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THE BROWNIAN NET

BY RONGFENG SUN AND JAN M. SWART1

TU Berlin and ÚTIA Prague

The (standard) Brownian web is a collection of coalescing one-
dimensional Brownian motions, starting from each point in space and time.
It arises as the diffusive scaling limit of a collection of coalescing random
walks. We show that it is possible to obtain a nontrivial limiting object if the
random walks in addition branch with a small probability. We call the limiting
object the Brownian net, and study some of its elementary properties.
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1. Introduction and main results.

1.1. Arrow configurations and branching-coalescing random walks. The
Brownian web originated from the work of Arratia [1, 2], and has since been stud-
ied by Tóth and Werner [17], and Fontes, Isopi, Newman and Ravishankar [7–9].
It arises as the diffusive scaling limit of a collection of coalescing random walks.
In this paper we show that it is possible to obtain a nontrivial limiting object if the
random walks in addition branch with a small probability.

Let Z2
even := {(x, t) :x, t ∈ Z, x + t is even} be the even sublattice of Z2. We

interpret the first coordinate x as space and the second coordinate t as time, which
is plotted vertically in figures. Fix a branching probability β ∈ [0,1]. Indepen-
dently for each (x, t) ∈ Z2

even, with probability 1−β
2 , draw an arrow from (x, t) to

(x − 1, t + 1), with probability 1−β
2 , draw an arrow from (x, t) to (x + 1, t + 1),

and with the remaining probability β , draw two arrows starting at (x, t), one end-
ing at (x − 1, t + 1) and the other at (x + 1, t + 1). (See Figure 1.) We denote the
random configuration of all arrows by

ℵβ := {(z, z′) ∈ Z2
even × Z2

even : there is an arrow from z to z′}.(1.1)

By definition, a path along arrows in ℵβ , in short an ℵβ -path, is the graph of a
function π : [σπ,∞] → R ∪ {∗}, with σπ ∈ Z ∪ {±∞}, such that ((π(t), t), (π(t +
1), t + 1)) ∈ ℵβ and π is linear on the interval [t, t + 1] for all t ∈ [σπ,∞] ∩
Z, while π(±∞) = ∗ whenever ±∞ ∈ [σπ,∞]. We call σπ the starting time,
π(σπ) the starting position and zπ := (π(σπ), σπ) the starting point of the ℵβ -
path π .

For any A ⊂ Z2
even ∪ {(∗,±∞)}, we let Uβ(A) denote the collection of

all ℵβ -paths with starting points in the set A, and we use the shorthands
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FIG. 1. An arrow configuration.

Uβ(z) := Uβ({z}) and Uβ := Uβ(Z2
even ∪ {(∗,±∞)}) for the collections of all

ℵβ -paths starting from a single point z and from any point in space-time, respec-
tively.

An arrow configuration ℵβ is in fact the graphical representation for a system
of discrete time branching-coalescing random walks. Indeed, if we set

ηA
t := {π(t) :π ∈ Uβ(A)} (

t ∈ Z, A ⊂ Z2
even ∪ {(∗,±∞)}),(1.2)

and we interpret the points in ηA
t as being occupied by a particle at time t , then

(ηA
t )t∈Z is a collection of random walks, which are introduced into the system

at space-time points in A. At each time t ∈ Z, independently each particle with
probability 1−β

2 jumps one step to the left (resp. right), and with probability β

branches into two particles, one jumping one step to the left and the other one
step to the right. Two walks coalesce instantly when they jump to the same lattice
site. Note that the case β = 0 corresponds to coalescing random walks without
branching.

We are interested in the limit of Uβ under diffusive rescaling, letting at the
same time β → 0. Thus, we rescale space by a factor ε, time by a factor ε2, and
let ε → 0 and β → 0 at the same time. For the case β = 0, it has been shown
in [8] that U0 diffusively rescaled converges weakly in law, with respect to an
appropriate topology, to a random object W , called the Brownian web. We will
show that if β/ε → b for some b ≥ 0, then in (essentially) the same topology as
in [8], Uβ diffusively rescaled converges in law to a random object Nb, which
we call the Brownian net with branching parameter b. Here N0 is equal to W
in distribution, while Nb with b > 0 differ from W , but are related to each other
through scaling.

1.2. Topology and convergence. To formulate our main results, we first need
to define the space in which our random variables take values and the topology with
respect to which we will prove convergence. Our topology is essentially the same
as the one used in [7, 8], except for a slight (and in most applications irrelevant)
detail, as explained in the Appendix.
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FIG. 2. The compactification R2
c of R2.

Let R2
c be the compactification of R2 obtained by equipping the set R2

c := R2 ∪
{(±∞, t) : t ∈ R} ∪ {(∗,±∞)} with a topology such that (xn, tn) → (±∞, t) if
xn → ±∞ and tn → t ∈ R, and (xn, tn) → (∗,±∞) if tn → ±∞ (regardless of
the behavior of xn). In [7, 8], such a compactification is achieved by taking the
completion of R2 with respect to the metric

ρ((x1, t1), (x2, t2)) = |�1(x1, t1) − �1(x2, t2)| ∨ |�2(t1) − �2(t2)|,(1.3)

where the map � = (�1,�2) is defined by

�(x, t) = (�1(x, t),�2(t)) :=
(

tanh(x)

1 + |t | , tanh(t)

)
.(1.4)

We can think of R2
c as the image of [−∞,∞]2 under the map �. Of course, ρ and

� are by no means the only choices that achieve the desired compactification. See
Figure 2 for a picture of R2

c (for a somewhat different choice of �).
By definition, a (continuous) path in R2

c is a function π : [σπ,∞] → [−∞,∞]∪
{∗}, with σπ ∈ [−∞,∞], such that π : [σπ,∞] ∩ R → [−∞,∞] is continuous,
and π(±∞) = ∗ whenever ±∞ ∈ [σπ,∞]. Equivalently, if we identify R2

c with
the image of [−∞,∞]2 under the map �, then π is a continuous map from
[�2(σπ),�2(∞)] to R whose graph is contained in �([−∞,∞]2). Throughout
the paper we identify a path π with its graph {(π(t), t) : t ∈ [σπ,∞]} ⊂ R2

c . Thus,
we often view paths as compact subsets of R2

c . We stress that the starting time is
part of the definition of a path, that is, paths that are defined by the same function
but have different starting times are considered to be different. Note that both the
function defining a path and its starting time can be read off from its graph.

