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HIGHER ORDER SEMIPARAMETRIC FREQUENTIST INFERENCE
WITH THE PROFILE SAMPLER1

BY GUANG CHENG AND MICHAEL R. KOSOROK

Duke University and University of North Carolina at Chapel Hill

We consider higher order frequentist inference for the parametric com-
ponent of a semiparametric model based on sampling from the posterior
profile distribution. The first order validity of this procedure established
by Lee, Kosorok and Fine in [J. American Statist. Assoc. 100 (2005) 960–
969] is extended to second-order validity in the setting where the infinite-
dimensional nuisance parameter achieves the parametric rate. Specifically,
we obtain higher order estimates of the maximum profile likelihood estima-
tor and of the efficient Fisher information. Moreover, we prove that an exact
frequentist confidence interval for the parametric component at level α can be
estimated by the α-level credible set from the profile sampler with an error of
order OP (n−1). Simulation studies are used to assess second-order asymp-
totic validity of the profile sampler. As far as we are aware, these are the first
higher order accuracy results for semiparametric frequentist inference.

1. Introduction. The focus of this paper is on higher order frequentist in-
ference for the parametric component θ of a semiparametric model. In addition
to the d-dimensional Euclidean parameter θ , semiparametric models also have
an infinite-dimensional parameter η, sometimes called the “nuisance” parame-
ter. A classic example is the Cox proportional hazards model for right-censored
survival data [4], where interest is focused on the log hazard ratios θ for the regres-
sion covariate vector z. The integrated baseline hazard function η is the infinite-
dimensional nuisance parameter. The involvement of an infinite-dimensional
nuisance parameter in semiparametric models generally complicates maximum
likelihood inference for θ . In particular, estimating the limiting variance of√

n(θ̂n −θ0), where θ0 is the true value of θ , usually requires estimating an infinite-
dimensional operator.

The related studies concerning higher order frequentist inference in the para-
metric models under the Bayesian set-up focus on the choice of priors, such as
objective priors [30]. However, it turns out that extending the objective prior ap-
proach to the semiparametric setting seems to require a higher-than-second or-
der expansion of the profile likelihood and appears to be quite difficult. A similar
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hurdle appears to be required for extending the higher order bootstrap results for
parametric models [8] to the semiparametric setting. Interestingly, general first-
order bootstrap results for semiparametric M-estimators have only recently been
developed (see [31] and [18]). Higher order extensions for any of these approaches
would be very useful. However, in this paper, we will pursue an apparently simpler
approach to obtaining higher order likelihood inference for semiparametric models
based on the profile sampler proposed in [17].

The profile sampler provides a first-order correct approximation of the maxi-
mum likelihood estimator θ̂n and consistent estimation of the efficient Fisher in-
formation for θ based on sampling from the posterior of the profile likelihood, even
when the nuisance parameter is not estimable at the

√
n rate. The validity of the

profile sampler relies on special properties of the profile likelihood in semipara-
metric models, some of which are extensively studied in [20, 21] and [22]. The
profile likelihood for the parameter θ is pln(θ) = supη likn(θ, η), where likn(θ, η)

is the full likelihood given n observations. We also define η̂θ = arg maxη likn(θ, η).
The maximum likelihood estimator for the full likelihood is thus (θ̂n, η̂n), where
η̂n = η̂

θ̂n
. Consideration of the profile likelihood in frequentist inference about θ

can be traced back to the ordinary parametric model. An intuitive interpretation
for the validity of the profile likelihood in semiparametric models is that it can
be viewed as an estimator of the least favorable submodel for the estimation of θ

[25]. The least favorable submodel, which will be briefly introduced in the next
section, is the closest parametric model to the semiparametric model in the sense
of information. In practice, the profile likelihood can often be easily computed us-
ing procedures such as the stationary point algorithm (as used in, e.g., [14]) or the
iterative convex minorant algorithm introduced in [7] to find η̂θ if η is a monotone
function.

An advantage of the profile sampler is that a prior on the infinite-dimensional
parameter is not required to obtain valid frequentist inference about θ . Assigning a
prior on η can be quite challenging since for some models, there is no direct exten-
sion of the concept of a Lebesgue dominating measure for the infinite-dimensional
parameter set involved [15]. The fully Bayesian approach can obviously be the
basis for inference on θ alone via the marginal posterior. The first-order valid re-
sults in [26] indicate that the marginal semiparametric posterior is asymptotically
normal and centered at the corresponding maximum likelihood estimator or pos-
terior mean, with covariance matrix equal to the inverse of the efficient Fisher
information. Unfortunately, this marginal approach does not circumvent the need
to specify a prior on η, with all of the difficulties that entails.

The main contribution of this paper is the development of higher order frequen-
tist inference for the parametric component of a semiparametric model through
the profile sampler procedure proposed in [17] by assuming stronger assumptions
on the semiparametric model and prior. We assume that the nuisance parameters
of the semiparametric models studied in this paper have the parametric rate. This
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assumption permits the treatment of the likelihood as essentially parametric in cer-
tain aspects. This enables the second-order frequentist inference results for para-
metric models to be naturally extended to the semiparametric setting, although
we note that considerable technical difficulties are present despite this simplifica-
tion. To accomplish the above higher order inference, we require stricter—but still
reasonable—regularity conditions than those imposed by [22] on the least favor-
able submodel. This is reviewed in Section 2. The initial technical step, presented
in Section 3, is to establish higher order versions of expansions (5)–(6) in [22]. In
Section 4, we find that the mean (median) value and the inverse of the variance
of the MCMC chain from the profile sampler are actually higher order estimates
of the maximum likelihood estimator and the efficient Fisher information, respec-
tively. The main result of Section 4 is to prove that an exact frequentist confidence
interval for θ0 can be estimated by the credible set from the profile sampler with
an error of order only OP (n−1). In Section 5, we discuss three examples and some
simulation results. Section 5 is followed by a discussion in Section 6 of future re-
search interests. We postpone most of the technical details to the proofs given in
Section 7.

As far as we are aware, these are the first higher order accuracy results for
semiparametric frequentist inference. This is quite distinct from the concept of
second-order efficiency in semiparametric models (see [9] and [5]) which we do
not consider in this paper. The two important tools we use in this paper are sepa-
rately empirical processes and sandwich techniques [22], with which we establish
upper and lower bounds for the error in the profile log-likelihood expansion. For
ease of exposition, we assume throughout the paper that θ ∈ R1. However, the re-
sults can be readily extended to higher dimensions. The confidence “interval” and
credible set for d-dimensional θ are a rectangle, a cuboid and a hypercuboid when
d = 2, d = 3 and d ≥ 4, respectively.

2. Preliminaries. We assume the data X1, . . . ,Xn are i.i.d. throughout the
paper. The sample space X will depend on the semiparametric model which is
defined by a density {pθ,η(x) : θ ∈ �,η ∈ H}, where H is an arbitrary subset that
will typically be infinite-dimensional. We first review the concept of a least favor-
able submodel and then present some notation and assumptions that will be used
throughout the paper.

2.1. The least favorable submodel. The score function for θ , �̇θ,η is defined as
the partial derivative with respect to θ of the log-likelihood given fixed η. A score
function for η0 is of the form

∂

∂t

∣∣∣∣
t=0

logpθ0,ηt (x) ≡ Aθ0,η0h(x),

where h is a “direction” by which ηt ∈ H approaches η0, running through some
index set H . Aθ,η :H �→ L0

2(Pθ,η) is the score operator for η. The efficient score
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function for θ is defined as �̃θ,η = �̇θ,η − �θ,η�̇θ,η, where �θ,η�̇θ,η minimizes the
squared distance Pθ,η(�̇θ,η − k)2 over all functions k in the closed linear space of
the score functions for η (the “nuisance scores”). The variance of �̃θ,η, called the
efficient information matrix, Ĩθ,η, is the Cramér–Rao bound for estimating θ in the
presence of the infinite-dimensional nuisance parameter η. We denote �̃θ0,η0 and
Ĩθ0,η0 by �̃0 and Ĩ0, respectively.

A submodel t �→ pt,ηt is defined to be least favorable at (θ, η) if �̃θ,η =
∂/∂t logpt,ηt , given t = θ . The “direction” along which ηt approaches η in the
least favorable submodel is called the least favorable direction. Generally, the least
favorable direction at (θ, η) in semiparametric models can be obtained by solving
for hθ,η in the equation P(�̇θ,η −Aθ,ηhθ,η)Aθ,ηhθ,η = 0 by the projection principle
and is usually in the form of a conditional expectation. Section 2 in [22] provides
an excellent guideline for searching for a least favorable submodel. Since the pro-
jection �θ,η�̇θ,η on the closed linear span of the nuisance scores is not necessarily a
nuisance score itself, the least favorable submodel may not always exist. However,
we assume that in our setting a least favorable submodel always exists or can be
approximated sufficiently closely by an approximately least favorable submodel.
An insightful review of least favorable submodels and efficient score functions can
be found in Chapter 3 of [13]. Systematic coverage of semiparametric efficiency
theory can be found in [1] and [2].

The least favorable submodel in this paper will be constructed in the following
manner. We consider a general map from the neighborhood of θ into the parameter
set for η, denoted by t �→ ηt (θ, η). Then, the map t �→ �(t, θ, η)(x) can be defined
as follows:

�(t, θ, η)(x) = log lik(t, ηt (θ, η))(x).(1)

The details of this map will depend on the situation.

2.2. Notation and assumptions. The dependence on x ∈ X of the likelihood
and score quantities will be largely suppressed for clarity in this section and
hereafter. The �̇(t, θ, η), �̈(t, θ, η) and �(3)(t, θ, η) are separately the first, sec-
ond and third derivatives of �(t, θ, η) with respect to t . For brevity, we write
�̇0 = �̇(θ0, θ0, η0), �̈0 = �̈(θ0, θ0, η0) and �

(3)
0 = �(3)(θ0, θ0, η0), where θ0 and η0

are the true values of θ and η, respectively. Based on the definition of the least
favorable submodel, �̇0 is just �̃0 defined above. �θ (t, θ, η) indicates the first
derivative of �(t, θ, η) w.r.t. θ . Similarly, �t,θ (t, θ, η) denotes the derivative of
�̇(t, θ, η) w.r.t. θ . Also, �t,t (θ) and �t,θ (η) indicate the maps θ �→ �̈(t, θ, η) and
η �→ �t,θ (t, θ, η), respectively. Let 	n denote (θ − θ̂n)Ĩ

1/2
0 and let φ(·) (�(·)) rep-

resent the density (cumulative distribution) of a standard normal random variable.
� and � mean greater than, or smaller than, up to a universal constant. Define
x ∨ y (x ∧ y) to be the maximum (minimum) value of x and y.
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Pn and Gn are used to denote the empirical distribution and the empirical
process of the observations, respectively. Furthermore, we use the operator no-
tation for evaluating expectation. Thus, for every measurable function f and true
probability P ,

Pnf = 1

n

n∑
i=1

f (Xi), Pf =
∫

f dP and Gnf = 1√
n

n∑
i=1

(
f (Xi) − Pf

)
.

