nested models, resulting in the selected model
y = ĝ(0.045x2 + 0.999x7), where the function ĝ(·) is estimated by applying the
local polynomial regression with the selected bandwidth. The direction estimated
in [16] is almost identical to the one estimated by C3. However, the C3 method
does not require an estimation of g, and it selects (rather than assumes) a uni-
dimensional model that is adaptive to the data.

If we apply the variable filtering procedure to the CANCOR direction esti-
mate β̂1, we end up with 4 variables with nonzero coefficients, x2, x3, x4 and x7.
On the original scale of the variables, the corresponding estimated linear combi-
nation is 0.041x2 − 0.171x3 + 0.471x4 + 0.864x7. Given that x3 and x4 have large
coefficients in β̂1, they are forced in by the variable filtering procedure. However,
when the C3 method is performed, the coefficients of x3 and x4 decrease as the
tuning parameter t decreases, while the coefficient of x2 increases until t is very
close to 1. When the iterative process stops at t = 1.10, the coefficients of x3 and
x4 are very close to 0 in the constrained direction estimate. As a result, the variable
filtering procedure does not select x3 and x4. This example confirms that when the
explanatory variables are correlated, applying the simplified variable filtering pro-
cedure given in the paper to the unconstrained direction estimates would not be
effective, and a fuller version of variable selection would be needed.

5.2. Example with Boston housing data. We now analyze the Boston hous-
ing data using the proposed C3 method. Although this data set has been widely
analyzed from different perspectives, our purpose is to demonstrate the differ-
ence between constrained and unconstrained direction estimates. The Boston hous-
ing data contains 506 observations, and can be downloaded from the web site
http://lib.stat.cmu.edu/datasets/boston_corrected.txt. The dependent variable y is
the median value of owner-occupied homes in each of the 506 census tracts in the
Boston Standard Metropolitan Statistical Areas. The 13 explanatory variables are

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
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per capita crime rate by town (x1); proportion of residential land zoned for lots
over 25,000 sq.ft (x2); proportion of nonretail business acres per town (x3); nitric
oxides concentration (x4); average number of rooms per dwelling (x5); proportion
of owner-occupied units built prior to 1940 (x6); weighted distances to five Boston
employment centers (x7); full-value property-tax rate (x8); pupil-teacher ratio by
town (x9); proportion of blacks by town (x10); percentage of lower status of the
population (x11); Charles River dummy variable (x12); index of accessibility to
radial highways (x13).

For observations with crime rate greater than 3.2, the variables x2, x3, x8, x9 and
x13 are constants except for 3 observations. Thus, as in [1] and [13], we use the
374 observations with crime rate smaller than 3.2 in this analysis. To make the ex-
planatory variables comparable in scale, we standardize each of them individually
to mean 0 and variance 1. The linearity condition is assumed given the arguments
in [13]. As in the simulation studies and the car price data example, the quadratic
spline (order m = 3) with kn = 4 internal knots is used to generate the B-spline
basis functions π(y).

By CANCOR, there are four e.d.r. directions that are significant. A closer look
at those directions showed that the 3rd and 4th directions are mainly due to out-
lying observations. To downweight the effect of outliers, we choose the weighted
CANCOR approach of [21], where each observation is weighted according to its
leverage in the x-space. With such weights, only two directions are found to be
significant, and the resulting direction estimates by weighted CANCOR and the
corresponding C3 method, rescaled to unit length, are summarized in Table 7.
Each of the estimated e.d.r. directions by the weighted CANCOR involves all of
the explanatory variables. Due to the correlations among the variables, the coeffi-
cients cannot be interpreted individually. The directions estimated by C3 are more
focused, and 9 or 10 coefficients in each direction are compressed to 0.