We let � denote the space of all paths in R2
c , equipped with the metric

d(π1, π2) := |�2(σπ1) − �2(σπ2)|
(1.5)

∨ sup
t≥σπ1∧σπ2

∣∣�1
(
π1(t ∨ σπ1), t

) − �1
(
π2(t ∨ σπ2), t

)∣∣.
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The space (�,d) is complete and separable. Note that paths converge in (�,d)

if and only if their starting times converge and the functions converge locally uni-
formly on R. If fact, one gets the same topology on � (though not the same uni-
form structure) if one views paths as compact subsets of R2

c and then equips �

with the Hausdorff metric.
Recall that if (E,d) is a metric space and K(E) is the space of all compact

subsets of E, then the Hausdorff metric dH on K(E) is defined by

dH(K1,K2) = sup
x1∈K1

inf
x2∈K2

d(x1, x2) ∨ sup
x2∈K2

inf
x1∈K1

d(x1, x2).(1.6)

If (E,d) is complete and separable, then so is (K(E), dH). For a given topology
on E, the Hausdorff topology generated by dH depends only on the topology on E

and not on the choice of the metric d .
The Brownian net Nb and web W are K(�)-valued random variables. We de-

fine scaling maps Sε :R2
c → R2

c by

Sε(x, t) := (εx, ε2t)
(
(x, t) ∈ R2

c
)
.(1.7)

We adopt the convention that if f :R2
c → R2

c and A ⊂ R2
c , then f (A) :=

{f (x) :x ∈ A} denotes the image of A under f . Likewise, if K is a set of sub-
sets of R2

c (e.g., a set of paths), then f (K) = {f (A) :A ∈ K} is the image of K

under the map A 
→ f (A). So, for example, Sε(Uβ) is the set of all ℵβ -paths
(viewed as subsets of R2

c ), diffusively rescaled with ε. This will later also apply
to notation such as −A := {−x :x ∈ A} and A + y := {x + y :x ∈ A}. We will
sometimes also use the shorthand f (A1, . . . ,An) := (

f (A1), . . . , f (An)
)

when f

is a function defined on R2
c and A1, . . . ,An are elements of, or subsets of, or sets

of subsets of R2
c .

Recall from Section 1.1 the definition of an arrow configuration ℵβ and the set
Uβ of all ℵβ -paths. Note that Uβ is a random subset of �. In order to make Uβ

compact, from now on, we modify our definition of Uβ by adding all trivial paths
π that satisfy σπ ∈ {±∞} ∪ Z and π(t) = −∞ or π(t) = ∞ for all t ∈ [σπ,∞].
The main result of this paper is the following convergence theorem.

THEOREM 1.1 (Convergence to the Brownian net). There exist K(�)-valued
random variables Nb (b ≥ 0) such that, if εn,βn → 0 and βn/εn → b ≥ 0, then
Sεn(Uβn) are K(�)-valued random variables, and

L(Sεn(Uβn)) �⇒
n→∞L(Nb),(1.8)

where L( · ) denotes law, and ⇒ denotes weak convergence. The random variables
(Nb)b>0 satisfy the scaling relation

L(Sε(Nb)) = L(Nb/ε) (ε, b > 0).(1.9)

We have L(N0) = L(W), where W is the Brownian web. However, the random
variables Nb with b > 0 are different from W .
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For βn = 0, that is, the case without branching, Theorem 1.1 follows from [8],
Theorem 6.1. In the next sections we will give three equivalent characterizations
of the random variables Nb with b > 0. In view of the scaling relation (1.9), it
suffices to consider the case b = 1. We call Nb the Brownian net with branching
parameter b and N := N1 the (standard) Brownian net.

1.3. The Brownian web. In order to prepare for our first characterization of
the Brownian net N , we start by recalling from [8], Theorem 2.1, the charac-
terization of the Brownian web W . For any K ∈ K(�) and A ⊂ R2

c , we let
K(A) := {π ∈ K : zπ ∈ A} denote the collection of paths in K with starting points
zπ = (π(σπ), σπ) in A, and for z ∈ R2

c , we write K(z) := K({z}).

THEOREM 1.2 (Characterization of the Brownian web). There exists a K(�)-
valued random variable W , the so-called (standard) Brownian web, whose distri-
bution is uniquely determined by the following properties:

(i) For each deterministic z ∈ R2, W(z) consists a.s. of a single path W(z) =
{πz}.

(ii) For any finite deterministic set of points z1, . . . , zk ∈ R2, (πz1, . . . , πzk
)

is distributed as a system of coalescing Brownian motions starting at space-time
points z1, . . . , zk .

(iii) For any deterministic countable dense set D ⊂ R2,

W = W(D) a.s.,(1.10)

where denotes closure in (�,d).

Note that by properties (i) and (iii), for any deterministic countable dense set
D ⊂ R2, the Brownian web is almost surely determined by the countable system
of paths W(D) = {πz : z ∈ D}, whose distribution is uniquely determined by prop-
erty (ii). We call W(D) a skeleton of the Brownian web (relative to the countable
dense set D). Since skeletons may be constructed using Kolmogorov’s extension
theorem, Theorem 1.2 allows a direct construction of the Brownian web.

Although W(z) consists of a single path for each deterministic z ∈ R2, as a
result of the closure in (1.10), there exist random points z where W(z) contains
more than one path. These are points where the map z 
→ πz is discontinuous,
that is, the limit limn→∞ πzn depends on the choice of the sequence zn ∈ D with
zn → z. These special points of the Brownian web are classified according to the
number of disjoint incoming and distinct outgoing paths at z, and play an important
role in understanding the Brownian web, and, later on, also the Brownian net. We
recall the classification of the special points of the Brownian web in Section 3.2.
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1.4. Characterization of the Brownian net using hopping. Our first character-
ization of the Brownian net will be similar to the characterization of the Brownian
web in Theorem 1.2. A difficulty is that in the Brownian net N , there is a multitude
of paths starting at any site z = (x, t) ∈ R2. There is, however, a.s. a well-defined
left-most path and right-most path in N (z), that is, there exist lz, rz ∈ N (z) such
that lz(s) ≤ π(s) ≤ rz(s) for any s ≥ t and π ∈ N (z). These left-most and right-
most paths will play a key role in our characterization.

Our first task is to characterize the distribution of a finite number of left-most
and right-most paths, started from deterministic starting points. Thus, for given
deterministic z1, . . . , zk , z′

1, . . . , z
′
k′ ∈ R2, we need to characterize the joint law of

(lz1, . . . , lzk
, rz′

1
, . . . , rz′

k′ ). It turns out that (lz1, . . . , lzk
) is a collection of coalesc-

ing Brownian motions with drift one to the left, while (rz′
1
, . . . , rz′

k′ ) is a collection
of coalescing Brownian motions with drift one to the right. Moreover, paths evolve
independently when they do not coincide. Therefore, in order to characterize the
joint law of (lz1, . . . , lzk

, rz′
1
, . . . , rz′

k′ ), it suffices to characterize the interaction be-
tween one left-most path lz = l(x,s) and one right-most path rz′ = r(x′,s′). The joint
evolution of such a pair after time s ∨ s′ can be characterized as the unique weak
solution of the two-dimensional left-right SDE

dLt = 1{Lt �=Rt } dB l
t + 1{Lt=Rt } dBs

t − dt,
(1.11)

dRt = 1{Lt �=Rt } dBr
t + 1{Lt=Rt } dBs

t + dt,

where B l
t ,B

r
t ,B

s
t are independent standard Brownian motions, and Lt and Rt are

subject to the constraint that Lt ≤ Rt for all t ≥ T := inf{u ≥ s ∨ s′ :Lu ≤ Ru}.
These rules uniquely determine the joint law of (lz1, . . . , lzk

, rz′
1
, . . . , rz′

k′ ). We call
such a system a collection of left-right coalescing Brownian motions. See Figure 5
for a picture. We refer to Sections 2.1 and 2.2 for the proof that solutions to (1.11)
are weakly unique, and a more careful definition of left-right coalescing Brownian
motions.