We now make the following assumptions:

1. θ0 ∈ � ⊂ R
1, where � is a compact set and θ0 is an interior point of �;

2. ηθ (θ, η) = η for any (θ, η) ∈ � × H ;
3. ‖η̂θ̃n

−η0‖ = OP (n−1/2 +|θ̃n − θ0|) when θ̃n = θ0 +oP (1) for some norm ‖ ·‖;
4. the maps

(t, θ, η) �→ ∂l+m

∂tl ∂θm
�(t, θ, η)

have integrable envelope functions in L1(P ) in some neighborhood of (θ0,

θ0, η0) for (l,m) = (0,0), (1,0), (2,0), (3,0), (1,1), (1,2), (2,1);
5. there exists some neighborhood V of (θ0, θ0, η0) in � × � × H such that

the classes of functions {�̈(t, θ, η)(x) : (t, θ, η) ∈ V } and {�t,θ (t, θ, η)(x) : (t,
θ, η) ∈ V } are P -Donsker and {�(3)(t, θ, η)(x) : (t, θ, η) ∈ V } is P -Glivenko–
Cantelli;

6.

Gn

(
�̇(θ0, θ0, η) − �̇0

) = OP (‖η − η0‖),(2)

P �̈(θ0, θ0, η) − P �̈(θ0, θ0, η0) = O(‖η − η0‖),(3)

P�t,θ (θ0, θ0, η) − P�t,θ (θ0, θ0, η0) = O(‖η − η0‖),(4)

P �̇(θ0, θ0, η) = O(‖η − η0‖2)(5)

for all η in some neighborhood of η0;
7. Ĩ0 is strictly positive.

Assumption 2 ensures that the least favorable submodel passes through (θ, η), that
is, �(θ, θ, η)(x) = log lik(θ, η)(x). Assumption 3 implicitly assumes that we have
a metric or topology defined on the set of possible values of the nuisance parame-
ter η. In this paper, uniform and weak topology norms are applied to the nuisance
parameter in different examples. Definitions of the uniform and weak topology
norms will be given in Section 5. Furthermore, the parametric convergence rate of
the nuisance parameter is needed to obtain our second-order results. Assumption 4
can be viewed as comprising regular smoothness conditions on the Euclidean pa-
rameters of the least favorable submodel. Assumption 4 implies that �(t, θ, η) is
smooth enough in its Euclidean parameter arguments so that −P �̇2

0 = P �̈0. As-
sumption 4 also implies that (∂/∂θ)P �̇(θ0, θ, η0) = 0 at θ = θ0. Fixing η and dif-
ferentiating Pθ,η�̇(θ, θ, η) relative to θ gives Pθ,η�̇θ,η�̇(θ, θ, η) + Pθ,η�̈(θ, θ, η) +
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(∂/(∂t))|t=θPθ,η�̇(θ, t, η) = 0 since Pθ,η�̇(θ, θ, η) = 0 for every (θ, η) and we can
choose (θ, η) = (θ0, η0).

The assumptions also impose some regular smoothness conditions on �(t, θ, η)

relative to η in the function space. Condition (2) involves the continuity modulus of
the empirical processes. It can be easily satisfied if we can show that �̇(θ0, θ0, η)−
�̇0 divided by ‖η−η0‖ belongs to a P -Donsker class. The verification methods for
(3)–(5) vary for different situations. Assuming a uniform norm is applied, (3) and
(4) are usually satisfied if �t,θ (η) and �t,t (η) have bounded Fréchet derivatives.

To verify (5), we need to briefly introduce Taylor series in Banach spaces [32].
Let ζ be a map from Dζ ⊂ D �→ E, where D and E are both Banach spaces. If we
assume ζ(·) is second-order Fréchet differentiable, then the Taylor expansion of
ζ(ϑ +h) around ζ(ϑ) can be written as ζ(ϑ +h) = ζ(ϑ)+ζ ′

ϑ(h)+ζ ′′
ϑ+τh(h,h)/2,

where τ ∈ [0,1]. ζ ′
ϑ(h) is just the regular Fréchet derivative of ζ(·) at the point ϑ

along the direction h and ζ ′′
ϑ (h, g) is the second-order Fréchet derivative from D

2
ζ

to E. We can then write P �̇(θ0, θ0, η) = P [p0−pθ0,η

p0
(�̇(θ0, θ0, η)− �̇(θ0, θ0, η0))]−

P [�̇(θ0, θ0, η0)(
pθ0,η−p0

p0
− A0(η − η0))], where A0 = Aθ0,η0 and Aθ,η is the score

operator for η at (θ, η), for example, the Fréchet derivative of logpθ,η relative to
η. The above equation holds since P �̃0A0h = 0 for every h, by the orthogonality
property of the efficient score function. Note that the boundedness property of
ζ ′′
θ (·, ·) means that ‖ζ ′′

θ (h, g)‖E ≤ ‖h‖Dζ
‖g‖Dζ

. Thus, under the given regularity
conditions, Fréchet differentiability of η �→ �̇(θ0, θ0, η) plus second-order Fréchet
differentiability of η �→ lik(θ0, η) implies (5) based on the above discussions if the
uniform norm is being applied to η.

In principle, these smoothness conditions on the least favorable submodel make
the profile likelihood pln(θ) behave asymptotically like a parametric likelihood.
The imposed assumptions are stronger than assumptions (3.1)–(3.4) in [22], en-
abling us to achieve higher order asymptotic expansions for the log-profile likeli-
hood.

3. Second-order asymptotic inference. In this section, we present second-
order asymptotic expansions of the log-profile likelihood which prepare us for
deriving the main results of Section 4 on the higher order structure of the poste-
rior profile distribution. Some of the results of this section are useful in their own
right for inference about θ . The assumptions of Section 2 are assumed through-
out. We need the following lemma on the behavior of θ̃n, a random sequence of
approximations of θ̂n:

LEMMA 1. If θ̃n satisfies (θ̃n − θ̂n) = oP (1), then

Pn�̇(θ0, θ̃n, η̂θ̃n
) = Pn�̃0(Xi) + OP (n−1/2 + |θ̃n − θ̂n|)2,(6)

Pn�̈(θ0, θ̃n, η̂θ̃n
) = P �̈0 + OP (n−1/2 + |θ̃n − θ̂n|).(7)
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REMARK 1. Conditions (6) and (7) can essentially be viewed as the empiri-
cal versions of the no-bias conditions for the least favorable submodel (see, i.e.,
Chapter 25 of [28]). We can easily verify (6) and (7) if every argument of �̇(t, θ, η)

and �̈(t, θ, η) is smooth enough and the above empirical process assumptions are
satisfied.

The following theorem gives key higher order expansions of the log-profile like-
lihood around θ̂n and on the error term in the asymptotic linearity expansion of θ̂n.

THEOREM 1. If θ̃n satisfies (θ̃n − θ̂n) = oP (1), then

logpln(θ̃n) = logpln(θ̂n) − n

2
(θ̃n − θ̂n)

2Ĩ0

(8)
+ OP (n|θ̃n − θ̂n|3 + n−1/2),

√
n(θ̂n − θ0) = 1√

n

n∑
i=1

�̃0(Xi)Ĩ
−1
0 + OP (n−1/2).(9)

REMARK 2. Expansions (8) and (9) are essentially second-order versions of
(6) and (5), respectively, in [22], which have the respective error terms oP (

√
n|θ̃n−

θ0| + 1)2 and oP (1). The parametric counterparts to (9) can be found in [16].

REMARK 3. Expansion (8) can be used to construct an estimator of the stan-
dard error of θ̂n, which is called the “discretized” version of the observed profile
information, În, in [21]. Specifically, the discretized version of the observed profile
information is expressed as a discretized second derivative of the profile likelihood
in θ̂n as follows:

În = −2
logpln(θ̂n + sn) − logpln(θ̂n)

ns2
n

.(10)

Expansion (8) implies that

În = Ĩ0 + OP (|sn| + n−3/2|sn|−2).(11)

Obviously, the theoretically optimal step size of În is sn = OP (n−1/2) and s−1
n =

OP (n1/2) in terms of the order of error term. In that case, În is a
√

n-consistent
estimator of Ĩ0.

An advantage of the method given in Remark 3 is that we can estimate Ĩ0 even
without an explicit form for the efficient Fisher information matrix or efficient
score function. We only need the form of the profile likelihood, which is the mini-
mal requirement, to carry out this numerical differentiation. Formula (11) provides
us insight into the relationship between the step size of numerical differentiation
and the convergence rate of În. In other words, we can set a specific step size in
advance to achieve the desired convergence rate. This is an improvement on Corol-
lary 3 given in [21] which can only prove the consistency of the observed profile
information.
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4. Main results. We now present the main results on the posterior profile dis-
tribution. Let P̃

θ |X̃ be the posterior profile distribution of θ w.r.t. the prior ρ(θ)

given data X̃ = (X1, . . . ,Xn). Define �n(θ) = n−1{logpln(θ) − logpln(θ̂n)}.
A preliminary result, Theorem 2 with Corollaries 1 and 2 below, shows that the
normal approximation to the posterior is second-order accurate for the cumulative
distribution, the density and for the moments. The main result, Theorem 3, shows
that the posterior profile distribution can be used to achieve second-order accurate
frequentist inference.

THEOREM 2. Assume the above assumptions and that

�n(θ̃n) = oP (1) implies θ̃n = θ0 + oP (1).(12)

If proper prior ρ(θ0) > 0 and ρ(·) has a continuous and finite first-order derivative
in some neighborhood of θ0, then we have, for −∞ < ξ < ∞,

sup
ξ∈R1

∣∣P̃
θ |X̃

(√
n(θ − θ̂n)Ĩ

1/2
0 ≤ ξ

) − �(ξ)
∣∣ = OP (n−1/2).(13)

We note that the general theory concerning asymptotic expansions of posterior
distributions in parametric models can be found in [11]. We also note that Theo-
rem 1 in [17] implies the following:

P̃
θ |X̃

(√
n(θ − θ̂n)Ĩ

1/2
0 ≤ ξ

) = �(ξ) + oP (1).(14)

Clearly, (14) is a first-order version of (13). A possibly more practical version of
(13) is

P̃
θ |X̃

(√
n(θ − θ̂n)Î

1/2
n ≤ ξ

) = �(ξ) + OP (n−1/2),(15)

where În can be estimated using (11) with an appropriate step size, for example,
sn = OP (n−1/2) and s−1

n = OP (n1/2). Thus, we can construct the one-sided/two-
sided credible set for θ with probability coverage α +OP (n−1/2) in the following.
Denoting by zα to be the standard normal αth quantile, we have

P̃
θ |X̃

(
θ ≤ θ̂n + zα√

nI

)
= α + OP (n−1/2),(16)

P̃
θ |X̃

(
θ̂n − z1−α/2√

nI
≤ θ ≤ θ̂n + z1−α/2√

nI

)
= 1 − α + OP (n−1/2)(17)

for α ∈ (0,1), where I = Ĩ0 or În.

