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HOEFFDING DECOMPOSITIONS AND URN SEQUENCES

BY OMAR EL-DAKKAK AND GIOVANNI PECCATI

Université Paris VI, Université Paris Ouest and Université Paris VI

Let X = (X1,X2, . . .) be a nondeterministic infinite exchangeable se-
quence with values in {0,1}. We show that X is Hoeffding decomposable if,
and only if, X is either an i.i.d. sequence or a Pólya sequence. This completes
the results established in Peccati [Ann. Probab. 32 (2004) 1796–1829]. The
proof uses several combinatorial implications of the correspondence between
Hoeffding decomposability and weak independence. Our results must be
compared with previous characterizations of i.i.d. and Pólya sequences given
by Hill, Lane and Sudderth [Ann. Probab. 15 (1987) 1586–1592] and Diaco-
nis and Ylvisaker [Ann. Statist. 7 (1979) 269–281]. The final section contains
a partial characterization of Hoeffding decomposable sequences with values
in a set with more than two elements.

1. Introduction. Let X[1,∞) = {Xn :n ≥ 1} be an exchangeable sequence of
random observations, with values in some finite set D. We say that X[1,∞) is Ho-
effding decomposable if, for every n ≥ 2, every symmetric statistic T (X1, . . . ,Xn)

admits a unique representation as an orthogonal sum of uncorrelated U -statistics
with degenerate kernels of increasing order. Hoeffding decompositions (also
known as ANOVA decompositions) have been extensively studied for i.i.d. se-
quences and extractions without replacement from a finite population. Concerning
i.i.d. sequences, the reader is referred to the seminal paper by Hoeffding (1948),
where this technique is applied to normal approximations of U -statistics. In the
subsequent years, Hoeffding-type decompositions have been further applied to dif-
ferent frameworks, such as linear rank statistics [Hajek (1968)], jackknife estima-
tors [Karlin and Rinott (1982)], covariance analysis of symmetric statistics [Vitale
(1992)], convergence of U -processes [Arcones and Giné (1993)], Edgeworth ex-
pansions [Bentkus, Götze and van Zwet (1997)], and tail estimates for U -statistics
[Majór (2005)]. Concerning extractions without replacement from a finite popula-
tion, the first analysis of Hoeffding decompositions has been developed by Zhao
and Chen (1990). Bloznelis and Götze (2001, 2002) generalize these results, in
order to characterize the asymptotic normality of symmetric statistics (when the
size of the population diverges to infinity), and to obtain Edgeworth expansions.
In Bloznelis (2005) Hoeffding-type decompositions are explicitly obtained for sta-
tistics depending on extractions without replacement from several distinct popula-
tions.
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In Peccati (2003, 2004, 2008), the second author of this paper has extended
the theory of Hoeffding decompositions to the framework of general exchange-
able random sequences. In Peccati (2004) it was shown that the class of Ho-
effding decomposable exchangeable sequences coincides with the collection of
weakly independent sequences, and that the class of weakly independent (and,
therefore, Hoeffding decomposable) sequences contains the family of general-
ized Pólya urn sequences [see, e.g., Blackwell and MacQueen (1973) or Pitman
(1996)]. The connection with Pólya urns is further exploited in Peccati (2008),
where Hoeffding-type decompositions are used to establish several new proper-
ties of Dirichlet–Ferguson processes [see, e.g., Ferguson (1973) or James, Lijoi
and Prünster (2006)]. Among the results obtained in Peccati (2008) via Hoeffding-
type techniques we mention (i) the derivation of a chaotic representation property
for Dirichlet–Ferguson processes; (ii) the extension of some Bayesian decision
rules established in Ferguson (1973); (iii) a new probabilistic representation of
Jacobi and generalized Jacobi polynomials, appearing in connection with the tran-
sition probabilities of Wright–Fisher diffusion processes of population genetics
[see, e.g., Griffiths (1979)].

The aim of this paper is to complete the results established in Peccati (2004) in
two directions. On the one hand, we shall prove that a (nondeterministic) infinite
exchangeable sequence with values in {0,1} is Hoeffding decomposable if, and
only if, it is either a Pólya sequence or i.i.d. As discussed in Section 6, this result
links the seemingly unrelated notions of Hoeffding decomposable sequence and
urn process, a concept studied, for example, in Hill, Lane and Sudderth (1987).
On the other hand, in Section 7 we will develop a different approach to Hoeffd-
ing decomposability, in order to provide a partial characterization of Hoeffding
decomposable exchangeable sequences with values in a finite set with more than
two elements. This characterization is not as exhaustive as in the two-color case.
However, we will be able to prove that Pólya urns are the only Hoeffding decom-
posable sequences among the class of exchangeable sequences whose directing
measure is obtained by normalizing vectors of infinitely divisible (positive) ran-
dom variables. This follows from some computations contained in James, Lijoi
and Prünster (2006). We stress by now that, when specialized to the case of two-
color sequences, certain results established in Section 7 (for instance, Theorem 10)
may be used to deduce alternative proofs of some of the findings of the preceding
sections. We also believe that it is crucial to keep the treatment of the two-color
case separate, since the techniques used in this framework (which are quite diffi-
cult to reproduce in the general case) allow to give a new implicit combinatorial
characterization of the system of predictive probabilities associated with two-color
Pólya urns (see, e.g., Proposition 4 of Section 4), as well as to establish transparent
connections with the classic results by Diaconis and Ylvisaker (1979) [see part (II)
of Section 6].

Before stating our main theorem in the two-color case (see Section 3), we collect
in Section 2 some basic definitions and facts concerning Hoeffding decompositions



2282 O. EL-DAKKAK AND G. PECCATI

and exchangeable sequences. We focus on sequences with values in a finite set.
The reader is referred to Peccati (2004) for any unexplained concept or notation,
as well as for general statements concerning sequences with values in arbitrary
Polish spaces.

2. Preliminaries. Let D be a finite set, and consider an infinite exchangeable
sequence X[1,∞) = {Xn :n ≥ 1} of D-valued random variables, defined on some
probability space (�,F ,P) such that F = σ(X[1,∞)). We recall that, according
to the well-known de Finetti theorem [see, e.g., Aldous (1985)], the assumption of
exchangeability is equivalent to saying that X[1,∞) is a mixture of i.i.d. sequences
with values in D.

For every n ≥ 1 and every 1 ≤ u ≤ n, we write [n] = {1, . . . , n} and [u,n] =
{u,u + 1, . . . , n}, and set X[u,n] � (Xu,Xu+1, . . . ,Xn) and X[n] � X[1,n] =
(X1,X2, . . . ,Xn). For every n ≥ 2, we define the sequence of spaces{

SUk

(
X[n]

)
:k = 0, . . . , n

}
,

generated by symmetric U -statistics of increasing order, as follows: SU0(X[n]) �
� and, for k = 1, . . . , n, SUk(X[n]) is the collection of all random variables of the
type

F
(
X[n]

)= ∑
1≤j1<···<jk≤n

ϕ(Xj1, . . . ,Xjk
),(1)

where ϕ is a real-valued symmetric function from Dk to �. A random variable
such as F in (1) is called a U -statistic with symmetric kernel of order k. It is
easily seen that (since each X[k] is an infinitely extendible exchangeable vector)
the kernel ϕ appearing in (1) is unique, in the sense that if ϕ′ is another symmet-
ric kernel satisfying (1), then ϕ(X[k]) = ϕ′(X[k]), a.s.-P. The following facts are
immediately checked: (i) for every k = 0, . . . , n, SUk(X[n]) is a vector space, (ii)
SUk−1(X[n]) ⊂ SUk(X[n]), (iii) SUn(X[n]) = Ls(X[n]), where (for n ≥ 1) Ls(X[n])
is defined as the set of all random variables of the type T (X[n]) = T (X1, . . . ,Xn),
where T is a symmetric function from Dn to �. The class of all symmetric func-
tions, from Dn to �, will be denoted by S(Dn). Note that Ls(X[n]) is a Hilbert
space with respect to the inner product 〈T1, T2〉 � E[T1(X[n])T2(X[n])], so that
each SUk(X[n]) is a closed subspace of Ls(X[n]). Finally, the sequence of symmet-
ric Hoeffding spaces {SHk(X[n]) :k = 0, . . . , n} associated with X[n] is defined as
SH0(X[n]) � SU0(X[n]) = �, and

SHk

(
X[n]

)
� SUk

(
X[n]

)∩ SUk−1
(
X[n]

)⊥
, k = 1, . . . , n,(2)

where all orthogonals (here and in the sequel) are taken in Ls(X[n]). Observe
that SHk(X[n]) ⊂ SUk(X[n]) for every k, so that each F ∈ SHk(X[n]) has nec-
essarily the form (1) for some well-chosen symmetric kernel ϕ. Moreover, since
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SUn(X[n]) = Ls(X[n]), one has the following orthogonal decomposition:

Ls

(
X[n]

)= n⊕
k=0

SHk

(
X[n]

)
,(3)

where “
⊕

” stands for an orthogonal sum. In particular, (3) implies that every sym-
metric random variable T (X[n]) ∈ Ls(X[n]) admits a unique representation as a
noncorrelated sum of n + 1 terms, with the kth summand (k = 0, . . . , n) equal to
an element of SHk(X[n]).

The next definition, which is essentially borrowed from Peccati (2004), formal-
izes the notion of “Hoeffding decomposability” evoked at the beginning of the
section.

DEFINITION A. The random sequence X[1,∞) is Hoeffding decomposable if,
for every n ≥ 2 and every k = 1, . . . , n, the following double implication holds:
F ∈ SHk(X[n]) if, and only if, the kernel ϕ appearing in its representation (1)
satisfies the degeneracy condition

E
[
ϕ
(
X[k]

) ∣∣X[2,k]
]= 0, a.s.-P.(4)

When a U -statistic F as in (1) is such that ϕ verifies (4), one says that F is a
completely degenerate symmetric U -statistic of order k, and that ϕ is a completely
degenerate symmetric kernel of order k.

For instance, when k = 3, one has X[2,k] = (X2,X3), and condition (4) becomes
E[ϕ(X1,X2,X3) | X2,X3] = 0. Of course, by exchangeability, (4) holds if, and
only if, E[ϕ(X[k]) | X[k−1]] = 0, a.s.-P.