Since we are not only interested in left-most and right-most paths, but in all
paths in the Brownian net, we need a way to construct general paths from left-most
and right-most paths. The method we choose in this section is based on hopping,
that is, concatenating pieces of paths together at times when the two paths are at
the same position.

We call t an intersection time of two paths π1, π2 ∈ � if σπ1 ∨ σπ2 < t < ∞
and π1(t) = π2(t). We say that a path π1 crosses a path π2 from left to right at
time t if there exist σπ1 ∨ σπ2 ≤ t− < t < t+ < ∞ such that π1(t−) < π2(t−),
π2(t+) < π1(t+), and t = inf{s ∈ (t−, t+) :π2(s) < π1(s)}. We say that t ∈ R is a
crossing time of π1 and π2 if either π1 crosses π2 or π2 crosses π1 from left to
right at time t .

For any collection of paths A ⊂ �, we let Hint(A) denote the smallest set
of paths containing A that is closed under hopping at intersection times, that is,
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Hint(A) is the set of all paths π ∈ � of the form

π =
m⋃

k=1

{(πk(t), t) : t ∈ [tk−1, tk]},(1.12)

where π1, . . . , πm ∈ A, σπ1 = t0 < · · · < tm = ∞, and tk is an intersection time
of πk and πk+1 for each k = 1, . . . ,m − 1. Likewise, we let Hcros(A) denote the
smallest set of paths containing A that is closed under hopping at crossing times.

THEOREM 1.3 (Characterization of the Brownian net using hopping). There
exists a K(�)-valued random variable N , which we call the (standard) Brownian
net, whose distribution is uniquely determined by the following properties:

(i) For each deterministic z ∈ R2, N (z) a.s. contains a unique left-most path
lz and right-most path rz.

(ii) For any finite deterministic set of points z1, . . . , zk, z
′
1, . . . , z

′
k′ ∈ R2, the

collection of paths (lz1, . . . , lzk
, rz′

1
, . . . , rz′

k′ ) is distributed as a collection of left-
right coalescing Brownian motions.

(iii) For any deterministic countable dense sets D l,D r ⊂ R2,

N = Hcros
({lz : z ∈ D l} ∪ {rz : z ∈ D r}) a.s.(1.13)

Instead of hopping at crossing times, we could also have built our construction
on hopping at intersection times. In fact, a much stronger statement is true.

PROPOSITION 1.4 (The Brownian net is closed under hopping). We have
Hint(N ) = N .

We note, however, that as a result of the existence of special points in the Brown-
ian web with one incoming and two outgoing paths, the Brownian net is not closed
under hopping at times t such that π1(t) = π2(t) but t = σπ1 ∨ σπ2(t). Thus, it is
generally not allowed to hop onto paths at their starting times.

1.5. The left-right Brownian web. Given a Brownian net N , if we take the
closures of the sets of all left-most and right-most paths, started respectively from
deterministic countable dense sets D l,D r ⊂ R2, then we obtain two Brownian
webs, tilted respectively with drift −1 and +1, that are coupled in a special way.
Our next theorem introduces this object in its own right.

THEOREM 1.5 (Characterization of the left-right Brownian web). There exists
a K(�)2-valued random variable (W l,W r), which we call the (standard) left-
right Brownian web, whose distribution is uniquely determined by the following
properties:
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(i) For each deterministic z ∈ R2, W l(z) and W r(z) a.s. each contain a single
path W l(z) = {lz} and W r(z) = {rz}.

(ii) For any finite deterministic set of points z1, . . . , zk, z
′
1, . . . , z

′
k′ ∈ R2, the

collection of paths (lz1, . . . , lzk
; rz′

1
, . . . , rz′

k′ ) is distributed as a collection of left-
right coalescing Brownian motions.

(iii) For any deterministic countable dense sets D l,D r ⊂ R2,

W l = {lz : z ∈ D l} and W r = {rz : z ∈ D r} a.s.(1.14)

Note that if we define titling maps by Tilt±(x, t) := (x ± t, t), then Tilt+(W l)

and Tilt−(W r) are distributed as the (standard) Brownian web. The following
lemma, the proof of which can be found in Section 4, is an easy consequence
of Theorem 1.3.

LEMMA 1.6 (Associated left-right Brownian web). Let N be the Brownian
net. Then N a.s. uniquely determines a left-right Brownian web (W l,W r) such
that, for each deterministic z ∈ R2, W l(z) = {lz} and W r(z) = {rz}, where lz and
rz are respectively the left-most and right-most path in N (z).

If (W l,W r) and N are coupled as in Lemma 1.6, then we say that (W l,W r)

is the left-right Brownian web associated with the Brownian net N . Theorem 1.3
shows that, conversely, a left-right Brownian web uniquely determines its associ-
ated Brownian net a.s.

In the next section we give another way to construct a Brownian net from its
associated left-right Brownian web. Since the left-right Brownian web is charac-
terized by Theorem 1.5, this yields another way to characterize the Brownian net.

1.6. Characterization of the Brownian net using meshes. If for some z =
(x, t) ∈ R2, there exist l ∈ W l(z) and r ∈ W r(z) such that r(s) < l(s) on (t, t + ε)

for some ε > 0, then denoting T := inf{s > t : r(s) = l(s)}, we call the open set
(see Figure 3)

M = M(r, l) := {(y, s) ∈ R2 : t < s < T, r(s) < y < l(s)}(1.15)

the mesh with bottom point z, top point (r(T ), T ), and left and right boundary r

and l, respectively. We call x and t the bottom position and bottom time, respec-
tively, of the mesh M . We say that a path π ∈ � enters an open set A ⊂ R2 if
there exist σπ < s < t such that π(s) /∈ A and π(t) ∈ A. Note the strict inequality
in s > σπ .

THEOREM 1.7 (Characterization of Brownian net with meshes). Let (W l,W r)

be the left-right Brownian web. Then almost surely,

N = {π ∈ � :π does not enter any mesh of
(1.16)

(W l,W r) with bottom time t > σπ }
is the Brownian net associated with (W l,W r).



