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LOCALLY ADAPTIVE ESTIMATION OF EVOLUTIONARY
WAVELET SPECTRA1

BY SÉBASTIEN VAN BELLEGEM AND RAINER VON SACHS

Université catholique de Louvain

We introduce a wavelet-based model of local stationarity. This model en-
larges the class of locally stationary wavelet processes and contains processes
whose spectral density function may change very suddenly in time. A notion
of time-varying wavelet spectrum is uniquely defined as a wavelet-type trans-
form of the autocovariance function with respect to so-called autocorrelation
wavelets. This leads to a natural representation of the autocovariance which
is localized on scales. We propose a pointwise adaptive estimator of the time-
varying spectrum. The behavior of the estimator studied in homogeneous and
inhomogeneous regions of the wavelet spectrum.

1. Introduction. The spectral analysis of time series is a large field of great
interest from both theoretical and practical viewpoints. The fundamental starting
point for this analysis is the Cramér representation, stating that all zero-mean sec-
ond order stationary processes Xt , t ∈ Z, may be written

Xt =
∫
[−π,π)

A(ω) exp(iωt) dZ(ω), t ∈ Z,(1.1)

where A(ω) is the amplitude of the process Xt and dZ(ω) is an orthonormal in-
crement process, that is, E(dZ(ω)dZ(μ)) = dωδ0(ω − μ); see Brillinger (1975).
Correspondingly, under mild conditions, the autocovariance function can be ex-
pressed as

cX(τ) =
∫ π

−π
fX(ω) exp(iωτ) dω,

where fX is the spectral density of Xt .
There is not a unique way to relax the assumption of stationarity, that is, to de-

fine a second order process with a time-dependent spectrum. However, this model-
ing is a theoretical challenge which may be helpful in practice since many studies
have shown that models with evolutionary spectra or time-varying parameters are
necessary to explain some observed data, even over short periods of time. Exam-
ples may be found in numerous fields, such as economics [Swanson and White
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(1997), Los (2000)], biostatistics [Ombao et al. (2002)] and meteorology [Nason
and Sapatinas (2002)], to name but a few.

Among the different possibilities for modeling nonstationary second order pro-
cesses, we emphasize the approaches consisting of a modification of the Cramér
representation (1.1). Different modifications of (1.1) are possible. First, we can
replace the process dZ(ω) by a nonorthonormal process, leading to, for instance,
the harmonizable processes [Lii and Rosenblatt (2002)]. A second possibility is
to replace the amplitude function A(ω) by a time-varying version At(ω) and to
assume a slow change of At(ω) over time. Such an approach is followed to define
oscillatory processes [Priestley (1965)]. However, a major statistical drawback of
the oscillatory processes is the intrinsic impossibility of constructing an asymptotic
theory for consistency and inference. To overcome this problem, Dahlhaus (1997)
introduced the class of locally stationary processes, in which the transfer function
is rescaled in time. In this approach, a doubly-indexed process is defined as

Xt,T =
∫
[−π,π)

A

(
t

T
,ω

)
exp(iωt) dZ(ω), t = 0, . . . , T −1, T > 0,(1.2)

where the transfer function A(z,ω) is defined on (0,1) × [−π,π). Dahlhaus
(1997, 2000) investigated statistical inference for such processes, with a discus-
sion on maximum likelihood, Whittle and least squares estimates, and showed that
asymptotic results when T tends to infinity can be considered. However, in this
setting, letting T tend to infinity does not have the usual meaning of “looking into
the future,” but means that we have, in the sample X0,T , . . . ,XT −1,T , more infor-
mation about the local structure of A(z,ω). This formalism is analogous to non-
parametric regression, for which “asymptotic” means an ideal knowledge about
the local structure of the underlying curve.

In this article, we focus on a class of doubly-indexed locally stationary processes
defined by replacing the harmonic system {exp(iωt)} in (1.2) by a wavelet system.
In this way, we move from a time-frequency representation to a time-scale repre-
sentation of the nonstationary process. Because wavelets systems are well local-
ized in time and frequency, they appear more natural for modeling the time-varying
spectra of nonstationary processes. As wavelets decompose the frequency domain
into discrete scales, they offer a well-adapted system to achieve the trade-off reso-
lution between time and frequency [Vidakovic (1999)].

The class of locally stationary wavelet processes studied in this article was ini-
tially introduced by Nason, von Sachs and Kroisandt (2000). Their definition of
wavelet processes involves a time-varying amplitude which is smoothly varying
and continuous as a function of time. An initial goal of this article is to extend
this definition to the case of time-varying amplitudes with possibly discontinu-
ous behavior in time. This introduces some technical difficulties to the proof of
our results, but we believe the gain due to this extension to be crucial. Our new
definition now includes more important examples of nonstationary processes. For
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instance, this extension of the definition is needed if we wish to model a nonsta-
tionary process built as a concatenation of different processes, such as the Haar
processes defined in Nason et al. (2000). Moreover, wavelet processes can now be
used for the analysis of intermittent phenomena, such as transients followed by
regions of smooth behavior.

Our definition of wavelet processes is presented in Section 2, where we also
define their evolutionary spectrum. This spectrum is a function of time and scales,
and measures the power of the process at a particular time and scale. The main
goal of the present article is to provide a pointwise adaptive estimation of the evo-
lutionary spectrum. The estimation procedure follows the local adaptive method
of Lepski (1990). The main difference with the latter is that we are now estimating
a spectral density function, that is, the second order structure of correlated ob-
servations. Moreover, our statistical model is allowed to be nonstationary and the
behavior of its evolutionary spectrum may be very inhomogeneous in time.

In Section 3, we present a preliminary estimator of the evolutionary spectrum
and derive some useful properties that are needed in order to derive the adaptive
estimator in Section 4. The behavior of this estimator is discussed for the two
cases where the evolutionary wavelet spectrum is either regular or irregular near
the point of estimation. These results explain the good performance of the algo-
rithm in practice. Section 5 concludes with the result of a brief simulation study.
All details and specific questions related to the practical implementation of our
procedure have been considered in a separate paper [Van Bellegem and von Sachs
(2004)], where a more exhaustive study of simulations and a real data analysis are
provided.

Proofs and technical derivations are deferred to the appendices. Our estima-
tor takes the form of a quadratic form of the increments, which are assumed to
be Gaussian. Our estimator is the sum of a quadratic form of the increments
that are assumed to be Gaussian and an additive, independent linear form of
Gaussian variables. Thus, the main technical goal is to study the behavior of the
(quadratic + linear) form of Gaussian variables. There exists a large body of results
on quadratic forms of Gaussian variables. Recent developments include Rudzkis
(1978), Neumann (1996), Laurent and Massart (2000), Spokoiny (2001), Comte
(2001) and Dahlhaus and Polonik (2002). The exponential inequality proved in
the latter reference is the starting point for some important results in the present
article. On the other hand, in the appendices, we also present some original results
on quadratic forms that are needed to prove our results.

2. Locally stationary wavelet processes. The wavelet system used to build
locally stationary processes is a nondecimated system of compactly supported and
discrete wavelets. We first briefly recall some points about this system of wavelets
and then give a definition of the wavelet processes and wavelet spectra.
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2.1. Discrete nondecimated wavelet system. The local functions used in the
representation of LSW processes are a set of discrete nondecimated wavelets
{ψjk, j = −1,−2, . . . ;k ∈ Z}. We refer to Vidakovic (1999) for a review of
wavelet theory and its applications in statistics, and to Nason and Silverman (1995)
for a detailed introduction to the nondecimated wavelet transform. Let us simply
recall that, in contrast to the discrete wavelet transform, the discrete nondecimated
wavelets at all scales j < 0 can be shifted to any location defined by the finest
resolution scale, determined by the observed data. As a consequence, this con-
struction leads to an overcomplete system of the space of square summable se-
quences, �2(Z). The wavelets considered in this article are assumed to be com-
pactly supported in time and we will denote by Lj the length of the support of
ψj0, that is, Lj := | suppψj0|. This automatically implies | suppψjk| = Lj =
(2−j − 1)(L−1 − 1)+ 1 for all j < 0. Also, observe that, as in Nason et al. (2000),
we departed from the usual wavelet numbering scheme. The data inhabit scale
zero, and scale −1 is the scale which contains the finest resolution wavelet detail.
Then, the support of the wavelet on the finest scale remains constant with respect
to T .

For ease of presentation, recall the simplest discrete nondecimated system,
called the Haar system, given by

ψjk = 2j/2
I{0,1,...,2−j−1−1}(k) − 2j/2

I{2−j−1,...,2−j−1}(k)

for j = −1,−2, . . . and k ∈ Z,

where IA(t) is 1 if t ∈ A and 0 otherwise. The shifted version of ψjk is given by
ψjk(t) = ψj,k−t for all k ∈ Z.

2.2. The process and its evolutionary wavelet spectrum. As we will note be-
low, our definition of locally stationary wavelet processes differs from the original
definition of Nason et al. (2000) as we only impose a total variation condition on
the amplitudes instead of a Lipschitz condition. See also Fryźlewicz and Nason
(2006) for a discussion of that definition.

DEFINITION 1. A sequence of doubly-indexed stochastic processes Xt,T (t =
0, . . . , T − 1, T > 0) with mean zero is in the class of locally stationary wavelet
processes (LSW processes) if there exists a representation

Xt,T =
−1∑

j=−∞

T −1∑
k=0

wjk;T ψjk(t)ξjk,(2.1)

where the infinite sum is to be understood in the mean-square sense, {ψjk(t) =
ψj,k−t }jk with j < 0 is a discrete nondecimated family of wavelets based on a
mother wavelet ψ(t) of compact support, and such that the following conditions
are satisfied:
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1. ξjk is a random orthonormal increment sequence such that E ξjk = 0 and
Cov(ξjk, ξ�m) = δj�δkm for all j, �, k,m, where δj� = 1 if j = � and 0 else-
where.

2. For each j ≤ −1, there exists a function Wj(z) on (0,1) possessing the follow-
ing properties:
(a)

∑−1
j=−∞ |Wj(z)|2 ≤ C < ∞ uniformly in z ∈ (0,1);

(b) there exists a sequence of constants Cj such that for each T

sup
k=0,...,T −1

∣∣∣∣wjk;T − Wj

(
k

T

)∣∣∣∣ ≤ Cj

T
;(2.2)

(c) the total variation of W 2
j (z) is bounded by Lj , that is,

TV(W 2
j ) := sup

{
I∑

i=1

|W 2
j (ai) − W 2

j (ai−1)| : 0 < a0 < · · · < aI < 1,

I ∈ N

}
(2.3)

≤ Lj ,

(d) the constants Cj and Lj are such that

−1∑
j=−∞

Lj (LjLj + Cj) ≤ ρ < ∞,(2.4)

where Lj = | suppψj0| = (2−j − 1)(L−1 − 1) + 1.

LSW processes use wavelets to decompose a stochastic process with respect to
an orthogonal increment process in the time-scale plane. Due to the overcomplete-
ness of the nondecimated system, a given LSW processes does not determine the
sequence {wjk;T } uniquely. However, we can build a theory which ensures the ex-
istence of a unique wavelet spectrum (in a sense defined after Proposition 1 below).
This property is a consequence of the local stationarity setting which introduces a
rescaled time z = t/T ∈ (0,1) on which Wj(z) is defined. The rescaled time per-
mits increasing amounts of data about the local structure of Wj(z) to be collected
as the observed time T tends to infinity. Even though a given LSW process does not
determine the sequence {wjk;T } uniquely, the model allows the (asymptotic) iden-
tification of the model coefficients determined by uniquely defined W 2

j (z). Then,
the evolutionary wavelet spectrum of an LSW process {Xt,T }t=0,...,T −1, with re-
spect to ψ , is given by

Sj (z) = |Wj(z)|2, z ∈ (0,1),(2.5)

and is such that, by definition of the process,
∑−1

j=−∞ Sj (z) < ∞ uniformly in
z ∈ (0,1).
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The evolutionary wavelet spectrum Sj (z) is related to the time-dependent auto-
correlation function of the LSW process. Observe that the autocovariance function
of an LSW process can be written as

cX,T (z, τ ) = Cov
(
X[zT ],T ,X[zT ]+τ,T

)
for z ∈ (0,1) and τ in Z, and where [·] denotes the integer part of a real number.
The next result shows that this autocovariance converges asymptotically to a local
autocovariance defined by

cX(z, τ ) =
−1∑

j=−∞
Sj (z)
j (τ ),(2.6)

where 
j(τ) = ∑∞
k=−∞ ψjk(0)ψjk(τ ) is the autocorrelation wavelet function.

PROPOSITION 1. Under the assumptions of Definition 1, if T → ∞, then
∞∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ ) − cX(z, τ )| = O(T −1)

for all LSW process.