For every infinite nondeterministic exchangeable sequence X[1,∞) (not nec-
essarily Hoeffding decomposable) and every k ≥ 1, the class of all kernels
ϕ :Dk → �, such that (4) is verified, is denoted by �k(X[1,∞)). Observe that
�k(X[1,∞)), k ≥ 1, is a vector space. Also, by definition, for every Hoeffding de-
composable sequence X[1,∞) and for every 1 ≤ k ≤ n, one has necessarily that
dimSHk(X[n]) = dim�k(X[1,∞)).

It is well known [see, e.g., Hoeffding (1948), Hajek (1968) or Karlin and Rinott
(1982)] that each i.i.d. sequence is decomposable in the sense of Definition A. In
Peccati (2004), the second author established a complete characterization of Ho-
effding decomposable sequences (with values in arbitrary Polish spaces), in terms
of weak independence. To introduce this concept, we need some more notation.
Fix n ≥ 2, and consider a symmetric function T ∈ S(Dn). We define the function
[T ](n−1)

n,n−1 as the unique application from Dn−1to � such that

[T ](n−1)
n,n−1

(
X[2,n]

)= E
(
T
(
X[n]

) ∣∣X[2,n]
)
, a.s.-P.(5)

For instance, if n = 2, then X[2] = (X1,X2), X[2,2] = X2 and [T ](1)
2,1(X2) =

E(T (X1,X2) | X2). Note that the exchangeability assumption and the symmetry
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of T imply that the application Dn−1 → � : x → [T ](n−1)
n,n−1(x) is symmetric. Also,

with this notation, T ∈ �n(X[1,∞)) if, and only if, [T ](n−1)
n,n−1(X[2,n]) = 0, a.s.-P.

Analogously, for u = 2, . . . , n we define the function [T ](n−u)
n,n−1 :Dn−1 → �

through the relation

[T ](n−u)
n,n−1

(
X[u+1,u+n−1]

)= E
(
T
(
X[n]

) ∣∣X[u+1,u+n−1]
)
, a.s.-P.(6)

To understand our notation, observe that, for u = 2, . . . , n, the two sets [n]
and [u + 1, u + n − 1] have exactly n − u elements in common. For instance,
if n = 3 and u = 2, then [u + 1, u + n − 1] = {3,4}, and [T ](1)

3,2(X3,X4) =
E(T (X1,X2,X3) | X3,X4). Again, exchangeability and symmetry yield that the
function x → [T ](0)

n,n−1(x) (corresponding to the case u = n) is symmetric on
Dn−1. On the other hand, for u = 2, . . . , n − 1, the application (x1, . . . , xn−1) →
[T ](n−u)

n,n−1(x1, . . . , xn−1) is (separately) symmetric in the variables (x1, . . . , xn−u)

and (xn−u+1, . . . , xn−1), and not necessarily symmetric as a function on Dn−1.
From now on, the symbol Sn (n ≥ 1) stands for the group of permutations of the

set [n] = {1, . . . , n}. Given a vector xn = (x1, . . . , xn) ∈ Dn and a permutation π ∈
Sn, we denote by xπ(n) the action of π on xn, that is, xπ(n) = (xπ(1), . . . , xπ(n)).
Given a function f :Dn → �, we write f̃ for its canonical symmetrization, that is,
for every xn ∈ Dn

f̃ (xn) = 1

n!
∑

π∈Sn

f
(
xπ(n)

)
.

In particular, for u = 2, . . . , n − 1, the symbol [̃T ](n−u)
n,n−1 indicates the sym-

metrization of the function [T ](n−u)
n,n−1 defined above. Finally, for u = 2, . . . , n, we

set

�̃n,n−u

(
X[1,∞)

)
�
{
T ∈ S(Dn) : [̃T ](n−u)

n,n−1
(
X[u+1,u+n−1]

)= 0, a.s.-P
}

(7)

[recall that S(Dn) denotes the class of symmetric functions on Dn]. Note
that, by exchangeability, [̃T ](n−u)

n,n−1(X[u+1,u+n−1]) = 0, a.s.-P, if, and only if,

[̃T ](n−u)
n,n−1(X[n−1]) = 0, a.s.-P. The following technical definition is taken from

Peccati (2004).

DEFINITION B. The exchangeable sequence X[1,∞) is weakly independent if,
for every n ≥ 2,

�n

(
X[1,∞)

)⊂ n⋂
u=2

�̃n,n−u

(
X[1,∞)

)
.(8)

In other words, X[1,∞) is weakly independent if, for every n ≥ 2 and every

T ∈ S(Dn), the following implication holds: if [T ](n−1)
n,n−1(X[n−1]) = 0, then

[̃T ](n−u)
n,n−1(X[n−1]) = 0 for every u = 2, . . . , n.
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The next theorem, which is one of the main results of Peccati (2004), shows that
the notions of weak independence and Hoeffding decomposability are equivalent
for infinite exchangeable sequences.

THEOREM 0 [Peccati (2004), Theorem 6]. Suppose that the infinite exchange-
able sequence X[1,∞) is such that, for every n ≥ 2,

SHk

(
X[n]

) �= {0}, ∀k = 1, . . . , n.(9)

Then, X[1,∞) is Hoeffding decomposable if, and only if, it is weakly independent.

Condition (9) excludes, for instance, the case Xn = X1, for each n ≥ 1. Note that
Theorem 0 also holds for exchangeable sequences with values in general Polish
spaces. In Peccati (2004) Theorem 0 has been used to show the following two
facts:

(F1) There are infinite exchangeable sequences which are Hoeffding decompos-
able and not i.i.d., as, for instance, the generalized urn sequences analyzed
in Section 5 of Peccati (2004).

(F2) There exist infinite exchangeable sequences that are not Hoeffding decom-
posable. For instance, one can consider a {0,1}-valued exchangeable se-
quence XY[1,∞) such that, conditioned on the realization of a random vari-

able Y uniformly distributed on (0, ε) (0 < ε < 1), XY[1,∞) is composed of
independent Bernoulli trials with random parameter Y . See Peccati (2004),
pages 1807–1808, for more details.

Although the combination of Theorem 0, (F1) and (F2) gives several insights
into the structure of Hoeffding decomposable sequences, the analysis contained
in Peccati (2004) left open a crucial question: can one characterize the laws of
Hoeffding decomposable sequences, in terms of their de Finetti representation as
mixtures of i.i.d. sequences? In the following sections, we will provide a com-
plete answer when D = {0,1}, by proving that in this case the class of Hoeffding
decomposable sequences contains exclusively i.i.d. and Pólya sequences. The ex-
tension of our results to spaces D with more than two elements is discussed in
Section 7.

3. Main results for two-color sequences. For the rest of this section, we will
focus on the case D = {0,1}. According to the de Finetti theorem, in this case
the exchangeability of X[1,∞) = {Xn :n ≥ 1} yields the existence of a (unique)
probability measure γ on [0,1] such that, for every n ≥ 1 and every vector
(j1, . . . , jn) ∈ {0,1}n,

P{X1 = j1, . . . ,Xn = jn} =
∫
[0,1]

θ
∑

k jk (1 − θ)n−∑k jkγ (dθ).(10)
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The measure γ , appearing in (10), is called the de Finetti measure associ-
ated with X[1,∞). In what follows, we shall systematically suppose that X[1,∞)

is nondeterministic, that is, that the support of the measure γ is not contained in
{0} ∪ {1}. The choice of the term “nondeterministic” is inspired by Hill, Lane and
Sudderth (1987), where the adjective deterministic is used to describe exchange-
able sequences whose de Finetti measure γ has support contained in {0} ∪ {1}. We
stress that a deterministic sequence, in the sense of Hill, Lane and Sudderth (1987),
can actually be random. Define indeed γ ∗ = pδ1 + (1 − p)δ0, where p ∈ (0,1)

and δa stands for the Dirac mass at a. Then, an exchangeable sequence X[1,∞)

= (X1,X2, . . .) with de Finetti measure γ ∗ is such that: (i) X[1,∞) is determinis-
tic in the sense of Hill, Lane and Sudderth (1987), (ii) Xn = X1 for n ≥ 1, and
(iii) P(X1 = 1) = p = 1 − P(X1 = 0). Moreover, when D = {0,1}, condition (9)
holds if, and only if, X[1,∞) is nondeterministic. To prove this last claim we only
need to show that SHk(X[n]) = {0} for some n, k if, and only if, X[1,∞) is de-
terministic. Now, on the one hand, it is immediately seen that, if X[1,∞) is deter-
ministic, then SHk(X[n]) = 0 for any integers n, k such that 2 ≤ k ≤ n. On the
other hand, if X[1,∞) is nondeterministic, then, for every n, k such that n ≥ 2 and
0 ≤ k ≤ n, the vector space SUk(X[n]) has exactly dimension k + 1, so that [since
SUk−1(X[n]) ⊆ SUk(X[n])] the space SHk(X[n]) = SUk(X[n]) ∩ SUk−1(X[n])⊥
must necessarily have dimension 1.

DEFINITION C. The exchangeable sequence X[1,∞) = {Xn :n ≥ 1} of {0,1}-
valued random variables is called a two-color Pólya sequence if there exist two
real numbers α,β > 0 such that

γ (dθ) = 1

B(α,β)
θα−1(1 − θ)β−1 dθ,(11)

where γ is the de Finetti measure associated with X[1,∞) through formula (10),
and

B(α,β) =
∫ 1

0
θα−1(1 − θ)β−1 dθ

is the usual Beta function. The numbers α and β are the parameters of the Pólya
sequence X[1,∞). A random variable ξ , with values in [0,1] and with law γ as
in (11), is called a Beta random variable of parameters α and β .

Classic references for the theory of Pólya sequences are Blackwell (1973) and
Blackwell and MacQueen (1973) [see also Pitman (2006, 1996) for a state of the
art review]. Thanks to Peccati (2004), Corollary 9, we already know that Pólya and
i.i.d. sequences are Hoeffding decomposable. The next result, which is one of the
main achievements of our paper, shows that those are the only exchangeable and
Hoeffding decomposable sequences with values in {0,1}. The proof is deferred to
Section 5.
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THEOREM 1. Let X[1,∞) be a nondeterministic infinite exchangeable se-
quence of {0,1}-valued random variables. Then, the following two assertions are
equivalent:

1. X[1,∞) is Hoeffding decomposable;
2. X[1,∞) is either an i.i.d. sequence or a two-color Pólya sequence.

In Section 6 we will discuss some connections between Theorem 1 and the
concept of urn process, as defined in Hill, Lane and Sudderth (1987).