1162 R. SUN AND J. M. SWART

FIG. 3. A mesh M(r, l) with bottom point z and a wedge W(r̂, l̂) with bottom point z.

The next proposition implies that paths in the net N do not enter meshes of
(W l,W r) at all (regardless of their bottom times), and hence, formula (1.16) stays
true if one drops the restriction that the bottom time of the mesh should be larger
than σπ .

PROPOSITION 1.8 (Containment by left- and right-most paths). Let N be the
Brownian net and let (W l,W r) be its associated left-right Brownian web. Then,
almost surely, there exist no π ∈ N and l ∈ W l such that l(s) ≤ π(s) and π(t) <

l(t) for some σπ ∨ σl < s < t . An analogue statement holds for right-most paths.

REMARK. Theorem 1.7 and Proposition 1.8 have analogues for the Brownian
web. Indeed, generalizing our earlier definition, we can define a left-right Brown-
ian web (W l

b,W
r
b) with drift b ≥ 0 by replacing the drift terms +dt and −dt in the

left-right SDE (1.11) with +b dt and −b dt , respectively. Then W l
0 = N0 = W r

0
a.s. is distributed as the (standard) Brownian web, and Theorem 1.7 and Proposi-
tion 1.8 hold for any b ≥ 0. The meshes of the Brownian web are called bubbles
in [9].

1.7. The dual Brownian web. Arratia [1] observed that there is a natural dual
for the arrow configuration ℵ0, the graphical representation of discrete time coa-
lescing simple random walks. More precisely, ℵ0 uniquely determines a dual ar-
row configuration ℵ̂0 defined as follows (see Figure 4):

ℵ̂0 := {(
(x, t + 1), (x ± 1, t)

) ∈ Z2
odd × Z2

odd :
(1.17) (

(x, t), (x ∓ 1, t + 1)
) ∈ ℵ0

}
.

Observe that directed edges in ℵ0 and ℵ̂0 do not cross, and ℵ0 and ℵ̂0 uniquely
determine each other. A dual arrow configuration ℵ̂0 is the graphical representation
of a system of coalescing simple random walks running backward in time, and
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FIG. 4. Dual arrow configuration with no branching.

−ℵ̂0 + (0,1) is equally distributed with ℵ0. In analogy with U0, let Û0 denote the
set of backward paths along arrows in ℵ̂0. It follows from results in [8, 9] that

L(Sε(U0, Û0))�⇒
ε→0

L(W , Ŵ),(1.18)

where W is the standard Brownian web, and Ŵ is the so-called dual Brownian
web associated with W . One has

L(−(W , Ŵ)) = L(Ŵ ,W).(1.19)

In particular, Ŵ is equally distributed with −W , the Brownian web rotated 180◦
around the origin. It was shown in [15, 9] that the interaction between paths in W
and Ŵ is that of Skorohod reflection.

A Brownian web W and its dual Ŵ a.s. uniquely determine each other. There are
several ways to construct W from Ŵ . We will describe one such way here, since
this construction generalizes to the Brownian net. For any dual paths π̂1, π̂2 ∈ Ŵ
that are ordered as π̂1(s) < π̂2(s) at the time s := σ̂π̂1 ∧ σ̂π̂2 , where σ̂πi

denotes
the starting time of π̂i (i = 1,2), we let T := sup{t < s : π̂1(t) = π̂2(t)} denote the
coalescence time of π̂1 and π̂2. We call the open set

W = W(π̂1, π̂2) := {(x, u) ∈ R2 :T < u < s, π̂1(u) < x < π̂2(u)}(1.20)

the wedge with left and right boundary π̂1 and π̂2. We say that a path π ∈ � enters
an open set A ⊂ R2 from outside if there exist σπ < s < t such that π(s) /∈ A and
π(t) ∈ A.

THEOREM 1.9 (Construction of the Brownian web from its dual). Let (W , Ŵ)

be a Brownian web and its dual. Then almost surely,

W = {π ∈ � :π does not enter any wedge of Ŵ from outside}.(1.21)

The proof of Theorem 1.9 is contained in Section 4.2.
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1.8. Dual characterization of the Brownian net. Let (W l,W r) be a left-right
Brownian web. Then W l and W r each a.s. determine a dual web, which we denote
respectively by Ŵ l and Ŵ r. It will be proved in Section 5.2 below that

L(−(W l,W r, Ŵ l, Ŵ r)) = L(Ŵ l, Ŵ r,W l,W r).(1.22)

In particular, the dual left-right Brownian web (Ŵ l, Ŵ r) is equally distributed with
−(W l,W r), the left-right Brownian web rotated by 180◦ around the origin.

For any r̂ ∈ Ŵ r and l̂ ∈ Ŵ l that are ordered as r̂(s) < l̂(s) at the time s :=
σ̂r̂ ∧ σ̂

l̂
, we let T := sup{t < s : r̂(t) = l̂(t)} denote the first hitting time of r̂ and l̂,

which may be −∞. We call the open set (see Figure 3)

W = W(r̂, l̂) := {(x, u) ∈ R2 :T < u < s, r̂(u) < x < l̂(u)}(1.23)

the wedge with left and right boundary r̂ and l̂. The next theorem is analogous to
Theorem 1.9.

THEOREM 1.10 (Dual characterization of the Brownian net). Let (W l,W r,

Ŵ l, Ŵ r) be a left-right Brownian web and its dual. Then, almost surely,

N = {π ∈ � :π does not enter any wedge of (Ŵ l, Ŵ r) from outside}(1.24)

is the Brownian net associated with (W l,W r).

We note that there exist paths in N (even in W l and W r) that enter wedges of
(Ŵ l, Ŵ r) in the sense defined just before Theorem 1.7. Therefore, the condition in
(1.24) that π enters from outside cannot be relaxed.

1.9. The branching-coalescing point set. Just as the arrow configuration ℵβ is
the graphical representation of a discrete system of branching-coalescing random
walks, the Brownian net N is the graphical representation of a Markov process
taking values in the space of compact subsets of [−∞,∞], which we call the
branching-coalescing point set. In analogy with (1.2), for any compact A ⊂ R2

c ,
we denote

ξA
t := {π(t) :π ∈ N (A)} (

t ∈ R, A ∈ K(R2
c )

)
.(1.25)

We set R := [−∞,∞] and let K(R) denote the space of compact subsets of
R, equipped with the Hausdorff topology, under which K(R) is itself a compact
space. We recall that if E is a compact metrizable space, then a Feller process in
E is a time-homogeneous Markov process in E, with cadlag sample paths, whose
transition probabilities Pt(x, dy) have the property that the map (x, t) 
→ Pt(x, · )
from E × [0,∞) into the space of probability measures on E is continuous with
respect to the topology of weak convergence. Feller processes are strong Markov
processes [6], Theorem 4.2.7.
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THEOREM 1.11 (Branching-coalescing point set). Let N be the Brownian net.
Then for any s ∈ R and K ∈ K(R),

ξt := ξ
K×{s}
t (s ≤ t < ∞)(1.26)

defines a Feller process (ξt )t≥s in K(R) with continuous sample paths, started
from the initial state K at time s. For each deterministic t > s, the set ξt is a.s.
locally finite in R. If K ∈ K ′ := {K ∈ K(R) :K = K ∩ R}, then

P[ξt ∈ K ′ ∀t ≥ s] = 1.(1.27)

Note that K ′ excludes sets in which either −∞ or ∞ is an isolated point, and
hence, K ′ can in a natural way be identified with the space of all closed subsets
of R. Thus, property (1.27) says that we can view the branching-coalescing point
set as a Markov process taking values in the space of closed subsets of R.