COROLLARY 1. Under the assumptions of Theorem 2, let fn(·) be the poste-
rior profile density of

√
n	n relative to the prior ρ(θ). We then have

fn(ξ) = φ(ξ) + OP (n−1/2).(18)
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REMARK 4. The parametric analog of (18) is (2.2) in [6], which is a higher
order expansion of the multivariate posterior density of the vector

√
n(θ − θ̂n) in

a parametric model. Note that the parametric version involves the full likelihood
rather than the profile likelihood and thus a prior is assigned to each element of
the multivariate θ . However, the posterior distributions relative to the full likeli-
hood and the profile likelihood coincide for certain special priors which will be
discussed in Remark 7 below.

COROLLARY 2. Under the assumptions of Theorem 2 and recalling that 	n =
(θ − θ̂n)Ĩ

1/2
0 , we have that if

∫ +∞
−∞ |θ |rρ(θ) dθ < ∞, then

Ẽ
θ |X̃	r

n = n−r/2EUr + OP

(
n−(r+1)/2)

,(19)

where Ẽ
θ |X̃	r

n is the rth posterior moment of 	n and U ∼ N(0,1).

REMARK 5. Note that the r th posterior moment of 	n in the above is based
on the posterior profile distribution. By Corollary 2, we thus have

θ̂n = Ẽ
θ |X̃(θ) + OP (n−1),(20)

Ĩ0 = 1

nṼar
θ |X̃(θ)

+ OP (n−1/2),(21)

where

Ṽar
θ |X̃(θ) = Ẽ

θ |X̃
(
θ − Ẽ

θ |X̃(θ)
)2

.

From (20), we know the maximum likelihood estimator of θ can be estimated by
the mean of the profile sampler with an error of order OP (n−1). Moreover, from
the proof in Section 7 of Theorem 3 below, we can verify that θ̂n is also estimated
by the median of the profile sampler to the same order of accuracy. Similarly, the
efficient information can be estimated by the inverse of the variance of the profile
sampler with an error of order OP (n−1/2). This is a better method to estimate Ĩ0
than (11) since it is automatically

√
n-consistent. Note that the first-order versions

of (20) and (21) can be derived from Theorem 1 of [17].

Combining (9) and (20), we know that the mean value of the profile sampler
can be shown to be a semiparametric efficient estimator of θ . This conclusion also
holds for the median value of the profile sampler. In this paper, we have provided
an alternative efficient estimator to the maximum likelihood estimator θ̂n.

We now present the main theorem of this paper. The αth quantile of the posterior
profile distribution, τnα , is defined as τnα = inf{ξ : P̃

θ |X̃(θ ≤ ξ) ≥ α}. Without loss

of generality, P̃
θ |X̃(θ ≤ τnα) = α. We can also define κnα ≡ √

n(τnα − θ̂n), that

is, P̃
θ |X̃(

√
n(θ − θ̂n) ≤ κnα) = α. The following theorem ensures that there exists

a κ̂nα based on the data such that P(
√

n(θ̂n − θ0) ≤ κ̂nα) = α and |κ̂nα − κnα| =
OP (n−1/2).
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THEOREM 3. Under the assumptions of Theorem 2 and assuming that �̃0(X)

has finite third moment with a nondegenerate distribution, there exists a κ̂nα based
on the data such that P(

√
n(θ̂n − θ0) ≤ κ̂nα) = α and κ̂nα − κnα = OP (n−1/2).

REMARK 6. Note that the nondegenerate distribution assumption of �̃(X) can
be easily satisfied if X has a nonsingular absolutely continuous component. Theo-
rem 3 implies that the one- (two-) sided confidence interval for θ can be estimated
by the one- (two-) sided credible set of the same level from the profile sampler with
an error of the order OP (n−1). We conjecture that

√
n times the OP (n−1/2) term

in Theorem 3 converges to the product of two different nontrivial but uniformly
integrable Gaussian processes.

REMARK 7. We can essentially generate the profile sampler from the mar-
ginal posterior of θ with respect to a certain joint prior on ψ = (θ, η) which is
possibly data-dependent [17]. For example, in the Cox model with right-censored
data, a gamma process prior on η [12] with jumps at observed event times, but not
involving θ , can be such a prior.

5. Examples. We now illustrate the verification of the assumptions of Sec-
tion 2 with three examples. The detailed technical illustrations and model assump-
tions for the three examples can be found in [19–23]. We also present simulation
studies to assess the properties of the profile sampler for the first example.

5.1. The Cox model with right-censored data.

5.1.1. Theory. The Cox model is

λ(t |z) ≡ lim
�→0

1

�
Pr(t ≤ T < t + �|T ≥ t,Z = z) = λ(t) exp(θz),(22)

where λ is an unspecified baseline hazard function and θ is a vector including
the regression parameters [4]. For the Cox model applied to right-censored failure
time data, we observe that X = (Y, δ,Z), where Y = T ∧C, δ = I {T ≤ C} and Z ∈
Z ⊂ R

1 is a regression covariate. T is a failure time with integrated hazard eθz�(t)

given the covariate Z, where �(y) = ∫ y
0 λ(t) dt is a cadlag, monotone increasing

cumulative hazard function with �(0) = 0. C is a censoring time independent of
T given Z. We define a likelihood for the parameter (θ,�) by replacing λ(y) with
the point mass �{y}:

lik(θ,�) = (
eθz�{y}e−eθz�(y))δ(e−eθz�(y))1−δ

.(23)

θ is assumed to come from some compact set � and the true regression coefficient,
θ0, belongs to the interior of �. The parameter space for �, H , is restricted to a
set of nondecreasing, cadlag functions on the interval [0, τ ], with �(τ) ≤ M for a
given constant M .
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We now discuss the form of the profile likelihood. Suppose there are l observed
failures at times T(1) < · · · < T(l), where (i) is the label for the ith ordered failure
and ti is the observed value of T(i). z[i] is the covariate corresponding to the ob-
served event time ti . The log-profile likelihood (equivalently, the log-partial likeli-
hood) for θ is given by

logpln(θ) =
l∑

i=1

(
θz[i] − log

∑
j∈Ri

eθzj

)
,(24)

where Ri = {j :Yj ≥ ti} is the risk set. In this case, the profiled nuisance parameter
is not present in pln(θ). Nevertheless, it is not hard to verify that

�̂θ (t) = ∑
{Yi≤t}

δi∑
j∈Ri

exp(θzj )
.(25)

Note that �̂θ is a nondecreasing step function with support points at the observed
event times and, based on [10], ‖�̂θ̃n

− �0‖∞ = OP (n−1/2 + |θ̃n − θ0|).
The score function for θ can be easily derived as

�̇θ,�(x) = δz − zeθz�(y).

Given a fixed � and a bounded function h : R1 �→ R
1, we can define a path �t by

d�t(y) = (1 + th(y)) d�(y). Thus, the score function for � in the direction h via
an operator Aθ,� :L2(�) �→ L2(Pθ,�) is Aθ,�h(y, δ, z) = δh(y)− eθz

∫
[0,y] hd�.

Following the regular conditions and discussions on page 16 of [22], the least
favorable direction hθ,� at (θ,�) can be constructed as

hθ,�(y) = Eθ,�eθZZ1{Y ≥ y}
Eθ,�eθZ1{Y ≥ y} .

Substituting θ = t and � = �t(θ,�) [where d�t(θ,�) = (1 + (θ − t)h0) d�

and h0(·) is an abbreviation for hθ0,�0(·)] in the above Cox likelihood and differ-
entiating with respect to t , we obtain

�̇(t, θ,�)(x) = �̇t,�t (θ,�) − At,�t (θ,�)

(
h0(y)

1 + (θ − t)h0(y)

)
(x),

= δz − zetz�t(θ,�)(y) − δ
h0(y)

1 + (θ − t)h0(y)
+ etz

∫ y

0
h0 d�,

�̈(t, θ,�)(x) = −δ
h2

0(y)

(1 + (θ − t)h0(y))2

− z2etz�t(θ,�)(y) + 2zetz
∫ y

0
h0 d�,

�t,θ (t, θ,�)(x) = −zetz
∫ y

0
h0 d� + δ

h0(y)2

(1 + (θ − t)h0(y))2 ,
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�(3)(t, θ,�)(x) = −2δ
h3

0(y)

(1 + (θ − t)h0(y))3

− z3etz�t(θ,�)(y) + 3z2etz
∫ y

0
h0 d�.

We know the maps (t, θ,�) �→ �(k)(t, θ,�), for k = 1,2,3, are continuous and
uniformly bounded around (θ0, θ0,�0), relative to the uniform topology on �, by
the inequality

∫ y
0 h0 d(� − �0) � ‖� − �0‖∞‖h0‖BV , where ‖h0‖BV is the total

variation of h0(·) in [0, τ ]. The total variation of a function f : [a, b] �→ R, ‖f ‖BV ,
is |f (a)| + ∫

(a,b] |df (s)|. Considering the fact that the class of uniformly bounded
functions with bounded variation over compacta is P -Donsker, we can check the
empirical process assumptions by repeatedly using the P -Donsker preservation
results. The following lemmas verify the remaining conditions, thus the results of
Sections 3 and 4 hold.

LEMMA 2. Under the above set-up for the proportional hazards Cox model,
assumption 6 is satisfied.

LEMMA 3. Under the above set-up for the proportional hazards Cox model,
condition (12) is satisfied.

5.1.2. Simulation study. To verify that the profile sampler can generate
second-order frequentist valid inference, we conducted simulations for Cox re-
gression with right-censored data for various sample sizes under a Lebesgue prior.
For each sample size, 500 data sets were analyzed. The event times were generated
from (22) with one covariate Z ∼ U [0,1]. The regression coefficient is θ = 1 and
�(t) = exp(t) − 1. The censoring time C ∼ U [0, tn], where tn was chosen such
that the average effective sample size over 500 samples is approximately 0.9n. For
each dataset, Markov chains of length 5,000 with a burn-in period of 1,000 were
generated using the Metropolis algorithm. The jumping density for the coefficient
was normal with current iteration and variance tuned to yield an acceptance rate of
20–40%. The approximate variance of the estimator of θ was computed by numer-
ical differentiation with step size proportional to n−1/2, according to Remark 3.