REMARK. We state two projection formulae, concerning, respectively, i.i.d.
and two-color Pólya sequences.

(I) Let X[1,∞) be an i.i.d. sequence with values in {0,1}, and fix n ≥ 2 and
T ∈ Ls(X[n]). Then, for k = 1, . . . , n, the projection of T on the kth Hoeffding
space SHk(X[n]), denoted by π [T ,SHk], is

π [T ,SHk] =
k∑

a=1

(−1)k−a
∑

1≤j1<···<ja≤n

[T − E(T )](a)
n,a(Xj1, . . . ,Xja ),(12)

where, for a = 1, . . . , k and 1 ≤ j1 < · · · < ja ≤ n,

[T − E(T )](a)
n,a(Xj1, . . . ,Xja ) = E

[
T
(
X[n]

)− E(T )|Xj1, . . . ,Xja

]
.

Formula (12) is classic [see, e.g., Hoeffding (1948) or Vitale (1992)], and can be
easily deduced by an application of the inclusion–exclusion principle.

(II) Let X[1,∞) be a Pólya sequence of parameters α,β > 0, and fix n ≥ 2 and
T ∈ Ls(X[n]). Then, for k = 1, . . . , n, the projection of T on the kth Hoeffding
space associated with X[n] is of the form

π [T ,SHk] =
k∑

a=1

θ(k,a)
n

∑
1≤j1<···<ja≤n

[T − E(T )](a)
n,a(Xj1, . . . ,Xja ).

The explicit formulae describing the real coefficients θ
(k,a)
n are given recursively

in Peccati (2004), formula (24). For instance, when n = 3, then⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ
(1,1)
3 = α + β + 1

α + β + 2
,

θ
(2,1)
3 = −(α + β + 1)(α + β + 4)

(α + β + 3)(α + β + 2)
− α + β + 1

α + β + 2
,

θ
(2,2)
3 = α + β + 4

α + β + 2
.

The rest of the paper is organized as follows: in Section 4 we collect several
technical results, leading to a new characterization of Hoeffding decomposability
for {0,1}-valued sequences in terms of conditional probabilities (see Proposition 4
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below); the proof of Theorem 1 is contained in Section 5; in Section 6, a brief
discussion is presented, relating Theorem 1 with several notions associated with
{0,1}-valued exchangeable sequences; Section 7 deals with Hoeffding decompos-
able sequences with values in a general finite set.

4. Ancillary lemmas. From now on, X[1,∞) = {Xn :n ≥ 1} will be a nonde-
terministic exchangeable sequence with values in D = {0,1}. For n ≥ 2, we write
S({0,1}n) to indicate the vector space of symmetric functions on {0,1}n. By ex-
changeability, we have of course that

P
(
X[n] = xn

)= P
(
X[n] = xπ(n)

) ∀n ≥ 2, ∀π ∈ Sn,

yielding that, for n ≥ 2, the value of the probability P(X[n] = xn) depends ex-
clusively on n and on the number of zeros contained in the vector xn. For n ≥ 1
and j = 0, . . . , n, we shall denote by Pn(0(j)) the common value taken by the
quantity P(X[n] = xn) for all xn = (x1, . . . , xn) ∈ {0,1}n such that xn contains
exactly j zeros. For instance, when n = 3 and j = 1, one has that P3(0(1)) =
P(X[3] = (0,1,1)) = P(X[3] = (1,0,1)) = P(X[3] = (1,1,0)). Note that, since
X[1,∞) is nondeterministic, Pn(0(j)) > 0 for every n ≥ 1 and every j = 0, . . . , n.
Analogously, for every n ≥ 2, every j = 0, . . . , n, and every symmetric function
ϕ ∈ S({0,1}n), we will write ϕ(0(j)) to indicate the common value taken by ϕ(xn)

for all xn ∈ {0,1}n containing exactly j zeros.
The following result gives a complete characterization of the spaces

�n

(
X[1,∞)

)
, n ≥ 2,

defined through relation (4) (note that, to define the spaces �n we do not need
X[1,∞) to be Hoeffding decomposable).

LEMMA 2. With the assumptions and notation of this section, the set
�n(X[1,∞)) is the one-dimensional vector space spanned by the symmetric ker-

nel ϕ
(0)
n : {0,1}n → � defined by

ϕ(0)
n

(
0(k))= (−1)k

Pn(0(0))

Pn(0(k))
, k = 0, . . . , n.(13)

PROOF. Consider ϕn ∈ �n(X[1,∞)). By the definition of �n(X[1,∞)), for any
fixed j = 0, . . . , n− 1 and any fixed xn−1 ∈ {0,1}n−1 such that

∑n−1
i=1 (1 −xi) = j,

we have

0 = E
[
ϕn

(
X[n]

) ∣∣X[2,n] = xn−1
]

= ϕn

(
0(j+1))Pn(0(j+1))

Pn−1(0(j))
+ ϕn

(
0(j)) Pn(0(j))

Pn−1(0(j))
,
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and therefore ϕn(0(j+1)) = −(Pn(0(j))/Pn(0(j+1))) × ϕn(0(j)). Arguing recur-
sively on j, one has

ϕn

(
0(j+1))= (−1)j+1 Pn(0(0))

Pn(0(j+1))
ϕn

(
0(0)), j = 0, . . . , n − 1,(14)

showing that any symmetric kernel ϕn ∈ �n(X[1,∞)) is completely determined by

the quantity ϕn(0(0)). Now define a kernel ϕ
(0)
n ∈ �n(X[1,∞)) by using (14) and

by setting ϕ
(0)
n (0(0)) = Pn(0(0))/Pn(0(0)) = 1. It is easily seen that ϕ

(0)
n must coin-

cide with the function defined in (13). To conclude, consider another element ϕn

of �n(X[1,∞)). Since there exists a constant K ∈ � such that ϕn(0(0)) = K =
Kϕ

(0)
n (0(0)), and since ϕn has to satisfy (14), we deduce that ϕn = Kϕ

(0)
n , thus

completing the proof. �

The following result will prove very useful.

LEMMA 3. Fix m ≥ 2 and v ∈ {1, . . . ,m − 1} and let the application

fv,m−v : {0,1}m → � : (x1, . . . , xm) → f (x1, . . . , xm)

be separately symmetric in the variables (x1, . . . , xv) and (xv+1, . . . , xm) (and not
necessarily symmetric as a function on {0,1}m). Then, for any xm = (x1, . . . , xm) ∈
{0,1}m such that

∑m
j=1(1 − xj ) = z for some z = 0, . . . ,m, the canonical sym-

metrization of fv,m−v , computed at xm, reduces to

f̃v,m−v(xm) =
∑z∧v

k=0∨(z−(m−v))

(v
k

)(m−v
z−k

)
fv,m−v(0(k),0(z−k))∑z∧v

k=0∨(z−(m−v))

(v
k

)(m−v
z−k

) ,(15)

where fv,m−v(0(k),0(z−k)) denotes the common value of fv,m−v(ym) when ym =
(y1, . . . , ym) is such that the vector (y1, . . . , yv) contains exactly k zeros, and the
vector (yv+1, . . . , ym) contains exactly (z − k) zeros.

As a consequence, f̃v,m−v(xm) = 0 for every xm ∈ {0,1}m if, and only if, for all
z = 0, . . . ,m,

z∧v∑
k=0∨(z−(m−v))

(
v

k

)(
m − v

z − k

)
fv,m−v

(
0(k),0(z−k))= 0.(16)

PROOF. Fix xm ∈ {0,1}m such that
∑m

j=1(1 − xj ) = z for some z = 0, . . . ,m.

Without loss of generality, we can assume

xm = (0,0, . . . ,0︸ ︷︷ ︸
z times

,1,1, . . . ,1︸ ︷︷ ︸
m−z times

).

Observe that, for all k = max{0, z − (m − v)}, . . . ,min{z, v}, there are exactly
z!(m − z)!(v

k

)(m−v
z−k

)
permutations π ∈ Sm such that

∑v
j=1(1 − xπ(j)) = k and
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j=v+1(1 − xπ(j)) = z − k. The set of all such permutations will be denoted

by S
(k)
m . It is immediately seen that

f̃v,m−v(xm) = 1

m!
z∧v∑

k=0∨(z−(m−v))

∑
π∈S

(k)
m

fv,m−v

(
0(k),0(z−k))

= 1

m!
z∧v∑

k=0∨(z−(m−v))

fv,m−v

(
0(k),0(z−k))× card

(
S(k)

m

)
.

Formula (15) now follows by observing that

m!
z!(m − z)! =

(
m

z

)
=

z∧v∑
k=0∨(z−(m−v))

(
v

k

)(
m − v

z − k

)
.

The last assertion in the statement of this lemma is an easy consequence
of (15). �

We shall conclude the section by obtaining a full characterization of {0,1}-
valued Hoeffding decomposable sequences (stated in Proposition 4 below).

To do this, recall that, for any symmetric ϕ : {0,1}n → �, every u = 2, . . . , n

and every xn−1 ∈ {0,1}n−1,

[ϕ](n−u)
n,n−1(xn−1) = E

(
ϕ
(
X[n]

) ∣∣X[u+1,u+n−1] = xn−1
)
.