The branching-coalescing point set ξt arises as the scaling limit of the
branching-coalescing random walks ηt introduced in (1.2). The scaling regime
considered in Theorem 1.1 allows us to interpret ξt heuristically as a collection of
Brownian particles which coalesce instantly when they meet but branch with an
infinite rate. The infinite branching rate makes it difficult, however, to develop a
good intuition from this simple picture. In particular, even for the process started
at time zero from just one point, there is a dense collection of random times t > 0
such that ξt is not locally finite. The proof of this fact is not difficult, but for lack
of space, we defer it to a future paper.

For the branching-coalescing point set started from the whole extended real
line R, we can explicitly calculate the expected density at any t > 0. Below, |A|
denotes the cardinality of a set and 
(x) = 1√

2π

∫ x
−∞ e−y2/2 dy.

PROPOSITION 1.12 (Density of branching-coalescing point set). We have

E
[∣∣ξR×{0}

t ∩ [a, b]∣∣] = (b − a) ·
(

e−t

√
πt

+ 2

(√

2t
))

(1.28)

for all [a, b] ⊂ R, t > 0.

Note that the density of ξ
R×{0}
t is proportional to t−1/2 as t ↓ 0. This is consis-

tent with the behavior of the Brownian web, but the decay is faster than is known
for other coalescents such as Kingman’s coalescent or the branching-coalescing
particle systems in [3], Theorem 2(b). On the other hand, the density approaches
the constant 2 as t → ∞, in contrast to the Brownian web.

Our next proposition shows that it is possible to recover N (R × {0}) from

(ξ
R×{0}
t )t≥0. Below, for any K ⊂ K(R2

c ), we let

∪K = {z ∈ R2
c :∃A ∈ K s.t. z ∈ A}(1.29)
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denote the union of all sets in K . We call ∪K the image set of K . For t ∈ [−∞,∞],
let �t := {π ∈ � :σπ = t} denote the space of all paths with starting time t . Note

that ∪(N ∩ �0) = {(x, t) : t ≥ 0, x ∈ ξ
R×{0}
t } ∪ {(∗,∞)}.

PROPOSITION 1.13 (Image set property). Let N be the Brownian net. Then,
almost surely for all t ∈ [−∞,∞],

N ∩ �t = {π ∈ �t :π ⊂ ∪(N ∩ �t)}.(1.30)

1.10. The backbone. In this section we study N (∗,−∞), the set of paths in
the Brownian net starting at time −∞, and its discrete counterpart Uβ(∗,−∞).
These sets are relevant in the study of ergodic properties of the branching-
coalescing point set and the branching-coalescing random walks. Borrowing ter-
minology from branching theory, we call N (∗,−∞) and U(∗,−∞) respectively
the backbone of the Brownian net and the backbone of an arrow configuration.

PROPOSITION 1.14 (Backbone of an arrow configuration). For β ≥ 0, the set
of ℵβ -paths, Uβ , satisfies the following properties:

(i) {π(0) :π ∈ Uβ(∗,−∞)} is a Bernoulli random field on Zeven with inten-
sity ρ := 4β

(1+β)2 .
(ii) Uβ(∗,−∞) and −Uβ(∗,−∞) are equal in law.

(iii) Almost surely, Uβ(xn, tn) −→
n→∞Uβ(∗,−∞) in K(�) for any sequence

(xn, tn) ∈ Z2
even satisfying tn → −∞ and lim supn→∞

|xn|
|tn| < β .

Note that [recall (1.2)]

η
(∗,−∞)
t = {π(t) :π ∈ Uβ(∗,−∞)} (t ∈ Z)(1.31)

defines, modulo parity, a stationary system of branching-coalescing random walks
(η

(∗,−∞)
t )t∈Z. Thus, property (i) implies that, modulo parity, Bernoulli product

measure with intensity 4β

(1+β)2 is an invariant measure for the branching-coalescing
random walks with branching probability β . This is perhaps surprising, unless
one is familiar with other branching-coalescing particle systems such as Schlögl
models (see, e.g., [3, 5, 13]). Property (ii) says that this invariant law is, moreover,
reversible in a rather strong sense. Note that an arrow configuration ℵβ is not
symmetric with respect to time reversal, so this statement is not as obvious as
it may seem. Property (iii) implies that the branching-coalescing random walks
(ηt )t≥0 exhibit complete convergence, that is, for any nonempty initial state η0 ⊂
Zeven, as t → ∞, η2t (resp. η2t+1) converges in law to a Bernoulli product measure
on Zeven (resp. Zodd) with intensity ρ = 4β

(1+β)2 .
For the Brownian net, we have the following analogue of Proposition 1.14.
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PROPOSITION 1.15 (Backbone of the Brownian net). The Brownian net N
satisfies the following properties:

(i) {π(0) :π ∈ N (∗,−∞)}\{±∞} is a Poisson point process on R with inten-
sity 2.

(ii) N (∗,−∞) and −N (∗,−∞) are equal in law.
(iii) Almost surely, N (xn, tn) −→

n→∞N (∗,−∞) in K(�) for any sequence

(xn, tn) ∈ R2 satisfying tn → −∞ and lim supn→∞
|xn|
|tn| < 1.

In analogy with the branching-coalescing random walks, it follows that the law
of a Poisson point set on R with intensity 2 is an invariant law for the branching-
coalescing point set, that the latter exhibits complete convergence, and hence, this
is its unique nontrivial invariant law. See Figure 5 for a picture of the backbone, or
rather its image set ∪N (∗,−∞). Note that by Proposition 1.13, any path starting
at time −∞ that stays in ∪N (∗,−∞) is a path in N (∗,−∞).

