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ADAPTIVE CONFIDENCE BANDS

BY CHRISTOPHER GENOVESE AND LARRY WASSERMAN

Carnegie Mellon University

We show that there do not exist adaptive confidence bands for curve es-
timation except under very restrictive assumptions. We propose instead to
construct adaptive bands that cover a surrogate function f � which is close
to, but simpler than, f . The surrogate captures the significant features in f .
We establish lower bounds on the width for any confidence band for f � and
construct a procedure that comes within a small constant factor of attaining
the lower bound for finite-samples.

1. Introduction.

1.1. Motivation. Let (x1, Y1), . . . , (xn, Yn) be observations from the nonpara-
metric regression model

Yi = f (xi) + σεi,(1)

where εi ∼ N(0,1), xi ∈ (0,1) and f is assumed to lie in some infinite-
dimensional class of functions H . We are interested in constructing confidence
bands (L,U) for f . Ideally these bands should satisfy

Pf {L ≤ f ≤ U} = 1 − α for all f ∈ H ,(2)

where L ≤ f ≤ U means that L(x) ≤ f (x) ≤ U(x) for all x ∈ X, where X is
some subset of (0,1) such as X = {x},X = {x1, . . . , xn} or X = (0,1). Through-
out this paper, we take X = {x1, . . . , xn} but this particular choice is not crucial in
what follows.

Attaining (2) is difficult and hence it is common to settle for pointwise asymp-
totic coverage:

lim inf
n→∞ Pf {L ≤ f ≤ U} ≥ 1 − α for all f ∈ H .(3)

“Pointwise” refers to the fact that the asymptotic limit is taken for each fixed f

rather than uniformly over f ∈ H . Papers on pointwise asymptotic methods in-
clude Claeskens and Van Keilegom (2003), Eubank and Speckman (1993), Härdle
and Marron (1991), Hall and Titterington (1988), Härdle and Bowman (1988),
Neumann and Polzehl (1998) and Xia (1998).
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Achieving even pointwise asymptotic coverage is nontrivial due to the presence
of bias. If f̂ (x) is an estimator with mean f (x) and standard deviation s(x) then

f̂ (x) − f (x)

s(x)
= f̂ (x) − f (x)

s(x)
+ bias(x)√

variance(x)
.

The first term typically satisfies a central limit theorem but the second term does
not vanish even asymptotically if the bias and variance are balanced. For discus-
sions on this point, see the papers referenced above as well as Ruppert, Wand and
Carroll (2003) and Sun and Loader (1994).

Pointwise asymptotic bands are not uniform, that is, they do not control

inf
f ∈H

Pf {L ≤ f ≤ U}.(4)

The sample size n(f ) required for the true coverage to approximate the nominal
coverage, depends on the unknown function f .

The aim of this paper is to attain uniform coverage over H . We say that B =
(L,U) has uniform coverage if

inf
f ∈H

Pf {L ≤ f ≤ U} ≥ 1 − α.(5)

Starting in Section 3, we will insist on coverage over H = {all functions}.
The bound in (5) can be achieved trivially using Bonferroni bands. Set �i =

Yi − cnσ and ui = Yi + cnσ , where cn = �−1(1 − α/2n) and � is the standard
Normal c.d.f. Yet this band is unsatisfactory for several reasons:

1. The width of the band grows with sample size.
2. The band is centered on a poor estimator of the unknown function.
3. The width of the band is independent of the data, and hence cannot adapt to the

smoothness of the unknown function.

Problems 1 and 2 are easily remedied by using standard smoothing methods. But
the results of Low (1997) suggest that problem 3 is an inevitable consequence of
uniform coverage.

The smoother the functions in H , the smaller the width necessary to achieve
uniform coverage. Suppose that F ⊂ H contains the “smooth” functions in H
and that H − F is nonempty. Uniform coverage over H requires that the width
of fixed-width bands be driven by the “rough” functions in H − F ; the width will
thus be large even if f ∈ F . Ideally, our procedure would adjust automatically to
produce narrower bands when the function is smooth (f ∈ F ) and wider bands
when the function is rough (f /∈ F ), but to do that, the width must be determined
from the data. Low showed that for density estimation at a single point, fixed-width
confidence intervals perform as well as random length intervals; that is, the data
do not help reduce the width of the bands for smoother functions. In Section 2, we
extend Low’s result to nonparametric regression and show that the phenomenon is
quite general. Without restrictive assumptions, confidence bands cannot adapt.
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These results mean that the width of uniform confidence bands is determined by
the greatest roughness we are willing to assume. Because the typical assumptions
about H in the nonparametric regression problem are loosely held and difficult to
check, the result is that the confidence band widths are essentially arbitrary. This
is not satisfactory in practice.

The contrast with L2 confidence balls is noteworthy. L2 confidence sets have
been studied by Li (1989), Juditsky and Lambert-Lacroix (2003), Beran and Düm-
bgen (1998), Genovese and Wasserman (2005), Baraud (2004), Hoffman and Lep-
ski (2002), Cai and Low (2006) and Robins and van der Vaart (2006). Let

B =
{
f ∈ R

n :
1

n

n∑
i=1

(fi − f̂i)
2 ≤ R2

n

}
(6)

for some f̂ and suppose that

inf
f ∈Rn

Pf {f ∈ B} ≥ 1 − α.(7)

Then

inf
f ∈Rn

Ef (Rn) ≥ C1

n1/4 and sup
f ∈Rn

Ef (Rn) ≥ C2,(8)

where C1 and C2 are positive constants. Moreover, there exist confidence sets that
achieve the faster n−1/4 rate at some points in R

n. Because fixed-radius confidence
sets necessarily have radius of size O(1), the supremum in (8) implies such con-
fidence sets must have random radii. We can construct random-radius confidence
balls that improve on fixed-radius confidence sets, for example, by obtaining a
smaller radius for subsets of smoother functions f . L2 confidence balls can there-
fore adapt to the unknown smoothness of f . Unfortunately, confidence balls can
be difficult to work with in high dimensions (large n) and tend to constrain many
features of interest rather poorly, for which reasons confidence bands are often
desired.

The issues dealt with in this paper are related to the problem of constructing
valid confidence intervals for parameters in linear models after model selection.
Discussion on this issue as well as some methods for attacking the problem can be
found in Kabaila (1995, 1998), Andrews and Guggenberger (2007) and Leeb and
Pötscher (2005).

It is also interesting to compare the adaptivity results for estimation and in-
ference. Estimators exist [e.g., Donoho et al. (1995)] that can adapt to unknown
smoothness, achieving near optimal rates of convergence over a broad scale of
spaces. But since confidence bands cannot adapt, the minimum width bands that
achieve uniform coverage over the same scale of spaces have width O(1), over-
whelming the differences among reasonable estimators. We are left knowing that
we are close to the true function but being unable to demonstrate it inferentially.
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The message we take from the nonadaptivity results in Low (1997) and Sec-
tion 2 of this paper is that the problem of constructing confidence bands for f over
nonparametric classes is simply too difficult under the usual definition of coverage.
Instead, we introduce a slightly weaker notion—surrogate coverage—under which
it is possible to obtain adaptive bands while allowing sharp inferences about the
main features of f .

1.2. Surrogates. Figure 1 shows two situations where a band fails to capture
the true function. The top plot shows a conservative failure: the only place where
f is not contained in the band is when the bands are smoother than the truth. The

FIG. 1. The top plot shows a conservative failure: the only place where f is not contained in the
band is when the bands are smoother than the truth. The bottom plot shows a liberal failure: the only
place where f is not contained in the band is when the bands are less smooth than the truth. The
usual notion of coverage treats these failures equally.
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bottom plot shows a liberal failure: the only place where f is not contained in the
band is when the bands are less smooth than the truth. The usual notion of coverage
treats these failures equally. Yet, in some sense, the second error is more serious
than the first since the bands overstate the complexity.

We are thus led to a different approach that treats conservative errors and liberal
errors differently. The basic idea is to find a function f � that is simpler than f as
in Figure 2. We then require that

Pf {L ≤ f ≤ U or L ≤ f � ≤ U} ≥ 1 − α for all functions f.(9)

More generally, we will define a finite set of surrogates F� ≡ F�(f ) = {f,f �
1 , . . . ,

f �
m} and require that a surrogate confidence band (L,U) satisfy

inf
f

Pf {L ≤ g ≤ U for some g ∈ F�} ≥ 1 − α.(10)

We will also consider bands that are adaptive in the following sense: if f lies in
some subspace F , then with high probability ‖U −L‖∞ ≤ w(F ), where w(F ) is
the best width of a uniformly valid confidence band (under the usual definition of
coverage) based on the a priori knowledge that f ∈ F . Among possible surrogates,
a surrogate will be optimal if it admits a valid, adaptive procedure and the set
{f ∈ F :F�(f ) = {f }} is as large as possible.