Observe that the function [ϕ](n−u)
n,n−1 : {0,1}n−1 → � clearly meets the symmetry

properties of Lemma 3 with m = n − 1 and v = n − u. Now fix z ∈ {0, . . . , n − 1},
and suppose that xn−1 ∈ {0,1}n−1 is such that

∑n−1
j=1(1 − xj ) = z and

∑n−u
j=1(1 −

xj ) = k. Then,

[ϕ](n−u)
n,n−1(xn−1) =

u∑
m=0

(
u

m

)
ϕ
(
0(k+m))Pn−1+u(0(z+m))

Pn−1(0(z))
.(17)

By applying (16) in the case m = n − 1 and v = n − u, we deduce that
[̃ϕ](n−u)

n,n−1(0
(z)) = 0 if, and only if,

z∧(n−u)∑
k=0∨(z−(u−1))

(
n − u

k

)(
u − 1
z − k

)
[ϕ](n−u)

n,n−1

(
0(k),0(z−k))= 0,(18)

where the notation [̃ϕ](n−u)
n,n−1(0

(z)) and [ϕ](n−u)
n,n−1(0

(k),0(z−k)) has been intro-

duced to indicate the value of [̃ϕ](n−u)
n,n−1(yn−1) (resp., [ϕ](n−u)

n,n−1(wn−1)), where
yn−1 = (y1, . . . , yn−1) ∈ {0,1}n−1 is any vector containing exactly z zeros [resp.,
wn−1 = (w1, . . . ,wn−1) ∈ {0,1}n−1 is any vector containing exactly k zeros in
(w1, . . . ,wn−u) and z − k zeros in (wn−u+1, . . . ,wn−1)].
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Now recall that, by Theorem 0, X[1,∞) is Hoeffding decomposable if, and
only if, it is weakly independent, and that X[1,∞) is weakly independent if, and
only if, for all n ≥ 2 and for any ϕ ∈ �n(X[1,∞)), one has ϕ ∈ �̃n,u(X[1,∞))

for all u = 2, . . . , n. By Lemma 2, we deduce that the sequence X[1,∞) is Ho-
effding decomposable if, and only if, for every n ≥ 2 and every u = 2, . . . , n,
ϕ

(0)
n ∈ �̃n,u(X[1,∞)), where ϕ

(0)
n is defined in (13). By (18), this last relation is

true if, and only if, for every n ≥ 2, every z = 0, . . . , n− 1 and every u = 2, . . . , n,

z∧(n−u)∑
k=0∨(z−(u−1))

(
n − u

k

)(
u − 1
z − k

)[
ϕ(0)

n

](n−u)
n,n−1

(
0(k),0(z−k))= 0.(19)

Substituting (13) and (17) in (18), we obtain that (19) is true if and only if

0 = Pn(0(0))

Pn−1(0(z))

z∧(n−u)∑
k=0∨(z−(u−1))

(−1)k
(

n − u

k

)(
u − 1
z − k

)
(20)

×
u∑

m=0

(−1)m
(

u

m

)
Pn−1+u(0(m+z))

Pn(0(m+k))
.

Note that

Pn−1+u(0(m+z))

Pn(0(m+k))
= 1(u−1

z−k

)Pn
n+u−1

(
0(m+z)

∣∣ 0(m+k)),(21)

where Pn
n+u−1(0

(m+z) | 0(m+k)) denotes the conditional probability that the vec-
tor X[n+u−1] contains exactly m + z zeros, given that the subvector X[n] contains
exactly m + k zeros.

REMARK. For every n ≥ 1, 0 ≤ a ≤ b, every v ≥ 1, the quantity Pn
n+v(0

(b) |
0(a)) is equal to

P
(
X[n+1,n+v] contains exactly b − a zeros | X[n] contains exactly a zeros

)
.

By plugging (21) into (20), we obtain the announced characterization of weak
independence.

PROPOSITION 4. Let X[1,∞) be a nondeterministic infinite sequence of ex-
changeable {0,1}-valued random variables. For X[1,∞) to be Hoeffding decom-
posable, it is necessary and sufficient that, for every n ≥ 2, every u = 2, . . . , n and
every z = 0, . . . , n − 1,

0 =
z∧(n−u)∑

k=0∨(z−(u−1))

(−1)k
(

n − u

k

)
(22)

×
u∑

m=0

(−1)m
(

u

m

)
Pn

n+u−1
(
0(m+z)

∣∣ 0(m+k)).
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As shown in the next section, Proposition 4 is the key tool to prove Theorem 1.

5. Proof of Theorem 1. Here is an outline of the proof. We already know
[thanks to Peccati (2004), Corollary 9] that, if X[1,∞) is either i.i.d. or Pólya, then
it is also Hoeffding decomposable, thus proving the implication 2 ⇒ 1. We shall
therefore show that Hoeffding decomposability implies necessarily that X[1,∞) is
either i.i.d. or Pólya. The proof of this last implication is divided in four steps.
By using some easy remarks (Step 1) and Proposition 4, we will prove that (22)
implies a universal relation linking the moments of the de Finetti measure γ un-
derlying any Hoeffding decomposable exchangeable sequence (Step 2). After a
discussion concerning the moments of Beta random variables (Step 3), we con-
clude the proof in Step 4.

STEP 1. We start with an easy remark. Define the two functions

f (x, y, z) = 2x2z − xy2 − x2y,(23)

g(x, y, z) = zx − 2y2 + yz.(24)

Then, the set

S � {(x, y, z) : 0 < x < y < z ≤ 1}(25)

does not contain any solution of the system{
f (x, y, z) = 0,

g(x, y, z) = 0.
(26)

We stress that this system can actually be solved. For instance, any vector (x, y, z)

such that x = y = z is a solution of (26).

STEP 2. Let X[1,∞) = {Xn :n ≥ 1} be a nondeterministic exchangeable se-
quence with values in {0,1}, and let γ be the de Finetti measure uniquely associ-
ated with X[1,∞) through formula (10). We denote by

μn = μn(γ ) =
∫
[0,1]

θnγ (dθ), n ≥ 0,(27)

the sequence of moments of γ (the dependence on γ is dropped when there is no
risk of confusion). We shall prove the following statement: if X[1,∞) is Hoeffding
decomposable, then

μn+1g(μn,μn−1,μn−2) = f (μn,μn−1,μn−2), n ≥ 2,(28)

where f and g are, respectively, defined by (23) and (24).
To prove (28), first recall that, due to Proposition 4, if X[1,∞) is Hoeffding de-

composable, then formula (22) must hold for every n ≥ 2, every u = 2, . . . , n and
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every z = 0, . . . , n − 1. In particular, it has to hold true for u = 2, that is, for all
n ≥ 2 and all z = 0, . . . , n − 1, one must have that

z∧(n−2)∑
k=0∨(z−1)

(−1)k
(

n − 2
k

) 2∑
m=0

(−1)m
(

2
m

)
Pn

n+1
(
0(m+z)

∣∣ 0(m+k))= 0,(29)

for every n ≥ 2 and every z = 0, . . . , n − 1. Specializing formula (29) to the case
z = 0, one obtains

Pn
n+1

(
0(2)

∣∣ 0(2))− 2Pn
n+1

(
0(1)

∣∣ 0(1))+ Pn
n+1

(
0(0)

∣∣ 0(0))= 0.(30)

When specialized to the case z = n − 1, relation (29) is equivalent to

Pn
n+1

(
0(n)

∣∣ 0(n))− 2Pn
n+1

(
0(n−1)

∣∣ 0(n−1))+ Pn
n+1

(
0(n−2)

∣∣ 0(n−2))= 0,(31)

where we have used the fact that, by additivity,

Pn
n+1

(
0(j+1)

∣∣ 0(j))= 1 − Pn
n+1

(
0(j)

∣∣ 0(j)), j = 0, . . . , n.(32)

Analogously, for 1 ≤ z ≤ n − 2, (29) becomes

0 =
(

n − 2
z − 1

)[
Pn

n+1
(
0(z+2)

∣∣ 0(z+1))
− 2Pn

n+1
(
0(z+1)

∣∣ 0(z))+ Pn
n+1

(
0(z)

∣∣ 0(z−1))]
(33)

−
(

n − 2
z

)[
Pn

n+1
(
0(z+2)

∣∣ 0(z+2))
− 2Pn

n+1
(
0(z+1)

∣∣ 0(z+1))+ Pn
n+1

(
0(z)

∣∣ 0(z))].
Again by (32), relation (33) is equivalent to

0 = −
(

n − 2
z − 1

)[
Pn

n+1
(
0(z+1)

∣∣ 0(z+1))
− 2Pn

n+1
(
0(z)

∣∣ 0(z))+ Pn
n+1

(
0(z−1)

∣∣ 0(z−1))]
(34)

−
(

n − 2
z

)[
Pn

n+1
(
0(z+2)

∣∣ 0(z+2))
− 2Pn

n+1
(
0(z+1)

∣∣ 0(z+1))+ Pn
n+1

(
0(z)

∣∣ 0(z))].
Combining (30), (31) and (34), one deduces that (29) holds true if, and only if, for
all p = 0, . . . , n − 2,

Pn
n+1

(
0(p+2)

∣∣ 0(p+2))− 2Pn
n+1

(
0(p+1)

∣∣ 0(p+1))+ Pn
n+1

(
0(p)

∣∣ 0(p))= 0.(35)
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Now, for p = 0, . . . , n, one has that

Pn
n+1

(
0(p)

∣∣ 0(p))
= P

(
Xn+1 = 1|X[n] contains exactly p zeros

)
(36)

=
∫ 1

0 θn+1−p(1 − θ)pγ (dθ)∫ 1
0 θn−p(1 − θ)pγ (dθ)

=
∑p

k=0(−1)k
(p
k

) ∫ 1
0 θn+1+k−pγ (dθ)∑p

k=0(−1)k
(p
k

) ∫ 1
0 θn+k−pγ (dθ)

=
∑p

k=0(−1)k
(p
k

)
μn+1+k−p∑p

k=0(−1)k
(p
k

)
μn+k−p

,

where μj denotes the j th moment of γ , as given in (27). Now let �p denote the
(forward) difference operator of order p, given by �0f (n) = f (n),�1f (n) =
f (n + 1) − f (n) and

�p = �1 ◦ · · · ◦ �1︸ ︷︷ ︸
p times

.

By a simple recursion on p one sees immediately that the quantity in (36) equals
indeed

�pμn+1−p

�pμn−p
. Since (35) must hold for p = 0, we deduce that

�2μn−1

�2μn−2
− 2

�1μn

�1μn−1
+ μn+1

μn

= 0

and straightforward calculations yield relation (28).

REMARK. Suppose that X[1,∞) is exchangeable and nondeterministic, and de-
fine μn, n ≥ 0, via (27). Then, we have that μn+1 ∈ (0,1) for every n ≥ 0, and that,
for every n ≥ 2, (μn,μn−1,μn−2) ∈ S, where S is defined as in (25). As a con-
sequence, the conclusions of Step 1 and (28) imply that, if X[1,∞) is Hoeffding
decomposable, then f (μn,μn−1,μn−2) �= 0 and g(μn,μn−1,μn−2) �= 0 for every
n ≥ 2. Therefore,

μn+1 = f (μn,μn−1,μn−2)

g(μn,μn−1,μn−2)
.(37)

STEP 3. We claim that, for any (c1, c2) ∈ (0,1)2 such that c2
1 < c2 < c1, there

exists a unique pair (α∗, β∗) ∈ (0,+∞) × (0,+∞) such that

E[ξ ] = c1 and E[ξ2] = c2,

where ξ is a Beta random variable of parameters α∗ and β∗. To check this, just
observe that, if ξ is Beta of parameters α and β , then

E(ξ) = α

α + β
and E(ξ2) = α(α + 1)

(α + β)(α + β + 1)
,
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and that, for every fixed (c1, c2) ∈ (0,1)2 such that c2
1 < c2 < c1, the system⎧⎪⎪⎨⎪⎪⎩

α

α + β
= c1,

α(α + 1)

(α + β)(α + β + 1)
= c2,

(38)

admits a unique solution (α∗, β∗) ∈ (0,+∞) × (0,+∞), namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩
α∗ = c1(c1 − c2)

c2 − c2
1

,

β∗ = (1 − c1)(c1 − c2)

c2 − c2
1

.