1.11. Discussion, applications and open problems. This article began with the
question of whether it is possible to add a small branching probability to the ar-
row configuration ℵ0, which scales to the Brownian web, in such a way that one
still obtains a nontrivial limit. At first sight, this may not seem possible because
of the instantaneous coalescing of paths in the Brownian web. At second thought,
for arrow configurations ℵβ with branching probability β , if we rescale space and
time by ε and ε2 and let ε → 0, then for the left-most and right-most ℵβ -path
starting from the origin to have a nontrivial limit, we need β/ε → b for some

FIG. 5. Left-right coalescing Brownian motions and the backbone of the Brownian net.
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b > 0. It seems a coincidence that exactly the same scaling of β and ε is needed
for the invariant measures of the branching-coalescing random walks from Propo-
sition 1.14(i) to have a nontrivial limit. It was the observation of this coincidence
that started off the present article.

Arratia’s [1, 2] original motivation for studying the Brownian web came from
one-dimensional voter models. In fact, coalescing simple random walks are dual
to the one-dimensional nearest-neighbor voter model in two ways. They represent
the genealogy lines of the voter model, and they also characterize the evolution
of boundaries between domains of different types in an infinite type voter model.
Voter models are used in population genetics to study the spread of genes in the
absence of selection and mutation. They can also be viewed as the stochastic dy-
namics of zero-temperature one-dimensional Potts models. These points of view
suggest several extensions of the Brownian web.

In [9] the marked Brownian web was introduced for the study of one-
dimensional Potts models at small positive temperature. There, with small proba-
bility, a site may change its type, giving rise to a “nucleation event.” In the biologi-
cal context, such an event may be interpreted as a mutation. For the dual system of
coalescing random walks, this results in a small death rate. The diffusive scaling
limit of such a system is characterized by a Poisson marking of paths in the dual
Brownian web, according to their length measure, where marks indicate deaths of
particles.

There are at least two motivations for studying the Brownian net. First, in the bi-
ological interpretation, if instead of mutation, one adds a small selection rate, then
one ends up with a biased voter model, which is dual to branching-coalescing ran-
dom walks (compare [3]). Near the completion of this article, we learned that New-
man, Ravishankar and Schertzer have been studying a differently motivated model
that also leads to the Brownian net. Their model is a one-dimensional infinite-type
Potts model, where, in contrast to the model in [9], nucleation events can only
occur at the boundaries between different types. These boundaries then evolve as
a system of continuous-time branching-coalescing random walks, which leads to
the Brownian net. Rather than starting from the left-right Brownian web, their
construction of the Brownian net is based on allowing hopping in the (standard)
Brownian web at points that are chosen according to a Poisson marking of the set
of intersection points between paths in the Brownian web W and its dual Ŵ . This
construction will be published in [12].

There are a number of questions about the Brownian net that are worth investi-
gating. First, we would like to give a complete classification of all special points
in the Brownian net, in analogy with the classification of special points in the
Brownian web. We have some results in that direction and will present them in
a forthcoming paper [14]. An important ingredient in that work is to characterize
the interaction between forward left-most and dual right-most paths, which can
be used to give an alternative characterization of the left-right Brownian web not
discussed in the present paper.
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The second question regards the universality of the Brownian net and the
branching-coalescing point set. Our convergence result is for the simplest system
of branching-coalescing random walks. It is plausible that the same result holds
for more general branching-coalescing systems, such as Schlögl models or the bi-
ased annihilating branching process from [16]. Related to this is the question of
how to characterize the branching-coalescing point set by means of a generator or
well-posed martingale problem.

The third question is to study the marked Brownian net, which can be defined
by a Poisson marking of paths in the Brownian net in the same spirit as the marked
Brownian web introduced in [9]. In the biological context, such a model describes
genealogies in the presence of small selection and rare mutations. It can be shown
that the resulting branching-coalescing point set with deaths undergoes a phase
transition of contact-process type as the death rate is increased. This model might
therefore be of some relevance in the study of the one-dimensional contact process.

Finally, it needs to be investigated how the Brownian net relates to certain other
objects that have been introduced in the literature. In particular, it seems that a
subclass of the stochastic flows of kernels introduced by Howitt and Warren in
[10] is supported on the Brownian net. Also, it would be interesting to know if the
branching-coalescing point set is related to some field theory used in theoretical
physics. The physicist’s way of viewing this process would probably be to say that
these are coalescing Brownian motions with an infinite branching rate, but, due to
the coalescence, most of this branching is not effective, so at macroscopic space
scales one only observes the ‘renormalized’ branching rate, which is finite.

1.12. Outline. The rest of the paper is organized as follows. In Section 2 we
construct and characterize the left-right Brownian web (Theorem 1.5) by first char-
acterizing the left-right SDE and left-right coalescing Brownian motions described
in Section 1.4. In Section 3 we establish some basic properties for the left-right
SDE, recall some properties of the Brownian web and its dual, and prove some
basic properties for the left-right Brownian web and its dual.

In Section 4 we prove the equivalence of the hopping construction (Theo-
rem 1.3) and the dual construction (Theorem 1.10) of the Brownian net. In Sec-
tion 5 we prove Theorem 1.1, our main convergence result. In fact, we prove some-
thing more: denoting the collections of all left-most and right-most paths in an ar-
row configuration ℵβ by Ul

β and Ur
β , respectively, we show that Sε(U

l
β,Ur

β,Uβ)

converges to (W l,W r,N ), where (W l,W r) is a left-right Brownian web and N
is the associated Brownian net. Here the hopping and dual characterizations of the
Brownian net serve respectively as a stochastic lower and upper bound on limit
points of Sε(Uβ).

In Section 6 we carry out two density calculations. The first of these yields
Proposition 1.12, while the second estimates the density of the set of times when
the left-most path starting at the origin first meets some path in the Brownian
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net starting at time 0 to the left of the origin. This second calculation is used
in Section 7 to establish the characterization of the Brownian net using meshes
(Theorem 1.7) and Proposition 1.8. These two results then in turn imply Proposi-
tions 1.4 and 1.13.

Finally, in Section 8 we prove Theorem 1.11 on the branching-coalescing point
set, and in Section 9 we prove Propositions 1.14 and 1.15 on the backbones of
arrow configurations and the Brownian net.

2. The left-right Brownian web. In Section 2.1 we characterize the left-right
SDE described in Section 1.4 as the unique weak solution of the SDE (1.11). In
Section 2.2 we give a rigorous definition of a collection of left-right coalescing
Brownian motions described in Section 1.4. Finally, in Section 2.3 we construct
the left-right Brownian web and prove Theorem 1.5.

2.1. The left-right SDE. Recall that a Markov transition probability kernel
Pt(x, dy) on a compact metrizable space has the Feller property if the map
(x, t) 
→ Pt(x, ·) from E × [0,∞) into the space of probability measures on E

is continuous with respect to the topology of weak convergence. Each Feller tran-
sition probability kernel gives rise to a strong Markov process with cadlag sam-
ple paths [6], Theorem 4.2.7. If E is not compact, but locally compact, then let
E∞ = E ∪ {∞} denote the one-point compactification of E. In this case, one says
that a Markov transition probability kernel Pt(x, dy) on E has the Feller property
if the extension of Pt(x, dy) to E∞ defined by putting Pt(∞, ·) := δ∞ (t ≥ 0) has
the Feller property. The corresponding Markov process is called a Feller process.