1.3. Summary of results. In Section 2, we show that Low’s result on density
estimation holds in regression as well. Fixed width bands do as well as random
width bands, thus ruling out adaptivity. We show this when H is the set of all
functions and when H is a ball in a Lipschitz, Sobolev or Besov space.

Section 3 gives our main results. Theorem 18 establishes lower bounds on the
width for any valid surrogate confidence band. Let F be a subspace of dimension d

in R
n. The functions that prevent adaptation are those that are close to F in L2

but far in L∞. Loosely speaking, such functions are close to F except for isolated,
spiky features. If ‖f − �f ‖2 < ε2 and ‖f − �f ‖∞ > ε∞, for tuning constants
ε2, ε∞, define the surrogate f � to be the projection of f onto F , �f . Otherwise,
define f � = f . We show that if Pf {‖U − L‖∞ < w} ≥ 1 − γ for all f ∈ F , then

w ≥ max(wF (α, γ, σ ), v(ε2, ε∞, n, d,α, γ, σ )),(11)

where wF is the minimum width for a uniform confidence band knowing a priori
that f ∈ F and v(ε2, ε∞, n, d,α, γ ) is described later.

Corollary 30 shows that for proper choice of ε2 and ε∞, the v term in the pre-
vious equation can be made smaller than wF . Figure 3 represents the functions
involved; the gray shaded area are those functions that are replaced by surrogates
in the coverage statement, denoted later by S(ε2, ε∞). These are the functions that
are both hard to distinguish from F (because they are close to it) and hard to cover
(because they are “spiky”). The optimal choice of ε2 and ε∞ minimizes the vol-
ume of this set while making the right-hand side in inequality (11) equal to wF .
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FIG. 2. The top plot shows a complicated function f . The bottom shows a surrogate f � which is
simpler than f but retains the main, estimable features of f . Adaptation is possible if we cover f �

instead of f .

Put another way, the richest model that permits adaptive confidence bands under
the usual notion of coverage is F = R

n − S(ε2, ε∞).
Theorem 29 gives a procedure that comes within a factor of 2 of attaining the

lower bound for finite-samples. The procedure conducts goodness of fit tests for
subspaces and constructs bands centered on the estimator of the lowest dimen-
sional nonrejected subspace. Such a procedure actually reflects common practice.
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FIG. 3. The dot at the center represents the subspace F . The shaded area is the set of spoilers
S(ε2, ε∞) of vectors for which f � �= f . If these vectors were not surrogated, adaptation is not
possible. The nonshaded area is the invariant set I(ε2, ε∞) = {f :f � = f }.

It is not uncommon to fit a model, check the fit, and if the model does not fit then
we fit a more complex model. In this sense, we view our results as providing a
rigorous basis for common practice. It is known that pretesting followed by infer-
ence does not lead to valid inferences for f [Leeb and Pötscher (2005)]. But if we
can accept that sometimes we cover a surrogate f � rather than f , then validity is
restored.

These results are proved in Section 4.

1.4. Related work. The idea of estimating the detectable part of f is present,
at least implicitly, in other approaches. Davies and Kovac (2001) separate the data
into a simple piece plus a noise piece which is similar in spirit to our approach.
Another related idea is scale-space inference due to Chaudhuri and Marron (2000)
who focus on inference for all smoothed versions of f rather than f itself. Also
related is the idea of oversmoothing as described in Terrell (1990) and Terrell and
Scott (1985). Terrell argues that “By using the most smoothing that is compati-
ble with the scale of the problem, we tend to eliminate accidental features.” The
idea of one-sided inference in Donoho (1988) has a similar spirit. Here, one con-
structs confidence intervals of the form [L,∞) for functionals such as the number
of modes of a density. Bickel and Ritov (2000) make what they call a “radical
proposal” to “. . . determine how much bias can be tolerated without [interesting]
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features being obscured.” We view our approach as a way of implementing their
suggestion. Another related idea is contained in Donoho (1995) who showed that
if f̂ is the soft threshold estimator of a function and f (x) = ∑

j θjψj (x) is an ex-

pansion in an unconditional basis, then Pf {f̂  f } ≥ 1 − α where f̂ = ∑
j θ̂jψj

and f̂  f means that |θ̂j | ≤ |θj | for all j . Finally, we remind the reader that there
is a plethora of work on adaptive estimation; see, for example, Cai and Low (2004)
and references therein.

1.5. Notation. If L and U are random functions on X = {x1, . . . , xn} such that
L ≤ U , we define B = (L,U) to be the (random) set of all functions g on X for
which L ≤ g ≤ U . We call B (or equivalently, the pair L,U ) a band; the band
covers a function f if f ∈ B (or equivalently, if L ≤ f ≤ U ). Define its width to
be the random variable

W = ‖U − L‖∞ = max
1≤i≤n

(
U(xi) − L(xi)

)
.(12)

Because we are constructing bands on X = {x1, . . . , xn}, we most often refer
to functions in terms of their evaluations f = (f (x1), . . . , f (xn)) ∈ R

n. When we
need to refer to a space of functions to which f belongs, we use a ˜ to denote the
function space and no ˜ to denote the vector space of evaluations. Thus, if Ã is the
space of all functions, then A = R

n. In both cases, we use the same symbol for
the function and let the meaning be clear from context; for example, f ∈ Ã is the
function and f ∈ A is the vector (f (x1), . . . , f (xn)). Define the following norms
on R

n:

‖f ‖ = ‖f ‖2 =
√√√√1

n

n∑
i=1

f 2
i , ‖f ‖∞ = max

i
|fi |.

We use 〈·, ·〉 to denote the inner product 〈f,g〉 = 1
n

∑n
i=1 figi corresponding to

‖ · ‖.
If F is a subspace of R

n, we define �F to be the Euclidean projection onto F ,
using just � if the subspace is clear from context. We use

ei = (0, . . . ,0︸ ︷︷ ︸
i−1 times

,1,0, . . . ,0︸ ︷︷ ︸
n−i times

)T(13)

to denote the standard basis on R
n.

If Fθ is a family of c.d.f.’s indexed by θ , we write F−1
θ (α) to denote the lower-

tail α-quantile of Fθ . For the standard normal distribution, however, we use zα to
denote the upper-tail α-quantile, and we denote the c.d.f. and p.d.f., respectively,
by � and φ.

Throughout the paper we assume that σ is a known constant; in some cases, we
simply set σ = 1. But see Remark 22 about the unknown σ case.
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2. Nonadaptivity of bands. In this section we construct lower bounds on the
width of valid confidence bands analogous to (8) and we show that the lower bound
is achieved by fixed-width bands.

Low (1997) considered estimating a density f in the class

F (a, k,M) =
{
f :f ≥ 0,

∫
f = 1, f (x0) ≤ a,

∥∥f (k)(x)
∥∥∞ ≤ M

}
.

He shows that if Cn is a confidence interval for f (0), that is,

inf
f ∈F (a,k,M)

Pf {f (x0) ∈ Cn} ≥ 1 − α,

then, for every ε > 0, there exists N = N(ε,M) and c > 0 such that, for all n ≥ N ,

Ef (length(Cn)) ≥ cn−k/(2k+1)(14)

for all f ∈ F (a, k,M) such that f (0) > ε. Moreover, there exists a fixed-width
confidence interval Cn and a constant c1 such that Ef (length(Cn)) ≤ c1n

−k/(2k+1)

for all f ∈ F (a, k,M). Thus, the data play no role in constructing a rate-optimal
band, except in determining the center of the interval.

For example, if we use kernel density estimation, we could construct an opti-
mal bandwidth h = h(n, k) depending only on n and k—but not the data—and
construct the interval from that kernel estimator. This makes the interval highly
dependent on the minimal amount of smoothness k that is assumed. And it rules
out the usual data-dependent bandwidth methods such as cross-validation.

Now return to the regression model

Yi = fi + σεi, i = 1, . . . , n,(15)

where ε1, . . . , εn are independent, Normal(0,1) random variables, and f =
(f1, . . . , fn) ∈ R

n.

THEOREM 1. Let B = (L,U) be a 1 − α confidence band over , where
0 < α < 1/2 and let g ∈ . Suppose that  contains a finite set of vectors �, such
that:

1. for every distinct pair f, ν ∈ �, we have 〈f − g, ν − g〉 = 0 and
2. for some 0 < ε < (1/2) − α,

max
f ∈�

en‖f −g‖2/σ 2

|�| ≤ ε2.(16)

Then,

Eg(W) ≥ (1 − 2α − 2ε) min
f ∈�

‖g − f ‖∞.(17)
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We begin with the case where  = R
n. We will obtain a lower bound on the

width of any confidence band and then show that a fixed-width procedure attains
that width. The results hinge on finding a least favorable configuration of mean
vectors that are as far away from each as possible in L∞ while staying a fixed
distance ε in total-variation distance.