Table 1 summarizes the results from the simulations giving the average across
500 samples of the maximum likelihood estimate (MLE), mean of the profile sam-
pler (CM), mean squared difference between two estimates of θ (MSDE), esti-
mated standard errors based on MCMC (SEM), estimated standard errors based
on numerical derivatives (SEN), mean squared difference between the two esti-
mated standard errors (MSDV) and empirical coverage of nominal 0.95 confidence
intervals based on MCMC (CP95). The Monte Carlo standard error of CP95 is
≈0.01 = √

0.05 × 0.95/500. Table 2 summarizes the difference of boundaries for
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TABLE 1
Simulation results for Cox regression with right-censored data based on 500 samples (the true value

of the regression coefficient is θ = 1)

n MLE CM
√

MSDE SEM SEN
√

MSDV CP95

20 1.1049 1.1376 0.0978 4.4128 4.3004 0.2934 0.9496
50 1.0202 1.0262 0.0275 3.9869 3.9548 0.1378 0.9496

100 1.0156 1.0181 0.0195 3.8592 3.8561 0.1568 0.9506
200 1.0131 1.0147 0.0114 3.8124 3.8105 0.1220 0.9500
500 1.0012 1.0016 0.0069 3.7598 3.7691 0.1206 0.9502

n, sample size; MLE, maximum likelihood estimator; CM, empirical mean; MSDE, mean squared
difference between two estimates of θ ; SEM, estimated standard errors based on MCMC; SEN,
estimated standard errors based on numerical derivatives; MSDV, mean squared difference between
the two estimated standard errors; CP95, empirical coverage of nominal 0.95 confidence intervals
based on MCMC.

the two-sided 95% confidence interval for θ generated by numerical differenti-
ation, that is, (17), and MCMC, respectively. LBM (LBN) and UBM (UBN) de-
note the lower and upper bound, respectively, of the confidence interval from the
MCMC chain (numerical derivative).

In all cases, the bias in Table 1 is small. Similar simulations are also per-
formed in the Cox model with current status data in [17], that is, Table 1, which
has larger bias. The contrast of two simulations reveals an interesting phenom-
enon: the profile sampler based on the semiparametric models with faster conver-
gence rate is more accurate. Note that the terms n|MLE − CM|, √

n|SEM − SEN|,
n|LBM −LBN| and n|UBM −UBN| are bounded in probability according to Corol-
lary 1 and Theorem 3, that is, (11), (20) and (21). The realizations of these terms
summarized in Table 2 clearly illustrate their boundedness. Based on the above re-
sults, we can conclude that the profile sampler is a second-order frequentist valid
procedure.

TABLE 2
Simulation results for confidence intervals

n n|MLE − CM| √
n|SEM − SEN| n|LBM − LBN| n|UBM − UBN|

20 0.6541 0.5027 0.1920 2.2823
50 0.3062 0.2270 0.1809 1.1212

100 0.2587 0.0311 0.5987 0.1301
200 0.3218 0.0279 0.4810 0.5253
500 0.2017 0.2080 0.7524 0.3518

LBM (UBM), lower (upper) bound of the 95% confidence interval based on MCMC; LBN (UBN),
lower (upper) bound of the 95% confidence interval based on numerical derivative.
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5.2. The proportional odds model with right-censored data. The survival
function in this example is parameterized such that the ratios of the odds of
survival for subjects with different covariates are constant with time: the condi-
tional survival function SZ(u) of the event time, T , given the covariate Z satisfies
− logit(SZ(u)) = logη(u) + Zθ , where logit(y) = log(y/(1 − y)). We define the
likelihood as

lik(θ, η) =
[

e−zθη{y}
(η(y) + e−zθ )(η(y−) + e−zθ )

]δ[ e−zθ

η(y) + e−zθ

]1−δ

,(26)

where η{y} is the jump size in η at y. The score function for θ is

�̇θ,η(x) = −z

(
1 − e−zθ

η(y) + e−zθ
− δe−zθ

η(y−) + e−zθ

)
.

The score function for η via the direction of bounded function h ∈ L2(η) is

Aθ,ηh(x) = (∂/∂t)|t=0�θ,ηt = δh(y) −
∫ y

0 hdη

η(y) + e−zθ
− δ

∫ y−
0 hdη

η(y−) + e−zθ
,

where dηt = (1 + th) dη. Let A∗
θ,η denote the adjoint of Aθ,η. Then, A∗

θ,ηAθ,ηh(u)

is the information operator for the nuisance parameter η when θ is known. It is
shown to be continuously invertible on the space of functions of bounded variation
on [0, τ ] in Lemma 4.3 of [19]. Hence, the least favorable direction h0 is defined
as (A∗

θ0,η0
Aθ0,η0)

−1A∗
θ0,η0

�θ0,η0 . The form of the information operator and A∗
θ,η

can be found in [19]. By setting dηt (θ, η) = (1 + (θ − t)h0) dη, we can obtain
�(t, θ, η) = log lik(t, ηt (θ, η)). Hence, the maps in assumption 4 can be derived as
follows:

�̇(t, θ, η)(x) = −z

(
1 − e−zt

ηt (y) + e−zt
− δe−zt

ηt (y−) + e−zt

)

− δ
h0(y)

1 + (θ − t)h0(y)
+

∫ y
0 h0 dη

ηt (y) + e−zt
+ δ

∫ y−
0 h0 dη

ηt (y−) + e−zt
,

�̈(t, θ, η)(x) = −δ
h0(y)2

(1 + (θ − t)h0(y))2 + Wa
t,θ,η(y, z) + δWa

t,θ,η(y−, z),

Wa
t,θ,η(y, z) = (

∫ y
0 h0 dη + ze−zt )2 − z2e−zt (ηt (y) + e−zt )

(ηt (y) + e−zt )2 ,

�t,θ (t, θ, η)(x) = δ
h2

0(y)

(1 + (θ − t)h0(y))2 + Wb
t,θ,η(y, z) + δWb

t,θ,η(y−, z),

Wb
t,θ,η(y, z) = −

∫ y
0 h0 dη(ze−zt + ∫ y

0 h0 dη)

(ηt (y) + e−zt )2 ,

�(3)(t, θ, η) = −2
δh3

0(y)

(1 + (θ − t)h0(y))3 + Wc
t,θ,η(y, z) + δWc

t,θ,η(y−, z),
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Wc
t,θ,η(y, z) = 2(ze−zt + ∫ y

0 h0 dη)3

(ηt (y) + e−zt )3

− z2e−zt (e−zt + ηt (y))(2ze−zt + 3
∫ y

0 h0 dη − zηt (y))

(ηt (y) + e−zt )3 .

Under the regular conditions, the above maps are continuous and uniformly
bounded around (θ0, θ0, η0) by the same reasoning as was used in the first ex-
ample. We also know that ‖η̂θ̃n

− η0‖∞ = OP (n−1/2 + |θ̃n − θ0|) by Theorem 3.1
in [21]. By similar techniques to those used in the first example, we can easily
verify assumption 5. The following lemmas verify the remaining conditions.

LEMMA 4. Under the above set-up for the proportional odds model, assump-
tion 6 is satisfied.

LEMMA 5. Under the above set-up for the proportional odds model, condi-
tion (12) is satisfied.

5.3. Case-control studies with a missing covariate. The third example is a
logistic regression model for case-control studies with a missing covariate con-
sidered by [23] and [24]. We observe two independent random samples of sizes
nC and nR from the distributions of (D,W,Z) and (D,W), respectively. Follow-
ing the assumptions concerning the distribution of the random vector (D,W,Z)

in [24], we can construct the likelihood for the vector (D,W,Z) in the form
pθ(d,w|z) dη(z), where

pθ(d,w|z) = (�γ,β(z))d
(
1 − �γ,β(z)

)1−d 1

σ
φ

(
ω − α0 − α1z

σ

)
,(27)

�γ,β(z) = (1 + exp(−γ − βez))−1 and dη denotes the density of η with respect
to some dominating measure on Z ⊂ R

1.
We assume nC = nR so that the observations can then be paired. Here, we de-

note the complete sample components by YC = (DC,WC) and ZC and the reduced
sample components by YR = (DR,WR). Thus, the likelihood is defined as

lik(θ, η)(x) = pθ(yC |zC)η{zC}
∫

pθ(yR|z) dη(z).(28)

The unknown parameters are θ = (β,α0, α1, γ, σ ), ranging over a compact � ⊂
R

4 × (0,∞), and the distribution η of the regression variable which is restricted
to the set of nondegenerate probability distributions with support within a known
compact interval. We will concentrate on the regression coefficient β , considering
θ2 = (α0, α1, γ, σ ) and η as nuisance parameters.

We start by introducing the least favorable submodel. The score function of θ ,
�̇θ,η, is the summation of the score functions for the conditional density pθ(yC |zC)
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and that for the mixture density pθ(yR|η), given as follows:

�̇θ (yC |zC) = ∂

∂θ logpθ(yC |zC)
and �̇θ,η(yR) =

∫
�̇θ (yR|z)pθ (yR|z) dη(z)

pθ (yR|η)
.

Furthermore, by defining dηt = (1+ th) dη, where h is an arbitrary bounded func-
tion satisfying

∫
hdη = 0, we can obtain the score function for η in the direction h,

Aθ,ηh(x) = h(zC) +
∫

h(z)pθ (yR|z) dη(z)

pθ (yR|η)
.

By the projection principle discussed in [24], we thus define the least favorable
submodel as follows:

�(t, β, θ2, η) = log l(θt (θ, η), ηt (θ, η)),

where θt (θ, η) = θ − (β − t)a0, dηt (θ, η) = (1 + (β − t)aT
0 (h0 − ηh0)) dη and

aT
0 = (1,−Ĩ0,12(Ĩ0,22)

−1). The efficient information matrix Ĩ0 can be decomposed
into four submatrices corresponding to parameters β and the group (α0, α1, γ, σ ).
Ĩ0,ij corresponds to the (i, j)th block of Ĩ0 for i = 1,2 and j = 2. In Section 8 of
[23], the least favorable direction at the true value, h0, is proved to be a bounded
and Lipschitz continuous function.

Let (θ̂2,β, η̂β) be the profile likelihood estimator for (θ2, η) when β is given so
that θ̂β = (β, θ̂2,β). [21] showed that

‖η̂β̃n
− η0‖BL1 + ‖θ̂β̃n

− θ0‖ = OP (|β̃n − β0| + n−1/2)(29)

for any β̃n consistent for β0. The norm applied to the function η and vector θ is
the weak topology norm and Euclidean norm, respectively. The weak topology
norm on η is defined as ‖η‖BL1 = suph∈BL1

| ∫ h(z) dη(z)|, where BL1 denotes the
set of all functions h :Z �→ [−1,1] that are Lipschitz norm bounded above by 1,
that is, |h(z1) − h(z2)| ≤ ‖z1 − z2‖Z. The following lemmas verify the remaining
conditions.

LEMMA 6. Under the above set-up for the case-control model, assump-
tions 4–6 are satisfied.

LEMMA 7. Under the above set-up for the case-control model, condition (12)
is satisfied.