Appendix A presents some properties of the autocorrelation wavelet system ap-
pearing in (2.6). Like wavelets themselves, this system enjoys good localization
properties. Consequently, we observe that equation (2.6) is a multiscale decom-
position of the autocovariance structure of the process over time: the larger the
wavelet spectrum Sj (z) is at a particular scale j and point z in the rescaled time,
the more dominant is the contribution of scale j in the variance at time z. Thus,
the evolutionary wavelet spectrum describes the distribution of the (co)variance at
a particular scale and time location.

Moreover, we recall in Appendix A that {
j } is a linearly independent system.
Therefore, since the autocovariance function converges to the local autocovariance
in the sense of Proposition 1, the coefficients Sj (z) in (2.6) are asymptotically the
unique wavelet representation of the second order structure of the time series.

It is worth mentioning that a stationary process with an absolutely summable
autocovariance function is an LSW process [Nason et al. (2000), Proposition 3].
Stationarity is characterized by a wavelet spectrum which is constant over time:
Sj (z) = Sj for all z ∈ (0,1). However, our motivation for studying LSW processes
lies in the modeling of time-varying spectra. The regularity of the wavelet spec-
trum in time is determined by the smoothness of Wj(z) with respect to z. In Nason
et al. (2000), this function is assumed to be Lipschitz continuous in time. In our de-
finition of LSW processes, we only require the total variation of W 2

j to be bounded.
This weaker assumption is considered not only in order to work with less strict as-
sumptions, but also to allow a discontinuous evolution of the wavelet spectrum in
time. Figure 1 shows a simulated example of such a nonstationary process.
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FIG. 1. The upper figure is an example of theoretical spectrum Sj (z). This spectrum is used in the
lower figure to simulate a locally stationary wavelet process of length T = 1000. This simulation
uses Gaussian innovations ξjk and nondecimated Haar wavelets.

3. A first estimator of the wavelet spectrum.

3.1. The corrected wavelet periodogram. An estimator of the wavelet spec-
trum is constructed by taking the squared empirical coefficients from the nondeci-
mated transform:

Ij ;T
(

k

T

)
=

(
T −1∑
t=0

Xt,T ψjk(t)

)2

, j = −1, . . . ,− log2 T ;k = 0, . . . , T − 1.

Ij ;T (z) is called the wavelet periodogram, as it is analogous to the formula for
the classical periodogram in traditional Fourier spectral analysis of stationary
processes [Brillinger (1975)].

Some asymptotic properties of this estimator have been studied by Nason et
al. (2000), who showed that the wavelet periodogram is not an asymptoticaly un-
biased estimator of the wavelet spectrum. Indeed, Proposition 4 of Nason et al.
(2000) states that for all fixed scales j < 0,

E I�;T (z) −
−1∑

�=− log2 T

Aj�S�(z) = O(T −1),(3.1)
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uniformly in z ∈ (0,1), where the matrix A = (Aj�)j,�<0 is defined by

Aj� := 〈
j,
�〉 = ∑
τ


j (τ )
�(τ ).

Note that the matrix Aj� is not simply diagonal since the autocorrelation wavelet
system {
j } is not orthogonal. Nason et al. (2000) proved the invertibility of A

if {
j } is constructed using Haar wavelets. If other compactly supported wavelets
are used, numerical results suggest that the invertibility of A still holds, but a com-
plete proof of this result has not yet been established. As we need the invertibil-
ity of A in results which follow, we hereafter restrict ourselves to Haar wavelets,
but conjecture that all results remain valid for more general Daubechies wavelets
[Daubechies (1992)].

Equation (3.1) motivates the definition of a corrected wavelet periodogram,

Lj ;T
(

k

T

)
=

−1∑
�=− log2 T

(AT )−1
j�

(
T −1∑
t=0

Xt,T ψ�k(t)

)2

,(3.2)

where AT = (Aj�)− log2 T ≤j,�≤−1. The corrected wavelet periodogram Lj ;T is a
preliminary tool for constructing an asymptotically consistent estimator of the evo-
lutionary wavelet spectrum. To this end, it needs to be smoothed in time. This
question is addressed in the following.

REMARK 1. The asymptotic bias of the wavelet periodogram is a consequence
of the overcompleteness of the nondecimated wavelet system {ψjk}. One could ask
if it would not be easier to define LSW processes using a decimated wavelet sys-
tem because, for this system, the matrix A reduces to the identity. Unfortunately,
the answer is negative: the use of nondecimated wavelets, as described in von
Sachs et al. (1997), would not allow the local autocovariance function to be writ-
ten as a wavelet-type transform of an evolutionary spectrum, as in (2.6). Moreover,
classical stationary processes are not included in the model based on decimated
wavelets.

3.2. The preliminary estimator and its properties. Suppose we want to esti-
mate Sj (z0) from observations XT = (X0,T , . . . ,XT −1,T )′. The estimator studied
below takes the following form:

Qj,R;T = |RT |−1
∑

k∈RT

{
Lj ;T

(
k

T

)
+ zj,k;T

}
, j = −1,−2, . . . ,(3.3)

where zj,k;T are i.i.d. Gaussian random variables of mean zero and variance C22j ,
independent from XT for a given constant C2, R is an interval in (0,1) that con-
tains the point z0 and k ∈ RT means that k/T ∈ R. The estimator (3.3) is essen-
tially the average of the corrected wavelet periodogram over the interval R. The
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reason for adding a “noise process” zj,k;T in our estimator is for the sake of regu-
larization, since the process XT is not guaranteed to be invertible. In other words,
the presence of the additive Gaussian variable in the estimator Qj,R;T allows con-
sistent estimation of more general processes for which the wavelet spectrum Sj (z)

is not bounded away from zero. Note that this regularization technique does not
add any systematic bias to the resulting estimator since in (3.3), an average is taken
over the zero-mean Gaussian variables zj,k;T . That procedure is analogous to the
regularization techniques for ill-posed inverse problems such as, for instance, in
ridge regression or Tikhonov regularization; see also Neumann (1996) for a simi-
lar technique in the context of stationary time series.

Of course, the choice of the interval R around z0 is crucial in this estimation.
This question will be addressed in the next section. First, we derive some useful
properties of Qj,R;T as an estimator of

Qj,R = |R|−1
∫
R

dzSj (z).(3.4)

The statistical properties of Qj,R;T are now derived under a set of assumptions.

ASSUMPTION 1. The autocovariance function cX,T and the local autocovari-
ance function cX of the LSW process are such that

‖cX,T ‖1,∞ :=
∞∑

τ=−∞
sup

t=0,...,T −1

∣∣∣∣cX,T

(
t

T
, τ

)∣∣∣∣(3.5)

is bounded independently of T

and

‖cX‖1,∞ :=
∞∑

τ=−∞
sup

z∈(0,1)

|cX(z, τ )| < ∞.(3.6)

This assumption is needed to control the spectral norm of the covariance matrix
of the process (Lemma B.3 in Appendix B). For a stationary process, it reduces
to absolute summability of the autocovariance of the process (short memory prop-
erty).

ASSUMPTION 2. There exists an ε > 0 such that for all z ∈ (0,1),∑−1
j=−∞ Sj (z) ≥ ε.

According to equation (2.6), the sum over scales of Sj (z) is the local variance
of the process at time [zT ] and this assumption states that the local variance of the
process is bounded away from zero.

ASSUMPTION 3. The increment process {ξjk} in Definition 1 is Gaussian.
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This assumption allows substantial simplifications in the proofs. It is also as-
sumed to establish some results in Nason et al. (2000) and Fryźlewicz et al. (2003).

ASSUMPTION 4. The evolutionary wavelet spectrum Sj (z) is such that

− log2(T )−1∑
�=−∞

sup
z∈(0,1)

S�(z) = O(T −1).

In the definition of the corrected wavelet periodogram (3.2), all scales 0 > j >

−∞ are implicitly included due to the definition of Xt,T . The last assumption is
used in order to control the remainder of the estimation bias at all scales lower than
− log2 T .

The following proposition describes the asymptotic properties of Qj,R;T .

PROPOSITION 2. Suppose Assumptions 1–4 hold true. For all LSW processes
(Definition 1) and all R ⊆ (0,1),

EQj,R;T − Qj,R = K02j/2
√

T

|RT |
−1∑

m=− log2 T

Lm TV(Sm) + O(2j/2|RT |−1)

(3.7)

= O

(
2j/2
√

T

)

for all j = −1, . . . ,−JT with JT = O(log2 T ) and where K0 is a constant
independent of j, T and |R|. Moreover, under Assumptions 1–4, the variance
σ 2

j,R;T = VarQj,R;T is such that

C22j

|RT | ≤ σ 2
j,R;T ≤

(
C2 + c2

|R|
)

2j

|RT |
for all T , for all j = −1, . . . ,−JT with JT = oT (log2 T ) and where c2 =
2K2

2‖cX‖2
1,∞ with K2 a constant that depends only on the wavelet ψ .

The proof of this proposition is in Appendix B.3. Note that the squared bias and
the variance of the estimator have the same rate of convergence. This phenomenon
is due to the nonstationary behavior of the process. Indeed, for a stationary process,
the total variation of Sm is zero at all scales and the rate of the bias is then T −1.
This is not the case for a general nonstationary process: when the wavelet spec-
trum is not constant over time, an additional term resulting from nonstationarity
considerably reduces this rate of convergence. Moreover, even if we are dealing
with a local estimator of the wavelet spectrum at a fixed scale j < 0 and a fixed
time interval R, the nonstationarity term in the bias involves the variation of the
global wavelet spectrum. This may be observed in equation (3.7), which involves
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a sum over all scales m = −1, . . . ,− log2 T and the total variation of all Sm over
the whole rescaled time interval (0,1).

This slow rate of convergence of the bias poses a problem for the establish-
ment the asymptotic normality of Qj,R;T . In the next proposition, we circum-
vent this problem and derive a nonasymptotic exponential bound for the deviation
of Qj,R;T .

PROPOSITION 3. Assume that Assumptions 1–4 hold. If σ 2
j,R,T = VarQj,R;T ,

then for all η > 0 and all scales j = −1, . . . ,−JT , where JT = O(log2 T ),

Pr(|Qj,R;T − Qj,R| > 2σj,R,T η)

≤ c0 exp
{
− 1

16
· η2

/[
1 + 2ηLj

|RT |σj,R,T

+ 2j/2η(K2‖cX‖1,∞ + K3)

|R|√T σj,R,T

]}

with the positive constants c0 = 3 + e, K2 as in Proposition 2 and K3 depending
on the wavelet ψ and the constants ρ,C given in Definition 1.

The proof of this proposition appears in Appendix B.4. This proposition gives a
nonasymptotic approximation for the deviation of Qj,R;T . This result is exploited
in the next section in order to choose the interval R in an adaptive way. From an
asymptotic viewpoint, that is, as T → ∞, we note that this exponential bound does
not tend to zero, meaning that the standardized statistic Qj,R,T is asymptotically
nondegenerate. This phenomenon is well known in the context of pointwise esti-
mation; see Lepski (1990) and Brown and Low (1996). In order to have a consis-
tent result when T → ∞, it is then necessary to require that η = ηT grows with T .
The appropriate rate for ηT is derived in the next corollary. The proof is given in
Appendix B.4 and is essentially based on the bounds derived in Proposition 2.

COROLLARY 1. Under the assumptions of Propositions 2 and 3, if kT tends
to infinity and is such that JT · exp(−kT ) = oT (1), then there exists a T0 > 1 such
that for all T ≥ T0,

Pr
(

sup
−JT ≤j<0

|Qj,R;T − Qj,R| ≥ kT

√
(1 + c2/|R|)/|RT |

)
= oT (1),

where c2 is as in the assertion of Proposition 2.

REMARK 2. An example of admissible rates is JT ∼ log2 T and kT ∼ log2 T .
The sequence kT will play a crucial role in Section 4.
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REMARK 3. The results are proved under the assumption that the increments
considered in the definition of LSW processes are Gaussian (Assumption 3). This
assumption allows substantial simplifications in the proofs. For practical applica-
tions, we believe that this assumption is not unrealistic and the class of Gaussian
LSW processes is rich enough, as can be observed from the wide range of ap-
plications that are treated in Nason et al. (2000), Fryźlewicz et al. (2003), Oh et
al. (2003), Woyte et al. (2007) and Van Bellegem and von Sachs (2004), for in-
stance. However, it still seems interesting to see how the above results can be
extended to the non-Gaussian case. A careful reading of the proof of Proposition 3
shows that the crucial point is to establish an exponential inequality for quadratic
forms of the increments. In our proof of Proposition 3, we use the inequality estab-
lished by Dahlhaus and Polonik (2002) on the quadratic form of Gaussian random
variables. Other exponential inequalities have been established for non-Gaussian
random variables; see, for instance, Dahlhaus (1988) or Spokoiny (2001, 2002).
Another example of an exponential inequality for dependant data is derived in van
de Geer (2002).