THEOREM 2. Let H = R
n and fix 0 < α < 1/2. Let B = (L,U) be a 1 − α

confidence band over H . Then, for every 0 < ε < (1/2) − α,

inf
f ∈Rn

Ef (W) ≥ (1 − 2α − 2ε)σ

√
log(nε2).(18)

The bound is achieved (up to constants) by the fixed-width Bonferroni bands: �i =
Yi − σzα/(2n), ui = Yi + σzα/(2n).

THEOREM 3 (Lipshschitz balls). Define xi = i/n for 1 ≤ i ≤ n. Let

H̃(L) = {f : |f (x) − f (y)| ≤ L|x − y|, x, y ∈ [0,1]},(19)

be a ball in Lipschitz space, and let

H(L) = {(f (x1), . . . , f (xn)) :f ∈ H̃(L)}(20)

be the vector of evaluations on X. Fix 0 < α < 1/2 and let B = (L,U) be
a 1 − α confidence band over H(L). Then, for every 0 < ε < (1/2) − α,
inff ∈H(L) Ef (W) ≥ an where

an =
(

logn

n

)1/3

×
(

Lσ 2

2

)1/3

×
(

1 + 3 log(1 + ε2)

logn
+ 2 log(L/(2σ))

logn

− log((1/3) logn + log(1 + ε2) + (2/3) log(L/(2σ)))

logn

)
.

The lower bound is achieved (up to logarithmic factors) by a fixed-width procedure.

THEOREM 4 (Sobolev balls). Let H̃(p, c) be a Sobolev ball of order p and
radius c and let B = (L,U) be a 1 − α confidence band over H(p, c). For every
0 < ε < (1/2) − α, for every δ > 0, and all large n,

inf
F∈H(p,c−δ)

EF (W) ≥ (1 − 2α − 2ε)

(
cn

np/(2p+1)

)
(21)

for some cn that increases at most logarithmically. The bound is achieved (up to
logarithmic factors) by a fixed-width band procedure.
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THEOREM 5 (Besov balls). Let H̃(p, q, ξ, c) be ball of size c in the Besov
space B

ξ
p,q and et B = (L,U) be a 1 − α confidence band over H(p, q, ξ, c). For

every 0 < ε < (1/2) − α, and every δ > 0,

inf
f ∈H(p,q,ξ,c−δ)

Ef (W) ≥ cn(1 − 2α − 2ε)n−1/(1/p−ξ−1/2).(22)

The bound is achieved (up to logarithmic factors) by a fixed-width procedure.

3. Adaptive bands. Let {FT :T ∈ T } be a scale of linear subspaces. Let wT

denote the smallest width of any confidence band when it is known that f ∈ FT

(defined more precisely below). We would like to define an appropriate surrogate
and a procedure that gets as close as possible to the target width wT when f ∈ FT .
To clarify the ideas, Section 3.2 develops our results in the special case where the
subspaces are {F ,R

n} for a fixed F of dimension d < n. Section 3.3 handles the
more general case of a sequence of nested subspaces.

3.1. Preliminaries. We begin by defining several quantities that will be used
throughout. Let τ(ε) denote the total variation distance between a N(0,1) and a
N(ε,1) distribution. Thus, τ(ε) = �(ε/2) − �(−ε/2). Then, εφ(ε/2) ≤ τ(ε) ≤
εφ(0) and τ(ε) ∼ εφ(0) as ε → 0.

LEMMA 6. If P = N(f,σ 2I ) and Q = N(g,σ 2I ) are multivariate Normals
with f,g ∈ R

n then

dTV(P,Q) = τ

(√
n‖f − g‖

σ

)
.(23)

We will need several constants. For 0 < α < 1 and 0 < γ < 1 − 2α define

κ(α, γ ) = (
2 log

(
1 + 4(1 − γ − 2α)2))1/4

.(24)

For 0 < β < 1 − ξ < 1 and integer m ≥ 1 define Q = Q(m,β, ξ) to be the
solution of

ξ = 1 − F0,m

(
F−1

Q
√

m,m
(β)

)
,(25)

where Fa,d denotes the c.d.f. of a χ2 random variable with d degrees of freedom
and noncentrality parameter a.

LEMMA 7. There is a universal constant �(β, ξ) such that Q(m,β, ξ) ≤
�(β, ξ) for all m ≥ 1. For example, �(0.05,0.05) ≤ 6.25. Suppose now that
m = mn, β = βn and ξ = ξn are all functions of n. As long as − logβn ≤ logn

and − log ξn ≤ √
logn, then Q(mn,βn, ξn) = O(

√
logn).
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Next, define

E(m,α, γ ) = max(Q(m,α, γ ),2κ(α, γ )),(26)

for 0 < α < 1 and 0 < γ < 1 − 2α.
Finally, if F is a subspace of dimension d , define

�F = max
1≤i≤n

‖�F ei‖
‖ei‖ ,(27)

where ei is defined in equation (13). Note that 0 ≤ �F ≤ 1. The value of �F

relates to the geometry of F as a hyperplane embedded in R
n, as seen through the

following results.

LEMMA 8. Let F be a subspace of R
n. Then

min{‖v‖ :v ∈ F ,‖v‖∞ = ε} = ε√
n�F

,(28)

max{‖v‖∞ :v ∈ F ,‖v‖ = ε} = ε
√

n�F .(29)

REMARK 9. In the case X = [0,1], the norm would be ‖f ‖2 = ∫ 1
0 f 2(x) dx

and �F would be defined by way of (29).

LEMMA 10. Let {φ1, . . . , φd} be orthonormal vectors with respect to ‖ · ‖ in
R

n and let F be the linear span of these vectors. Then �F =
max1≤i≤n

√∑d
j=1 φ2

ji/n. In particular, if maxj maxi φj (i) ≤ c then �F ≤ c
√

d/n.

LEMMA 11. Let {φ1, . . . , φd} be orthonormal functions on [0,1]. Define Hj

to be the linear span of {φ1, . . . , φj }. Let xi = i/n, i = 1, . . . , n, and Fj = {f =
(h(x1), . . . , h(xn)) :h ∈ Hj }. Then, �2

F = n−1 maxi

∑d
j=1 φ2

j (xi)+O(1/n) and if

maxj supx φj (x) ≤ c then �2
F ≤ c2d/n + O(1/n).

In addition, we need the following lemma first proved, in a related form, in
Baraud (2002).

LEMMA 12. Let F be a subspace of dimension d . Let 0 < δ < 1 − ξ and

ε = (n − d)1/4
√

n

(
2 log(1 + 4δ2)

)1/4
.(30)

Define A = {f :‖f − �F f ‖ > ε}. Then,

β ≡ inf
φα∈�ξ

sup
f ∈A

Pf {φξ = 0} ≥ 1 − ξ − δ,(31)

where

�ξ =
{
φξ : sup

f ∈F
Pf {φξ = 0} ≤ ξ

}
(32)

is the set of level ξ tests.
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3.2. Single subspace. To begin, we start with a single subspace F of dimen-
sion d .

DEFINITION 13. For given ε2, ε∞ > 0, define the surrogate f � of f by

f � =
{

�f, if ‖f − �f ‖2 ≤ ε2 and ‖f − �f ‖∞ > ε∞,
f, otherwise.

(33)

Define the surrogate set of f , F�(f ) = {f,f �}, which will be a singleton when
f � = f . Define the spoiler set S(ε2, ε∞) = {f ∈ R

n :f � �= f } and the invariant
set I(ε2, ε∞) = {f :f � = f }.

We give a schematic diagram in Figure 3. The gray area represents S(ε2, ε∞).
These are the functions that preclude adaptivity. Being close to F in L2 makes
them hard to detect but being far from F in L∞ makes them hard to cover. To
achieve adaptivity we must settle for sometimes covering �F f .