6. Discussion. Our theory ensures second-order frequentist correctness of the
profile Bayes analysis for the finite-dimensional parameter. The necessary and
sufficient conditions required for third or higher order frequentist inference need
to be constructed in order to complete general higher order semiparametric fre-
quentist inference theory in the future. Our future work could also include ex-
tending our methods to semiparametric models with slower convergence rates
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for the nuisance parameter, for example, ‖η̂θ̃n
− η0‖ = OP (n−1/3 + ‖θ̃n − θ0‖),

as happens with the Cox model for current status data. The conjecture in Re-
mark 6 implies that the OP (n−1/2) rate in Theorem 2 is sharp. Hence, to show
this conjecture may be a future research goal, although it appears to be very
challenging.

7. Proofs.

PROOF OF LEMMA 1. We first show the following no-bias conditions:

P �̇(θ0, θ̃n, η̂θ̃n
) = OP (n−1/2 + |θ̃n − θ0|)2,(30)

P �̈(θ0, θ̃n, η̂θ̃n
) = P �̈0 + OP (n−1/2 + |θ̃n − θ0|).(31)

(30) can be written as P �̇(θ0, θ̃n, η̂θ̃n
)−P �̇0 = [P �̇(θ0, θ̃n, η̂θ̃n

)−P �̇(θ0, θ0, η̂θ̃n
)]+

[P �̇(θ0, θ0, η̂θ̃n
) − P �̇0]. The second square bracket is bounded by OP (‖η̂θ̃n

−
η0‖2), by (5). By the ordinary two-term Taylor expansion, the first square bracket
equals

(θ̃n − θ0)(∂/∂θ)|θ=θ0P �̇(θ0, θ, η̂θ̃n
)

+ (1/2)(θ̃n − θ0)
2 × (∂2/∂θ2)|θ=θ∗P �̇(θ0, θ, η̂θ̃n

),

where θ∗ is an intermediate value between θ̃n and θ0. The second term of this
expansion is of order |θ̃n − θ0|2, by assumption 4. We now consider the first term.
Define η �→ L(η) = (∂/∂θ)|θ=θ0P �̇(θ0, θ, η). Then, L(η̂θ̃n

)−L(η0) = OP (‖η̂θ̃n
−

η0‖), by (4) in assumption 6. Combining this with the fact that L(η0) = 0, we have
(θ̃n − θ0) × (∂/∂θ)|θ=θ0P �̇(θ0, θ, η̂θ̃n

) = OP (n−1/2 + |θ̃n − θ0|)2. This completes

the proof of (30). By assumption 3, the smoothness conditions on �̈(t, θ, η) and
(3), we can also show (31) using similar analysis.

Recall that �̇0(X) = �̃0(X). It then suffices to show (6) if Gn

√
n(�̇(θ0, θ̃n, η̂θ̃n

)−
�̇0) = OP (

√
n|θ̃n − θ0| + 1). Note that, by (2), Gn

√
n(�̇(θ0, θ̃n, η̂θ̃n

) − �̇0) =√
n(θ̃n − θ0)Gn�t,θ (θ0, θ

∗
n , η̂θ̃n

)+√
nOP (‖η̂θ̃n

−η0‖), where θ∗
n is an intermediate

value between θ0 and θ̃n. Combining this with assumption 5, we have proven (6).
Considering assumption 5 and (31), we can prove (7). �

PROOF OF THEOREM 1. We first show (9). Note that 0 = Pn�̇(θ̂n, θ̂n, η̂n) =
Pn�̇(θ0, θ̂n, η̂n) + (θ̂n − θ0)Pn�̈(θ0, θ̂n, η̂n) + ((θ̂n − θ0)

2/2)Pn�
(3)(θ∗

n , θ̂n, η̂n),
where θ∗

n is intermediate between θ0 and θ̂n. By considering Lemma 1 and assump-
tion 5, we construct the following equation about (θ̂n − θ0): 0 =
n−1 ∑n

i=1 �̃0(xi) + (θ̂n − θ0)P �̈0 + OP (n−1). This completes the proof of (9).
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To prove (8), we first show that

logpln(θ̃n) = logpln(θ0) + (θ̃n − θ0)

n∑
i=1

�̃0(Xi) − n

2
(θ̃n − θ0)

2Ĩ0

(32)
+ OP (n|θ̃n − θ̂n|3 + n−1/2)

for any θ̃n satisfying (θ̃n − θ̂n) = oP (1). Note that

n−1(
logpln(θ̃n) − logpln(θ0)

) = Pn�(θ̃n, θ̃n, η̂θ̃n
) − Pn�(θ0, θ0, η̂θ0).

The right-hand side of the above equation is bounded below and above by
Pn(�(θ̃n, ψ̃n) − �(θ0, ψ̃n)), where the lower and upper bound separately corre-
spond to ψ̃n = (θ0, η̂θ0) and (θ̃n, η̂θ̃n

). We then apply a three-term Taylor ex-
pansion to both upper and lower bounds. By considering Lemma 1 and assump-
tion 5, we find that the upper bound and the lower bound match at the order of
OP (n−3/2 + |θ̃n − θ̂n|3). We have thus proven (32). By replacing θ̃n with θ̂n in
(32), we have

logpln(θ̂n) = logpln(θ0) + (θ̂n − θ0)

n∑
i=1

�̃0(Xi) − n

2
(θ̂n − θ0)

2Ĩ0

(33)
+ OP (n−1/2).

The difference between (32) and (33) gives (8) by considering (9). �

PROOF OF THEOREM 2. Suppose that Fn(·) is the posterior profile distribu-
tion of

√
n	n w.r.t. the prior ρ(θ), where 	n = (θ − θ̂n)Ĩ

1/2
0 . The whole proof of

Theorem 2 can be briefly summarized in the following expression:

Fn(ξ) =
∫ ξn−1/2

−∞ ρ(θ̂n + 	nĨ
−1/2
0 )(pln(θ̂n + 	nĨ

−1/2
0 ))/(pln(θ̂n)) d	n∫ +∞

−∞ ρ(θ̂n + 	nĨ
−1/2
0 )(pln(θ̂n + 	nĨ

−1/2
0 ))/(pln(θ̂n)) d	n

.

For the denominator, we first prove that the posterior mass outside |	n| ≤ rn is
of arbitrarily small order, where rn = o(n−1/3) and

√
nrn → ∞. The mass inside

this integration region can be approximated by a stochastic polynomial in powers
of n−1/2 with an error of the order OP (n−1). The numerator can be analyzed
similarly. Finally, the asymptotic expansions of both numerator and denominator
yield the quotient series, which is the desired result. We first state some lemmas
before the giving formal proof of Theorem 2.

LEMMA 2.1. Let rn = o(n−1/3) and
√

nrn → ∞. Under the conditions of
Theorem 2, we have∫

|	n|>rn

ρ(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)
d	n = OP (n−1).(34)
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PROOF. Fix r > 0. We then have∫
|	n|>r

ρ(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)
d	n

≤ I {�r
n < −n−1/2} exp

(−√
n
) ∫

�
ρ(θ) dθ + I {�r

n ≥ −n−1/2},

where �r
n = sup|	n|>r �n(θ̂n + 	nĨ

−1/2
0 ). By a minor revision of Lemma A.1 in

the Appendix of [17], we have I {�r
n > −n−1/2} = OP (n−1). This implies that

there exists a positive decreasing sequence rn = o(n−1/3) with
√

nrn → ∞ such
that (34) holds. �

LEMMA 2.2. Let rn = o(n−1/3) and
√

nrn → ∞. Under the conditions of
Theorem 2, we have

∫ rn

−rn

∣∣∣∣pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂)
ρ(θ̂n + 	nĨ

−1/2
0 ) − exp

(
−n

2
	2

n

)
ρ(θ̂n)

∣∣∣∣d	n(35)

= OP (n−1).

PROOF. The posterior mass over the region |	n| ≤ rn is bounded by

∫
|	n|≤rn

∣∣∣∣pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂)
ρ(θ̂n) − exp

(
−n

2
	2

n

)
ρ(θ̂n)

∣∣∣∣d	n(∗)

+
∫
|	n|≤rn

∣∣∣∣pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂)
ρ(θ̂n + 	nĨ

−1/2
0 )

(∗∗)

− pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂)
ρ(θ̂n)

∣∣∣∣d	n.

Using (8), we obtain

(∗) =
∫
|	n|≤rn

[
ρ(θ̂n) exp

(
−n	2

n

2

)∣∣ exp
(
OP (n|	n|3 + n−1/2)

) − 1
∣∣]d	n

= n−1/2
∫
|un|≤√

nrn

[
ρ(θ̂n) exp

(
−u2

n

2

)

× ∣∣ exp
(
n−1/2(|un|3 + 1)OP (1)

) − 1
∣∣]dun

= n−1 × OP (1) ×
∫
|un|≤√

nrn

[
ρ(θ̂n) exp

(
−u2

n

2

)
(|un|3 + 1)

]
dun

= OP (n−1),
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where the second equality follows by replacing
√

n	n with un and the third equal-
ity follows from the fact that | exp(n−1/2(|un|3 + 1)OP (1)) − 1| = OP (1)n−1/2 ×
(|un|3 + 1) since |un| ≤ √

nrn and rn = o(n−1/3), that is, un = o(n1/6). By the fol-
lowing analysis of (∗∗), we can also show (∗∗) = OP (n−1) since exp(OP (n	3

n +
n−1/2)) = OP (1) with |	n| ≤ rn:

(∗∗) =
∫
|	n|≤rn

[
|	nĨ

−1/2
0 ρ̇(θ∗

n )| exp
(
−n

2
	2

n + OP (n	3
n + n−1/2)

)]
d	n

≤ M

∫
|	n|≤rn

[
|	n| exp

(
−n

2
	2

n

)]
d	n × sup

|	n|≤rn

exp
(
OP (n	3

n + n−1/2)
)
,

where θ∗
n is an intermediate value between θ̂n and θ̂n + 	nĨ

−1/2
0 . �

We next start the formal proof of Theorem 2. First, note that∫ +∞
−∞

[
ρ(θ̂n + 	nĨ

−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)

]
d	n

=
∫
|	n|≥rn

[
ρ(θ̂n + 	nĨ

−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)

]
d	n

+
∫
|	n|≤rn

[
ρ(θ̂n + 	nĨ

−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)

]
d	n.

By Lemma 2.1, the first integral on the right-hand side is of the order OP (n−1).
The second integral on the right-hand side can be decomposed into the following
summands:∫

|	n|≤rn

[
ρ(θ̂n + 	nĨ

−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂)
− exp

(
−n

2
	2

n

)
ρ(θ̂n)

]
d	n

+
∫
|	n|≤rn

[
exp

(
−n

2
	2

n

)
ρ(θ̂n)

]
d	n.