Table 7 shows that, in the first constrained direction estimate β̂
f
1 , the variables

x5, x6, x8 and x9 are singled out. However, the variable x5 has the dominant load-
ing. In the second constrained direction estimate β̂

f
2 , the variables x5, x6 and x11

are singled out. Since the variable x5, the housing size information, has already
been picked up by β̂

f
1 , the second constrained e.d.r. direction β̂

f
2 gets at how old

and how wealthy the district is. We conclude that the housing size information and
the district information (age and wealth) are well summarized by xT β̂

f
1 and xT β̂

f
2

to explain the variation of the median housing values among those 374 districts.
The direction estimates β̂i by the weighted CANCOR and β̂

f
i by C3 are quite

close for the Boston housing data with correlations 0.982 between xT β̂1 and xT β̂
f
1

and 0.849 between xT β̂2 and xT β̂
f
2 . However, with an acceptable sacrifice on the

canonical correlations, the irrelevant or marginally important variables are filtered
out, and the direction estimates by C3 are easier to interpret.
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TABLE 7
Direction estimates by CANCOR and C3 for the Boston housing data

β̂1 β̂2 β̂
f
1 β̂

f
2

x1 0.052 −0.064 0 0
x2 0.085 −0.266 0 0
x3 −0.078 −0.015 0 0
x4 −0.009 −0.352 0 0
x5 0.871 −0.565 0.962 −0.645
x6 −0.306 −0.058 −0.174 −0.096
x7 −0.291 −0.149 0 0
x8 −0.165 0.022 −0.166 0
x9 −0.125 −0.041 −0.126 0
x10 −0.005 0.089 0 0
x11 0.008 −0.644 0 −0.758
x12 0.043 0.108 0 0
x13 0.039 0.143 0 0

6. Conclusion. The constrained canonical correlation (C3) method is pro-
posed to enhance the e.d.r. direction estimates by CANCOR. By imposing the
L1-norm constraint in the C3 method, the noise contained in the data could be
further filtered out and a small number of informative variables could be eas-
ily identified for each direction estimate. The directions estimated by the pro-
posed method are easier to interpret and more helpful for the subsequent sta-
tistical analysis. Compared with the SSIR method and a recent work [10] on
another shrinkage-type method, the proposed C3 method has a unique advan-
tage in that we use correlation as a transparent objective so that there is a nat-
ural criterion to guide us how much to “shrink.” The proposed method results
in final parameter estimates that are at least as efficient as the CANCOR esti-
mates, but adapt nicely to sparsity in these directions whenever possible. Asymp-
totic properties for other shrinkage methods are unavailable for comparison at the
moment.

An R interface with a Fortran subroutine is used to implement the proposed C3

method in this paper. The programs can be obtained from the first author upon
request.

APPENDIX

PROOF OF THEOREM 1. Given a sample {Xt,Yt }nt=1, we standardize Xt

to Zt = �̂
−1/2
xx (Xt − X̄), where (X̄, �̂xx) are the mean and covariance esti-

mates. Using the variables Z = (Z1, . . . ,Zn)
T as in [8], the direction esti-

mates by CANCOR are β̂i = �̂
−1/2
xx η̂i , where η̂i are the eigenvectors of the

matrix �̂n = n−1ZT �∗(�∗T �∗)−1�∗T Z and �∗ is the centered version of
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� = (π(Y1), . . . , π(Yt ))
T . Letting M = Cov(E(z|y)) = E[E(z|y)E(zT |y)] and

(ηi, λi) are the eigenvectors and eigenvalues of M , we have βi = �
−1/2
xx ηi and

γi = λ
1/2
i . It follows from the same arguments used in [8] that �̂n

P→ M and

γ̂i
P→ γi .

To show β̂c
i

P→ βi , it is equivalent to show that any subsequence {β̂c
i,nk

} of {β̂c
i },

nk ⊆ N, contains a further subsequence that converges almost surely to βi . We
handle this for each i.