3.2.1. Lower bounds. We begin with two lemmas. The first controls the min-
imum width of a band and the second controls the maximum. The second is of
more interest for our purposes; the first lemma is included for completeness. For
any 1 ≤ p ≤ ∞, ε > 0, and A ⊂ R

n define

Mp(ε,A) = sup{dTV(Pf ,Pg) :f,g ∈ A,‖f − g‖p ≤ ε}(34)

and

m∞(ε,A0,A1) = inf{dTV(Pf ,Pg) :f ∈ A0, g ∈ A1,‖f − g‖∞ ≥ ε}.(35)

LEMMA 14. Suppose that inff ∈A Pf {L ≤ f ≤ U} ≥ 1 − α. Let 1 ≤ p ≤ ∞
and ε > 0. For f ∈ A, define

ε(f, q) = sup{‖f − h‖q :h ∈ A,‖f − h‖p ≤ ε},
where 1 ≤ q ≤ ∞. Then, for any A0 ⊂ A,

inf
f ∈A0

Pf {W > ε(f,∞)} ≥ 1 − 2α − sup
f ∈A0

Mp(ε(f,p),A),(36)

where W = ‖U − L‖∞. If every point in A is contained in a subset of A of
�p-diameter ε, then ε(f,p) ≡ ε, and

inf
f ∈A0

Pf {W > ε} ≥ 1 − 2α − Mp(ε,A).(37)

LEMMA 15. Suppose that inff ∈A Pf {L ≤ f ≤ U} ≥ 1 −α. Suppose that A =
A0 ∪ A1 (not necessarily disjoint). Let ε > 0 be such that for each f ∈ A0 there
exists g ∈ A1 for which ‖f − g‖∞ = ε. Then,

sup
f ∈A0

Pf {W > ε} ≥ 1 − 2α − m∞(ε,A0,A1),(38)

where W = ‖U − L‖∞.
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Now we establish the target rate, the smallest width of a band if we knew a
priori that f ∈ F . Define

wF ≡ wF (α, γ, σ ) = �F σ τ−1(1 − 2α − γ ).(39)

THEOREM 16. Let 0 < γ < 1 − α. Suppose that

inf
f ∈F

Pf {L ≤ f ≤ U} ≥ 1 − α.(40)

If inff ∈F Pf {W ≤ w} ≥ 1 − γ then w ≥ wF .
A band that achieves this width, up to logarithmic factors, is (L,U) = f̂ ± c

where f̂ = �Y and c = maxi σ�iizα/2n.

REMARK 17. Using an argument similar to that in Theorem 1, it is possible to
improve this lower bound by an additional

√
logd factor, but this is inconsequen-

tial to the rest of the paper.

Next, we give the main result for this case.

v0(ε2, ε∞, n,α, γ, σ ) = min
{√

nε2, ε∞, στ−1(1 − 2α − γ )
}
,(41)

v1(ε2, n, d,α, γ, σ ) =
{

0, if ε2 ≥ 2v2(n, d,α, γ ),
v2(n, d,α, γ ), if ε2 < 2v2(n, d,α, γ ),

(42)

v2(n, d,α, γ ) = κ(α, γ )(n − d)1/4n−1/2(43)

and define

v(ε2, ε∞, n, d,α, γ, σ ) = max(v0, v1).(44)

THEOREM 18 (Lower bound for surrogate confidence band width). Fix 0 <

α < 1 and 0 < γ < 1 − 2α. Suppose that for bands B = (L,U)

inf
f ∈Rn

Pf {F�(f ) ∩ B �= ∅} ≥ 1 − α.(45)

Then,

inf
f ∈F

Pf {W ≤ w} ≥ 1 − γ(46)

implies

w ≥ w(F , ε2, ε∞, n, d,α, γ, σ )
(47)

≡ max{wF (α, γ, σ ), v(ε2, ε∞, n, d,α, γ, σ )}.

The inequality (45) ensures that B is a valid surrogate confidence band: for
every function, either the function or its surrogate is covered with at least the target
probability. The result gives a probabilistic lower bound on the width of the band
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that is at least as big as the best a priori width for the subspace. As we will see,
with proper choice of ε2 and ε∞, the v term can be made small, giving the subspace
width wF for the lower bound.

Next, we address the question of optimality. Consider, for example, the trivial
surrogate that maps all functions to 0. We can cover the surrogate using 0 width
bands with probability 1, but this would not be too interesting. There is a tradeoff
between the width of the bands on low-dimensional subspaces and the volume of
the spoiler set, the functions that are surrogated. We characterize optimality here as
minimizing the volume of the spoiler set S(ε2, ε∞) while still attaining the target
width with high probability when f truly lies in the subspace. In this sense, the
surrogate defined above is optimal.

THEOREM 19 (Optimality). Let w denote the right-hand side of inequal-
ity (47). Then w ≥ wF , where wF is defined in (39). Setting

ε2 = 2κ(α, γ )(n − d)1/4n−1/2, ε∞ = wF

minimizes Volume(S(ε2, ε∞)) subject to achieving the lower bound on w.

3.2.2. Achievability. Having established a lower bound, we need to show that
the lower bound is sharp. We do this by constructing a finite-sample procedure
that achieves the bound within a factor of 2. Let Fa,d denote the c.d.f. of a χ2

random variable with d degrees of freedom and noncentrality parameter a and let
χ2

α,d = F−1
0,d (1 − α). Let T = ‖Y − �Y‖2 and define

B = (L,U) = f̂ ± cσ,(48)

where

f̂ =
{

Y, if T > χ2
γ,n−d ,

�Y, if T ≤ χ2
γ,n−d

(49)

and

c = zα/2n ×
{

ωF + ε∞, if T ≤ χ2
γ,n−d ,

1, if T > χ2
γ,n−d .

(50)

THEOREM 20. If γ ≥ 1 − F0,n−d(F−1
nε2

2,n−d
(α/2)) then

inf
f ∈Rn

Pf {F�(f ) ∩ B �= ∅} ≥ 1 − α(51)

and

inf
f ∈F

Pf {W ≤ wF + ε∞} ≥ 1 − γ.(52)
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If ε2 ≥ E(n−d,α/2, γ )(n−d)1/4n−1/2, where E(m,α, γ ) is defined in (26), then

inf
f ∈F

Pf {W ≤ 2w(F , ε2, ε∞, α, γ, n, d)} ≥ 1 − γ,(53)

where w(F , ε2, ε∞, α, γ, n, d) is defined (47). Hence, the procedure adapts to
within a logarithmic factor of the lower bound w given in Theorem 18.

COROLLARY 21. Setting

ε2 = E(n − d,α/2, γ )(n − d)1/4n−1/2, ε∞ = wF

in the above procedure, minimizes Volume(S(ε2, ε∞)) subject to satisfying (53).

REMARK 22. The results can be extended to unknown σ by replacing σ with
a nonparametric estimate σ̂ . However, the results are then asymptotic rather than
finite sample. Moreover, a minimal amount of smoothness is required to ensure
that σ̂ uniformly consistently estimates σ ; see Genovese and Wasserman (2005).
So as not to detract from our main points, we continue to take σ known.

3.2.3. Remarks on estimation and the modulus of continuity. It is interesting
to note that the bands defined above cover the true f over a set V that is larger
than F . In this section we take a brief look at the properties of V .

Define

C(α,a, b) = sup
u>0

(au + b)
(
1 − α − 1

4 + 1
2�(−u/2)

)
,(54)

and let C(α) ≡ C(α,1,0). Let F ⊥ be the orthogonal complement of F . Let
B⊥

k (0, ε) be a �k-ball around 0 in F ⊥ (k = 2,∞). For f ∈ R
n, let B⊥

k (f, ε) =
f + B⊥

k (0, ε). Define

V ≡ V (F , ε2, ε∞) = ⋃
f ∈F

(
B⊥

2 (f, ε2) ∩ B⊥∞(f, ε∞)
)
.(55)

LEMMA 23. Let B = (L,U) be defined as in (48). Then

inf
f ∈V

Pf {L ≤ f ≤ U} ≥ 1 − α.(56)

Let Tf = f1. The next lemma gives the modulus of continuity [Donoho and
Liu (1991)] of T over V which measures the difficulty of estimation over V . The
modulus of continuity of T over a set A is

ω(u,A) = sup{|Tf − T g| :‖f − g‖2 ≤ u;f,g ∈ A}.(57)

Donoho and Liu showed that the difficulty of estimation over A is often charac-
terized by ω(1/

√
n,A) in the sense that this quantity defines a lower bound on

estimation rates.
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LEMMA 24 (Modulus of continuity). We have

ω(u,V ) =
(
u�

√
n

√
�2

1 + �2 + min
(

u
√

n√
1 + �2

, ε2 ∧ (
ε∞/

√
n
)))

.(58)

Note that when ε2 = ε∞ = 0 and � ∼ √
d/n, we have ω(1/

√
n,A) ∼ √

d/n

as expected. However, when ε ≡ ε2 = ε∞/
√

n is large we will have that

ω(1/
√

n,A) ∼ √
d/n + ε/

√
1 + d2/n. The extra term ε/

√
1 + d2/n reflects the

“ball-like” behavior of V in addition to the subspace-like behavior of V . The bands
need to cover over this extra set to maintain valid coverage and this leads to larger
lower bounds than just covering over F .