PROPOSITION 2.1 (Well-posedness and stickiness of the left-right SDE). For
each initial state (L0,R0) ∈ R2, there exists a unique weak solution to the SDE
(1.11) subject to the constraint that Lt ≤ Rt for all t ≥ T := inf{s ≥ 0 :Ls = Rs}.
The family of solutions {(Lt ,Rt )t≥0}(L0,R0)∈R2 defines a Feller process. The law of
the total time that Lt and Rt are equal is given by

L

(∫ ∞
0

1{Lt=Rt } dt

)
= L

(
sup
t≥0

(
Bt√

2
− t + (L0 − R0) ∧ 0

2

))
,(2.1)

where Bt is a standard Brownian motion (started at zero).

Denote R2≤ := {(x, y) ∈ R2 :x ≤ y}. A weak R2≤-valued solution to (1.11) is a
quintuple (L,R,B l,Br,Bs), where B l,Br,Bs are independent Brownian motions
and (L,R) is a continuous, adapted R2≤-valued process such that (1.11) holds in
integral form (where the stochastic integrals are of Itô-type).

We rewrite the SDE (1.11) into a different equation, which has a pathwise
unique solution. (In contrast, we believe that solutions to (1.11) are not pathwise
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unique; see [18] and the references therein for a similar equation where this has
been proved.) Consider the following equation:

(i) dLt = dB̃ l
Tt

+ dB̃s
St

− dt,

(ii) dRt = dB̃r
Tt

+ dB̃s
St

+ dt,
(2.2)

(iii) Tt + St = t,

(iv)
∫ t

0
1{Ls<Rs} dSs = 0.

Note that (2.2)(iv) says that St increases only when Lt = Rt . By definition, by a
weak R2≤-valued solution to (2.2), we will mean a 7-tuple (L,R,S,T , B̃ l, B̃r, B̃s),

where B̃ l, B̃r, B̃s are independent Brownian motions, S,T are nonnegative, non-
decreasing, continuous, adapted processes such that (2.2)(iii) and (iv) hold, and
(L,R) is a continuous, adapted R2≤-valued process such that (2.2)(i) and (ii) hold
in integral form.

Proposition 2.1 follows from the following lemma.

LEMMA 2.2 (Space-time SDE). (a) There is a one-to-one correspondence
in law between weak R2≤-valued solutions of (1.11) and weak R2≤-valued solu-
tions of (2.2).

(b) For each initial state (L0,R0) ∈ R2≤, equation (2.2) has a pathwise unique
solution.

(c) Solutions to (2.2) satisfy St := ∫ t
0 1{Ls=Rs} ds,

St = sup
0≤s≤Tt

(1
2(L0 + B̃ l

s − R0 − B̃r
s) − s

)
a.s.,(2.3)

and limt→∞ Tt = ∞.

PROOF OF PROPOSITION 2.1. Since Lt and Rt evolve independently un-
til they meet, it suffices to consider the case L0 ≤ R0. The existence and
uniqueness of weak solutions to (1.11) under the given constraint follow from
Lemma 2.2(a) and (b), while (2.1) follows from Lemma 2.2(c). To prove the
Feller property, by the continuity of sample paths, it suffices to show that the
law on path space of solutions to (1.11) depends continuously on the initial state.
Since the first meeting time and position of two independent Brownian motions
depend continuously on their initial states, it suffices to show continuity of R2≤-
valued solutions to (2.2) in the initial state. Fix Brownian motions B̃ l, B̃r and B̃s,
and let (Ln,Rn,Sn, T n) be a sequence of solutions to (2.2) with initial states
(Ln

0,R
n
0 ) = (ln, rn) ∈ R2≤, such that (ln, rn) → (l, r) ∈ R2≤. Since Ln and Rn

are Brownian motions and Sn,T n increase with slope at most 1, the sequence
(Ln,Rn,Sn, T n) is tight. It is not hard to see that any subsequential limit solves
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(2.2) (compare the proof of Proposition 5.1 in Section 5.1), and therefore, (Ln,Rn)

converges to the pathwise unique solution of (2.2) with initial state (l, r). �

PROOF OF LEMMA 2.2. We start with the proofs of parts (b) and (c). Our
approach is to transform an equation with a sticky boundary into a SDE with im-
mediate reflection, which is a standard technique to deal with sticky reflection.
Given a solution to (2.2), put

Dt := Rt − Lt,
(2.4)

Wt := R0 + B̃r
t − L0 − B̃ l

t .

Then

dDt = dWTt + 2dt.(2.5)

It is easy to see from (2.2) that Dt leaves 0 immediately, that is, there exist no
s < t such that Du = 0 for all u ∈ (s, t). Hence, by (2.2)(iii) and (iv), Tt is strictly
increasing and continuous in t . Making the random time change τ = Tt , denoting
the inverse of T by τ 
→ T −1

τ , and writing dt = dTt + dSt , we can transform the
equation for Dt into

dD
T −1

τ
= dWτ + 2dτ + 2dS

T −1
τ

,(2.6)

where D
T −1

τ
is constrained to be nonnegative for all τ > 0, and 2S

T −1
τ

is a non-
decreasing process that increases only when D

T −1
τ

= 0. Equation (2.6) is an SDE
with instant reflection, known as the Skorohod equation (see, e.g., Section 3.6.C
of [11]). It can be solved (pathwise) uniquely for 2S

T −1
τ

, yielding

2S
T −1

τ
= − inf

0≤s≤τ
(Ws + 2s).(2.7)

Time changing back and remembering the definition of W , we arrive at (2.3). By
the fact that St + Tt = t , we find that

t = Tt + sup
0≤s≤Tt

(1
2(L0 + B̃ l

s − R0 − B̃r
s) − s

)
.(2.8)

Since the function

τ 
→ τ + sup
0≤s≤τ

(1
2(L0 + B̃ l

s − R0 − B̃r
s) − s

)
(2.9)

is strictly increasing and continuous, it has a unique inverse, which is t 
→ Tt . This
proves that S and T are pathwise unique, and therefore, by (2.2)(i) and (ii), also L

and R are pathwise unique.
Since the solution D

T −1
τ

of (2.6) spends zero Lebesgue time at 0, time-changing
τ = Ts , we see that

0 =
∫ Tt

0
1{D

T
−1
τ

=0} dτ =
∫ t

0
1{Ds=0} dTs.(2.10)
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By (2.2)(iii) and (iv), we conclude that St = ∫ t
0 1{Ls=Rs} ds and Tt = ∫ t

0 1{Ls<Rs} ds.
Finally, since L and R are Brownian motions with drift −1 and +1, respectively,
there is a last time that L and R are equal, and therefore, limt→∞ Tt = ∞. This
completes the proofs of parts (b) and (c).