3.3. Estimation of the variance. The main drawback of Proposition 3 is that
the deviation result depends on the variance σ 2

j,R,T = VarQj,R;T which is typi-
cally unknown. The goal of the following derivation is to propose a preliminary
estimator σ̃ 2

j,R,T of σ 2
j,R,T such that Proposition 3 can still be used with σ̃ 2

j,R,T .

The variance σ 2
j,R,T depends on the unknown autocovariance function of the

LSW process in the following way [see Lemma B.1 with equation (B.9)]:

σ 2
j,R,T = 2‖U ′

j,R;T �T ‖2
2 + C22j

|RT | ,
where �T is the T × T (non-Toeplitz) covariance matrix of the LSW process
(X0,T , . . . ,XT −1,T )′, and Uj,R;T is the T × T matrix with entry (s, t) equal to

U
(j)
st = |RT |−1

−1∑
�=− log2 T

A−1
j�

∑
k∈RT

ψ�k(s)ψ�k(t).

We also denote by σs,s+u the entry (s, s + u) of the matrix �T .
We will estimate σ 2

j,R,T by

σ̃ 2
j,R,T = 2‖U ′

j,R;T �̃T ‖2
2 + C22j

|RT | ,

where �̃T is an estimate of the covariance matrix �T . A first idea is to define the
elements σ̃s,s+u of �̃T by plugging Qj,R;T into the local autocovariance func-
tion (2.6), that is,

σ̃s,s+u =
−1∑

j=− log2 T

Qj,R(s);T 
j (u),
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where R(s) denotes an interval which contains the time point s/T . However, the
convergence in probability of σ̃s,s+u to σs,s+u is not faster than the rate of σs,s+u

itself and we need to modify the estimator in the following two ways.

(i) Assumption 1 indicates that the covariance |σs,s+u| is small for large |u|. We
set σ̃s,s+u to zero when |u| ≥ MT for an appropriate sequence MT tending to
infinity with T .

(ii) It is necessary to control the distance in rescaled time between the spectrum
Sj (z), for z ∈ R(s), and Sj (s/T ). To do so, we allow the window R(s) to
depend on T , which is denoted by RT (s), in such a way that its length |RT |
shrinks to zero when T tends to infinity. This is analogous to the estimation of
a regression function by kernel smoothing, where the window usually depends
on the length of the data set.

With these two ingredients, we propose to estimate σs,s+u by

σ̃s,s+u =
−1∑

j=− log2 T

Qj,RT (s);T 
j (u)I|u|≤MT
(3.8)

and the following assumption makes precise the appropriate rates for the sequences
|RT | and MT .

ASSUMPTION 5. The sequence JT is such that JT = oT (log2 T ). The length
of RT tends to zero such that 2JT |RT | = oT (1). The sequence kT (which appears
in Corollary 1) tends to infinity such that JT exp(−kT

√|RT |) = oT (1). Finally, the
sequence MT [involved in the preliminary estimator for the variance—see (3.8)]
tends to infinity such that

2JT |RT |−1T −1/2MT kT log3
2 T = oT (1).

Admissible rates for this last assumption are, for example, JT ∼ log2 log2
2 T ,

kT ∼ log2 T , |RT | ∼ log−3
2 T and MT ∼ logα

2 T with α > 0. It is worth mentioning
that with this assumption, |RT | shrinks to zero in the rescaled time, whereas in
the observed time, the interval length |T RT | tends to infinity. This means that our
estimate of Sj (s/T ) is built using an increasing amount of data in the observed
time, but, at the same time, with an average around Sj (s/T ) in the rescaled time
on a shrinking segment around s/T .

The next proposition shows that on the random set where the estimator
Qj,RT (s);T is near Qj,RT (s), the estimator (3.8) has a good quality. Our proof of
this proposition may be found in Appendix B.5 and needs the following technical
assumption, which is a slightly stronger condition than point 2(a) of Definition 1,
in the sense that we need to control the decay of Sj (z) with respect to j and
uniformly in z.
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ASSUMPTION 6. The local autocovariance function c(z, τ ) is such that
∞∑

u=−∞
sup

z
|cX(z,u)|I|u|>MT

= oT (2−JT ).

This last assumption on the decay of the local autocovariance function uni-
formly in z is very sensible in the context of short-memory stationary processes [in
that case, c(z, u) does not depend on z]. With the rates specified above, a typical
condition is to assume |cX(z,u)| ≤ c · r |u| uniformly in z ∈ (0,1) with 0 ≤ r < 1.

PROPOSITION 4. Suppose Assumptions 1–6 hold. There then exists a positive
number T0 and a random set A independent of j and such that Pr(A) ≥ 1 −oT (1)

and ∣∣Qj,RT (s);T − Qj,RT (s)

∣∣ ≤ K2‖cX‖1,∞kT

√
T |RT T |−1

for all T > T0. Moreover, on A,

2JT −jT |σ̃ 2
j,R,T − σ 2

j,R,T | = oP (1)(3.9)

holds for all j = −1, . . . ,−JT , where oP (1) does not depend on R.

Finally, Proposition 4 together with Proposition 3 leads to the following result,
which will be used to construct the pointwise adaptive estimator in Section 4.

THEOREM 1. Suppose Assumptions 1–6 hold. There then exists a γT = oT (1)

and a positive number T0 such that for all T > T0,

Pr(|Qj,R;T − Qj,R| > 2σ̃j,R,T η′)

≤ c0 exp
{
− 1

16
· η2

/[
1 + 2ηLj

|RT |σj,R,T

+ 2j/2η(K2‖cX‖1,∞ + K3)

|R|√T σj,R,T

]}
+ oT (1)

for all j = −1, . . . ,−JT , where η′ = η
√

1 − γT and the positive constants
c0,K2,K3 are defined as in the assertion of Propositions 2 and 3.

REMARK 4. Theorem 1 gives an approximation of the distribution of the
normalized loss |Qj,R;T − Qj,R|/σ̃j,R,T . This depends on the unknown quanti-
ties ‖cX‖1,∞ and ρ [cf. (2.4)]. These two quantities may be understood as nui-
sance parameters of the problem, depending on the global spectrum. The esti-
mation of these quantities is based on a preliminary smoothing of Lj ;T (z) with
respect to z, which we denote by L∗

j ;T (z). Here, we think about using a ker-
nel smoothing procedure, or a wavelet transform shrinkage as studied in Nason
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et al. (2000). A preliminary estimate of ‖cX‖1,∞ is then obtained by plugging
L∗

j ;T (z) into ‖cX‖1,∞, [cf. (2.6) and (3.6)]. Next, the preliminary estimation
of ρ necessitates the estimation of TV(Sj ) [cf. (2.3)]. We estimate TV(Sj ) by∑

i |L∗
j ;T (zmax

i )−L∗
j ;T (zmin

i )|+ |L∗
j ;T (zmax

i )−L∗
j ;T (zmin

i+1)|, where the sum is over

the local minima and maxima of L∗
j ;T (z), with zmax

i < zmin
i+1 < zmax

i+1 for all i.

REMARK 5. The estimator (3.3) also involves a constant C2. In view of Propo-
sition 2 on the variance of the estimator, that constant should ideally be close to
c2 = 2K2

2‖cX‖1,∞. Because ‖cX‖1,∞ is unknown, it is estimated in practice by∑
s supu σ̃s,s+u.

4. Pointwise adaptive estimation. The question of how to choose the best
segment R in the estimator (3.3) arises and the goal of this section is to provide a
data-driven procedure to select R automatically.

The proposed method goes back to the pointwise adaptive estimation theory of
Lepski (1990); see also Lepski and Spokoiny (1997) and Spokoiny (1998). Sup-
pose that the wavelet spectrum Sj (z0) is well approximated by the averaged spec-
trum Qj,U for a given interval U containing the reference point z0. The idea of
the procedure is to consider a second interval R containing U and to test whether
Qj,R differs significantly from Qj,U. As we describe below, this test procedure
is based on Proposition 3 or Theorem 1. If there exists a subset U of R such that
|Qj,R −Qj,U| is significantly different from zero, then we reject the hypothesis of
homogeneity of the wavelet spectrum Sj (z) on z ∈ R. Finally, the adaptive estima-
tor corresponds to the largest interval R such that the hypothesis of homogeneity
is not rejected.

This section contains a formal description of this algorithm and derives some
properties of the estimator.

4.1. Testing homogeneity. Let R be an interval containing z0, U a subset of R
and define

�j(R,U) = |Qj,R − Qj,U|.(4.1)

Under Assumptions 1–4, Proposition 3 implies that

Pr[|Qj,R,T − Qj,U,T | > �j(R,U) + 2η(σj,R,T + σj,U,T )kT ]
≤ h(U, η) + h(R, η)

with

h(R, η) = c0 exp
{
− 1

16
· (η2k2

T )
/[

1 + 2ηkT

|RT |σj,R,T

Lj

+ 2j/2ηkT

|R|√T σj,R,T

(K2‖cX‖1,∞ + K3)

]}
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and where the sequence kT is such that JT · exp(−kT ) = oT (1) (see Corollary 1).
Under the assumption that the wavelet spectrum Sj is homogeneous on the seg-
ment R, the difference �j(R,U) is negligible. Then, as a test rule, we re-
ject the homogeneity hypothesis on R if there exists a subset U ⊂ R such that
|Qj,R;T − Qj,U;T | > 2η(σj,R,T + σj,U,T )kT for a given η.

In the case where the variances σj,R,T and σj,U,T are unknown, they may be
estimated as in Section 3.3 above.

In practice, we choose a set � of interval candidates R. Then, for each can-
didate R, we apply the homogeneity test with respect to a given set ℘(R) of
subintervals U of R.

ASSUMPTION 7. In the estimation procedure described below, we assume the
following properties on the test sets � and ℘(R):

1. for all R, the shortest interval of ℘(R) is of length at least δ > 0;
2. the cardinality of ℘(R) is such that �(℘ (R)) ≤ |RT |(α

√
δK1)/(K2‖cX‖1,∞+K3)

for some 0 < α < 1;
3. when we test the homogeneity of the wavelet spectrum on R, we assume that

there exists a subinterval U ∈ ℘(R) such that U ⊂ R and U contains z0.

REMARK 6 (Test sets). We give an example of sets � and ℘(R). For each
scale j < 0, the corrected wavelet spectrum (3.2) is evaluated on a grid k/T , r =
0, . . . , T − 1 in time. We can then choose the set � as

� = {[r0/T , r1/T ] : r0 < [z0T ] < r1}
for r0, r1 ∈ {0, T − 1}. Nevertheless, in order to reduce the computational effort,
we shrink the cardinality of � following the method of Spokoiny (1998). More
precisely, we first select two sets Km = {rm : rm ≤ [z0T ]} and Kn = {rn : rn ≥
[z0T ]} which both contain less than T points and then set

� = {[rm/T , rn/T ] : rm ∈ Km, rn ∈ Kn}.
Then, one possibility for defining ℘(R) is to consider

℘(R) = {[r−/T , r+/T ] : r−, r+ ∈ Km ∪ Kn}.
We refer to Spokoiny (1998) for the details of this construction.

4.2. The estimation procedure. The estimation procedure simply starts with
the smallest interval in �, assuming that the wavelet spectrum is homogeneous on
this short interval. It then iteratively selects longer intervals in � until the homo-
negeneity assumption is rejected. Finally, the adaptive segment R̃ is the longest
segment R of � for which the homogeneity test is not rejected,

R̃ = arg max
R∈�

{|R| such that |Qj,R;T − Qj,U;T | ≤ 2η(σj,R,T + σj,U,T )kT

(4.2)
for all U ⊂ ℘(R)}.
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The adaptive estimator of Sj (z0) is then defined by

S̃j (z0) = Qj,R̃,T .(4.3)

In the case where the variances σj,R,T and σj,U,T are unknown, they may be
estimated as in Section 3.3 above. In that case, the homogeneity test is based on
Theorem 1 and the modification of the following results is straightforward. The
proofs are longer, however, but the technique in the proof of Theorem 1 can be
used to transfer the problem with estimated variances to the problem with known
variances σj,R,T and σj,U,T .

4.3. Properties of the estimator in homogeneous regions. The next result
quantifies the �p-risk (p ≥ 2) when the wavelet spectrum Sj (z) is homogeneous
on z ∈ R. To define this concept of homogeneity, we introduce the bias

b(R) := sup
z∈R

|Sj (z) − Qj,R|,

which measures how well the wavelet spectrum Sj is approximated by Qj,R on
z ∈ R. We say that the spectrum is homogeneous (or regular) on R if the inequality

b(R) ≤ Cjσj,R,T kT(4.4)

holds with

Cj = 2−j/2√α + p(4.5)

for a positive real constant α. In the inequality (4.4), σj,R,T is the square root
of the variance of the estimator Qj,R;T of Sj (z), z ∈ R. As in Spokoiny (1998),
(4.4) can be viewed as a balance relation between the bias and the variance of
this estimate. The kT term then appears as the correction term necessary in the
pointwise estimation in order to bound the normalized loss [see Lepski (1990),
Lepski and Spokoiny (1997)]. In the following results, we set kT proportional to
log2 T .