3.3. Nested subspaces. Now suppose that we have nested subspaces F1 ⊂
· · · ⊂ Fm ⊂ Fm+1 ≡ R

n. Let �j denote the projector onto Fj . We define the sur-
rogate as follows.

DEFINITION 25. For given ε2 = (ε2,1, . . . , ε2,m) and ε∞ = (ε∞,1, . . . , ε∞,m)

define

J(f ) = {1 ≤ j ≤ m :‖f − �jf ‖2 ≤ ε2,j and ‖f − �jf ‖∞ > ε∞,j }.(59)

Then define the surrogate set

F�(f ) = {�jf : j ∈ J(f )} ∪ {f }.(60)

DEFINITION 26. We say that B = {g :L ≤ g ≤ U} ≡ (L,U) has coverage
1 − α if

inf
f ∈Rn

Pf {F� ∩ B �= ∅} ≥ 1 − α.(61)

3.3.1. Lower bounds.

THEOREM 27 (Lower bound for surrogate confidence band width). Fix 0 <

α < 1 and 0 < γ < 1 − 2α. Suppose that for bands B = (L,U)

inf
f ∈Rn

Pf {F�(f ) ∩ B �= ∅} ≥ 1 − α.(62)

Then

inf
f ∈Fj

Pf {W ≤ w} ≥ 1 − γ,(63)

implies

w ≥ w(Fj , ε2,j , ε∞,j , n, dj , α, γ, σ ),(64)

where w is given in Theorem 18.
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THEOREM 28 (Optimality). Let w denote the right-hand side of inequality
(64). Then w ≥ wFj

, where wFj
is defined in (39). Setting

ε2j
= 2κ(α, γ )(n − dj )

1/4n−1/2, ε∞,j = wFj

minimizes the volume of the set

{f :‖f − �jf ‖ ≤ ε2,j and ‖f − �jf ‖∞ > ε2,∞}(65)

subject to achieving the lower bound on w.

3.3.2. Achievability. Define Tj = ‖Y − �jY‖2 and f̂ = �
Ĵ
Y , where

Ĵ = min{1 ≤ j ≤ m :Tj ≤ χ2
γ,n−dj

},(66)

where Ĵ = m + 1 if the set is empty, and define

cj = zαj /2n ×
{

ωFj
(αj ) + ε∞,j , if 1 ≤ j ≤ m,

1, if j = m + 1.
(67)

Finally, let B = (L,U) = f̂ ± c
Ĵ
σ where

∑
j αj ≤ α.

THEOREM 29. If

γ ≥ 1 − min
j

F0,n−dj
(F−1

nε2
2,j ,n−dj

(αj ))(68)

then

inf
f ∈Rn

Pf {F� ∩ B �= ∅} ≥ 1 − α.(69)

Let wj = wFj
(αj ) + ε∞,j . If w1 ≤ · · · ≤ wm+1 then

inf
f ∈Fj

Pf {W ≤ wj } ≥ 1 − γ.(70)

If in addition ε2,j ≥ E(n − dj ,αj , γ )(n − dj )
1/4n−1/2 and ε∞,j ≤ wFj

then

inf
f ∈Fj

Pf {W ≤ 2w(ε2,j , ε∞,j , αj , γ, n, dj )} ≥ 1 − γ,(71)

where w(ε2,j , ε∞,j , αj , γ, n, dj ) is defined (47). Hence, the procedure adapts to
within a logarithmic factor of the lower bound w given in Theorem 18.

COROLLARY 30. Suppose α1 = · · · = αm+1 = α/(m + 1). Then w1 ≤ · · · ≤
wm+1 so (70) holds. Moreover, setting

ε2,j = E(n − dj ,αj , γ )(n − dj )
1/4n−1/2(72)

and

ε∞,j = wFj
(73)

in the above procedure, minimizes the volume of the set (65) satisfying (64).
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EXAMPLE 31. Suppose that xi = i/n and let B1 = [0,1/d],B2 = (1/d,2/d],
. . . ,Bd = ((d − 1)/d,1]. Write f = (f (xi) : i = 1, . . . , n) and let F denote the
subspace of vectors f that are constant over each Bj . Then �F = √

d/n. The
above procedure then produces a band with width no more that O(

√
d/n) with

probability at least 1 − γ .

4. Proofs. In this section, we prove the main results. We omit proofs for a
few of the simpler lemmas. Throughout this section, we write xn = O∗(bn) to
mean that xn = O(cnbn) where cn increases at most logarithmically with n.

The following lemma is essentially from Section 3.3 of Ingster and Suslina
(2003).

LEMMA 32. Let M be a probability measure on R
n and let Q(·) =∫

Pf (·) dM(f ) where Pf (·) denotes the measure for a multivariate Normal with
mean f = (f1, . . . , fn) and covariance σ 2I . Then

L1(Q,Pg) ≤
√∫ ∫

exp
{
n〈f − g, ν − g〉

σ 2

}
dM(f )dM(ν) − 1.(74)

In particular, if Q is uniform on a finite set �, then

L1(Q,Pg) ≤
√√√√(

1

|�|
)2 ∑

f,ν∈�

exp
{
n〈f − g, ν − g〉

σ 2

}
− 1.(75)

PROOF. Let pf denote the density of a multivariate Normal with mean f and
covariance σ 2I where I is the identity matrix. Let q be the density of Q :q(y) =∫

pf (y) dM(f ). Then,∫
|pg(x) − q(x)|dx =

∫ |pg(x) − q(x)|√
pg(x)

√
pg(x)dx

≤
√√√√∫

(pg(x) − q(x))2

pg(x)
dx(76)

=
√√√√∫

q2(x)

pg(x)
dx − 1.

Now,∫
q2(x)

pg(x)
dx =

∫ (
q(x)

pg(x)

)2

pg(x) dx = Eg

(
q(x)

pg(x)

)2

=
∫ ∫

Eg

(
pf (x)pν(x)

p2
g(x)

)
dM(f )dM(ν)
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=
∫ ∫

exp
{
− n

2σ 2 (‖f − g‖2 + ‖ν − g‖2)

}

× Eg

(
exp{εT (f + ν − 2g)/σ 2})dM(f )dM(ν)

=
∫ ∫

exp
{
− n

2σ 2 (‖f − g‖2 + ‖ν − g‖2)

}

× exp

{
n∑

i=1

(fi − gi + νi − gi)
2/(2σ 2)

}
dM(f )dM(ν)

=
∫ ∫

exp
{
n〈f − g, ν − g〉

σ 2

}
dM(f )dM(ν)

and the result follows from (76). �

PROOF OF THEOREM 1. Let N = |�| and let b2 = nmaxf ∈� ‖f − g‖2. Let
pf denote the density of a multivariate normal with mean f and covariance σ 2I

where I is the identity matrix. Define the mixture q(y) = N−1 ∑
f ∈� pf (y). By

Lemma 32,

∫
|pg(x) − q(x)|dx ≤

√√√√(
1

N

)2 ∑
f,ν∈�

exp
{
n〈f − g, ν − g〉

σ 2

}
− 1

=
√(

1

N

)2

[Neb2/σ 2 + N(N − 1)] − 1

≤
√

eb2/σ 2
/N = ε.

Define two events, A = {� ≤ g ≤ u} and B = {� ≤ f ≤ u, for some f ∈ �}.
Then, A ∩ B ⊂ {wn ≥ a}, where a = minf ∈� ‖g − f ‖∞. Since Pf {� ≤ f ≤ u} ≥
1−α for all f , it follows that Pf {B} ≥ 1−α for all f ∈ �. Hence, Q(B) ≥ 1−α.
So,

Pg{wn ≥ a} ≥ Pg{A ∩ B} ≥ Q(A ∩ B) − ε

= Q(A) + Q(B) − Q(A ∪ B) − ε

≥ Q(A) + Q(B) − 1 − ε ≥ Q(A) + (1 − α) − 1 − ε

≥ Pg{A} + (1 − α) − 1 − 2ε

≥ (1 − α) + (1 − α) − 1 − 2ε = 1 − 2α − 2ε.