(39)

We are now in a position to conclude the proof of the implication 1 ⇒ 2 in the
statement of Theorem 1.

STEP 4. Let X[1,∞) be a nondeterministic exchangeable sequence, denote
by γ its de Finetti measure and by {μn(γ ) :n ≥ 0} the sequence of moments
appearing in (27). We suppose that X[1,∞) is Hoeffding decomposable. There
are only two possible cases: either μ1(γ )2 = μ2(γ ), or μ1(γ )2 < μ2(γ ). If
μ1(γ )2 = μ2(γ ), then necessarily γ = δx for some x ∈ (0,1), and therefore
X[1,∞) is a sequence of i.i.d. Bernoulli trials with common parameter equal
to x. If μ1(γ )2 < μ2(γ ), then, thanks to the results contained in Step 3 (note
that μ2(γ ) < μ1(γ ), since X[1,∞) is nondeterministic), there exists a unique pair
(α∗, β∗) ∈ (0,+∞) × (0,+∞) such that

μ1(γ ) = E(ξ) = 1

B(α∗, β∗)

∫ 1

0
θθα∗−1(1 − θ)β

∗−1 dθ,(40)

μ2(γ ) = E(ξ2) = 1

B(α∗, β∗)

∫ 1

0
θ2θα∗−1(1 − θ)β

∗−1 dθ,(41)

where ξ stands for a Beta random variable of parameters α∗ and β∗. Moreover,
(37) and the fact that Pólya sequences are Hoeffding decomposable imply that, for
any n ≥ 2,

μn+1(γ ) = f (μn(γ ),μn−1(γ ),μn−2(γ ))

g(μn(γ ),μn−1(γ ),μn−2(γ ))
,

E(ξn+1) = f (E(ξn),E(ξn−1),E(ξn−2))

g(E(ξn),E(ξn−1),E(ξn−2))
,

where f and g are given by (23) and (24). As (40) and (41) are in order, we deduce
that, for every n ≥ 1,

μn(γ ) = E(ξn) = 1

B(α∗, β∗)

∫ 1

0
θnθα∗−1(1 − θ)β

∗−1 dθ.(42)
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Since probability measures on [0,1] are determined by their moments, the combi-
nation of (40), (41) and (42) gives

γ (dθ) = 1

B(α∗, β∗)
θα∗−1(1 − θ)β

∗−1 dθ,

implying that X[1,∞) is a two-color Pólya sequence of parameters α∗ and β∗. This
concludes the proof of Theorem 1.

6. Further remarks on the two-color case. (I) With the terminology of Hill,
Lane and Sudderth (1987), a random sequence X[1,∞) = {Xn :n ≥ 1}, with values
in {0,1}, is called an urn process if there exist a measurable function f : [0,1] →
[0,1] and positive natural numbers r, b > 0, such that, for every n ≥ 1,

P(Xn+1 = 1 | X1, . . . ,Xn) = f

(
r + X1 + · · · + Xn

r + b + n

)
.(43)

According to Theorem 1 in Hill, Lane and Sudderth (1987), the only exchange-
able and nondeterministic urn processes are i.i.d. and Pólya sequences with in-
teger parameters (for which f is, resp., constant and equal to the identity map).
This yields immediately the following consequence of Theorem 1, showing that
the two (seemingly unrelated) notions of urn process and Hoeffding decompos-
able sequence are in many cases equivalent. The proof can be achieved by using
the calculations performed in Step 4.

COROLLARY 5. Let X[1,∞) = {Xn :n ≥ 1} be a {0,1}-valued infinite ex-
changeable nondeterministic sequence such that

P(X1 = 1) = c1 and P(X1 = X2 = 1) = c2,(44)

for some constants c1 and c2 such that 0 < c2
1 < c2 < c1 < 1. If the system (38)

admits integer solutions, then X[1,∞) is Hoeffding decomposable if, and only if, it
is an urn process.

In general, a sequence X[1,∞) verifying (44) is Hoeffding decomposable if, and
only if, it is a Pólya sequence with parameters α∗ and β∗ given by (39).

(II) The arguments rehearsed in the proof of Theorem 1 provide an alternative
proof of Therorem 5 in Diaconis and Ylvisaker (1979). Indeed, Theorem 5 in that
reference can be translated in the language of the present paper as follows. Sup-
pose that X[1,∞) is a nondeterministic exchangeable sequence associated with a de
Finetti measure γ whose predictive probabilities are such that there exist numbers
an and bn satisfying

Pn
n+1

(
0(n−p)

∣∣ 0(n−p))= anp + bn, p = 0, . . . , n.(45)
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Then, either γ is a Dirac mass concentrated at some x ∈ (0,1), or γ is a Beta
distribution. If γ = δx , then an = 0 and bn = x; if γ is Beta, then there exist
a > 0, b > 0 with a + b < 1, such that

an = a

1 + a(n − 1)
, bn = b

1 + a(n − 1)
.(46)

To see how Diaconis and Ylvisaker’s result can be recovered by using our tech-
niques, observe that if (45) holds, then, by setting An = −an and Bn = nan + bn,
one has that

Pn
n+1

(
0(p)

∣∣ 0(p))= Anp + Bn, p = 0, . . . , n.(47)

Now, if (47) is true, it is immediately seen that (35) must also hold, and one de-
duces from the discussion contained in the previous section that γ must be Beta
or Dirac. Conversely, if γ is either Dirac at some x ∈ (0,1) or Beta, then the dif-
ference equation (35) holds, and one must conclude that there exist numbers An

and Bn such that

Pn
n+1

(
0(p)

∣∣ 0(p))= Anp + Bn, p = 0, . . . , n.(48)

Specializing (48) to p = 0 and p = 1 one gets, respectively,

Bn = Pn
n+1

(
0(0)

∣∣ 0(0)) and An = Pn
n+1

(
0(1)

∣∣ 0(1))− Pn
n+1

(
0(0)

∣∣ 0(0)).
If γ = δx , then Bn = x and An = 0. If γ is Beta, then necessarily An < 0. Indeed,
the function

f (p) = Pn
n+1

(
0(p)

∣∣ 0(p))= P
(
Xn+1 = 1|X[n] contains exactly p zeros

)
is strictly decreasing [cf. Hill, Lane and Sudderth (1987), Lemma 1]. Now, if one
sets bn = nAn + Bn and an = −An, then one obtains exactly relation (45) with
nonnegative an and bn, verifying relation (46) in the case where γ is Beta.

7. Hoeffding decompositions and m-color sequences. In this section we
deal with Hoeffding decomposable sequences with values in a set with more than
two elements. One of our main findings (see Theorem 10 of Section 7.1) is that,
under some additional conditions, there exists a universal recurrence relation anal-
ogous to formula (37), implying that the law of an exchangeable and Hoeffding
decomposable sequence is completely determined by the mean vector and the co-
variance matrix of its de Finetti measure. The results of Section 7.1 are used in
Section 7.2 to prove that Pólya urns are the only Hoeffding decomposable se-
quences whose de Finetti measure can be obtained as the law of a normalized
vector of independent and infinitely divisible random variables. This provides a
partial generalization of Theorem 1.

7.1. General recurrence relations. Fix an integer m ≥ 2, and let D =
{d1, . . . , dm} be a finite set of m elements. In what follows, we will denote by
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X[1,∞) = (X1, . . . ,Xn, . . .) an infinite exchangeable sequence of random variables
with values in D. We also denote by

∏
D the class of all probability measures

on D; the elements of
∏

D are written p = {p{di} : i = 1, . . . ,m}, where p{di}
indicates the p-probability of di . According to the de Finetti theorem, the assump-
tion of exchangeability yields the existence of a unique probability measure γ on∏

D (called, as before, the de Finetti measure associated with X[1,∞)) such that,
for every (x1, . . . , xn) ∈ Dn,

P
[
X[n] = (x1, . . . , xn)

]= ∫
∏

D

n∏
j=1

p{xj }γ (dp)(49)

[recall the notation X[n] = X[1,n] = (X1, . . . ,Xn)]. We will also assume that the
following “nondegeneracy” condition is satisfied: for every n ≥ 1 and every vector
xn = (x1, . . . , xn) ∈ Dn, one has that

P
[
X[n] = (x1, . . . , xn)

]
> 0.(50)

When m = 2 condition (50) is verified if and only if X[1,∞) is nondeterministic
in the sense of Section 3. Note, however, that, in the case m > 2, condition (50)
rules out exchangeable sequences that are highly nontrivial. As an example, set
D = {0,1,2} and consider a sequence X∗[1,∞) such that its de Finetti measure γ ∗
verifies γ ∗(p{0} = 1/2) = 1 and γ ∗(p{1} = 1/2) = 1/2 = γ ∗(p{1} = 0). Then,
X∗[1,∞) does not verify (50), since any realization of X∗[1,∞) a.s. contains either
zeros and ones (with no twos), or zeros and twos (with no ones).

The collection of vector spaces {SUk(X[n]) :n ≥ 2, k = 0, . . . , n}, associated
with X[1,∞), is defined as in Section 2. In particular, for 1 ≤ k ≤ n, SUk(X[n])
is generated by random variables of the type (1). The family of Hoeffding spaces
{SHk(X[n,∞]) :n ≥ 2, k = 0, . . . , n} is defined by formula (2). For k ≥ 1, the sym-
bol �k(X[1,∞)) indicates the linear space of all symmetric kernels ϕ on Dk such
that the degeneracy condition (4) is verified.