PROPOSITION 5. Let R be an interval of (0,1) and consider the test
rule (4.2). If the wavelet spectrum Sj is regular on R in the sense of condi-
tions (4.4)–(4.5), then, with 2λ = 2η = 2−j/25(2α + p) and kT ∼ log2 T ,

Pr(R is rejected) = O
(
T −Kp

√
δ)

for some positive constant K depending only on K2,K3 and ‖c‖1,∞.

We can also evaluate an upper bound for the �p-risk associated with our estima-
tor.
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THEOREM 2. Assume that the wavelet spectrum at scale j , Sj (z), is homoge-
neous on the segment R in the sense of (4.4)–(4.5) with

kT ∼ log2 T .

If S̃j (z) is the pointwise estimator of the wavelet spectrum obtained by the estima-
tion procedure (4.2)–(4.3) with

η = 2−j/25(2α + p),

then there exists T0 such that the pointwise �p-loss is bounded as follows:

E |S̃j (z) − Sj (z)|p ≤ Kδ−pT −p/2(2j/2δ−1 + kT )p

for p ≥ 2 with a positive constant K and T > T0.

The proof is found in Appendix B.8.

4.4. Properties of the estimator in inhomogeneous regions. We now describe
the behavior of our estimator near a breakpoint located at a time point z�.

For a fixed scale j ∈ {−1, . . . ,−JT }, assume the evolutionary wavelet spectrum
to be homogeneous on R0 = [z0, z�) and on R1 = (z�, z1]. We write R = R0 ∪
R1 = [z0, z1] and

θT := E(Qj,R0;T − Qj,R1;T )

and we assume that θT > 0. The value of θT > 0 precisely quantifies a change in
the spectrum between the regions R0 and R1.

To prove the next proposition, we assume that the estimation procedure is such
that R0 and R1 are in ℘(R).

PROPOSITION 6. If the evolutionary wavelet spectrum at scale j contains a
breakpoint at z� (i.e., θT > 0) and if kT ∼ log2 T , then

Pr(R is not rejected)

= O

(
exp

{
−T θ2

T (|R0|2 ∧ |R1|2)
log2

2 T

}
+ exp

{
−

√
T |θT |(|R0| ∧ |R1|)

log2
2 T

})
,

where c is a positive constant and x ∧ y = min(x, y).

The proof of this proposition is given in Appendix B.9. Proposition 6 concerns
the consistency of the test of homogeneity. Moreover, it allows a discussion of the
local alternative to this test. We first note that the alternative hypothesis, that is, the
definition of the inhomogeneous region, depends on the level of the jump θT and
the lengths of the two segments R0 and R1. As a consequence, in order to study the
local alternative, we need to investigate both cases θT → 0 and (|R0|∧ |R1|) → 0.
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It is interesting to note that Proposition 6 depends on the product |θT |(|R0|∧|R1|),
and the local alternative of the test is then studied when this product tends to 0 as
T → ∞. From the proof of Proposition 6, it is straightforward to see that if

log2
2 T

|θT |(|R0| ∧ |R1|)
√

T
→ 0

as T → ∞, then the estimation procedure is consistent in the sense that Pr(R is
not rejected) is asymptotically zero.

5. Simulation. We conclude with a brief simulation study. We consider the
evolutionary wavelet spectrum plotted in Figure 1 (upper plot). The first scale
of this spectrum is given by S−1(z) = 1[0.25,0.575](z) + (sin2(2πz − π/4) +
0.5)1[0.75,1](z). The second scale is inactive. The other active scales are S−3(z) =
(sin(πz − π/4)2 + 0.5)1[0,0.25](z) and S−4(z) = (sin2(5πz − π/4) +
0.5)1[0.375,1](z). We apply the estimation procedure to 100 different time series
of length 1000 generated from this spectrum with Gaussian increments and Haar
wavelets. For the sake of brevity, we only consider the estimation at the scale
j = −1. The results of the 100 simulations are summarized in the upper plot of
Figure 2. At each point of the 39 points of estimation, the vertical segment repre-
sents the median and the 90% interquantile interval from the 100 estimators. The
bottom figure shows the estimator (bullet) from the single simulation given in Fig-
ure 1. The continuous line gives the estimator obtained from the ewspec function
of the WaveThresh 3 software package [Nason (1998)] using the recommendations
suggested in this package for the choice of the parameters (other configurations
performed quite similarly or worse). This estimator is a smoothing of the cor-
rected wavelet periodogram using TI-wavelet soft thresholding; see Nason et al.
(2000) for details. Note that this method is limited to dyadic sample sizes. As our
simulation contains 1000 data, we repeat the last observation 24 times.

The mean square error for the local adaptive estimator is lower (0.063) than
for the nonlinear wavelet estimator (0.074). The mean absolute deviation is also
lower (0.152 compared with 0.189 for the wavelet estimator). The lower plot of
Figure 2 clearly shows the high variability of the ewspec estimator in the last part
of the spectrum. We explain this phenomenon by the cross-correlation between the
corrected wavelet periodograms at scales −1 and −4. It is interesting to note that
our method seems to be more stable with respect to this phenomenon. This has
been observed in comparison with ewspec using different wavelet families for
smoothing.

In our simulation, it is worth mentioning that the local adaptive estimator is
computed using the estimated variance, as explained in Section 3.3. Of course,
there is a set of global parameters which must be chosen. For the example treated
in this section, we set MT = 2 and |RT | = 9 [see (3.8)]. With this, we have fol-
lowed the guidelines given in the companion paper, Van Bellegem and von Sachs
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FIG. 2. The bold line in both graphs is the first scale of the evolutionary wavelet spectrum con-
sidered in Figure 1. The upper figure summarizes the results given from 100 simulations of the LSW
process. In this figure, each vertical interval represents the 90% interquantile range from the 100
results and the bullet is the median. The bottom figure presents the local adaptive estimator (bul-
lets) from the realization of the process shown in Figure 1 (lower plot). The continuous line is the
estimator of Nason et al. (2000).

(2004) (Sections 2.3 and 2.4 therein) on the choice of nuisance parameters for the
quadratic part of the estimator. In particular, two remaining global parameters have
been chosen to equal the numerical values given for the (different) example of Sec-
tion 2.5 therein. The paper also derives a new test of covariance stationarity and
presents some applications to medical data analysis.

APPENDIX A: PROPERTIES OF THE AUTOCORRELATION
WAVELET SYSTEM

This section summarizes useful results on the system {
j } and the opera-
tor A. Recall that we have denoted by Lj the length of | suppψj0| for all j =
−1,−2, . . . , so we have Lj = (2−j − 1)(L−1 − 1)+ 1 ≤ 2−jL−1. We also recall
the definition of the autocorrelation wavelet system {
j ; j = −1,−2, . . .} which
is the convolution of the nondecimated wavelet system,


j(τ) =
∞∑

k=−∞
ψjk(0)ψjk(τ ).
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It is straightforward to check that 
j is compactly supported for all j < 0 and that
the length of its support is bounded by 2Lj − 1.

The following lemma recalls other useful results on the autocorrelation wavelet
system.

LEMMA A.1. (a) For all scales j and all τ , 
j(τ) = 
j(−τ).

(b) The autocorrelation wavelet system {
j ; j = −1,−2, . . .} is linearly inde-
pendent.

(c) The identity

−1∑
j=−∞

2j
j (τ ) = δ0(τ )(A.1)

holds for all τ ∈ Z.

Property (a) is obvious and implies the symmetry of the local autocovariance
function, that is, c(z, τ ) = c(z,−τ), as expected. Property (b) is proved as The-
orem 1 of Nason et al. (2000) and shows that the local autocovariance function
is univoquely defined. Finally, property (c) is proved as Lemma 6 of Fryźlewicz
et al. (2003) and implies, for instance, that the wavelet spectrum of a white noise
process is proportional to 2j for all scales j < 0.

As the autocorrelation wavelet system is not orthogonal, we introduce the Gram
matrix A defined by Aj� = ∑

τ 
j (τ )
�(τ ). The following properties of A are
used thereafter.

LEMMA A.2. For Haar and Shannon wavelets, there exists a finite posi-
tive constant ν such that the matrix A fulfills the following properties for all
j = −1, . . . ,− log2 T :

−1∑
�=− log2 T

A−1
j� = 2j + O(2j/2T −1/2);(A.2)

−1∑
�=− log2 T

|A−1
j� | ≤ ν

(
1 + √

2
)
2j/2;(A.3)

−1∑
�=− log2 T

2−�/2|A−1
j� | ≤ ν · 2j/2 log2 T ;

(A.4) −1∑
�=− log2 T

2−�|A−1
j� | ≤ ν

(
2 + √

2
)
2j/2T 1/2.

For all compactly supported wavelets, the matrix A fulfills the following property:

Aj� ≤ (2Lj − 1) ∧ (2L� − 1) ∧ √
L�Lm,(A.5)
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where x ∧ y = min(x, y).

PROOF. The following argument shows that the main term in (A.2) is 2j . Us-
ing the fact that 
�(0) = 1 for all � < 0 and the identity (A.1), we may write

−1∑
�=−∞

A−1
j� =

−1∑
�=−∞

A−1
j�

∞∑
m,u=−∞

2m
m(u)
�(u)

=
−1∑

m=−∞
2mδ0(j − m) = 2j

from the definition of A. Observe that this argument holds for all compactly
supported wavelets. To compute the remainder of (A.2), we introduce the aux-
iliary matrix � = D′ · A · D with diagonal matrix D = diag(2�/2)�<0, that is,
�j� = 2j/2Aj�2�/2. Nason et al. (2000), Theorem 2, have proven that the spec-
tral norm of �−1 is bounded for Haar and Shannon wavelets. We then get

− log2(T )−1∑
�=−∞

A−1
j� = 2j/2

− log2(T )−1∑
�=−∞

2�/2�−1
j� = O(2j/2T −1/2).

To prove (A.3), note that
∑−1

�=− log2 T |A−1
j� | = ∑−1

�=− log2 T 2j/22�/2|�−1
j� | ≤ 2j/2 ×

(1 + √
2)ν, using supj� |�−1

j� | ≤ ν. (A.4) is obtained similarly, using the approxi-

mation
∑−1

j=− log2 T 2−j/2 ≤ (2+√
2)

√
T . (A.5) follows from the definition of Aj�

and the support of the autocorrelation wavelets, using |
j(τ)| ≤ 1 uniformly in j

and τ . �

APPENDIX B: PROOFS

Suppose M is an n × n matrix and M
′

is the conjugate transpose of M . We
denote by

‖M‖2 :=
√

tr(M
′
M)

the Euclidean norm of M and by

‖M‖spec := max{√λ :λ is an eigenvalue of M�M}
the spectral norm of M . If M is symmetric and nonnegative definite, then by stan-
dard theory, we have ‖M‖spec = sup{‖Mx‖2 :x ∈ C

n,‖x‖2 = 1}. We will also use
the following standard relations which hold for all symmetric matrices B,C:

‖B‖spec ≤ ‖B‖2;(B.1)

‖B‖spec = max{λ : λ is an eigenvalue of B};(B.2)

‖BC‖spec ≤ ‖B‖spec‖C‖spec;(B.3)

‖BC‖2 ≤ ‖B‖spec‖C‖2 ≤ ‖B‖2‖C‖2.(B.4)
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In the sequel, we use the convention wjk;T = 0 for k < 0 and k ≥ T , which
leads to helpful simplifications in the following proofs.

B.1. Proof of Proposition 1. On one hand, due to Definition 1 and equa-
tion (2.2), we have

cX,T (z, τ ) = Cov
(
X[zT ],T ,X[zT ]+τ,T

) =
−1∑

j=−∞

∞∑
k=−∞

∣∣wj,k+[zT ];T
∣∣2ψjk(0)ψjk(τ )

=
−1∑

j=−∞

∞∑
k=−∞

Sj

(
k + [zT ]

T

)
ψjk(0)ψjk(τ ) + RestT (z, τ ),

where the remainder is such that

|RestT (z, τ )| = O(T −1)

−1∑
j=−∞

∞∑
k=−∞

Cj |ψjk(0)ψjk(τ )|,

by assumption (2.2). On the other hand, we have cX(z, τ ) =∑−1
j=−∞

∑∞
k=−∞ Sj (z)ψjk(0)ψjk(τ ). Then,

∞∑
τ=−∞

∫ 1

0
dz|cX,T (z, τ ) − cX(z, τ )|

≤
∞∑

τ=−∞

∫ 1

0
dz

−1∑
j=−∞

∞∑
k=−∞

∣∣∣∣Sj

(
k + [zT ]

T

)
− Sj (z)

∣∣∣∣|ψjk(0)ψjk(τ )|

+
∞∑

τ=−∞

∫ 1

0
dz|RestT (z, τ )|.