The first part is bounded by OP (n−1) via Lemma 2.2. The second part equals

n−1/2ρ(θ̂n)

∫
|un|≤√

nrn

e−u2
n/2 dun = n−1/2ρ(θ̂n)

∫ +∞
−∞

e−u2
n/2 dun + O(n−1),

where un = √
n	n. The above equality follows from the inequality that∫ ∞

x e−y2/2 dy ≤ x−1e−x2/2 for any x > 0.
Consolidating the above analysis, we have∫ +∞

−∞

[
ρ(θ̂n + 	nĨ

−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)

]
d	n

(36)
= n−1/2ρ(θ̂n)

√
2π + OP (n−1)
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and, by similar analysis, we obtain
∫ ξn−1/2

−∞

[
ρ(θ̂n + 	nĨ

−1/2
0 )

pln(θ̂n + 	nĨ
−1/2
0 )

pln(θ̂n)

]
d	n

(37)

= n−1/2ρ(θ̂n)

∫ ξ

−∞
e−y2/2 dy + OP (n−1).

The quotient of (36) and (37) generates the desired result, (13). This completes the
proof of Theorem 2 in its entirety. �

PROOF OF COROLLARY 1. From the proof of Theorem 2, we have

P̃
θ |X̃

(√
n(θ − θ̂n)Ĩ

1/2
0 ≤ ξ

)

=
∫ ξn−1/2

−∞ ρ(θ̂n + 	nĨ
−1/2
0 )(pln(θ̂n + 	nĨ

−1/2
0 ))/(pln(θ̂n)) d	n∫ +∞

−∞ ρ(θ̂n + 	nĨ
−1/2
0 )(pln(θ̂n + 	nĨ

−1/2
0 ))/(pln(θ̂n)) d	n

.

By differentiating both sides relative to ξ and combining with (36), we obtain

fn(ξ) = ρ(θ̂n + ξ Ĩ
−1/2
0 /

√
n)(pln(θ̂n + ξ Ĩ

−1/2
0 n−1/2))/(pln(θ̂n))√

2πρ(θ̂n) + OP (n−1/2)
.

Based on (8), the numerator in the above equals ρ(θ̂n) exp(−ξ2/2) + OP (n−1/2)

by some analysis. This completes the proof. �

PROOF OF COROLLARY 2. The expansion in (19) is the quotient of two ex-
pansions of the form (36) and (37). We can see this as follows. First,

Ẽθ |x(	r
n) =

∫ +∞
−∞ 	r

nρ(θ̂n + 	nĨ
−1/2
0 )(pln(θ̂n + 	nĨ

−1/2
0 ))/(pln(θ̂n)) d	n∫ +∞

−∞ ρ(θ̂n + 	nĨ
−1/2
0 )(pln(θ̂n + 	nĨ

−1/2
0 ))/(pln(θ̂n)) d	n

.

The denominator is n−1/2
√

2πρ(θ̂n) + OP (n−1) by (36). Similarly, by the
proof of Theorem 2, we know the numerator is n−(r+1)/2ρ(θ̂n)

√
2πEUr +

OP (n−(r+2)/2), equivalently, (2/n)(r+1)/2�((r + 1)/2)ρ(θ̂n) + OP (n−(r+2)/2),
where U ∼ N(0,1). Obviously, the quotient is n−r/2EUr + OP (n−(r+1/2). If r is
odd, the quotient is simply OP (n−(r+1/2). �

PROOF OF THEOREM 3. We first show that for any ξ ∈ (0, 1
2) and ξ < α <

1 − ξ ,

τnα = θ̂n + zα√
nĨ0

+ OP (n−1).(38)

Implicit in (13) is an expansion of τnα in terms of zα . First, we set τnα =
θ̂n + zα/

√
nĨ0 + rn and we can then show rn = OP (n−1). Plugging τnα into (13),
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we obtain α = P̃
θ |X̃(

√
n(θ − θ̂n)Ĩ

1/2
0 ≤ zα + √

nĨ
1/2
0 rn) = α + OP (n−1/2) +√

nĨ
1/2
0 rnfn(τ

∗
nα), where τ ∗

nα is between zα and zα + √
nĨ

1/2
0 rn. The first equal-

ity comes from the definition of τnα . The second equality follows from Taylor
expansion and (18). We can now deduce from these two equalities that rn =
−OP (n−1)Ĩ

−1/2
0 (�(κ∗

nα) + OP (n−1/2))−1 = OP (n−1) based on (18). Note that
rn is well defined since fn(τ

∗
nα) is strictly positive when ξ < α < 1 − ξ . This

completes the proof of (38). Next the classical Edgeworth expansion implies that
P(n−1/2 ∑n

i=1 �̃0(Xi)Ĩ
−1/2
0 ≤ zα + an) = α, where an = O(n−1/2), for ξ < α <

1−ξ . Let κ̂nα = zαĨ
−1/2
0 + (

√
n(θ̂n −θ0)− 1√

n

∑n
i=1 �̃0(Xi)Ĩ

−1
0 )+anĨ

−1/2
0 . Then,

P(
√

n(θ̂n − θ0) ≤ κ̂nα) = P(n−1/2 ∑n
i=1 �̃0(Xi)Ĩ

−1/2
0 ≤ zα + an) = α. Combin-

ing (38) and (9), we obtain κ̂nα = κnα + OP (n−1/2). �

PROOF OF LEMMA 2. We first compute the Fréchet derivatives of �t,θ (�)

around (θ0, θ0,�0) by means of �s(y) = �(y) + s
∫ y

0 hd� = �(y) + sW�(y),
where h(·) is an arbitrary bounded function. The corresponding Fréchet derivatives
are as follows:

�t,θ,�(W�) = −zetz
∫ y

0
h0 dW�.

The operator �t,θ,�(W�) is linear and continuous by the inequality

|�t,θ,�(W�) − �t,θ,�(V�)| �
∣∣∣∣
∫ y

0
h0 d(W� − V�)

∣∣∣∣ � ‖W� − V�‖∞,(39)

almost surely, since � is a cumulative hazard function with support [0, τ ]. It
is also a bounded operator since we can replace V� with zero in (39). Note
that �t,θ,�(0) = 0 by its linearity. By similar reasoning, we can also know that
�t,t,�(W�) and �t,�(W�) are both linear, continuous and bounded operators when
(t, θ) is in some neighborhood of (θ0, θ0) and � ∈ H . The boundedness of the
above two operators ensure that P(�t,θ (θ0, θ0,�) − �t,θ (θ0, θ0,�0)) = OP (‖� −
�0‖∞) and P(�̈(θ0, θ0,�)− �̈(θ0, θ0,�0)) = OP (‖�−�0‖∞) when � is in some
neighborhood of �0. To verify (5), we need to show that � �→ lik(θ0,�) is second-
order Fréchet differentiable around �0. To this end, the first derivative is

˙lik�(W�) = eθ0z

exp(eθ0z�(y))

(
−

∫ y

0
dW�

)1−δ(
W�{y} − �{y}eθ0z

∫ y

0
dW�

)δ

,

while the second derivative is

¨lik�(W�,V�) = eθ0z

exp(eθ0z�(y))
(eθ0zW�(y)V�(y))1−δ

× (
e2θ0z�{y}V�(y)W�(y)

− eθ0zW�{y}V�(y) − eθ0zV�{y}W�(y)
)δ

.
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Clearly, ¨lik�(W�,V�) is a bounded bilinear operator. Its continuity follows from
the continuity of the maps W� �→ ¨lik�(W�, ·) and V� �→ ¨lik�(·,V�).

Next, we need to show that Gn(�̇(θ0, θ0,�) − �̇0) = OP (‖� − �0‖∞). First,
note that the class of functions of (z, y),{

zeθ0z
(
M1{�(y) ≤ t} − �0(y)

)
:‖� − �0‖∞ ≤ γ, t ∈ [0, τ ]},

is a VC class for each γ < ∞. Since � is monotone and bounded by M < ∞,
we now have that the class {zeθ0z(�(y) − �0(y)) :‖� − �0‖∞ ≤ γ } is a VC-
hull class for each γ < ∞. Since k0γ is an envelope for this last class for some
k0 < ∞ that does not depend on γ , we can use Theorem 2.14.1 in [29] to ob-
tain that Gnze

θ0z(�(y) − �0(y)) = OP (‖� − �0‖∞). A similar argument can be
used to verify that Gne

θ0z
∫ y

0 h0(s)(d�(s) − d�0(s)) = OP (‖� − �0‖∞). Thus,
Gn(�̇(θ0, θ0,�) − �̇0) = OP (‖� − �0‖∞), as desired. �

PROOF OF LEMMA 3. The proof of Lemma 3 is analogous to that of Lemma 4
in [17], which is for the more general odds-rate model. �

PROOF OF LEMMA 4. The proof of Lemma 4 is analogous to that of Lemma 2.
We can similarly verify the linearity, continuity and boundedness of �t,η(Wη),
�t,θ,η(Wη) and �t,t,η(Wη), whose concrete forms can be found in [3]. The veri-
fication of (5) also follows similar reasoning as used in the proof of Lemma 2. The
forms of ˙likη(Wη) and ¨likη(Wη,Vη) are specified in [3]. By analysis similar to that
in the proof of Lemma 2, we can show (2). This completes the proof. �

PROOF OF LEMMA 5. The proof of Lemma 5 is analogous to that of Lemma 4
in [17], which is for the more general odds-rate model. �

PROOF OF LEMMA 6. Before we start the proof of Lemma 6, we first present
the following necessary computations according to (28).

�̇θ (y|z) =

⎛
⎜⎜⎜⎜⎜⎝

ez

exp(γ+βez)+1 + (d − 1)ez

w−α0−α1z

σ2
z(w−α0−α1z)

σ2
1

exp(γ+βez)+1 + (d − 1)

− 1
σ + (w−α0−α1z)2

σ3

⎞
⎟⎟⎟⎟⎟⎠,(40)

�̈θ (y|z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− exp(γ+βez)e2z

(1+exp(γ+βez))2 0 0 − exp(γ+βez)ez

(1+exp(γ+βez))2 0

0 − 1
σ2 − z

σ2 0 − 2(w−α0−α1z)

σ3

0 0 − z2

σ2 0 − 2z(w−α0−α1z)

σ3

0 0 0 − exp(γ+βez)

(1+exp(γ+βez))2 0

0 0 0 0 1
σ2 − 3(w−α0−α1z)2

σ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,(41)
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where �̈θ (y|z) = ∂2/∂θ2 logpθ(y|z). We now compute (t, θ, η) �→ ∂l+m/

∂t l∂θm�(t, θ, η), with the abbreviations θt = θt (θ, η) and ηt = ηt (θ, η), for
(l,m) = (0,0), (1,0), (2,0), (3,0), (1,1), (1,2), (2,1), as follows:

�̇(t, θ, η) = aT
0

(
�̇θt (yC |zC) + �̇θt ,ηt (yR) − Aθt ,ηt (G

h0
η (β, t))(x)

);
�̈(t, θ, η) = aT

0

(
�̈θt (yC |zC)a0 + ∂

∂t
�̇θt ,ηt (yR) − ∂

∂t
Aθt ,ηt (G

h0
η (β, t))(x)

)
;

�t,β(t, θ, η) = aT
0

(
�̈θt (yC |zC)(11 − a0)

+ ∂

∂β
�̇θt ,ηt (yR) − ∂

∂β
Aθt ,ηt (G

h0
η (β, t))(x)

)
;

�t,θj
(t, θ, η) = aT

0

(
�̈θt (yC |zC)1j + ∂

∂θj

�̇θt ,ηt (yR) − ∂

∂θj

Aθt ,ηt (G
h0
η (β, t))(x)

)
;

�(3)(t, θ, η) = ∑
i

∑
j

∑
k

aijk

∂3

∂θk ∂θj ∂θi

∣∣∣∣
θ=θt

logpθ + ∑
j

∑
i

aij

∂

∂t
�̈θt ,ηt {ij}

− ∑
j

∑
i

aij

∂

∂t
Ȧθt ,ηt {ij}.