So, Eg(wn) ≥ (1 − 2α − 2ε)a. �

Theorems 2, 3, 4 and 5 follow easily from Theorem 1 and so the proofs are
omitted.
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PROOF OF LEMMA 7. Q is the solution, with respect to c, to ξ = 1 −
F0,m(r(c)) where the function r(c) = F−1

c
√

m,m
(β)) is monotonically increasing

in c. Also, F0,m(r(0)) = β and F0,m(r(∞)) = 1 so a solution exists since 0 <

β < 1 − ξ < 1. Now we bound Q from above.
To upper bound Q it suffices to find c such that F−1

c
√

m,m
(β) ≥ F−1

0,m(1−ξ). From
Birgé (2001) we have

F−1
z,d (u) ≤ z + d + 2

√
(2z + d) log

(
1/(1 − u)

) + 2 log
(
1/(1 − u)

)
,(77)

F−1
z,d (u) ≥ z + d − 2

√
(2z + d) log(1/u).(78)

Hence,

F−1
c
√

m,m
(β) ≥ m + c

√
m − 2

√(
2c

√
m + m

)
log

1

β
,(79)

F−1
0,m(1 − γ ) ≤ m + 2

√
m log

1

γ
+ 2 log

1

γ
.(80)

It suffices to find c that satisfies

m + c
√

m − 2

√(
2c

√
m + m

)
log

1

β
≥ m + 2

√
m log

1

γ
+ 2 log

1

γ
,(81)

or equivalently,

c ≥ 2

√(
c√
m

+ 1
)

log
1

β
+ 2

(√
log

1

γ
+ log

1

γ

)
.(82)

The right-hand side of the last inequality is largest when m = 1, and equality can
be achieved when m = 1 at some �(β, ξ) for any β, ξ satisfying the stated con-
ditions. Equality can be achieved then for any m at some Q(m,β, ξ) ≤ �(β, ξ).
This proves the first claim. The second claim follows immediately by inspection.

�

PROOF OF LEMMA 12. We find a P0 ∈ Fj and a measure μ supported on A

such that dTV(P0,Pμ) ≤ 2δ. We then have, following Ingster (1993),

β ≥ inf
φξ∈�ξ

Pμ{φξ = 0}(83)

≥ 1 − ξ − sup
R : P0(R)≤ξ

|P0(R) − Pμ(R)|(84)

≥ 1 − ξ − sup
R

|P0(R) − Pμ(R)|(85)

= 1 − ξ − 1
2dTV(P0,Pμ) ≥ 1 − ξ − δ.(86)
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Let ψ1,ψ2, . . . ,ψn be an orthonormal basis for R
n such that ψ1, . . . ,ψd form an

orthonormal basis for F . Fix τ > 0 small and let λ2 = nε2/(n − d) + τ 2/(n − d).
Define

fE = λ

m∑
s=d+1

Esψs,(87)

where (Es : s = d + 1, . . . , n) are independent Rademacher random variables,
that is, P{Es = 1} = P{Es = −1} = 1/2. Now, �F fE = 0 and hence ‖fE −
�F fE‖2 = λ2 > ε2, and hence fE ∈ A for each choice of the Rademachers.

Let Pμ = E(PE) where PE is the distribution under fE and the expectation is
with respect to the Rademachers. Choose f0 ∈ F and let P0 be the corresponding
distribution. As in Baraud, we use the bound

dTV(Pμ,P0) ≤
√

E0

(
dPμ

dP0
(Y )

)2

− 1.(88)

We take f0 = (0, . . . ,0) ∈ F and so(
dPμ

dP0
(Y )

)
= EE

(
exp

{
−1

2
λ2(n − d) + λ

n∑
s=d+1

Es

∑
i

Yiψsi

})
(89)

= e−λ2/2
n∏

s=d+1

cosh(λ(Y · ψs)).(90)

Since E0 cosh2(λ(Y · ψj)) = eλ2
cosh(λ2) and cosh(x) ≤ ex2/2 we have

E0

(
dPμ

dP0
(Y )

)2

= (cosh(λ2))n−d ≤ e(n−d)λ4/2(91)

= exp
(

n2

2(n − d)
ε4 + τ 4

2(n − d)
+ n

n − d
τ 2ε2

)
.(92)

By the definition of ε (in terms of δ), β ≥ 1− ξ − δ +O(τ), and because this holds
for every τ , the result follows. �

PROOF OF LEMMA 14. Let f,g ∈ A be such that ‖f − g‖p ≤ ε. Then,
Pg{L ≤ f ≤ U} = Pf {L ≤ f ≤ U} + Pg{L ≤ f ≤ U} − Pf {L ≤ f ≤ U} ≥
Pf {L ≤ f ≤ U} − dTV(Pf ,Pg) ≥ 1 − α − Mp(‖f − g‖p,A) ≥ 1 − α −
Mp(ε(f,p),A). We also have that Pg{L ≤ g ≤ U} ≥ 1 − α. Hence, Pg{L ≤
g ≤ U,L ≤ f ≤ U} ≥ Pg{L ≤ g ≤ U} + Pg{L ≤ f ≤ U} − 1 ≥ 1 − α +
1 − α − Mp(ε(f,p),A) − 1 ≥ 1 − 2α − Mp(ε(f,p),A). The event {L ≤ g ≤
U,L ≤ f ≤ U} implies that W ≥ ‖g − f ‖∞. Hence, Pf {W > ‖f − g‖∞} ≥
1 − 2α − Mp(ε(f,p),A) ≥ 1 − 2α − Mp(ε(f,p),A) ≥ 1 − 2α − Mp(ε,A). It
follows then that Pf {W > ε(f,∞)} = infg Pf {W > ‖f − g‖∞} and thus

inf
f ∈A0

Pf {W > ε(f,∞)} ≥ 1 − 2α − sup
f ∈A0

Mp(ε(f,p),A).(93)
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This proves the first claim. But ε(f,∞) ≥ ε(f,p) for any 1 ≤ p ≤ ∞. The final
claim follows immediately. �

PROOF OF LEMMA 15. Choose f ∈ A0. Choose g ∈ A1 to minimize
dTV(pf ,pg) such to such that ‖f − g‖∞ = ε. Hence, dTV(pf ,pg) = m∞(ε,A0,

A1). Then, Pf {L ≤ g ≤ U} = Pg{L ≤ g ≤ U} + Pf {L ≤ g ≤ U} − Pg{L ≤ g ≤
U} ≥ Pg{L ≤ g ≤ U} − dTV(Pf ,Pg) ≥ 1 − α − m∞(ε,A0,A1) because, by as-
sumption. Pg{L ≤ g ≤ U} ≥ 1 − α. We also have that Pf {L ≤ f ≤ U} ≥ 1 − α.
Hence, Pf {L ≤ f ≤ U,L ≤ g ≤ U} ≥ Pf {L ≤ f ≤ U} + Pf {L ≤ g ≤ U} − 1 ≥
1 − α + 1 − α − m∞(ε,A0,A1) ≥ 1 − 2α − m∞(ε,A0,A1). The event {L ≤ f ≤
U,L ≤ g ≤ U} implies that W ≥ ‖f − g‖∞. Hence,

Pf {W > ‖f − g‖∞} ≥ 1 − 2α − m∞(ε,A0,A1).(94)

It follows then that supf ∈A0
Pf {W > ε} ≥ 1 − 2α − m∞(ε,A0,A1). �

PROOF OF THEOREM 16. First, we compute m∞(ε,F ,F ). Note that for
all f ∈ F , dTV(Pf ,P0) = τ(

√
n‖f ‖). Hence, m∞(ε,F ,F ) = τ(

√
nv) where

v = min{‖f ‖ :f ∈ F ,‖f ‖∞ = ε}. By Lemma 8, v = ε/(
√

n�F ). It follows by
Lemma 15 that supf ∈F P{W > w} ≥ 1 − 2α − τ( w

σ�F
). Let w∗ = σ�τ−1(1 −

2α − γ ). It follows that if w < w∗ then inff ∈F P{W ≤ w} < 1 − γ which is a
contradiction.

That the proposed band has correct coverage follows easily. Now, (��T )ii ≤
�F and zα/2n ≤ √

c logn for some c and the claim follows. �

PROOF OF THEOREM 18. We break the argument up into three parts. Parts I
and II taken together contribute the term v0 from (41) to the bounds. The logic of
both parts is the same: find a value w∗ such that if w < w∗ then supf ∈F P{W >

w} > γ and, equivalently, inff ∈F P{W ≤ w} < 1 − γ , which gives a contradiction
under the assumptions of the theorem. Part III contributes the term v1 from (42) to
the bounds. It is based on using the confidence bands to construct both an estimator
and a test. Throughout the proof, we refer to the space V ⊃ F defined in (55); this
is the set of spoilers that are within ε2 of F .