Let (α̂i, β̂i) and (α̂c
i , β̂

c
i ) be the direction estimates from CANCOR and C3, re-

spectively, and γ̂i = α̂T
i �̂πxβ̂i and γ̂ c

i = α̂cT
i �̂πxβ̂

c
i . By the choice of the tuning

parameter t , we have (γ̂ c
i − γ̂i) → 0, and thus γ̂ c

i

P→ γi . Given the fixed dimen-

sionality of �xx , we also have �̂xx
P→ �xx under condition A3. Therefore, for any

subsequence nk , we can find a further subsequence nk′ ⊆ nk such that γ̂ c
i,nk′ →γi

and �̂xx,nk′ →�xx almost surely.

Let Oi = {ω : γ̂ c
i,nk′ (ω) → γi and �̂xx,nk′ (ω) → �xx}. It is clear that P(Oi) = 1.

To prove Theorem 1, it suffices to show that Oi ⊆ {ω : β̂c
i,nk′ (ω) → βi}.

Otherwise, there exists some ω0 ∈ Oi such that β̂c
i,nk′ (ω0) → βi does not hold.

Since �xx > 0, �̂xx,nk′ (ω0) → �xx , and β̂cT
i,nk′ (ω0)�̂xx,nk′ (ω0)β̂

c
i,nk′ (ω0) = 1,

the sequence β̂c
i,nk′ (ω0) must be bounded. Thus, there exists a subsequence

β̂c
i,nk′′ (ω0)→β∗ �= βi with nk′′ ⊆ nk′ and β∗T �xxβ

∗ = 1.

Let �(ω0) = {α :αT �̂ππ,nk′′ (ω0)α = 1, αT �̂ππ,nk′′ (ω0)α̂
c
l,nk′′ = 0, l = 1, . . . ,

i − 1}, and write Snk′′ = �̂πx,nk′′ (ω0) for simplicity, we have as nk′′ → ∞,

max
α∈�(ω0)

∣∣αT �̂πx,nk′′ (ω0)
(
β̂c

i,nk′′ (ω0) − β∗)∣∣ → 0.(2)

Furthermore, let

α′
nk′′ (ω0) = arg max

α∈�(ω0)
αT Snk′′ β

∗,

α′′
nk′′ (ω0) = arg max

α∈�(ω0)
αT Snk′′ β̂

c
i,nk′′ (ω0).

We then have

α′T
nk′′ (ω0)Snk′′

(
β̂c

i,nk′′ (ω0) − β∗)
≤ max

α∈�(ω0)
{αT Snk′′ β̂

c
i,nk′′ (ω0)} − max

α∈�(ω0)
{αT Snk′′ β

∗}

≤ α′′T
nk′′ (ω0)Snk′′ β̂

c
i,nk′′ (ω0) − α′′T

nk′′ (ω0)Snk′′ β
∗

= α′′T
nk′′ (ω0)Snk′′

(
β̂c

i,nk′′ (ω0) − β∗)
,
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which implies ∣∣∣∣ max
α∈�(ω0)

{αT Snk′′ β̂
c
i,nk′′ (ω0)} − max

α∈�(ω0)
{αT Snk′′ β

∗}
∣∣∣∣

≤ max
α∈�(ω0)

∣∣αT Snk′′
(
β̂c

i,nk′′ (ω0) − β∗)∣∣.
Since γ̂ c

i,nk′′ (ω0) = maxα∈�(ω0){αT Snk′′ β̂
c
i,nk′′ (ω0)}, it follows from (2) that

γ̂ c
i,nk′′ (ω0) − maxα∈�(ω0){αT Snk′′ β∗} → 0, and thus, α′T

nk′′ (ω0)Snk′′ β∗ → γi .