For brevity, we omit the complete versions of the above formulas and refer the
interested reader to [3]. However, we present the complete description of �̈(t, θ, η)

in the following to illustrate some functional properties of the above formulas,
which will be used in the proof of Lemma 6:

aT
0

∂

∂t
�̇θt ,ηt (yR) = aT

0

{
ηt (�̈θt pθt ) + ηt (�̇θt �̇

T
θt
pθt ) − η(�̇θt H0(z)

T pθt )

ηtpθt

+ ηt (�̇θt pθt )

ηtpθt

× η(H0(z)
T pθt ) − ηt (�̇

T
θt
pθt )

ηtpθt

}
a0

and

aT
0

∂

∂t
Aθt ,ηt (G

h0
η (β, t))(x)

= aT
0

{
H0(z)H0(z)

T

(1 + (β − t)aT
0 H0(z))2

+ η(H0(z)�̇
T
θt
pθt )

ηtpθt

− η(H0(z)pθt )

ηtpθt

× ηt (�̇
T pθt ) − η(H0(z)

T pθt )

ηtpθt

}
a0.

In the preceding, 1i is a five-dimensional vector with the ith element one, and
the others zero, θj is the j th element of the vector θ , ai is the ith element of
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vector a0, aij ≡ aiaj , aijk ≡ aiajak and pθt , �̇θt and �̈θt are respective abbrevia-
tions for pθt (y|z), �̇θt (y|z) and �̈θt (y|z). LT is the transpose of L and H0(z) ≡
h0(z) − ηh0. Note that H0(z) ∈ C1

1(Z) with zero mean after proper rescaling.
Aθt ,ηt (·) is an abbreviation for Aθt ,ηt ((h0 − ηh0)/(1 + (β − t)aT

0 (h0 − ηh0)))(x).
�̈θt ,ηt {ij} and Ȧθt ,ηt {ij} are the respective (i, j)th elements of square matrices
(∂/∂t)�̇θt ,ηt (yR)aT

0 (a0a
T
0 )−1 and (∂/∂t)Aθt ,ηt (·)aT

0 (a0a
T
0 )−1. The above notation

is valid for i, j, k = 1, . . . ,5. We need the following two lemmas to verify assump-
tion 4. �

LEMMA 6.1. Given z in some compact set Z, θ and η in some neighborhood
of θ0 and η0, respectively, we have

pθ(y|z)
cθ (w)

∫
pθ(y|z) dη(z)

∈ C1
1(Z),(42)

where cθ (w) = M0 exp(
M|w|
2σ 2 )(|w| + 1) and 0 < M0,M < ∞.

PROOF. Note that | |w| − |α0 + α1z| | ≤ |w − α0 − α1z| ≤ |w| + |α0 + α1z|,
and z is in some compact set. Thus, we have the following inequalities:

exp
(
−|w|M2

2σ 2

)
� pθ(y|z)∫

pθ(y|z) dη(z)
� exp

( |w|M1

2σ 2

)
(43)

and ∣∣∣∣ ∂

∂z

(
pθ(y|z)∫

pθ(y|z) dη(z)

)∣∣∣∣ � exp
( |w|M1

2σ 2

)
(|w| + 1),(44)

where Mi is some positive finite number, i = 1,2. �

LEMMA 6.2. Let hθ(y|z) = ∑L
l=0 gl(z;σ, γ,β)(w − α0 − α1z)

l for θ ∈ �,
where gl(z;σ, γ,β) ∈ C1

1(Z) and is continuous w.r.t. θ for l = 0,1, . . . ,L. The
following then has an integrable envelope function in LK(P ) and is continuous at
(θ, η1, η2) when θ is in some neighborhood of θ0 and ηi is in some neighborhood
of η0 for i = 1,2, and where K is any positive integer:

f h
θ,η1,η2

(y) ≡
∫

hθ(y|z)pθ (y|z) dη1(z)∫
pθ(y|z) dη2(z)

.(45)

PROOF. The following is the envelope function for f h
θ,η1,η2

(y), Fh(y):

|f h
θ,η1,η2

(y)| �
L∑

l=0

(|w| + 1)l
∫

pθ(y|z) dη1(z)∫
pθ(y|z) dη2(z)

�
L∑

l=0

(|w| + 1)l exp
( |w|M1

2σ 2
min

)
≡ Fh(y).
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In the above, the first inequality follows from (45), the second one follows from
(43) and 0 < σmin ≤ σ ≤ σmax < ∞. Next, we only need to show P |Fh(y)|K < ∞
for any positive integer K . Accordingly,

P |Fh
θ (y)|K ≤

1∑
i=0

∫
Z

∫ +∞
−∞

(
L∑

l=0

(|w| + 1)l

)K

× exp
(

KM1

2σ 2
min

|w|
)
pθ0(w,d = i|z) dw dη0(z)

�
1∑

i=0

∫
Z

∫ +∞
−∞

(
L∑

l=0

(|w| + 1)l

)K

exp
(

KM1

2σ 2
min

|w|
)

× exp
(
−(|w| − |α0 + α1z|)2

2σ 2
max

)
dw dη0(z)

�
1∑

i=0

∫
Z

∫ +∞
−∞

(
L∑

l=0

(|w| + 1)l

)K

exp
(
−(|w| − M3)

2

2σ 2
max

)
dw dη0(z)

< ∞,

where M3 is some positive finite number. The second inequality follows from the
inequality | |w| − |α0 + α1z| | ≤ |w − α0 − α1z|.

It is trivial to show that f h
θ,η1,η2

(y) is continuous at θ0 given (η1, η2) is close to
(η0, η0), since pθ(y|z) and hθ(y|z) are both continuous at θ0 for P -almost every Y .
Next, we need to show f h

θ,η1,η2
(y) is continuous at (η0, η0) for fixed θ around θ0.

Accordingly,

|f h
θ,η1,η2

(y) − f h
θ,η10,η20

(y)|

≤
∣∣∣∣(η1 − η10)

(
hθ

pθ

η2pθ

)∣∣∣∣ + |η10hθpθ |
η20pθ

∣∣∣∣(η2 − η20)

(
pθ

η2pθ

)∣∣∣∣
≤

∣∣∣∣∣(η1 − η10)

(
L∑

l=0

wlGl(z; θ)
pθ

η2pθ

)∣∣∣∣∣
+

L∑
l=0

|η10gl(z;σ, γ,β)(w − α0 − α1z)
lpθ |

η20pθ

∣∣∣∣(η2 − η20)

(
pθ

η2pθ

)∣∣∣∣
�

L∑
l=0

|w|l
∣∣∣∣(η1 − η10)

(
Gl(z; θ)

pθ

η2pθ

)∣∣∣∣
+ (|w| + 1)l

η10pθ

η20pθ

∣∣∣∣(η2 − η20)

(
pθ

η2pθ

)∣∣∣∣
� K1(w) × ‖η1 − η10‖BL1 + K2(w) × ‖η2 − η20‖BL1,
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where

K1(w) = exp
(

M1|w|
2σ 2

min

)(
L∑

l=0

|w|l+1 +
L∑

l=0

|w|l
)
,

K2(w) = exp
(

M1|w|
σ 2

min

) L∑
l=0

(|w| + 1)l+1

and where hθ and pθ are abbreviations for hθ(y|z) and pθ(y|z), respectively. The
second inequality follows from

hθ(y|z) ≡
L∑

l=0

gl(z;σ, γ,β)(w − α0 − α1z)
l =

L∑
l=0

Gl(z; θ)wl,

where Gl(z; θ) = ∑L
k=l gk(z;σ, γ,β)(−α0 − α1z)

k−l(k!/(l!(k − l)!)). It is trivial
to check that

∑N
i=1 wifi(z)gi(z)/2 ∈ C1

1(Z) if fi(z) and gi(z) belong to C1
1(Z).

Since the wi ’s are nonnegative weights which sum to one, we can find a positive
number R such that R−1Gl(z; θ) ∈ C1

1(Z) for 0 ≤ l ≤ L. The last inequality fol-
lows from Lemma 6.1 and (43). Note that both K1(w) and K2(w) are bounded in
L1(P ). This completes the proof. �

VERIFICATION OF ASSUMPTION 4. By repeatedly applying Lemma 6.2, we
can check the continuity and boundedness conditions in assumption 4 by resetting
hθ(y|z) equal to aT

0 �̇θ (y|z), aT
0 �̈θ (y|z)a0 and aT

0 �̇θ (y|z)H0(z)
T a0. �

Continuing with the proof of Lemma 6, we need the following verification of
assumption 5 (which requires Lemmas 6.3 and 6.4 below).

VERIFICATION OF ASSUMPTION 5. Lemma 6.3 is proved in [27]. The more
general version of this lemma can be found on pages 158–159 of [29]. We know
the random variable d is binary and thus not smooth. But, if the classes of functions
obtained by fixing d to either 0 or 1 are both P -Donsker when viewed as functions
of the remaining arguments, then the entire classes are P -Donsker. A more formal
statement of this result can be found in Lemma 9.2 of [23]. Thus, we consider the
classes of functions in the following two lemmas for d = 0 and d = 1, respectively.

LEMMA 6.3. Let X = ⋃∞
j=1 Ij be a partition of R

1 into bounded, convex sets
whose Lebesgue measure is bounded uniformly away from zero and infinity. Let G
be a class of functions g :X �→ R

1 such that the restrictions g|Ij
belong to C1

Nj

for every j . G is then P -Donsker or P -Glivenko–Cantelli for every probability
measure P on X if and only if

∑∞
j=1 NjP

1/2(Ij ) < ∞ or
∑∞

j=1 NjP (Ij ) < ∞,
respectively.
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LEMMA 6.4. (46) below is P -Donsker when θ is in some neighborhood of θ0
and (η1j , η2j ) is in some neighborhood of (η0, η0) over compact support Z for

j = 1, . . . , k. The form of f
hj

θ,η1j ,η2j
(y) is given in (45) and

LH(y; θ, η̄1, η̄2) ≡
k∏

j=1

f
hj

θ,η1j ,η2j
(y),(46)

where H = (hθ1(y|z), hθ2(y|z), . . . , hθk(y|z))T , η̄1 = (η11(z), . . . , η1k(z))
T , η̄2 =

(η21(z), . . . , η2k(z))
T and hθj

(y|z) = ∑Lj

l=0 glj (z;σ, γ,β)(w − α0 − α1z)
l , and

where glj (z;σ, γ,β) ∈ C1
1(Z) for l = 0,1, . . . ,Lj and j = 1, . . . , k.