Part I. First, we compute m∞(w,F ,F ). Note that for all f ∈ F , dTV(Pf ,P0) =
τ(

√
n‖f ‖/σ). Hence, m∞(w,F ,F ) = τ(

√
nv/σ) where v = min{‖f ‖ :f ∈

F ,‖f ‖∞ = ε}. By Lemma 8, v = w/(
√

n�F ). It follows by Lemma 15 that

sup
f ∈F

P{W > w} ≥ 1 − 2α − τ

(
w

σ�F

)
.(95)

Take w∗ = σ�F τ−1(1 − 2α − γ ).
Part II. Case (a) ε2 ≤ ε∞/

√
n. First, note that m∞(w,F ,V ) = τ(

√
n w

σ
√

n
) =

τ(w/σ) for w ≤ √
nε2, because the minimum two-norm for a given infinity-norm
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is achieved on the coordinate axis. Second, let A0 = F and A1 = V in Lemma 15.
Then, for w ≤ √

nε2,

sup
f ∈F

P{W > w} ≥ 1 − 2α − τ

(
w

σ

)
.(96)

Let w∗ = σ min(τ−1(1 − 2α − γ ), ε2
√

n), then supf ∈F P{W > w0} ≥ γ .
Case (b) ε2 > ε∞/

√
n. First, note that m∞(w,F ,V ) = τ(

√
n w

σ
√

n
) = τ(w/σ)

for w ≤ ε∞. Second, let A0 = F and A1 = V in Lemma 15. Then, for w ≤ ε∞,

sup
f ∈F

P{W > w} ≥ 1 − 2α − τ

(
w

σ

)
.(97)

Let w∗ = σ min(τ−1(1 − 2α − γ ), ε∞), then supf ∈F P{W > w0} ≥ γ .
Part III. The argument here is based on an argument in Baraud (2004). Let

f̂ = (U + L)/2. Define a rejection region

R = {W > w} ∪
{
‖f̂ − �f̂ ‖2 >

W

2

}
.(98)

Now, for any f ∈ F , f � = f , ‖f̂ − �f̂ ‖2 ≤ ‖f̂ − f ‖2 and

Pf (R) ≤ Pf {W > w} + Pf {‖f̂ − �f̂ ‖2 > W/2}(99)

≤ γ + Pf {‖f̂ − �f̂ ‖2 > W/2}(100)

≤ γ + Pf {‖f − f̂ ‖2 > W/2}(101)

= γ + Pf {‖f � − f̂ ‖2 > W/2}(102)

≤ γ + Pf {‖f � − f̂ ‖∞ > W/2} ≤ γ + α(103)

which bounds the type I error of R.
Now let f be such that ‖f − �f ‖ > max{w,ε2}. Because ‖f − �f̂ ‖ > ‖f −

�f ‖, ‖f − �f ‖ > ε2 implies that f � = f . And thus,

‖f̂ − �f̂ ‖2 ≥ ‖f − �f̂ ‖2 − ‖f − f̂ ‖2 ≥ w − ‖f − f̂ ‖2.(104)

Hence,

Pf (Rc) = Pf {‖f̂ − �f̂ ‖2 ≤ W/2,W/2 ≤ w/2}(105)

≤ Pf {‖f̂ − �f̂ ‖2 ≤ w/2,W ≤ w}(106)

≤ Pf {‖f − f̂ ‖2 ≥ w/2,w ≥ W }(107)

≤ Pf {‖f − f̂ ‖2 ≥ W/2}(108)

= Pf {‖f � − f̂ ‖2 ≥ W/2}(109)

≤ Pf {‖f � − f̂ ‖∞ ≥ W/2} ≤ α.(110)
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Thus, R defines a test for H0 :f ∈ F with level α + γ whose power more than a
distance max{w,ε2} from F is at least 1 − α. Using Lemma 12 with ξ = α + γ

and δ = 1 − γ − 2α, this implies that max{w,ε2} ≥ 2κ(α, γ )(n− d)1/4n−1/2. The
result follows. �

PROOF OF THEOREM 19. The volume is minimized by making ε∞ as large
as possible and ε2 as small as possible. To achieve the lower bound on the width
requires ε∞ ≤ wF and ε2 ≥ 2κ(α, γ )(n − d)1/4n−1/2. �

PROOF OF THEOREM 20. Let A = {T ≤ χ2
γ,n−d}. Then, Pf {f � /∈ B} =

Pf {f � /∈ B,A} + Pf {f � /∈ B,Ac}. We claim that Pf {f � /∈ B,A} ≤ α/2 and
Pf {f � /∈ B,Ac} ≤ α/2. There are four cases.

Case I. f ∈ F . Then f = f � and Pf {f /∈ B,Ac} ≤ Pf {Ac} ≤ α/2. Pf {f /∈
B,A} ≤ Pf {f /∈ B} = P�f {�f /∈ B} ≤ P�f {‖f̂ − �f ‖∞ > wF } ≤ α/2.

Case II. f ∈ V −F where V = {f :‖f −�f ‖ ≤ ε2,‖f −�f ‖∞ ≤ εε}. Again,
f = f �. First, Pf {f /∈ B,Ac} ≤ Pf {‖Y − f ‖∞ > zα/2n} ≤ α/2. Next, we bound
Pf {f /∈ B,A}. Note that f̂ = �Y ∼ N(g,σ 2��T ), where g = �f . Then f̂i ∼
N(gi,�

2
i ). Let B0 = (L + ε∞,U − ε∞). Then, �f ∈ B0 implies f ∈ B and Pf {/∈

B,A} ≤ Pf {�f /∈ B0} ≤ α/2.
Case III. f /∈ V , ‖f −�f ‖ ≤ ε2 and ‖f −�f ‖∞ > ε∞. In this case, f � = �f .

Then Pf {f �, f ∈ Bc,Ac} ≤ Pf {f ∈ Bc,Ac} ≤ α/2. Also, Pf {f �, f ∈ Bc,A} ≤
Pf {f � /∈ B} = P�f {�f /∈ B} ≤ P�f {‖f̂ − �f ‖∞ > wF } ≤ α/2.

Case IV. f /∈ V and ‖f − �f ‖ > ε2. In this case, f � = f . But

Pf {f /∈ B,A} ≤ Pf {A} ≤ Ff −�f,n−d(χ2
γ,n−d) ≤ Fε2,n−d(χ2

γ,n−d) ≤ α/2

and

Pf {f /∈ B,Ac} ≤ Pf {f /∈ B,Ac} ≤ α/2.

Thus, Pf {f � /∈ B} ≤ α. Equation (52) follows since Pf {T ≤ χ2
γ,n−d} ≥ 1 − γ

for all f ∈ F . �

PROOF OF LEMMA 24. First note that if B is a ball in R
n in any norm, then

B − B = 2B . Second, we have that

ω(u) = sup{|T g| :‖g‖2 ≤ u,g ∈ V − V }(111)

= sup{|T g| :‖g‖2 ≤ u,g ∈ V (2ε2,2ε∞)}.(112)

To see the latter equality, note that if g,h ∈ V , then we can write g − h = f +
δ1 − δ2 where f ∈ F and δi are in B⊥

k (0, εk) for k = 2,∞. Thus, δ1 − δ2 is in
2B⊥

2 (0, ε2) ∩ 2B⊥∞(0, ε∞).
Set B∗(f ) = B⊥

2 (f,2ε2) ∩ B⊥∞(f,2ε∞). We have that

ω(η,F ) = sup{f1 :‖f ‖2 ≤ η,f ∈ F },(113)

ω(η,B∗(0)) = sup{f1 :‖f ‖2 ≤ η,f ∈ B∗(0)}.(114)
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For any g ∈ V (2ε2,2ε∞), we can write g = g1 + g2 where g1 ∈ F and
g2 ∈ B∗(0) and the two functions are orthogonal. Let A = {g1, g2 :‖g1‖2 ≤√

u2 − c2,‖g2‖2 ≤ c2, g1 ∈ F , g2 ∈ B∗(0)}. Then,

w(u,V ) = sup{T (g) :g ∈ V (2ε2,2ε∞),‖g‖2 ≤ u}(115)

= sup
0≤c≤u

{T (g1 + g2) :g1, g2 ∈ A}(116)

≤ sup
0≤c≤u

[
sup

g1∈F

‖g1‖2≤
√

u2−c2

T (g1) + sup
g2∈B∗(0)

‖g2‖2≤c

T (g2)

]
(117)

= sup
0≤c≤u

[
ω
(√

u2 − c2,F
) + ω(c,B∗(0))

]
.(118)

Moreover, equality can be attained for each c by choosing g1 and g2 to be the max-
imizers (or suitably close approximants thereof) of each term in the last equation.
Consequently,

ω(u) = sup
0≤c≤u

ω
(√

u2 − c2,F
) + ω(c,B∗(0)).(119)

To derive ω(η,B∗(0)), note that f = ((η∧ ε2)
√

n∧ ε∞,0,0, . . . ,0) maximizes
f1 subject to the norm constraint. Hence, ω(η,B∗(0)) = min((η∧ε2)

√
n, ε∞). For

ω(η,F ), let e = (1,0, . . . ,0) ∈ R
n. Recall that �F = 〈e,�F e〉

‖e‖‖�F e‖ = ‖�F e‖
‖e‖ , which

is between 0 and 1. Maximizing eT f for f ∈ F and ‖f ‖2 ≤ η is equivalent to
maximizing n〈e, f 〉 = n〈�F e, f 〉. The maximum subject to the constraint occurs
at f � = η�e/‖�e‖ Hence, ω(η,F ) = η

√
n�F . Note that η is in terms of the

normalized two norm; in the “natural” (root sum of squares) norm, the modulus
would be ω�(u,F ) = u�F .