With appropriate changes of variable, this bound may be written as
∞∑

τ=−∞

−1∑
j=−∞

∞∑
k=−∞

T −1∑
t=0

∫ 1/T

0
dz

∣∣∣∣Sj

(
k + [zT ] + t

T

)
− Sj

(
z + t

T

)∣∣∣∣|ψjk(0)ψjk(τ )|

+
∞∑

τ=−∞

∫ 1

0
dz|RestT (z, τ )|,

which is bounded by

T −1
∞∑

τ=−∞

−1∑
j=−∞

∞∑
k=−∞

|k|TV(Sj )|ψjk(0)ψjk(τ )| +
∞∑

τ=−∞

∫ 1

0
dz|RestT (z, τ )|,

where we have used the following property of the total variation:
T −1∑
t=0

∣∣∣∣Sj

(
t

T
+ α

T

)
−Sj

(
t

T
+ β

T

)∣∣∣∣ ≤ |α−β|TV(Sj ) for all α,β ∈ N.(B.5)
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As the support of ψjk(0) is of length Lj , we get |k| ≤ Lj in the first term. Together
with condition (2.3) of Definition 1, this finally leads to

∞∑
τ=−∞

∫ 1

0
dz|cX,T (z, τ ) − cX(z, τ )|

≤ O(T −1)

−1∑
j=−∞

(Cj + LjLj )

∞∑
τ,k=−∞

|ψjk(0)ψjk(τ )|.

The compact support of ψjk limits the sums over k and τ as follows:

∞∑
τ,k=−∞

|ψjk(0)ψjk(τ )| =
Lj−1∑

τ=−Lj+1

∞∑
k=−∞

|ψjk(0)ψjk(τ )| ≤ 2Lj − 1,(B.6)

by the Cauchy–Schwarz inequality for the sum over k. We then get the result
by (2.4).

B.2. Preliminary results. Define XT = (X0,T , . . . ,XT −1,T )′. By definition,
Qj,R;T can be decomposed into the sum of a quadratic and a linear form,

Qj,R;T = Q◦
j,R;T + q◦

j,R;T ,(B.7)

where

Q◦
j,R;T = X′

T Uj,R;T XT(B.8)

is a quadratic form with the T × T matrix Uj,R;T whose entry (s, t) is

Ust = |RT |−1
−1∑

�=− log2 T

A−1
j�

∑
k∈RT

ψ�k(s)ψ�k(t)

and q◦
j,R;T = |RT |−1 ∑

k∈RT zj,k;T is the linear form. For notational convenience,
we omit the dependence of Ust on j and R. Assuming that the orthonormal incre-
ment processes {ξjk} in Definition 1 are Gaussian, XT is a multivariate Gaussian
random variable with covariance matrix �T = Cov(XT X′

T ). Therefore, we can
write

Qj,R;T = Z′
T Mj,R;T ZT + q◦

j,R;T ,

where ZT = (Z1, . . . ,ZT )′ is a vector of i.i.d. Gaussian random variables with
zero mean and VarZ1 = 1, and

Mj,R;T = �
′1/2
T Uj,R;T �

1/2
T(B.9)

is the matrix of the quadratic form.
In our proofs, we use the following lemma quoted from Neumann (1996).
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LEMMA B.1. Let Zn = (Z1, . . . ,Zn)
′ be a vector of i.i.d. Gaussian random

variables with zero mean and VarZ1 = 1. If Mn is an n × n real matrix, then

E(Z′
nMnZn) = trMn,

Var(Z′
nMnZn) = 2 trM ′

nMn = 2‖Mn‖2
2

and, for all r ≥ 2, if Cumr denotes the r th cumulant, we have

|Cumr (Z
′
nMnZn)| ≤ 2r−1(r − 1)!‖Mn‖2

2{λmax(Mn)}r−2.

The following lemmas derive some bounds for the Euclidean and spectral norms
of Uj,R;T and �T .

LEMMA B.2. With fixed R ⊆ (0,1), there exists a T0 such that, uniformly in
T ≥ T0,

‖Uj,R;T ‖2
2 ≤ K2

2 2j |R|−2T −1

for all j = −1, . . . , JT = oT (log2 T ), where K2 depends only on the mother
wavelet ψ .

PROOF. If we let R = (r1, r2) ⊆ (0,1), then we can write Ust = U
(2)
st − U

(1)
st ,

where U
(1)
st := |RT |−1 ∑

� A−1
j�

∑[r1T ]−1
k=0 ψ�k(t)ψ�k(s) is the element (s, t) of a

matrix U
(1)
j,R;T and U

(2)
st := |RT |−1 ∑

� A−1
j�

∑[r2T ]
k=0 ψ�k(t)ψ�k(s) is the element

(s, t) of a matrix U
(2)
j,R;T . Note that the compact support of the wavelet ψ im-

plies that U
(1)
st = 0 when s or t ≥ [r1T ] and, similarly, U

(2)
st = 0 when s or

t > [r2T ]. We also introduce the matrix U
�(1)
j,R;T whose entry (s, t) is U

�(1)
st :=

|RT |−1 ∑
� A−1

j� 
�(s − t)I0≤s,t<[r1T ] and similarly define U
�(2)
j,R;T . We now have

the decomposition

‖Uj,R;T ‖2
2 ≤ 2

∥∥U(1)
j,R;T − U

(1)�
j,R;T

∥∥2
2 + 4

∥∥U(2)
j,R;T − U

(2)�
j,R;T

∥∥2
2

+ 4
∥∥U(1)�

j,R;T − U
(2)�
j,R;T

∥∥2
2.

From the definition of the autocorrelation wavelet 
 , the first term is
∥∥U(1)

j,R;T − U
(1)�
j,R;T

∥∥2
2

= |RT |−2
−1∑

�,m=− log2 T

A−1
j� A−1

jm

[r1T ]−1∑
s,t=0

∞∑
k,n=[r1T ]

ψ�k(t)ψ�k(s)ψmn(t)ψmn(s).
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The compact support of ψ�k(s) implies that s > k −L� ≥ ([r1T ]−L�)∨ 0. Using
the same argument on ψmn(t), we have t > ([r1T ] − Lm) ∨ 0. Using the Cauchy–
Schwarz inequality twice for the sums over k and n, we get the bound

∥∥U(1)
j,R;T − U

(1)�
j,R;T

∥∥2
2 ≤ |RT |−2

( −1∑
�=− log2 T

L�|A−1
j� |

)2

≤ |RT |−2ν2(
2 + √

2
)22jT L2−1,

by (A.4). The second term is bounded similarly. The third term is bounded by
2‖U(1)�

j,R;T ‖2
2 + 2‖U(2)�

j,R;T ‖2
2 and each term of this last sum can be bounded as

∥∥U(1)�
j,R;T

∥∥2
2

≤ |RT |−2
T −1∑
s=0

∞∑
t=−∞

∑
�,m

A−1
k� A−1

jm
�(s − t)
m(s − t)

= T |RT |−2A−1
jj ,

which leads to the result. �

Finally, the proof of the following lemma is similar to the proof of Lemma 5.9
in Dahlhaus and Polonik (2006).

LEMMA B.3. Under assumption (3.5), ‖�T ‖spec = ‖�1/2
T ‖2

spec ≤ ‖cX‖1,∞ <

∞.

B.3. Proof of Proposition 2.

Expectation. In decomposition (B.7), we first note that Eq◦
j,R;T = 0. Next, a

straightforward expansion leads to

EQ◦
j,R;T = |RT |−1

∑
k∈RT

−1∑
�=− log2 T

A−1
j�

T −1∑
s,t=0

ψ�k(s)ψ�k(t)

×
−1∑

m=−∞

∞∑
n=−∞

w2
mn;T ψmn(s)ψmn(t)

= |RT |−1
∑

k∈RT

−1∑
�=− log2 T

A−1
j�

×
−1∑

m=−∞

∞∑
n=−∞

w2
mn;T

(
T −1∑
s=0

ψ�k(s)ψmn(s)

)2

.
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Defining u := n − k, we can write

EQ◦
j,R;T = |RT |−1

∑
k∈RT

−1∑
m=−∞

∞∑
u=−∞

w2
m,u+k,T

×
−1∑

�=− log2 T

A−1
j�

( ∞∑
s=−∞

ψ�k(s)ψm,u+k(s)

)2

.

By Definition 1, we can write w2
m,u+k,T = Sm(k/T ) + RT (m,u, k) with

|RT (m,u, k)| ≤
∣∣∣∣Sm

(
u + k

T

)
− Sm

(
k

T

)∣∣∣∣ + CCm

T
,

which leads to

EQ◦
j,R;T = |RT |−1

∑
k∈RT

−1∑
m=−∞

Sm

(
k

T

)

×
−1∑

�=− log2 T

A−1
j�

∞∑
u=−∞

( ∞∑
s=−∞

ψ�k(s)ψm,u+k(s)

)2

+ RestT .

By construction of the matrix A, we observe that

A�m =
∞∑

u=−∞

( ∞∑
s=−∞

ψ�k(s)ψm,u+k(s)

)2

,(B.10)

which implies, by Assumption 4, that

EQ◦
j,R;T = |RT |−1

∑
k∈RT

Sj

(
k

T

)
+ RestT

(B.11)
= |R|−1

∫
R

dzSj (z) + O(|RT |−1Lj) + RestT ,

where the last equality is a standard result on the total variation [see, e.g.,
Lemma P5.1 of Brillinger (1975)].

We now bound |RestT |. As s goes from −∞ to ∞, we have

|RestT | ≤
−1∑

m=−∞

−1∑
�=− log2 T

|A−1
j� |

×
∞∑

u=−∞
|RT |−1

∑
k∈RT

{∣∣∣∣Sm

(
u + k

T

)
− Sm

(
k

T

)∣∣∣∣ + CCm

T

}

×
( ∞∑

s=−∞
ψ�0(s)ψmu(s)

)2

.
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Using (B.5) for the sum over k, |RestT | is bounded by

−1∑
m=−∞

∞∑
u=−∞

{
|u|TV(Sm)

|RT | + CCm

T

} −1∑
�=− log2 T

|A−1
j� |

( ∞∑
s=−∞

ψ�0(s)ψmu(s)

)2

.

In this last expression, the compact support of ψ�0 and ψmu implies that |u| ≤
L� ∨ Lm, where x ∨ y = max(x, y). Together with (B.10), we get

|RestT | ≤ |RT |−1
−1∑

m=−∞

−1∑
�=− log2 T

{TV(Sm)(L� ∨ Lm) + CCm}|A−1
j� |A�m,

which, with (A.5), leads to

|RestT |
≤ |RT |−1

∑
m,�

{TV(Sm)L�(2Lm − 1)

+TV(Sm)Lm(2L� − 1) + CCm(2Lm − 1)}|A−1
j� |(B.12)

= 2
(
2 + √

2
)
ν2j/2|RT |−1

√
T L−1

×
−1∑

m=−∞
(2Lm − 1)TV(Sm) + O(2j/2|RT |−1),

using (A.4) and (2.4).

Variance. Using decomposition (B.7), the variance is decomposed as
VarQj,R;T = VarQ◦

j,R;T + Varq◦
j,R;T , where Varq◦

j,R;T = C22j /|RT |. Using

Lemma B.1 with (B.4), we can write VarQ◦
j,R;T = 2‖Mj,R;T ‖2

2 ≤ 2‖�1/2
T ‖4

spec ×
‖Uj,R;T ‖2

2 and the result follows from Lemmas B.2 and B.3.

B.4. Proof of Proposition 3 and its consequences. Our proof of Proposi-
tion 3 requires the use of an exponential bound for linear and quadratic forms of
Gaussian random variables. For the sake of presentation, we here summarize the
results we use.

PROPOSITION B.1. Let Z be a Gaussian random variable with mean zero and
unit variance. Then, for all λ > 0,

Pr(|Z| > λ) ≤
(

1 ∧ 1

λ
√

2π

)
e−λ2/2,

where a ∧ b = min(a, b).
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Let Zn = (Z1, . . . ,Zn)
′ be a vector of i.i.d. Gaussian random variables with

zero mean and VarZ1 = 1. If Mn is an n × n matrix such that ‖Mn‖spec ≤ τ∞ and
σ 2

n = 2‖Mn‖2
2, then, for all λ > 0,

Pr
(
(Z′

nMnZn − trMn) > σnλ
) ≤ 2 exp

(
−1

4
· λ2

1 + 2(λτ∞/σn)

)
.

Moreover, if Y is a Gaussian random variable with mean zero and variance
σ 2 ≤ σ 2

n , then

Pr
(
(Z′

nMnZn + Y − trMn) > σnλ
) ≤ 3 exp

(
−1

4
· λ2

1 + 2(λτ∞/σn)

)
.