PROOF. Without loss of generality, we assume d = 1 in the following proof.
Based on (43), we have, in each Ij = {j − 1 ≤ |w| ≤ j}, j = 1, . . . , k,

|f hj

θ,η1j ,η2j
(y)| �

Lj∑
l=0

(|w| + 1)l exp
( |w|M1

2σ 2

)
(47)

and ∣∣∣∣ ∂

∂w
f

hj

θ,η1j ,η2j
(w, d = 1)

∣∣∣∣
≤ η1j (| ∂

∂w
hθj |pθ)

η2jpθ

+ η1j (|hθj
∂

∂w
logpθ |pθ)

η2jpθ
(48)

+ η1j (|hθj |pθ)

η2jpθ

× η2j (| ∂
∂w

logpθ |pθ)

η2jpθ

�
Lj+1∑
l=0

(|w| + 1)l
(

exp
( |w|M1

2σ 2

)
+ exp

( |w|M1

σ 2

))
.

From the above two inequalities, we have that |(∂/∂w)LH (y; θ, η̄1, η̄2)| is
bounded by some constant times

∑R
l=0(j + 1)l(exp(jM1k/2σ 2) + exp(jM1(k +

1)/2σ 2)), where R = 1 + ∑k
j=1 Lj , in each Ij , j ≥ 1. We can then apply

Lemma 6.3 to the function w �→ LH(y; θ, η̄1, η̄2) with d = 1 in each Ij de-
fined above. Since the tails in w of P are sub-Gaussian, the series

∑
j (

∑R
l=0(j +

1)l(exp(jM1k/2σ 2) + exp(jM1(k + 1)/2σ 2)))P (j − 1 ≤ |w| ≤ j)1/2 is conver-
gent. Thus, we prove that (46) is P -Donsker, which is trivially P -Glivenko–
Cantelli by Lemma 6.3. �

Continuing with the proof of Lemma 6, we next apply Lemma 6.3 and
Lemma 6.4 to show that x �→ �̈(t, θ, η)(x) is P -Donsker when (t, θ, η) is around
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(β0, θ0, η0). The first term of �̈(t, θ, η), aT
0 �̈θ (y|z)a0, is P -Donsker, provided the

following are both P -Donsker, for 0 < r, s, t < ∞ in (50):

f (z) : z �→ exp(γ + βez)ez

(1 + exp(γ + βez))2 ,(49)

gr,s,t (w) :w �→ zr(w − α0 − α1z)
s

σ t
.(50)

(49) is trivially P -Donsker since the function u �→ u exp(γ + βu)(1 + exp(γ +
βu))−2 is Lipschitz continuous, where u = ez is P -Donsker. For (50), we need
to consider Lemma 6.3. We have that |(∂/∂w)gr,s,t (w)| � (j + |α0| + |α1|)s−1

when j − 1 ≤ |w| ≤ j . Since the tails in w of P are sub-Gaussian, the series∑
j j s−1P(j − 1 ≤ |w| ≤ j)1/2 is convergent. We have thus proven that the first

term of x �→ �̈(t, θ, η)(x) is P -Donsker. By setting hθ(y|z) in Lemma 6.4 equal to
aT

0 �̇θ (y|z), aT
0 �̈θ (y|z)a0 or aT

0 H0(z), we can show that the remaining parts of x �→
�̈(t, θ, η)(x) are also P -Donsker. It can also be proven that x �→ �t,θ (t, θ, η)(x) is
P -Donsker and that x �→ �(3)(t, θ, η)(x) is P -Glivenko–Cantelli by similar rea-
soning. Thus, assumption 5 is satisfied. The proof is complete since Lemmas 6.5,
6.6 and 6.7 below verify assumption 6. �

LEMMA 6.5. (2) holds when η is in some neighborhood of η0.

PROOF. Based on the form of �̇(θ, θ, η), we can prove (2), provided

Gn

(
f h

θ,η,η(y) − f h
θ,η0,η0

(y)
) = OP (‖η − η0‖BL1).(51)

Note that hθ(y|z) = ∑L
l=0 gl(z;σ, γ,β)(w − α0 − α1z)

l for θ ∈ �, where
gl(z;σ, γ,β) ∈ C1

1(Z) for l = 0,1, . . . ,L. Thus, (51) will hold, provided
∫

g(z)wlpθ0(y|z) dη(z)∫
pθ0(y|z) dη(z)‖η − η0‖BL1

−
∫

g(z)wlpθ0(y|z) dη0(z)∫
pθ0(y|z) dη0(z)‖η − η0‖BL1

,(52)

for g(z) ranging over C1
1(Z), is P -Donsker for l = 0,1, . . . ,L. Without loss of

generality, it will be enough to verify this for d = 1. Note that (52) can also be
written as the sum of Qθ0,η0,η(w) and −Rθ0,η0,η(w), where

Qθ0,η0,η(w) =
∫

g(z)wlpθ0(y|z) d(η − η0)(z)∫
pθ0(y|z) dη(z)‖η − η0‖BL1

and

Rθ0,η0,η(w) =
∫

g(z)wlpθ0(y|z) dη0(z)∫
pθ0(y|z) dη0(z)

×
∫

pθ0(y|z) d(η − η0)(z)∫
pθ0(y|z) dη(z)‖η − η0‖BL1

.
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We apply Lemma 6.3 to prove that Qθ0,η0,η(w) is P -Donsker:

|(∂/∂w)Qθ0,η0,η(w)|

≤ l|w|l−1 |(η − η0)(gpθ0)|
ηpθ0‖η − η0‖BL1

+ |w|l |(η − η0)(gpθ0
∂

∂w
logpθ0)|

ηpθ0‖η − η0‖BL1

+ |w|l |(η − η0)(gpθ0)|
ηpθ0‖η − η0‖BL1

× η(pθ0 | ∂
∂w

logpθ0 |)
ηpθ0

�
l+1∑

m=l−1

|w|m |(η − η0)(sm(z)pθ0/(ηpθ0))|
‖η − η0‖BL1

,

where g and pθ0 are abbreviations for g(z) and pθ0(y|z), respectively, and sm(z) ∈
C1

1(Z) for m = l − 1, l, l + 1. Combining this with (43), |(∂/∂w)Qθ0,η0,η(w)| is
bounded by a constant times exp(jM1/2σ 2)

∑l+2
m=l−1 jm in each region Ij = {j −

1 ≤ |w| ≤ j}. It is thus proved that Qθ0,η0,η(w) is P -Donsker, by Lemma 6.3.
Similarly, we can also show that Rθ0,η0,η(w) is P -Donsker. This completes the
proof. �

LEMMA 6.6. (3) and (4) hold when η is in some neighborhood of η0.

PROOF. Based on the form of �̈(θ, θ, η), (3) will follow provided

P

∣∣∣∣η(g(z)wlpθ0)

ηpθ0

− η0(g(z)wlpθ0)

η0pθ0

∣∣∣∣ = OP (‖η − η0‖BL1),(53)

for any g(z) ∈ C1
1(Z) and for l = 0,1, . . . ,L. Now, (53) is bounded by

the summation of P |Q̄θ0,η0,η(w)| and P |R̄θ0,η0,η(w)|, where Q̄θ0,η0,η(w) ≡
Qθ0,η0,η(w)‖η − η0‖BL1 and R̄θ0,η0,η(w) ≡ Rθ0,η0,η(w)‖η − η0‖BL1 , and where
Qθ0,η0,η(w) and Rθ0,η0,η(w) are as defined in the proof of Lemma 6.5 above. Note
that P |Q̄θ0,η0,η(w)| can be written as

P |Q̄θ0,η0,η(w)|

=
∫

R

�0(w)|w|l
∣∣∣∣
∫
Z

g(z)pθ0(w,d = 0|z) d(η − η0)(z)

∣∣∣∣dw P(d = 0)

+
∫

R

�1(w)|w|l
∣∣∣∣
∫
Z

g(z)pθ0(w,d = 1|z) d(η − η0)(z)

∣∣∣∣dw P(d = 1),

where �i(w) = ∫
pθ0(w,d = i|z) dη0(z)/

∫
pθ0(w,d = i|z) dη(z) for i = 0,1.

Without loss of generality, we can show P |Q̄θ0,η0,η(w)| is of the order ‖η −
η0‖BL1 , provided the first integral on the right-hand side of the above equa-
tion is of the same order. Based on the inequality ||w| − |α0 + α1z|| ≤ |w −
α0 − α1z| ≤ |w| + |α0 + α1z|, we have �0(w) � exp((M1/2σ 2)|w|). We can
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verify that exp(w2/4σ 2)g(z)pθ0(w,d = 0|z) ∈ C1
1(Z) for P -almost all Y af-

ter proper rescaling. Also,
∫
R

�0(w)|w|l exp(−w2/4σ 2) dw is trivially bounded.
Thus, P |Q̄θ0,η0,η(w)| is of the same order as ‖η − η0‖BL1 . By similar analysis, we
can also show that P |R̄θ0,η0,η(w)| = OP (‖η − η0‖). Since �t,θ (t, θ, η) is similar
to �̈(t, θ, η), we also have P�t,θ (θ0, θ0, η)−P�t,θ (θ0, θ0, η0) = OP (‖η −η0‖BL1).

�

LEMMA 6.7. (5) holds when η is in some neighborhood of η0.

PROOF. Based on previous discussions about the verification of (5), we only
need to show that |�̇(θ0, θ0, η)− �̇(θ0, θ0, η0)| � C(y)‖η−η0‖BL1 and | lik(θ0, η)−
lik(θ0, η0) − A0(η − η0) lik(θ0, η0)| � D(y)‖η − η0‖2

BL1
, where C(y) and D(y)

are both bounded in L2(P ). The former inequality is easily proved via techniques
similar to those used in the proof of Lemma 6.6. For the latter, we can write

lik(θ0, η) − lik(θ0, η0)

= A0(η − η0) lik(θ0, η0) + pθ0(y|z)
∫
{zc}

d(η − η0)

∫
pθ0(y|z) d(η − η0),

where A0(η − η0) = η0{zc}−1 ∫
{zc} d(η − η0) + (

∫
pθ0(y|z) dη0(z))

−1 ×∫
pθ0(y|z) d(η − η0). It is now easy to show that |pθ0(y|z) ∫

1{zc} d(η − η0) ×∫
pθ0(y|z) d(η − η0)| � D(y)‖η − η0‖2

BL1
since pθ0(y|z) ∈ C1

1(Z) for P -almost
every Y via rescaling. �

PROOF OF LEMMA 7. The proof is analogous to that of Lemma 3 in [17].
�
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