In what follows, for k ≥ 1 and for a real-valued symmetric function ϕ ∈ S(Dk)

[S(D1) is just the class of real-valued functions on D], we shall use the following
shorthand notation: for every n > k,

σn(ϕ)
(
X[n]

)= ∑
1≤j1<···<jk≤n

ϕ(Xj1, . . . ,Xjk
),(51)

so that, for example, the random variable F(X[n]) appearing in (1) can be rewrit-
ten as F(X[n]) = σn(ϕ)(X[n]). Observe that the application ϕ → σn(ϕ) yields a
one-to-one linear mapping from S(Dk) onto SUk(X[n]). We will also need the fol-
lowing “composition rule”: for every k ≥ 2, every n > k and every ϕ ∈ S(Dk−1),

σn(σ k(ϕ))
(
X[n]

)= ∑
1≤j1<···<jk≤n

∑
{i1,...,ik−1}⊂

{j1,...,jk}

ϕ(Xi1, . . . ,Xik−1)

(52)
= (n − k + 1)σn(ϕ)

(
X[n]

)
.
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For every k ≥ 1, we denote by N (k,m) the class of weak m-compositions of k.
This means that N (k,m) is the set of all vectors of the type nm = (n1, . . . , nm),
where the numbers ni , i = 1, . . . ,m, are nonnegative integers such that n1 +
· · · + nm = k. For instance, the vectors (1,0,5) and (2,2,2) are two elements
of N (6,3). It is well known [see, e.g., Stanley (1997), page 15] that N (k,m) con-
tains exactly

(k+m−1
m−1

)
elements. For every k ≥ 1 and every nm = (n1, . . . , nm) ∈

N (k,m), we use the notation(
k

nm

)
=
(

k

n1n2, . . . , nm

)
= k!

n1! · · ·nm! ,

where
( k
n1n2,...,nm

)
is the usual multinomial symbol. To every k ≥ 1 and every nm =

(n1, . . . , nm) ∈ N (k,m) we associate the set

C(k,nm) = {(x1, . . . , xk) ∈ Dk : exactly ni of the xj ’s equal di,
(53)

i = 1, . . . ,m}.
In other words, a vector xk ∈ Dk is an element of C(k,nm) if, and only if, ex-
actly ni of the components of xk are equal to di , for every i = 1, . . . ,m. For in-
stance, if m = k = 3,n′

3 = (2,0,1) ∈ N (3,3) and n′′
3 = (1,1,1) ∈ N (3,3), then

C(3,n′
3) = {(d1, d1, d3), (d1, d3, d1), (d3, d1, d1)},

C(3,n′′
3) = {(

dπ(1), dπ(2), dπ(3)

)
:π ∈ S3

}
.

The following facts (A)–(D) can be immediately checked: (A) for every k ≥ 1,
the collection {C(k,nm) : nm ∈ N (k,m)} is a partition of Dk ; (B) for every k ≥ 1
and every nm ∈ N (k,m), the indicator function xk → 1C(k,nm)(xk) is an element
of S(Dk); (C) for every k ≥ 1, the collection {1C(k,nm) : nm ∈ N (k,m)} is a basis
of the vector space S(Dk); (D) since (50) is in order, for every k ≥ 1 and every
nm = (n1, . . . , nm) ∈ N (k,m),

P
[
X[k] ∈ C(k,nm)

]
(54)

=
(

k

nm

)
P
[
X[k] = (d1, . . . , d1︸ ︷︷ ︸

n1 times

, . . . , dm, . . . , dm︸ ︷︷ ︸
nm times

)
] ∈ (0,1).

The equality in (54) is just a consequence of exchangeability. Note also that the
probability appearing on the right-hand side of such an equality could be rewritten
(with a notation analogous to the one adopted in Section 4) as Pk[d(n1)

1 , . . . , d
(nm)
m ],

where Pk[d(n1)
1 , . . . , d

(nm)
m ] stands for the constant value taken by the application

xk → P[X[k] = xk] on the set C(k,nm). Point (B) above implies that the space
S(Dk) has exactly dimension

(k+m−1
m−1

)
. By combining the above described facts

(A)–(D), one immediately deduces the following result.
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PROPOSITION 6. Let the above assumptions and notations prevail [in partic-
ular (50), and therefore (54), hold]. Then, for every k ≥ 1 and every n ≥ k:

1. The set {σn(1C(k,nm))(X[n]) : nm ∈ N (k,m)} is a basis of the vector space
SUk(X[n]), which has therefore dimension

(k+m−1
m−1

)
.

2. The vector spaces SHk(X[n]) and �k(X[1,∞)) have dimension
(k+m−1

m−1

) −(k+m−2
m−1

)
.

Note that point 1 in the statement of Proposition 6 is a consequence of (54),
of the relation dimS(Dk) = (k+m−1

m−1

)
, and of the fact that SUk(X[n]) is the col-

lection of all U -statistics of the form σn(ϕ)(X[n]), where ϕ ∈ S(Dk). Since(k+m−1
m−1

) − (k+m−2
m−1

)
> 0, point 2 ensures that condition (9) is satisfied, so that

Theorem 0 can be applied in our framework. Observe also that Proposition 6 is
consistent with the discussion contained in Section 2. In particular, if m = 2, then
dimSUk(X[n]) = k + 1, and dimSHk(X[1,∞)) = dim�k(X[n]) = 1, k = 1, . . . , n.
As anticipated, we shall now obtain a class of necessary conditions for the se-
quence X[1,∞) to be Hoeffding decomposable. To this end, suppose that X[1,∞) is
Hoeffding decomposable and recall that, by Theorem 0, X[1,∞) is also weakly
independent in the sense of Definition B. Now, for k ≥ 2 consider a function
η ∈ S(Dk), and observe that point 1 in Proposition 6 implies that the projection of
the symmetric statistic η(X[k]) on the space SUk−1(X[k]) has necessarily the form
of a linear combination of the elements of the basis {σk(1C(k−1,nm))(X[k]) : nm ∈
N (k − 1,m)}, namely

π [η,SUk−1](X[k]
)= πk

k−1[η](X[k]
)

(55)
�

∑
nm∈N (k−1,m)

zγ (η,nm)σ k(1C(k−1,nm)

)(
X[k]

)
,

where we used the notation introduced in (53), and where {zγ (η,nm)} is a
(uniquely defined) collection of real coefficients which of course depend on γ (or,
equivalently, on the law of X[1,∞)). Since η ∈ S(Dk), one has that σn(η)(X[n]) ∈
SUk(X[n]) for every n ≥ k. Moreover, since the function xk → πk

k−1[η](xk) is sym-
metric on Dk , and since (by construction)

E
[
η
(
X[k]

)− πk
k−1[η](X[k]

) ∣∣X[2,k]
]= 0,(56)

the Hoeffding decomposability of X[1,∞) yields that, for every n ≥ k, the random
variable ∑

1≤j1<···<jk≤n

{η(Xj1, . . . ,Xjk
) − πk

k−1[η](Xj1, . . . ,Xjk
)}

= σn(η)
(
X[n]

)− σn(πk
k−1[η])(X[n]

)
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is an element of SHk(X[n]), implying that

σn(πk
k−1[η])(X[n]

)= ∑
nm∈N (k−1,m)

zγ (η,nm)(n − k + 1)σn(1C(k−1,nm)

)(
X[n]

)
[where we have used (52)] is the projection of σn(η)(X[n]) on SUk−1(X[n]).

For integers a, b ≥ 1 and kernels ξ ∈ S(Da), ψ ∈ S(Db), we shall write:

Aγ (ξ,ψ) � E[ξ(X1, . . . ,Xa)ψ(Xa+1, . . . ,Xa+b)]

=
∫
∏

D

(∫
Da

ξ dp⊗a

)(∫
Db

ψ dp⊗b

)
γ (dp),

where the de Finetti measure γ is defined in (49), and p⊗l , l ≥ 2, indicates the lth
product measure induced by p on Dl (with p⊗1 = p). We claim that the collection

Aγ �
{
Aγ

(
1C(k,n′

m),1C(j,n′′
m)

)
:k, j ≥ 1,n′

m ∈ N (k,m),n′′
m ∈ N (j,m)

}
(57)

completely characterizes γ . The basic idea to prove this last statement is that one
can represent all probabilities P[X[n] = (x1, . . . , xn)] as linear combinations of el-
ements of Aγ , through an appropriate use of formula (49). In the following lemma
we establish a more precise result. To this end, define, for every fixed j, k ≥ 1,

Aγ (k, j) �
{
Aγ

(
1C(k,n′

m),1C(j,n′′
m)

)
: n′

m ∈ N (k,m),n′′
m ∈ N (j,m)

}
.(58)

LEMMA 7. For every fixed j, k ≥ 1, the class Aγ (k, j) completely determines
the family of probabilities

P
[
X[k+j ] = (x1, . . . , xk+j )

]
, (x1, . . . , xk+j ) ∈ Dk+j ,(59)

via the relation

P
[
X[k+j ] = (x1, . . . , xk+j )

]= (
k

n′
m

)−1 (
j

n′′
m

)−1
Aγ

(
1C(k,n′

m),1C(j,n′′
m)

)
,(60)

where n′
m ∈ N (k,m) and n′′

m ∈ N (j,m) are such that (x1, . . . , xk) ∈ C(k,n′
m) and

(xk+1, . . . , xk+j ) ∈ C(j,n′′
m).

PROOF. Define the sets C(k,n′
m) and C(j,n′′

m) as in the statement. By ex-
changeability,

P
[
X[k] ∈ C(k,n′

m),X[k+1,k+j ] ∈ C(j,n′′
m)
]

=
(

k

n′
m

)(
j

n′′
m

)
P
[
X[k] = (x1, . . . , xk),X[k+1,k+j ] = (xk+1, . . . , xk+j )

]
,

and the conclusion is obtained from the relation

P
[
X[k] ∈ C(k,n′

m),X[k+1,k+j ] ∈ C(j,n′′
m)
]= Aγ

(
1C(k,n′

m),1C(j,n′′
m)

)
. �
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In what follows, we shall prove that, whenever X[1,∞) is Hoeffding decompos-
able, the class Aγ defined in (57) is completely determined by the family Aγ (1,1)

defined in (58). This will be done by establishing a recursive relation on the
classes Aγ (k, j). This relation plays a role which is analogous to the recursive for-
mula (37), that we extensively used in Section 5. To do this, observe that, for every
k ≥ 2 and every η ∈ S(Dk), the symmetric function xk → η(xk) − πk

k−1[η](xk) ∈
S(Dk), defined via (55), verifies the degeneracy condition (56). Since X[1,∞)

is Hoeffding decomposable, and therefore weakly independent, we deduce that,
a.s.-P,

E
[
η
(
X[k]

)− πk
k−1[η](X[k]

) ∣∣Xk+1, . . . ,X2k−1
]= 0.