PROOF. We prove the first inequality. On the one hand, by Chebyshev’s in-
equality,

Pr(Z > λ) ≤ inf
t>0

exp{−tλ + log E(etZ)},

where E(etZ) = e−t2/2. The minimum is attained for t = λ and we get Pr(|Z| >

λ) ≤ e−λ2/2. On the other hand, a straightforward calculation leads to

Pr(Z > λ) =
∫ ∞
λ

1√
2π

e−t2/2 dt ≤
∫ ∞
λ

λ√
2π

e−t2/2 dt = 1

λ
√

2π
e−λ2/2

and the result follows. The second inequality follows the proof of Proposition A.1
in Dahlhaus and Polonik (2006). The last inequality is derived from the two former
inequalities. �

As in the proof of Proposition 2, equation (B.9), we write Qj,R;T as a quadratic
form of Gaussian variables in order to apply Proposition B.1 with Mj,R;T =
�

′1/2
T Uj,R;T �

1/2
T and thereby prove the assertion.

PROOF OF PROPOSITION 3. We use the last exponential inequality of Propo-
sition B.1 because Qj,R;T can be decomposed [see (B.7)] into Q◦

j,R;T + q◦
j,R;T ,

where Q◦
j,R;T = Z′

T Mj,R;T ZT and q◦
j,R;T ∼ N (0,C22j /|RT |). Note that Lem-

mas B.2 and B.3 imply, with (B.1) and (B.3), that

‖Mj,R;T ‖spec ≤ 2j/2K2‖cX‖1,∞|R|−1T −1/2.(B.13)

Therefore, Proposition B.1 leads to

Pr
(
(Qj,R;T − Qj,R) > ησj,R,T

)
≤ Pr

(
(Qj,R;T − EQj,R;T ) > ησj,R,T /2

)
+ exp

(
1 − ησj,R,T

2|EQj,R;T − Qj,R|
)



1908 S. VAN BELLEGEM AND R. VON SACHS

≤ 3 exp
(
− 1

16
· η2

1 + η(2j/2K2‖cX‖1,∞)/(|R|T 1/2σj,R,T )

)

+ exp
(

1 − ησj,R,T

2|EQj,R;T − Qj,R|
)
.

To bound the second probability, we observe that (B.11) and (B.12) lead to
|EQj,R;T −Qj,R| ≤ |RT |−1(Lj +K32(j/2)−1

√
T ) with K3 = 4ν(2+√

2)(2ρ −
1)(C ∨ 1)L−1. This implies

Pr
(
(Qj,R;T − Qj,R) ≥ ησj,R,T

)
≤ 3 exp

(
− 1

16
· η2σj,R,T

σj,R,T + η(2j/2K2‖cX‖1,∞
√

T )/|RT |
)

+ exp
(

1 − 1

2η

η2σj,R,T

(Lj + K32(j/2)−1
√

T )/|RT |
)

and the result follows. �

PROOF OF COROLLARY 1. In the following proof, K denotes a generic
constant and kT is an increasing function of T . By Proposition 2, σ 2

j,R,T :=
VarQj,R;T ≤ (C2 + c2/|R|)2j /|RT | uniformly in j , which implies

Pr
(

sup
−JT ≤j<0

|Qj,R;T − Qj,R| ≥ kT

√
(C2 + c2/|R|)/|RT |

)

≤
−1∑

j=−JT

Pr(|Qj,R;T − Qj,R| ≥ 2−j/2kT σj,R,T ).

Using Proposition 3, this probability is bounded by

c0JT max−JT ≤j<0
exp

{
− 1

16
· (2−j k2

T /2)
/[

1 + 2kT 2−j/2Lj

(|RT |σj,R,T )

+ kT

√
T

|RT |σj,R,T

(K2‖cX‖1,∞ + K3)

]}
.

Proposition 2 shows that, for T sufficiently large, σj,R,T ≥
√

2j /|RT |. This leads
to the bound

c0JT max−JT ≤j<0
exp

{
− 1

16
· (k2

T /2)
/[

2j + kT 2−j/2Lj√|RT |

+ 2j/2kT√|R| (K2‖cX‖1,∞ + K3)

]}
.
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By assumption (2.4), there exists a positive constant ρ ′ such that Lj ≤ 2j/2ρ′.
Then, asymptotically, the rate of convergence of the dominant terms in this expo-
nential expression are given by JT · exp(−kT ), which is oT (1) by the assumption
on kT . �

B.5. Proof of Proposition 4.

LEMMA B.4. If U
(j)
ts = |RT |−1 ∑−1

�=− log2 T A−1
j�

∑
k∈RT ψ�k(s)ψ�k(t), then

∞∑
t=−∞

∞∑
s,u=−∞

∣∣U(j)
ts U

(j)
tu

∣∣I|s−u|≤NT
≤ 2j+1L−1ν

2 T NT log2
2 T

|RT |2

= O

(
2j NT log2

2 T

T

)
.

PROOF. Direct calculation yields
∞∑

t=−∞

∞∑
s,u=−∞

∣∣U(j)
ts U

(j)
tu

∣∣I|s−u|≤NT

≤ |RT |−2
−1∑

�,m=− log2 T

|A−1
j� ||A−1

jm|
∞∑

s,u=−∞
I|s−u|≤NT

×
∞∑

t=−∞

( ∑
k∈RT

|ψ�k(s)ψ�k(t)|
)( ∑

n∈RT

|ψmn(u)ψmn(t)|
)
.

Using the Cauchy–Schwarz inequality for the sum over t , we get a product of two
terms similar to (

∑
t (

∑
k ψ�k(s)ψ�k(t))

2)1/2 ≤ √
2L� − 1. Then,

∞∑
t=−∞

∞∑
s,u=−∞

∣∣U(j)
ts U

(j)
tu

∣∣I|s−u|≤NT

≤ T NT |RT |−2
∑
�,m

|A−1
j� ||A−1

jm|√2L� − 1
√

2Lm − 1

and we obtain the result by (A.4). �

In the proof of Proposition 4, we need a modification of Corollary 1, in which
R is replaced by RT . The proof of the following result is along the lines of the
proof of Corollary 1.

LEMMA B.5. Under the assumptions of Propositions 2 and 3, there exists
T0 ≥ 1 such that, for all T ≥ T0,

Pr
(

sup
−JT ≤j<0

∣∣Qj,RT (s);T − Qj,RT (s)

∣∣ ≥ kT

|RT |

√
C2 + c2

T

)
= oT (1),
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provided that JT · exp(−kT

√|RT |) = oT (1).

PROOF OF PROPOSITION 4. Define σ̄s,s+u := ∑−1
�=− log2 T Q�,RT (s)
�(u) ×

I|u|≤MT
, the entries of a matrix �̄, and define σ̄ 2

j,R,T := 2‖U ′
j,R;T �̄T ‖2

2 +
C22j /|RT |. Our proof is based on the decomposition

σ̃ 2
j,R,T − σ 2

j,R,T = (σ̃ 2
j,R,T − σ̄ 2

j,R,T ) + (σ̄ 2
j,R,T − σ 2

j,R,T ),

where the first term is stochastic while the second term is deterministic.
We will first show that the deterministic term |σ̄ 2

j,R,T −σ 2
j,R,T | is o(2j−JT T −1).

Using (B.4), we can write

1
2(σ̄ 2

j,R,T − σ 2
j,R,T )

= ‖U ′
j,R;T �̄T ‖2

2 − ‖U ′
j,R;T �T ‖2

2

≤ ‖U ′
j,R;T (�̄T − �T )‖2

2 + 2 · ‖U ′
j,R;T �T ‖2 · ‖U ′

j,R;T (�̄T − �T )‖2

≤ ‖Uj,R;T ‖2
2 · ‖�̄T − �T ‖2

spec

+ 2 · ‖Uj,R;T ‖2
2 · ‖�T ‖spec · ‖�̄T − �T ‖spec,

where we know, by Lemmas B.2 and B.3, that ‖Uj,R;T ‖2
2 = O(2jT −1) and

‖�T ‖spec ≤ ‖cX‖1,∞. Moreover, we can write

‖�̄T − �T ‖spec

≤
∞∑

u=−∞
sup

s
(σs,s+u − σ̄s,s+u)

(B.14)

=
∞∑

u=−∞
sup

s

−1∑
�=−∞

∞∑
n=−∞

(
w2

�n;T − Q�,RT (s)

)
× ψ�n(s)ψ�n(s + u) + R1 + R2,

where

R1 =
∞∑

u=−∞
sup

s

−1∑
�=−∞

Q�,RT (s)
�(u)I|u|>MT
,

R2 =
∞∑

u=−∞
sup

s

− log2(T )−1∑
�=−∞

Q�,RT (s)
�(u)I|u|<MT
.

As
∞∑

u=−∞
sup

s

−1∑
�=−∞

Q�,RT (s)
�(u) =
∞∑

u=−∞
sup

s
|RT |−1

∫
RT (s)

dz cX(z,u),
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the rate of R1 is oT (2−JT ), by Assumption 6. Next, using |
�(u)| ≤ 1 uniformly
in � < 0, we get

|R2| ≤
∞∑

u=−∞
sup

s
|RT |−1

∫
RT (s)

dz

− log2(T )−1∑
�=−∞

S�(z)I|u|<MT

≤ 2MT

− log2(T )−1∑
�=−∞

sup
z

S�(z) = O(MT /T ),

using Assumption 4. Assumption 5 on the rate of the truncating sequence MT

implies |R2| = oT (2−JT ). The main term of (B.14) is bounded by

∞∑
u=−∞

sup
s

−1∑
�=−∞

∞∑
n=−∞

|RT |−1
∫
RT (s)

dz|w2
�n;T − S�(z)|

(B.15)
× |ψ�n(s)ψ�n(s + u)|.

By Definition 1, we can write

|w2
�n;T − S�(z)| ≤ CC�

T
+

∣∣∣∣S�

(
n

T

)
− S�

(
n − s

T
+ z

)∣∣∣∣
+

∣∣∣∣S�(z) − S�

(
n − s

T
+ z

)∣∣∣∣,
which, when substituted into (B.15), leads to three terms. By (B.6) and (2.4), the
first term is O(T −1). For the second term, with a change of variable z to z + s/T ,
we get

∞∑
u=−∞

sup
s

−1∑
�=−∞

∞∑
n=−∞

|RT |−1
∫
RT (0)

dz

∣∣∣∣S�

(
n

T

)
− S�

(
n

T
+ z

)∣∣∣∣
× |ψ�n(s)ψ�n(s + u)|,

where RT (0) denotes the interval RT (s) shifted by −s. If we use the fact that
|ψ�n(s)| is uniformly bounded and

∑∞
u=−∞ |ψ�n(s + u)| = O(L�), the second

term is then bounded (up to a multiplicative constant) by

|RT |−1
−1∑

�=−∞
L�

∫
RT (0)

dz

∞∑
n=−∞

∣∣∣∣S�

(
n

T

)
− S�

(
n

T
+ z

)∣∣∣∣

≤ |RT |−1
−1∑

�=−∞
L�

∫
RT (0)

dz|z|TV(S�)

= O(|RT |)
−1∑

�=−∞
L�L� = O(|RT |),
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by assumptions (2.3) and (2.4). The third term is

∞∑
u=−∞

sup
s

−1∑
�=−∞

∞∑
n=−∞

|RT |−1
∫
RT (s)

dz

∣∣∣∣S�(z) − S�

(
n − s

T
+ z

)∣∣∣∣
× |ψ�n(s)ψ�n(s + u)|.

If s0 denotes the infimum of RT (s), we decompose the integral as follows:

∞∑
u=−∞

sup
s

−1∑
�=−∞

∞∑
n=−∞

|RT |−1
|RT T |−1∑

k=0

∫ s0+(k+1)/T

s0+k/T
dz

∣∣∣∣S�(z) − S�

(
n − s

T
+ z

)∣∣∣∣
× |ψ�n(s)ψ�n(s + u)|,

which can be rewritten, with the change of variable y := z − s0 − k/T , as

∞∑
u=−∞

sup
s

−1∑
�=−∞

∞∑
n=−∞

|RT |−1

×
|RT T |−1∑

k=0

∫ 1/T

0
dy

∣∣∣∣S�

(
y + s0 + k

T

)
− S�

(
y + s0 + n − s + k

T

)∣∣∣∣
× |ψ�n(s)ψ�n(s + u)|.

Assumption (2.3) for the sum over k with (B.5) leads to the bound

∞∑
u=−∞

sup
s

−1∑
�=−∞

L�

∞∑
n=−∞

|RT T |−1|n − s||ψ�n(s)ψ�n(s + u)|.