Letting hnk′′ (y) = π(y)Tnk′′ α
′
nk′′ (ω0), where π(y)nk′′ denotes the vector of

the B-spline basis functions generated based on the nk′′ observations, we have
Ĉov(xT β∗, hnk′′ (y)) → γi as nk′′ → ∞, where Ĉov is used in the proof to denote
the sample covariance. We also have Ĉov(hnk′′ (y), hnk′′ (y)) = 1 by the construc-
tion of h, so

Ĉov(xT β∗, hnk′′ (y))

[Ĉov(hnk′′ (y), hnk′′ (y))]1/2
→ γl.(3)

We rescale the continuous functions hnk′′ (y) to get

gnk′′ (y) =
⎧⎪⎨
⎪⎩

hnk′′ (y), if max
y∈[a,b] |hnk′′ (y)| ≤ 1,

hnk′′ (y)
/

max
y∈[a,b] |hnk′′ (y)|, if max

y∈[a,b] |hnk′′ (y)| > 1,

to ensure |gnk′′ (y)| ≤ 1 on [a, b], and 0 < Ĉov(gnk′′ (y), gnk′′ (y)) ≤ 1. Replacing
hnk′′ (y) by gnk′′ (y) in (3), we have

Ĉov(xT β∗, gnk′′ (y)) − γi[Ĉov(gnk′′ (y), gnk′′ (y))]1/2 → 0.(4)

Given condition A3 and the fact |gnk′′ (y)| ≤ 1, it is easy to see that the sample
covariances converge to the population counterparts, and therefore Cov(xT β∗,
gnk′′ (y)) − γi[Cov(gnk′′ (y), gnk′′ (y))]1/2[Cov(xT β∗, xT β∗)]1/2 P→ 0, and

Corr(xT β∗, gnk′′ (y))
P→ γi.(5)

We define R2(β) = maxT (y)∈H Corr2(xT β,T (y)) for any β ∈ R
p with βT ×

�xxβ = 1, where H is the set containing any transformation of y with
E[T 2(y)] < ∞. As in [1], it can be shown that R2(β) = βT Cov[E(x|y)]β . Since
Cov[E(x|y)] has distinct nonzero eigenvalues and the function R2(β) is continu-
ous, we have that for any ε1 > 0, there exists ε2 > 0 such that

β ∈ �i(ε1) ⇒ Corr(xT β,T (y)) < γi − ε2 for every T (y) ∈ H,(6)

where �i(ε1) = {β :βT �xxβ = 1, βT �xxβl = 0, l ≤ i − 1, |β − βi | > ε1}.
For i = 1, it is immediate to see that (5) contradicts to (6). We now consider

i > 1 by iteratively using the fact that β̂c
l

P→ βl for l ≤ i − 1. By taking limits
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on both sides of β̂cT
i,nk′′ (ω0)Snk′′ β̂

c
l,nk′′ (ω0) = 0, we get β∗�xxβl = 0 for l ≤ i − 1.

Thus β∗ falls into �i(ε1) for some positive ε1, which again leads to a contradiction
to (6). �

PROOF OF THEOREM 2. (i) If β̂
′c
i (d) (for some d < p) does not contain all

the variables with nonzero coefficient in βi , the consistency result in Theorem 1
and (6) imply that the corresponding rd will be strictly below γi for sufficiently
large n, and therefore the filtering procedure will favor the full set at d = p. Thus
the result (i) of Theorem 2 follows.

(ii) As a result of (i), the union of the selected variables from the filtering proce-
dure contains all of the variables involved in the e.d.r. directions {βi}, with proba-
bility tending to 1.

Except for ω ∈ On with P(On) = δn → 0 as n → ∞, the final direction estimate
from the proposed method is the same as the CANCOR directions on the relevant
variables (with nonzero coefficients in any of the βi ’s), that is, we have β̂

f
i,1 = β̂i,1

except for ω ∈ On. Thus |P {√n(β̂
f
i,1 − βi,1) ∈ C} − P {√n(β̂i,1 − βi,1) ∈ C}| ≤

δn for any C, and
√

n(β̂
f
i,1 − βi,1) has the same limiting distribution as that of√

n(β̂i,1 − βi,1). On the zero coefficients βi,j with j ≥ 2, it is either β̂
f
i,j = 0 or

β̂
f
i,j = β̂i,j , so the stochastic dominance is immediate. �
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