Hence, for every n′
m ∈ N (k − 1,m),

Aγ

(
η,1C(k−1,n′

m)

)− Aγ

(
πk

k−1[η],1C(k−1,n′
m)

)
= Aγ

({η − πk
k−1[η]},1C(k−1,n′

m)

)
(61)

= E
[{

η
(
X[k]

)− πk
k−1[η](X[k]

)}
1C(k−1,n′

m)(Xk+1, . . . ,X2k−1)
]= 0.

By specializing (61) to the case η = 1C(k,n∗
m) for some fixed n∗

m ∈ N (k,m),
and by using the explicit form of πk

k−1[η] given in (55), we obtain the first part
of the following result. The second part is obtained in an analogous way, by first
writing the projection π [1C(2k−1,n∗∗), SU2k−2](X[2k−1]), of 1C(2k−1,n∗∗)(X[2k−1])
on SU2k−2(X[2k−1]) [by means of an appropriate modification of formula (55)],
and then by using the fact that, by weak independence,

E
[
1C(2k−1,n∗∗)

(
X[2k−1]

)− π
[
1C(2k−1,n∗∗), SU2k−2

](
X[2k−1]

) ∣∣X2k

]= 0.

PROPOSITION 8. For every k ≥ 2, every n′
m ∈ N (k − 1,m) and every n∗

m ∈
N (k,m),

Aγ

(
1C(k,n∗

m),1C(k−1,n′
m)

)
(62)

= ∑
nm∈N (k−1,m)

zγ

(
1C(k,n∗

m),nm

)
kAγ

(
1C(k−1,nm),1C(k−1,n′

m)

)
.

For every k ≥ 2, every n′′
m ∈ N (1,m) and every n∗∗

m ∈ N (2k − 1,m),

Aγ

(
1C(2k−1,n∗∗

m ),1C(1,n′′
m)

)
= ∑

nm∈N (2k−2,m)

zγ

(
1C(2k−1,n∗∗

m ),nm

)
(2k − 1)(63)

× Aγ

(
1C(2k−2,nm),1C(1,n′′

m)

)
.

Observe that a consequence of the first part of Proposition 8 is that, for every
fixed n∗

m, the matrix{
Aγ

(
1C(k−1,nm),1C(k−1,n′

m)

)
,Aγ

(
1C(k,n∗

m),1C(k−1,n′
m)

)}
,
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with the columns indexed by n′
m ∈ N (k − 1,m) and n∗

m and the rows indexed by
n′

m ∈ N (k − 1,m), has rank at most equal to
(m+k−2

m−1

)
. The following result is one

of the keys of this section.

PROPOSITION 9. There exists a universal class of deterministic functions{
F

(k)
n∗

m,nm
:k ≥ 2,n∗

m ∈ N (k,m),nm ∈ N (k − 1,m)
}
,

such that, for every Hoeffding decomposable exchangeable sequence X[1,∞) veri-
fying (50) (with de Finetti measure γ ) and for every k ≥ 2, the following two prop-
erties hold: (I) the coefficients {zγ (1C(k,n∗

m),nm) : nm ∈ N (k − 1,m)} appearing
in (62) admit the representation

zγ

(
1C(k,n∗

m),nm

)= F
(k)
n∗

m,nm

(
Aγ (a, b) :a, b ≥ 1, a + b ≤ k

)
,

and (II) the coefficients {zγ (1C(2k−1,n∗∗
m ),nm) : nm ∈ N (2k − 2,m)} appearing

in (63) admit the representation

zγ

(
1C(2k−1,n∗∗

m ),nm

)= F
(2k−1)
n∗∗

m ,nm

(
Aγ (a, b) :a, b ≥ 1, a + b ≤ 2k − 1

)
.

PROOF. Fix a sequence X[1,∞) verifying (50) and with de Finetti measure γ .
We will only prove point (I) in the statement [the proof of point (II) is analogous].
Recall that the real-valued coefficients {zγ (1C(k,n∗

m),nm) : nm ∈ N (k − 1,m)} are
those determining the projection

πk
k−1

[
1C(k,n∗

m)

](
X[k]

)= ∑
nm∈N (k−1,m)

zγ

(
1C(k,n∗

m),nm

)
σk(1C(k−1,nm)

)(
X[k]

)
of the symmetric statistic 1C(k,n∗

m)(X[k]) on the space SUk−1(X[k]), expressed as
a linear combination of the elements of the (not necessarily orthonormal) basis
{σk(1C(k−1,nm)) : nm ∈ N (k − 1,m)}. It follows that such coefficients can be com-
puted by implementing the following procedure:

• Use a Gram–Schmidt procedure to obtain from {σk(1C(k−1,nm))} an orthonor-
mal basis {a(j) : j = 1, . . . ,

(m+k−2
m−1

)} of SUk−1(X[k]).
• Write

πk
k−1

[
1C(k,n∗

m)

]= (m+k−2
m−1 )∑
j=1

a(j)E
[
1C(k,n∗

m) × a(j)
]
.(64)

• Compute the {zγ (1C(k,n∗
m),nm)} by plugging into (64) the expression of each

a(j) in terms of linear combinations of the functions σk(1C(k−1,nm)).

We therefore deduce (by exchangeability) that each zγ (1C(k,n∗
m),nm) can be

expressed as a function not depending on γ (and therefore not depending on the
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law of X[1,∞)) of expectations the type

E
[
1C(k−1,nm)

(
X[k−1]

)]
, E

[
1C(k−1,nm)

(
X[k−1]

)
1C(k−1,n′

m)

(
X[2,k]

)]
,

E
[
1C(k,n∗

m)

(
X[k]

)
1C(k−1,nm)

(
X[k−1]

)]
,

where nm,n′
m ∈ N (k − 1,m) [recall that n∗

m ∈ N (k,m)]. As a consequence, the
result in the statement is proved, once it is shown that there exist universal func-
tions (not depending on the law of X[1,∞)){

�(k−1)
nm

:k ≥ 2,nm ∈ N (k − 1,m)
}
,{

�
(k−1)
nm,n′

m
:k ≥ 2,nm ∈ N (k − 1,m),n′

m ∈ N (k − 1,m)
}
,{

�
(k,k−1)
nm,n∗

m
:k ≥ 2,nm ∈ N (k − 1,m),n∗

m ∈ N (k,m)
}
,

such that, for every k ≥ 2, and every nm,n′
m ∈ N (k − 1,m), n∗

m ∈ N (k,m)

E
[
1C(k−1,nm)

(
X[k−1]

)]
(65)

= �(k−1)
nm

(
Aγ (a, b) :a, b ≥ 1, a + b ≤ k

)
,

E
[
1C(k−1,nm)

(
X[k−1]

)
1C(k−1,n′

m)

(
X[2,k]

)]
(66)

= �
(k−1)
nm,n′

m

(
Aγ (a, b) :a, b ≥ 1, a + b ≤ k

)
,

E
[
1C(k,n∗

m)

(
X[k]

)
1C(k−1,nm)

(
X[k−1]

)]
(67)

= �
(k,k−1)
nm,n∗

m

(
Aγ (a, b) :a, b ≥ 1, a + b ≤ k

)
.

For nm ∈ N (k − 1,m) one has that

E
[
1C(k−1,nm)

(
X[k−1]

)]
= ∑

n′
m∈N (1,m)

P
[
X[k−1] ∈ C(k − 1,nm),X1 ∈ C(1,n′

m)
]

= ∑
n′

m∈N (1,m)

Aγ

(
1C(k−1,nm),1C(1,n′

m)

)
,

so that (65) is proved. Since

E
[
1C(1,nm)(X1)1C(1,n′

m)(X2)
]= Aγ

(
1C(1,nm),1C(1,n′

m)

)
,

we need to prove (66) only for k ≥ 3. For k ≥ 3, given nm,n′
m ∈ N (k − 1,m),

we say that nm and n′
m are compatible, if there exists n0

m = (n0
1, . . . , n

0
m) ∈ N (k −

2,m), as well as i, j ∈ {1, . . . ,m} such that

nm = (n0
1, . . . , n

0
i + 1, . . . , n0

m), n′
m = (n0

1, . . . , n
0
j + 1, . . . , n0

m).(68)
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If nm and n′
m are compatible in the sense of (68), we write ni

m and ni,j
m , respec-

tively, for the vector (ni
1, . . . , n

i
m) ∈ N (2,m) such that ni

i = 2 and ni
a = 0 for a �= i,

and for the vector (n
i,j
1 , . . . , n

i,j
m ) ∈ N (2,m) such that n

i,j
i = n

i,j
j = 1 and n

i,j
a = 0

for a �= i, j . Then,

E
[
1C(k−1,nm)

(
X[k−1]

)
1C(k−1,n′

m)

(
X[2,k]

)]
= P

[
X[2,k] ∈ C(k − 1,n′

m),X[1,k−1] ∈ C(k − 1,nm)
]

=
⎧⎪⎨⎪⎩

0, if nm,n′
m are not compatible,

Aγ

(
1C(k−2,n0

m),1C(2,ni
m)

)
, if nm,n′

m are compatible and i = j ,

Aγ

(
1C(k−2,n0

m),1
C(2,ni,j

m )

)
, if nm,n′

m are compatible and i �= j .

This proves (66). To prove (67), we will use the following notation: for nm =
(n1, . . . , nm) ∈ N (k − 1,m) and n∗

m = (n∗
1, . . . , n

∗
m) ∈ N (k,m), we write nm ≤

n∗
m ∈ N (k,m) whenever n∗

m is obtained by adding 1 to one of the components of
nm, that is, whenever there exists i = 1, . . . ,m such that ni = n∗

i − 1 and na = n∗
a

for every a �= i. Now write n1,i
m to indicate the element of N (1,m) such that the

ith component of n1,i
m equals 1 (and all the other components are zero). Then, one

proves immediately that

E
[
1C(k,n∗

m)

(
X[k]

)
1C(k−1,nm)

(
X[k−1]

)]
=
{

0, if nm � n∗
m,

Aγ

(
1C(k−1,nm),1

C(1,n1,i
m )

)
, if nm ≤ n∗

m.