The compact support of ψ�n(s) implies |n − s| < L�. Therefore, (B.6), (2.3) and
(2.4) imply that this last term is O(|RT T |−1). Finally, we summarize all the rates
of convergence for the deterministic term as follows:

2−jT · (σ̄ 2
j,R,T − σ 2

j,R,T )

= O(T −1 + |RT | + |RT T |−1) + |R1| + |R2|
= O(T −1 + |RT | + |RT T |−1) + oT (2−JT ) + oT (2−JT )

= oT (2−JT ),

by Assumption 5.
Let us now turn to the stochastic term |σ̃ 2

j,R,T − σ̄ 2
j,R,T |. Lemma B.5 implies the

existence of a random set A which does not depend on j and such that Pr(A) ≥
1 − oT (1) and |Qj,RT (s);T − Qj,RT (s)| ≤ (kT /|RT |)

√
(C2 + c2)/T almost surely
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on A, for all T > T0 and j = −1, . . . ,−JT . We can write

|σ̃ 2
j,R,T − σ̄ 2

j,R,T |

≤ 2
T −1∑
h,t=0

∣∣∣∣∣
T −1∑
s,u=0

U
(j)
ts U

(j)
tu

×
−1∑

�,m=− log2 T

(
Q�,RT (s);T Qm,RT (u);T(B.16)

− Q�,RT (s)Qm,RT (u)

)

�(s − h)
m(u − h)

∣∣∣∣∣
× I|s−h|≤MT

I|u−h|≤MT

almost surely on A. Using the decomposition

Q�,RT (s);T Qm,RT (u);T − Q�,RT (s)Qm,RT (u)

= (
Qm,RT (u);T − Qm,RT (u)

)
Q�,RT (s)

+ (
Q�,RT (s);T − Q�,RT (s)

)
Qm,RT (u)

+ (
Q�,RT (s);T − Q�,RT (s)

)(
Qm,RT (u);T − Qm,RT (u)

)
,

we get three terms in the right-hand side of (B.16). On A, the first of these terms
is bounded as follows (the other terms are bounded similarly):

2
∑

h,t,s,u

∣∣∣∣∣U(j)
ts U

(j)
tu

∑
m

(
Qm,RT (u);T − Qm,RT (u)

)

× 
m(u − h)
∑
�

Q�,RT (s)
�(s − h)

∣∣∣∣∣I|s−u|≤2MT

≤ 2
√

1 + c2 kT log2 T

|RT |√T

∑
h,t,s,u

∣∣U(j)
ts U

(j)
tu

∣∣

×
∣∣∣∣∣
∑
�

Q�,RT (s)
�(s − h)

∣∣∣∣∣I|s−u|≤2MT

≤ 2
√

1 + c2 kT log2 T

|RT |√T

∑
t,s,u

∣∣U(j)
ts U

(j)
tu

∣∣I|s−u|≤2MT

× ∑
h

sup
z

∣∣∣∣∣
∑
�

S�(z)
�(h)

∣∣∣∣∣
= O(2jMT kT |RT T |−1T −1/2 log3

2 T ) a.s. on A,
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using Assumption 1 and Lemma B.4. The result then follows from Assump-
tion 5. �

B.6. Proof of Theorem 1. By Proposition 4 and for T large enough, there
exists a random set A such that 1 − Pr(A) = oT (1) and (3.9) holds on A. Then, if
Ac denotes the complementary random set of A, we can write

Pr(|Qj,R;T − Qj,R| > 2σ̃j,R,T η)

= Pr(|Qj,R;T − Qj,R| > 2σ̃j,R,T η|A)Pr(A)

+ Pr(|Qj,R;T − Qj,R| > 2σ̃j,R,T η|Ac)
(
1 − Pr(A)

)
.

The second term of this sum is oT (1), by Proposition 4. To bound the first term,
we observe that Proposition 4 implies σ̃ 2

j,R,T ≥ σ 2
j,R,T − ϕT on A with ϕT =

oT (2j−JT T −1). Together with Proposition 2, this implies

σ̃ 2
j,R,T

σ 2
j,R,T

≥ 1 − ϕT

σ 2
j,R,T

= 1 − oT (1) → 1(B.17)

for all j = −1, . . . ,−JT , as T tends to infinity. We can then write

Pr(|Qj,R;T − Qj,R| > 2σ̃j,R,T η)

≤ Pr
(
|Qj,R;T − Qj,R| > 2σj,R,T η

√
1 − ϕT

σ 2
j,R,T

∣∣∣A)
+ oT (1)

and Proposition 3 leads to the result with γT = ϕT /σ 2
j,R;T .

B.7. Proof of Proposition 5. Let U be a segment of ℘(R). Consider the a.s.
inequality

|Qj,R;T − Qj,U;T | ≤ |Qj,R;T − Qj,R| + |Qj,U;T − Qj,U| + �j(R,U),

where �j(R,U) is defined in (4.1). In the regular case, �j(R,U) ≤ b(U) +
b(R) ≤ Cj(σj,U,T + σj,R,T )kT . Consequently, in the regular case,

Pr(R is rejected)

≤ ∑
U∈℘(R)

Pr{|Qj,U;T − Qj,R;T | > 2(ησj,U,T + ησj,R,T )kT }

≤ ∑
U∈℘(R)

Pr(|Qj,R;T − Qj,R| > −Cjσj,R,T kT + 2ησj,R,T kT )

+ ∑
U∈℘(R)

Pr(|Qj,U;T − Qj,U| > −Cjσj,U,T kT + 2ησj,U,T kT ).
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Proposition 3 implies

Pr(R is rejected)

≤ (�℘ (R))c0 exp
{
− 1

16
· η2

T

/[
1 + 2ηT Lj

|RT |σj,R,T

+2j/2ηT (K2‖cX‖1,∞ + K3)

σj,R,T |R|√T

]}

+ c0
∑

U∈℘(R)

exp
{
− 1

16
· η2

T

/[
1 + 2ηT Lj

|UT |σj,U,T

+ 2j/2ηT (K2‖cX‖1,∞ + K3)

σj,U,T |U|√T

]}
,

with ηT := 2ηkT − CjkT = kT 2−j/2(5(2α + p) − √
α + p).

Proposition 2 leads to σ−1
j,R;T ≤ C−12−j/2√|RT | and similarly for σ−1

j,U,T . As
δ ≤ |U| ≤ |R| ≤ 1, we consider the dominant terms in the sum and can write,
for T large enough and with 2−j/2Lj ≤ ρL−1,

Pr(R is rejected)

≤ 2c0(�℘ (R)) exp
{
− 1

16
· η2

T

/[
1 + 2ηT ρL−1√

K1δT

+ ηT (K2‖cX‖1,∞ + K3)√
2jK1δ

]}
.

Replacing ηT , using 2α + p ≥ √
α + p and kT ∼ log2 T , the asymptotic order of

this bound is

(�℘ (R))O
(
T −(

√
δK1/(K2‖cX‖1,∞+K3))(α+p/2))

and the result follows for T large enough by Assumption 7(2).

B.8. Proof of Theorem 2. For reader’s convenience, we first state two techni-
cal lemmas. The first lemma is a consequence of Rosenthal’s inequality [see, e.g.,
Härdle, Kerkyacharian, Picard and Tsybakov (1998)].

LEMMA B.6. Let Y ∼ N (0, σ 2) with σ 2 > 0. Then, E |Y |p ≤ C(p)σp ,
where C(p) is a function of p only.

LEMMA B.7. Let ZT = (Z1, . . . ,ZT )′ be a vector of i.i.d. Gaussian random
variables with zero mean and VarZ1 = 1. If Mj,R;T is the matrix (B.9), v is a
positive constant and p ≥ 2, then there exists T0 such that

E(Z′
T Mj,R;T ZT − trMj,R;T + vkT T −1/2)p

≤ C(κ,‖cX‖1,∞,p)T −p/2(21+j/2|R|−1 + vkT )p

for all T ≥ T0.
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PROOF. First, we write

E(Z′
T Mj,R;T ZT − trMj,R;T + vkT T −1/2)p

(B.18)

=
p∑

r=0

(
p

r

)
E(Z′

T Mj,R;T ZT − trMj,R;T )rvp−rk
p−r
T T −(p−r)/2.

Due to the relationship between the centered moments of a random variable and
its cumulants, we can write

E(Z′
T Mj,R;T ZT − trMj,R;T )r

=
r∑

m=0

∑
C(p1, . . . , pm,m,π1, . . . , πm, r)κπ1

p1
. . . κπm

pm
,

where the second sum is over p1, . . . , pm,π1, . . . , πm in {1, . . . , r} such that∑m
i=1 piπi = r , κpi

is the pi th cumulant of Z′
T Mj,R;T ZT and C denotes a generic

constant in this proof. From Lemma B.1, (B.13) and Proposition 2, κpi
≤ 2pi ×

(pi − 1)!Kpi

2 ‖cX‖pi

1,∞2jpi/2 |R|−piT −pi/2 and, consequently, E(Z′
T Mj,R;T ZT −

trMj,R;T )r ≤ C(κ,‖cX‖1,∞, r) 2r(1+j/2)|R|−rT −r/2. Using this inequality in
(B.18) leads to the result. �

PROOF OF THEOREM 2. In this proof, C denotes a generic constant. Let R̃
be the interval selected by the estimation procedure. We consider two cases, |R̃| <
|R| and |R̃| ≥ |R|, and split the expectation into two parts as follows:

E |S̃j (z0) − Sj (z0)|p
= E |S̃j (z0) − Sj (z0)|p1|R̃|<|R| + E |S̃j (z0) − Sj (z0)|p1|R̃|≥|R|.

First term (|R̃| < |R|). In the first case, we make use of the inequality |a − b|p ≤
2p−1|a|p + 2p−1|b|p and write

E |S̃j (z0) − Sj (z0)|p1|R̃|<|R|
≤ 2p−1 E |Sj (z0) − Qj,R̃|p1|R̃|<|R| + 2p−1 E |Qj,R̃;T − Qj,R̃|p1|R̃|<|R|.

As |R̃| < |R|, the evolutionary wavelet spectrum is homogeneous over R and R̃,
and property (4.4) holds for R̃. Then, using Proposition 2 on the variance and
the first point of Assumption 7, the first term of the right-hand side is bounded as
follows:

2p−1 E |Sj (z0) − Qj,R̃|p1|R̃|<|R|
≤ 2p−1 E(Cjσj,R̃,T kT )p

(B.19)
≤ 2p−1C

p
j k

p
T 2jp/2(T δ2)−p/2(1 + c2)p/2

= 2p−1(α + p)p/2k
p
T T −p/2δ−p(1 + c2)p/2,
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by the definition of Cj [see equation (4.5)]. Now, if we let GT = Z′
T Mj,R̃;T ZT +

|R̃T |−1 ∑
k∈R̃T zj,k;T − trMj,R̃;T , then the second term may be written

2p−1 E |GT + biasT |p1|R̃|<|R| ≤ 22p−2{
E

(|GT |p1|R̃|<|R|
) + |biasT |p}

,

where, using Proposition 2 for T large enough,

|biasT |p ≤ Cp2jp/2(δT )−p/2,(B.20)

with a constant Cp depending only on p. Finally, we now show that E |GT |p is
uniformly bounded in T . Using δ < |R̃| < |R|, we first note that Propositions 2
and B.1 imply

Pr
(
|GT | > λ

δ

√
(C2 + c2)

2j

T

)
≤ 3 exp

(
−1

4
· λ2

1 + 2λτ∞
√

|RT |/2j

)
,(B.21)

where τ∞ ≤ 2(j−1)/2c/(δ
√

T ) by (B.13). We now truncate the integral E |GT |p =∫ ∞
0 dx Pr(|GT |p ≥ x) at the point μ

p/2
T , which is such that μT = 2j (C2 +

c2)/(δ2T ). With the change of variable x = ypμ
p/2
T , this leads to

E |GT |p ≤ μ
p/2
T + pμ

p/2
T

∫ ∞
1

dy yp−1 Pr(|GT | > yμ
1/2
T )

≤ μ
p/2
T + pμ

p/2
T

∫ ∞
1

dy yp−1 exp
(
−1

2
· y2

1 + 2yτ∞
√

|RT |/2j

)
.

To compute the integral, we note that 1 ≤ y and evaluate
∫ ∞

1 dy yp−1 exp(−αT y).
This leads to the bound

E |GT |p ≤ μ
p/2
T + epμ

p/2
T

(
2 + 4τ∞

√
|RT |

2j

)p

≤ Cpδ−pT −p/2.

In conclusion, in the first case, we get the bound E |S̃j (z0) − Sj (z0)|p1|R̃|<|R| ≤
Cpδ−pT −p/2k

p
T from (B.19) and (B.20).

Second term (|R̃| ≥ |R|). We now consider the second case. Select a subinter-
val U in ℘(R̃) included in R and containing z0. Then, consider the decomposition

E |S̃j (z0) − Sj (z0)|p1|R̃|≥|R|
≤ E{|Qj,U − Sj (z0)| + |Qj,U;T − Qj,U| + |Qj,R̃;T − Qj,U;T |}p.