It follows that

ω(u,V ) = sup
0≤c≤u

[
ω
(√

u2 − c2,F
) + ω(c,B∗(0))

]
(120)

= sup
0≤c≤u

[√
n�F

√
u2 − c2 + min

(
(c ∧ ε2)

√
n, ε∞

)]
(121)

= √
n sup

0≤c≤u

[
�F

√
u2 − c2 + min

(
c, ε2 ∧ (

ε∞/
√

n
))]

(122)

= √
n

(
u�

√
�2

1 + �2 + min
(

u√
1 + �2

, ε2 ∧ (
ε∞/

√
n
)))

(123)

=
(
u
√

n�

√
�2

1 + �2 + min
(

u
√

n√
1 + �2

, ε2
√

n, ε∞
))

(124)
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because the supremum over c is maximized at c = u/(1 + �2). In the natural two
norm, we have

ω�(u,V ) =
(
u�

√
�2

1 + �2 + min
(

u

�

√
�2

1 + �2 , ε2,�, ε∞
))

.(125) �

Next, we prove the lower bound result generalized to a nested sequence of sub-
spaces. To do so, we need to prove several auxiliary lemmas. Define for each
1 ≤ j ≤ m,

Uj = {
f ∈ R

n :F�(f ) = {�jf,f } or F�(f ) = {f }}.(126)

Referring to the definition of V in equation (55), define here Vj = V (Fj , ε2,j ,

ε∞,j ).

LEMMA 33. Let w > 0. Then,

m∞(w,Fj ∩ Uj ,Fj ∩ Uj) = m∞(w,Fj ,Fj ),(127)

m∞(w,Fj ∩ Uj ,Vj ∩ Uj) = m∞(w,Fj ,Vj ).(128)

PROOF. First, let f,g ∈ Fj be the minimal pair for m∞(w,Fj ,Fj ). Let ψ

be a unit-2-norm vector in Fj ∩ F ⊥
j−1. Let λ > ε2,1 and define f̃ = λψ + f , g̃ =

λψ +g. Then, f̃ , g̃ ∈ Fj ∩Uj because if either f or g were in Fj ∩Uc
j then adding

λψ makes the distance from the projection on one of the lower spaces larger than
the corresponding ε2. Also dTV(P

f̃
,Pg̃) = dTV(Pf ,Pg) and ‖f̃ − g̃‖∞ = ‖f −

g‖∞. Hence, m∞(w,Fj ∩Uj ,Fj ∩Uj) ≤ m∞(w,Fj ,Fj ). But Fj ∩Uj ⊂ Fj , so
m∞(w,Fj ∩ Uj ,Fj ∩ Uj) = m∞(w,Fj ,Fj ) as was to be proved.

Second,let f ∈ Fj and g ∈ Vj be the minimal pair for m∞(w,Fj ,Vj ). Now
apply the same argument. �

LEMMA 34. Let 0 < δ < 1 − ξ and

ε = (n − dj )
1/4

√
n

(
2 log(1 + 4δ2)

)1/4
.(129)

Define Aj = Uj ∩ {f :‖f − �jf ‖ > ε}. Then,

β ≡ inf
φα∈�ξ

sup
f ∈Aj

Pf {φξ = 0} ≥ 1 − ξ − δ,(130)

where

�ξ =
{
φξ : sup

f ∈Fj

Pf {φξ = 0} ≤ ξ

}
(131)

is the set of level ξ tests.
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PROOF. Let fE be defined as in equation (87) in the proof of Lemma 12. Let
ψ be a unit vector in Fj+1 ∩ F ⊥

j and let λ > ε2,1. Then, define f̃E = λψ + fE .
Now apply the proof of Lemma 12 using f0 = λψ instead of 0. The total variation
distances among corners of the hypercube do not change and the result follows.

�

LEMMA 35. Fix 0 < α < 1 and 0 < γ < 1 − 2α. Suppose that for bands
B = (L,U)

inf
f ∈Uj

Pf {F�(f ) ∩ B �= ∅} ≥ 1 − α.(132)

Then

inf
f ∈Fj

Pf {W ≤ w} ≥ 1 − γ,(133)

implies

w ≥ w(Fj , ε2,j , ε∞,j , n, dj , α, γ, σ ),(134)

where w is given in Theorem 18.

PROOF. To prove this lemma, we will adapt the proof of Theorem 18 as fol-
lows. By Lemma 33, the argument for parts I and II is the same with F re-
placed with Fj ∩ Uj and V replaced with Vj ∩ Uj . By replacing the reference
to Lemma 12 with Lemma 34, the argument for Part III also follows exactly. The
result follows. �

PROOF OF THEOREM 27. The result follows directly from Lemma 35 because
inff ∈Rn P{F�(f ) ∩ B �= ∅} ≥ 1 − α implies inff ∈Uj

P{F�(f ) ∩ B �= ∅} ≥ 1 − α.
�

PROOF OF THEOREM 29. Note that Pf {F� ∩B = ∅} = ∑
j Pf {F� ∩B = ∅,

Ĵ = j}. We show that Pf {F� ∩ B = ∅, Ĵ = j} ≤ αj for each j . There are three
cases. Throughout the proof, we take σ = 1.

Case I. ‖f − �jf ‖ > ε2,j . Then,

Pf {F� ∩ B = ∅, Ĵ = j} ≤ Pf {Ĵ = j} ≤ Ff −�jf,n−dj
(χ2

γ,n−dj
)

≤ Fε2,j ,n−dj
(χ2

γ,n−dj
)

≤ αj

due to (68).
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Case II. ‖f − �jf ‖ ≤ ε2,j and ‖f − �jf ‖∞ ≤ ε∞,j . So,

Pf {F� ∩ B = ∅, Ĵ = j} ≤ Pf {f /∈ B, Ĵ = j}
≤ Pf {‖f − f̂ ‖∞ > wFj

+ ε∞,j }
≤ Pf {‖f − �jf ‖∞ + ‖�jf − �jY‖∞ > wFj

+ ε∞,j }
≤ Pf {‖�jf − �jY‖∞ > wFj

}
= P�jf {‖�jf − �jY‖∞ > wFj

}
≤ αj .

Case III. ‖f − �jf ‖ ≤ ε2,j and ‖f − �jf ‖∞ > ε∞,j . Now,

Pf {F� ∩ B = ∅, Ĵ = j} ≤ Pf {�jf /∈ B, Ĵ = j}
= Pf {‖�jY − �jf ‖∞ > cj , Ĵ = j}
≤ Pf {‖�jY − �jf ‖∞ > cj }
= P�jf {‖�jY − �jf ‖∞ > cj }
≤ αj .

To prove (70), suppose that f ∈ Fj . Then, Pf {Ĵ > j} ≤ γ . But, as long as
Ĵ ≤ j , W = wĴ(α

Ĵ
) + ε∞,Ĵ

≤ wj(αj ) + ε∞,j . The last statement follows since,

when ε2,j ≥ Q(n − dj ,α/2, γ )(n − dj )
1/4n−1/2. �

5. Discussion. We have shown that adaptive confidence bands for f are pos-
sible if coverage is replaced by surrogate coverage. We focused on projection sur-
rogates but there are other classes of surrogates that could be defined, for example,
based on wavelet shrinkage or kernel smoothing.

Our results apply to nested subspaces. The nonnested cases is more compli-
cated, and we suspect that extension to this case will require something akin to the
between-class modulus of continuity defined in Cai and Low (2004).

Let us also mention average coverage [Wahba (1983) and Cummins, Filloon
and Nychka (2001)]. Bands (L,U) have average coverage if Pf {L(ξ) ≤ f (ξ) ≤
U(ξ)} ≥ 1−α where ξ ∼ Uniform(0,1). A way to combine average coverage with
the surrogate idea is to enforce something stronger than average coverage such as

Pf {L(ξ) ≤ f (ξ) ≤ U(ξ) and f̂  f } ≥ 1 − α,

where f̂ = (L + U)/2 and f̂  f means that f̂ is simpler than f according to a
partial order , for example, f  g if

∫
(f ′′)2 ≤ ∫

(g′′)2.
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