This concludes the proof of the proposition. �

Now consider an exchangeable sequence X[1,∞), with de Finetti measure γ and
satisfying (50), and suppose that X[1,∞) is Hoeffding decomposable. The combi-
nation of Proposition 8 and Proposition 9 implies that there exists a universal (i.e.,
not depending on γ ) recursive relation, according to which the following proper-
ties hold for every k ≥ 2: (i) the elements of the class {Aγ (i, j) : i + j ≤ 2k − 1}
can be expressed in terms of the class {Aγ (i, j) : i + j ≤ 2k − 2}, and (ii) the el-
ements of the class {Aγ (i, j) : i + j ≤ 2k} can be expressed in terms of the class
{Aγ (i, j) : i + j ≤ 2k −1}. Since the set Aγ [as defined in (57)] determines the law
of X[1,∞) (thanks to Lemma 7), one deduces immediately the following result.

THEOREM 10. Let X[1,∞) be an exchangeable and Hoeffding decomposable
sequence with values in D = {d1, . . . , dm}, verifying (50) and with de Finetti mea-
sure γ . Then, the law of X[1,∞) is completely determined by the class Aγ (1,1)

[as defined in (58) for j = k = 1]. The fact that the law of X[1,∞) is completely
determined by Aγ (1,1) must be interpreted in the following sense: suppose that
X∗[1,∞) is another exchangeable and Hoeffding decomposable sequence, verify-
ing (50) and with de Finetti measure γ ∗; then, the equality Aγ ∗(1,1) = Aγ (1,1)
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implies necessarily that γ = γ ∗, and therefore that X∗[1,∞) has the same law as
X[1,∞).

It is easily seen that the class Aγ (1,1) can be always expressed in terms of the
mean vector Mγ = (M

γ
1 , . . . ,M

γ
m) and the covariance matrix V γ = {V γ (i, j) : 1 ≤

i, j ≤ m} of a random probability measure p = {p{d1}, . . . , p{dm}} with law γ ;
these objects are defined as

M
γ
i =

∫
p{di}dγ and V γ (i, j) =

∫
p{di}p{dj }dγ,

where the integration dγ is implicitly performed with respect to the marginal laws
of p{di} and (p{di},p{dj }) induced by γ . Theorem 10 can therefore be rephrased
by saying that the law of a Hoeffding decomposable sequence is completely deter-
mined by the means, the variances and the covariances associated with its de Finetti
measure. As already evoked in the Introduction, this last conclusion is equivalent,
in the case m = 2, to some of the findings contained in the “Step 2” of the proof
of Theorem 1 (see Section 5), where the moments of the de Finetti measure asso-
ciated with a {0,1}-valued Hoeffding decomposable sequence were shown to be
uniquely determined (via a recurrence relation) by its first and second moment. In
particular, it is not difficult to obtain an alternative proof of Theorem 1, by com-
bining Theorem 10 with the results contained in the “Step 3” of Section 5.

REMARK. Even in the case m = 2, and unlike formula (37) of Section 5, The-
orem 10 only ensures that the law of a Hoeffding decomposable sequence is deter-
mined by the quantities Mγ and V γ , but does not give any explicit representation
of the recursive relation linking the moments of such a sequence.

In the following section we will discuss the extent to which Theorem 10 can be
used to characterize the class of Hoeffding decomposable sequences with values
in D.

7.2. Pólya urns, normalized random measures and Theorem 10. Let ν be
a positive measure on R+ such that

∫
R+ min(1, x)ν(dx) < +∞ and ν(R+) =

+∞. We shall consider a vector of strictly positive numbers α = (α1, . . . , αm) ∈
(0,+∞)m, as well as a vector of independent and infinitely divisible random vari-
ables (ξ1, . . . , ξm) with the following property: for every i = 1, . . . ,m and every
λ > 0

E[exp(−λξi)] = exp[−αiψ(λ)],
where ψ(λ) = ∫

R+(1 − e−λx)ν(dx). It is easily seen that our assumptions imply
that P{ξi > 0} = 1 for every i = 1, . . . ,m. It follows that, for any choice of α and ν

as above, the collection of random variables

pα,ν{di} � ξi

ξ0
, i = 1, . . . ,m,(69)
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where ξ0 = ∑m
i=1 ξi , is a well-defined random probability on D = {d1, . . . , dm}.

The probability defined in (69) is a special case of the normalized homogeneous
random measures with independent increments (normalized HRMI) studied, for
example, in James, Lijoi and Prünster (2006). In particular the probability pα,ν

can always be obtained by an appropriate time-change and renormalization of a
subordinator (i.e., an increasing Lévy process) with no drift. We refer the reader
to Pitman (1996) for a discussion of the relations between normalized HRMI and
species sampling models, and to Regazzini (1978), Regazzini, Lijoi and Prünster
(2003) and James, Lijoi and Prünster (2006) for a description of the role of nor-
malized HRMI in Bayesian nonparametric statistics.

We will also need the following generalization of Definition C of Section 3.

DEFINITION D. Fix m ≥ 2 and denote by �m−1 = {(θ1, . . . , θm−1) ∈
[0,1]m−1 :

∑m−1
i=1 θi ≤ 1} the simplex of order m − 1. Let X[1,∞) be an exchange-

able sequence with de Finetti measure γ . Then, X[1,∞) is said to be an (m-
color) Pólya sequence with values in D = {d1, . . . , dm}, if there exists a vector
of strictly positive numbers α = (α1, . . . , αm) ∈ (0,∞)m such that, for every Borel
set C ⊂ �m−1,

γ [(p{d1}, . . . , p{dm−1}) ∈ C]
(70)

= 1

B(α)

∫
C

(
m−1∏
i=1

θ
αi−1
i

)(
1 −

m−1∑
i=1

θi

)αm−1

dθ1 · · · dθm−1,

where B(α) = ∏m
i=1 �(αi)/�(

∑m
i=1 αi), and �(·) is the usual Gamma function.

Note that (70) completely determines the distribution of the vector (p{d1}, . . . ,
p{dm}), since p{dm} = 1 −∑m−1

i=1 p{di} by definition. A random probability mea-
sure p = {p{d1}, . . . , p{dm}} such that (p{d1}, . . . , p{dm−1}) has the law γ given
in (70) is said to have a Dirichlet distribution of parameters α1, . . . , αm. Note that,
in the case m = 2 and D = {0,1}, the just given definition of an m-color Pólya
sequence coincides with that of a two-color Pólya sequence with values in {0,1}
and parameters α1, α2, as provided in Definition C.

The following well-known result shows that Dirichlet random measures are in-
deed a special case of normalized HRMI with finite support [as the one defined
in (69)], obtained by considering normalized vectors of independent Gamma ran-
dom variables [see, e.g., James, Lijoi and Prünster (2006)].

PROPOSITION 11. A random probability p = {p{d1}, . . . , p{dm}} has a

Dirichlet distribution with parameter α if, and only if, p
law= pα,ν , where pα,ν

is the random probability defined in (69) for ν(dx) = x−1e−x dx.
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Now let p = {p{d1}, . . . , p{dm}} have a Dirichlet distribution of parameters
α1, . . . , αm and write α0 = ∑m

i=1 αi and μi = αi/α0. The following classic rela-
tions [see, e.g., James, Lijoi and Prünster (2006)] provide the explicit expressions
of the mean and of the covariance matrix of p:

E(p{di}) = μi, Var (p{di}) = μi(1 − μi)

α0 + 1
, i = 1, . . . ,m,(71)

Cov (p{di},p{dj }) = −μiμj

α0 + 1
, 1 ≤ i �= j ≤ n.(72)

Now observe that, due again to Corollary 9 in Peccati (2004), every m-color
Pólya sequence in the sense of Definition D and every i.i.d. sequence with val-
ues in D is Hoeffding decomposable. In the light of this result, one would be
tempted to use Theorem 10 to deduce (as we did in the proof of Theorem 1)
that every Hoeffding decomposable sequence with values in D is either i.i.d. or
Pólya, by first showing that the means and covariances of any de Finetti measure
verifying (50) can be “replicated” by those of an appropriate Dirichlet or Dirac
distribution. However, it is not difficult to see that this last claim is not true, as
for m ≥ 3 there are examples of random probability measures whose associated
exchangeable sequence verifies (50), and whose distribution neither is Dirac nor
is compatible with (71) and (72) for any choice of α1, . . . , αm > 0. For instance,
for m ≥ 3, any random probability p = {p{d1}, . . . , p{dm}} such that there ex-
ists one parameter p{di} which is deterministic and in (0,1) (the others being
random and nonzero) verifies (50) and has a covariance matrix which is not com-
patible with the second equality in (71), since in this last relation only strictly
positive variances are allowed. Another example of a nonreplicable covariance
structure is obtained by considering a random probability p = {p{d1}, . . . , p{dm}}
such that p{d1} is uniform on (0,1/4) and p{d1} a.s.= p{d2}; indeed, in this case
Cov (p{d1},p{d2}) = Var (p{d1}) > 0, whereas (72) only allows for negative co-
variances.

Nonetheless, the next result shows that m-color Pólya sequences are the only
Hoeffding decomposable sequences among those having a de Finetti measure
equal to the law of an object such as pα,ν in (69). This is the announced partial
generalization of Theorem 1.

THEOREM 12. Let X[1,∞) be a D-valued exchangeable and Hoeffding decom-
posable sequence with de Finetti measure γ . Suppose that γ is equal to the law
of the random probability pα,ν for some measure ν and some α = (α1, . . . , αm) ∈
(0,+∞)m. Then, there exists α∗ = (α∗

1 , . . . , α∗
m) ∈ (0,+∞)m such that γ equals

the law of pα∗,ν∗
, where ν∗(dx) = x−1e−x dx. This implies that X[1,∞) is an m-

color Pólya sequence of parameters α∗
1 , . . . , α∗

m.

PROOF. According to Proposition 1 in James, Lijoi and Prünster (2006), for
pα,ν as in the statement, there always exists a constant I(α, ν) ∈ (0,1) such that,
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by setting α0 = �αi ,

E(pα,ν{di}) = αi

α0
, Var [pα,ν{di}] = αi

α0

(
1 − αi

α0

)
I(α, ν),

Cov {pα,ν{di},pα,ν{dj }} = −αi

α0

αj

α0
× I(α, ν), i �= j.

It follows from (71) and (72) that Aγ (1,1) = Aγ ∗(1,1), where γ ∗ is the law of a
Dirichlet probability measure with parameters

α∗
i = (αi/α0)

(
I(α, ν)−1 − 1

)
.

The conclusion is obtained by applying Theorem 10. �
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