As the wavelet spectrum is regular on U ⊂ R, the term |Qj,U−Sj (z0)| is bounded
by Cjσj,U,T kT . On the other hand, using Proposition 2, |Qj,U;T − Qj,U| =
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|Qj,U;T − trMj,U;T | + RT with RT = O(2j/2T −1/2). Moreover, as R̃ is se-
lected by the estimation procedure, it holds that |Qj,R̃;T −Qj,U;T | ≤ 2(ησj,R̃,T +
λσj,U,T )kT almost surely. With 2α + p ≥ √

α + p, we can write

Cjσj,U,T kT + 2(ησj,R̃,T + λσj,U,T )kT

≤ 11
√

2(2α + p)kT (1 + c2)T −1/2δ−1,

using |R̃| ≥ |U| ≥ δ. Then, Lemmas B.6 and B.7 prove the existence of a constant
c5 depending on κ, ν,p,K2 and on ‖cX‖1,∞, such that, for T ≥ T0,

E{|Qj,U;T − trMj,U;T | + RT + Cjσj,U,T kT + 2(ησj,R̃,T + λσj,U,T )kT }p

≤ Cpδ−pT −p/2(2j/2|U|−1 + kT )p + Cp2jp/2|UT |−p/2

and the result follows using |U| ≥ δ. �

B.9. Proof of Proposition 6. We first prove the following lemma, stating an
exponential inequality for quadratic forms of Gaussian random variables.

LEMMA B.8. Let ZT = (Z1, . . . ,ZT )′ be a vector of i.i.d. Gaussian random
variables with zero mean and VarZ1 = 1. If MT is a T ×T symmetric and positive
definite matrix, then

Pr(Z′
T MT ZT ≤ η) ≤ exp

(
−(η − trMT )2

4‖MT ‖2
2

)
,

provided that η ≤ trMT .

PROOF. By assumption on the matrix MT , the decomposition MT = O ′
T �T ×

OT holds with a diagonal T × T matrix �T and an orthonormal matrix OT . If we
let YT = O ′

T ZT , then YT is a vector of i.i.d. Gaussian random variables with
zero mean and VarY1 = 1. We can write Z′

T MT ZT = Y ′
T �T YT = ∑T

i=1 λiY
2
i ,

with λi > 0. Moreover, trMT = tr�T , tr�2
T = trM2

T = ‖MT ‖2
2 and ‖MT ‖spec =

max{λ1, . . . , λT }. The Chernoff inequality [Ross (1998)] on YT leads to

Pr(Z′
T MT ZT ≤ η) = Pr(Y ′

T �T YT ≤ η)

≤ exp
{

inf
t<0

(−tη + log E exp(tY ′
T �T YT )

)}

= exp

{
inf
t<0

(
−tη +

T∑
i=1

log E exp(λitY
2
i )

)}

and, using the fact that log E exp(αiY
2
i ) = −1

2 log(1 − 2αi) ≤ αi + α2
i holds for

αi ≤ 0, we get

Pr(Z′
T MT ZT ≤ η) ≤ exp

{
inf
t<0

(−tη + t tr�T + t2 tr�2
T )

}
.



ESTIMATION OF WAVELET SPECTRA 1919

The result follows by taking t = (η − tr�T )/(2 tr�2
T ). �

Lemma B.8 is not directly applicable to the quadratic form Qj,R;T = Z′
T Mj,R;T ZT

because the matrix Mj,R;T is not positive definite in general. In the next lemma,
we show how this matrix can be approximated by the matrix M�

j,R;T , defined as

M�
j,R;T = �

1/2′
T U�

j,R;T �
1/2
T ,

where the entry (s, t) of the matrix U�
j,R;T is given by

u�
st = 2γ0|RT |−1

−1∑
�=− log2 T

2�/2
�(s − t),

with γ0 ≥ supj<0 sup�<0 2−�/2|A−1
j� | > 0. The matrix M�

j,R;T is clearly symmetric.
It is also positive definite because U�

j,R;T is positive definite: for all sequences

x = (x0, . . . , xT −1)
′ of �2, the quadratic form

x′U�
j,R;T x = γ0|RT |−1

−1∑
�=− log2 T

2�/2
∑
s

(∑
k

xsψ�k(s)

)2

is strictly positive.

LEMMA B.9. Suppose that Assumptions 1–4 hold true. Define γ1 such that

0 < γ1 ≤ γ0 inf
m<0

−1∑
�=− log2 T

2�/2Am�.

The following properties hold true for T sufficiently large:

γ1|R|−1ε ≤ tr(M�
j,R;T − Mj,R;T ) ≤ 6‖cX,T ‖1,∞γ0|R|−1,(B.22)

where ε is defined in Assumption 2,

‖M�
j,R;T − Mj,R;T ‖2

spec

≤ ‖M�
j,R;T − Mj,R;T ‖2

2(B.23)

≤ 8L−1γ
2
0 |R|−2‖cX‖2

1,∞T −1 log2
2(T ) + O(T −1)

and, if ZT = (Z1, . . . ,ZT )′ is a vector of i.i.d. Gaussian random variables with
zero mean and VarZ1 = 1, then

Pr
(
Z′

T (M�
j,R;T − Mj,R;T )ZT > λT

) = O

(
exp

{
−

√
T trMj,R;T

log2
2 T

})
,(B.24)

where λT = trM�
j,R;T − trMj,R;T + trMj,R;T log−1

2 T .
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PROOF. 1. We prove (B.22). Write tr(M�
j,R;T − Mj,R;T ) = tr(M�

j,R;T ) −
tr(Mj,R;T ), where the second term is E(Z′

T Mj,R;T ZT ) = Qj,R + O(2j/2T −1/2),
from Lemma B.1 and Proposition 2. Moreover,

tr(M�
j,R;T )

= tr(�′
T U�

j,R;T )

= 2γ0|RT |−1
∞∑

s,u=−∞
cX,T

(
s

T
,u

) −1∑
�=− log2 T

2�/2
�(u)(B.25)

= 2γ0|RT |−1
∞∑

s,u=−∞
cX

(
s

T
,u

) −1∑
�=− log2 T

2�/2
�(u) + RestT .(B.26)

We now derive a bound for RestT . Define �T (s/T ,u) := cX,T (s/T ,u) −
cX(s/T ,u). We first show that TV(�T (·, u)) is uniformly bounded in u. For all
I ∈ {1, . . . , T } and every sequence 0 < a1 < a2 < · · · < aI < 1, we can write

�T (ai, u) − �T (ai−1, u)

=
−1∑

j=−∞

∞∑
k=−∞

{
Sj

(
k

T

)
− Sj (ai)

}
ψjk([aiT ])ψjk([aiT ] + u)

−
−1∑

j=−∞

∞∑
k=−∞

{
Sj

(
k

T

)
− Sj (ai−1)

}

× ψjk([ai−1T ])ψjk([ai−1T ] + u) + O(T −1),

where the O(T −1) term comes from the approximation (2.2). Now, replace k by
k + [aiT ] in the first sum and by k + [ai−1T ] in the second one. The main term
becomes

−1∑
j=−∞

∞∑
k=−∞

{
Sj

(
k

T
+ ai

)
− Sj

(
k

T
+ ai−1

)
+ Sj (ai−1) − Sj (ai)

}
ψjk(0)ψjk(u).

Consequently, using the Cauchy–Schwarz inequality and Definition 1,

I∑
i=1

{�T (ai, u) − �T (ai−1, u)}

≤ 2
−1∑

j=− log2 T

Lj

∞∑
k=−∞

|ψjk(0)ψjk(u)| + O(IT −1)

≤ 2ρ + K,
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where K is a constant (because I ≤ T ), leading to TV(�T (·, u)) ≤ 2ρ + K , uni-
formly in u. We can now bound RestT in (B.26) as follows:

RestT = 2γ0|RT |−1
∞∑

s,u=−∞
�T

(
s

T
,u

) −1∑
�=− log2 T

2�/2
�(u)

= 2γ0

|R|
∑
s,u

∫ (s+1)/T

s/T
dz

{
�T (z,u) + �T

(
s

T
,u

)
− �T (z,u)

}∑
�

2�/2
�(u)

≤ 2γ0

|R|
∫ 1

0
dz

∑
u

|�T (z,u)|

+ 2γ0

|R|
∑
s,u

∫ 1/T

0
dz

∣∣∣∣�T

(
s

T
,u

)
− �T

(
z + s

T
,u

)∣∣∣∣,
as |
�(u)| is uniformly bounded by 1. From Proposition 1, the first term is
O(|RT |−1). Using (B.5) and the fact that TV(�T (·, u)) is uniformly bounded
in u, the second term is also O(|RT |−1).

In (B.26), we now expand cX(s/T ,u) using (2.6). By the definition of the ma-
trix A, we get

tr(M�
j,R;T − Mj,R;T ) ≥ |RT |−1

∑
s

∑
m

Sm

(
s

T

)∑
�

(2γ0 − 2−�/2A−1
j� )2�/2Am�

for T large enough. The lower bound is derived from the definition of γ0, γ1
and Assumption 2. The upper bound is derived using tr(M�

j,R;T − Mj,R;T ) ≤
tr(M�

j,R;T ) from (B.25), Assumption 1 and the fact that |
�(u)| ≤ 1 uniformly
in � < 0 and u ∈ Z.
2. We prove (B.23). The first inequality is (B.1). From (B.4), we write ‖M�

j,R;T −
Mj,R;T ‖2

2 ≤ ‖�1/2‖4
spec‖U�

j,R;T − Uj,R;T ‖2
2. Then, using Lemma B.2, (A.5)

and
√

L�Lm ≤ 2−(�+m)/2L−1,

1
2‖U�

j,R;T − Uj,R;T ‖2
2

≤ ‖U�
j,R;T ‖2

2 + ‖Uj,R;T ‖2
2

≤ 4γ 2
0 |R|−2T −1

−1∑
m,�=− log2 T

2(�+m)/2A�m + K2
2 2j |R|−2T −1

≤ 4L−1γ
2
0 |R|−2T −1 log2

2(T ) + O(T −1).

The result follows from Lemma B.3.
3. We prove (B.24). For T large enough, λT is strictly positive. Using Propo-

sition B.1 and defining p2
T = Var(Z′

T (M�
j,R;T − Mj,R;T )ZT ) = 2‖M�

j,R;T −
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Mj,R;T ‖2
2 and qT = ‖M�

j,R;T − Mj,R;T ‖spec, we can write

Pr
(
Z′

T (M�
j,R;T − Mj,R;T )ZT > λT

)

≤ exp
(
−1

2
· (trMj,R;T )2

p2
T log2

2 T + 2qT tr(Mj,R;T ) log2 T

)
.

(B.23) gives the rates for pT and qT , leading to the result. �

PROOF OF PROPOSITION 6. By Proposition 2, we have θT = Qj,R0 −
Qj,R1 + O(2j/2/{√T (|R0| ∧ |R1|)}). This shows that the sign of θT is deter-
mined by the sign of (Qj,R0 − Qj,R1) for T large enough. We then consider the
two cases θT > 0 and θT < 0.

If θT > 0, define μT = E(Qj,R0;T − Qj,R;T ) > 0 and λT = tr(M�
j,R0;T −

M�
j,R;T ) − μT (1 − 1/ log2 T ), where the matrices M� are defined as in Lem-

ma B.9. Define the random set PT = {Z′
T (M�

j,R0;T − M�
j,R;T − Mj,R0;T +

Mj,R;T )ZT ≤ λT }, where ZT = (Z1, . . . ,ZT )′ is a vector of i.i.d. Gaussian ran-
dom variables. As for the derivation of (B.24), we can use Proposition B.1 to derive

Pr(P c
T ) = O

(
exp

{
−μT

√
T

log2
2 T

(
1

|R0|2 + 1

|R1|2
)−1/2})

.

Using decomposition (B.7) and by conditioning on PT ,

Pr(R is not rejected|PT )

≤ Pr{Z′
T (M�

j,R0;T − M�
j,R;T )ZT + q◦

j,R0;T − q◦
j,R;T

≤ 2η(σj,R0,T + σj,R,T )kT + λT |PT }.
Note that the first inequality of Proposition B.1 implies that Pr{|q◦

j,R0;T −
q◦
j,R;T | > (σj,R0;T + σj,R;T )λkT } ≤ 2 exp(−λ2k2

T /2). Therefore, by the defini-
tion of η,

Pr(R is not rejected|PT )

≤ O(T −1) + Pr{Z′
T (M�

j,R0;T − M�
j,R;T )ZT

≤ η(σj,R0,T + σj,R,T )kT + λT |PT }.
Lemma B.8 can now be used to bound this probability because M�

j,R0;T −M�
j,R;T

is a positive definite matrix and η(σj,R0,T + σj,R,T )kT + λT ≤ tr(M�
j,R0;T −

M�
j,R;T ) for T large enough. This leads to the rate O(− μ2

T T

log2
2 T

( 1
|R0|2 + 1

|R|2 )−1).

If θT < 0, then we apply the same reasoning with μT = E(Qj,R1;T − Qj,R;T )

and λT = tr(M�
j,R1;T − M�

j,R;T ) + μT (1 − 1/ log2 T ). The result follows after the
addition of all terms. �
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