To prove part (a), note that we have just proved that any solution to (2.2) solves
the following equations:

(i) dLt = dB̃ l
Tt

+ dB̃s
St

− dt,

(ii) dRt = dB̃r
Tt

+ dB̃s
St

+ dt,
(2.11)

(iii) Tt =
∫ t

0
1{Ls<Rs} ds,

(iv) St =
∫ t

0
1{Ls=Rs} ds.

Conversely, solutions to (2.11) obviously solve (2.2).
Given a R2≤-valued solution to (2.2), setting

B l
t := B̃ l

Tt
+

∫ t

0
1{Ls=Rs} dB̂ l

s,

Br
t := B̃r

Tt
+

∫ t

0
1{Ls=Rs} dB̂r

s,(2.12)

Bs
t := B̃s

St
+

∫ t

0
1{Ls<Rs} dB̂s

s ,

where B̂ l, B̂r and B̂s are Brownian motions independent of each other and of
B̃ l, B̃r and B̃s, yields a weak R2≤-valued solution to (1.11). Conversely, given a
weak R2≤-valued solution to (1.11), let St := ∫ t

0 1{Ls=Rs} ds, Tt := ∫ t
0 1{Ls<Rs} ds,

and

B̃ l
Tt

:=
∫ t

0
1{Ls<Rs} dB l

t ,

B̃r
Tt

:=
∫ t

0
1{Ls<Rs} dBr

t ,(2.13)

B̃s
St

:=
∫ t

0
1{Ls=Rs} dBs

t .

Then (B̃ l
t )t∈[0,T∞), (B̃r

t )t∈[0,T∞), and (B̃s
t )t∈[0,S∞) can be extended to independent

Brownian motions defined for all t ≥ 0, yielding a solution to (2.11). This com-
pletes the proof of part (a). �

2.2. Left-right coalescing Brownian motions. In this section we give a rig-
orous definition of a collection lz1, . . . , lzk

, rz′
1
, . . . , rz′

k′ of paths of left-right co-

alescing Brownian motions, started at points z1, . . . , zk, z
′
1, . . . , z

′
k′ ∈ R2. Write
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zi = (xi, ti) and z′
i = (x′

i , t
′
i ). The times t1, . . . , tk, t

′
1, . . . , t

′
k′ divide R into a finite

number of intervals. It suffices to define a Markov process that specifies the time
evolution of the left-right coalescing Brownian motions during each such inter-
val.

Thus, we need to construct a Markov process (L1,t , . . . ,Lk,t ;R1,t , . . . , Rk′,t )t≥0

in Rk+k′
such that (L1,t , . . . ,Lk,t ) and (R1,t , . . . ,Rk′,t ) are each distributed as co-

alescing Brownian motions with drift −1 and +1 respectively, and the interaction
between paths in (L1,t , . . . ,Lk,t ) and (R1,t , . . . ,Rk′,t ) is that of the left-right SDE
(1.11). Instead of characterizing the joint process (L1,t , . . . ,Lk,t ;R1,t , . . . ,Rk′,t )
as the unique weak solution of a system of SDEs, which is rather laborious, we
give an inductive construction using the distribution of (Lt ,Rt).

We first construct the system up to the first time two left Brownian mo-
tions coalesce, or two right Brownian motions coalesce, or a right Brownian
motion hits a left Brownian motion from the left. In the last case, the right
Brownian motion has to continue on the right of the left Brownian motion,
so we call this a crossing. If our left and right coalescing Brownian motions
are initially ordered as LRRLRLRLLLRRLR, say, then we partition them as
{LR}{R}{LR}{LR}{L}{L}{LR}{R}{LR}, letting all pairs of a left Brownian mo-
tion followed by a right Brownian motion constitute a partition element with two
members, and putting all remaining Brownian motions into partition elements with
one member. We let the partition elements evolve independently until the first co-
alescing or crossing time. Here partition elements containing two members evolve
according to the left-right SDE (1.11), while partition elements containing one
member are just Brownian motions with drift +1 or −1. At the first coalescing
or crossing time, we respectively coalesce or cross the motions that have hit each
other, repartition the remaining Brownian motions and continue the process. Note
that there can be at most k + k′ coalescence events and at most kk′ crossings, so
this procedure is iterated at most finitely often and eventually leads to a single pair
(L,R).

The above construction uniquely defines the system of left-right coalescing
Brownian motions lz1, . . . , lzk

, rz′
1
, . . . , rz′

k′ . By the Feller property of coalesc-
ing Brownian motions and solutions to the left-right SDE, it is clear that the
law of (lz1, . . . , lzk

, rz′
1
, . . . , rz′

k′ ) depends continuously on the starting points

z1, . . . , zk, z
′
1, . . . , z

′
k′ , and the marginal distribution of a subset of paths in

{lz1, . . . , lzk
, rz′

1
, . . . , rz′

k′ } is also a system of left-right coalescing Brownian mo-
tions. This consistency property allows the definition of a countable system of
left-right coalescing Brownian motions.

2.3. The left-right Brownian web. We now construct the left-right Brownian
web and prove Theorem 1.5.

PROOF OF THEOREM 1.5. We first show uniqueness. Fix countable dense sets
D l,D r ⊂ R2. Suppose that there exists a K(�) × K(�)-valued random vari-
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able (W l,W r) satisfying properties (i)–(iii) in Theorem 1.5. By property (i), let
lz, z ∈ D l, denote the almost sure unique element in W l starting from z, and let
rz, z ∈ D r, denote the almost sure unique element in W r starting from z. Then by
property (ii), ((lz)z∈D l, (rz)z∈D r) is a �D l × �D r

-valued random variable whose
finite-dimensional distributions are that of left-right coalescing Brownian motions.
Hence, the law of ((lz)z∈D l, (rz)z∈D r) is uniquely determined, and by property (iii),
so is the law of (W l,W r).

We now construct a K(�) × K(�)-valued random variable (W l,W r) satis-
fying properties (i)–(iii) in Theorem 1.5. By our construction of left-right co-
alescing Brownian motions in Section 2.2 and their consistency property when
more paths are added, we can invoke Kolmogorov’s extension theorem to assert
that there exists a �D l × �D r

-valued random variable ((lz)z∈D l, (rz)z∈D r) whose
finite-dimensional distributions are that of left-right coalescing Brownian motions.
Define

W l := {lz : z ∈ D l}, W r := {rz′ : z′ ∈ D r}.(2.14)

Note that W l and W r are each distributed as a standard Brownian web with
drift −1 and +1 respectively. Properties (i) and (iii) then follow from the anal-
ogous properties for the standard Brownian web. It only remains to show (ii). Let
{u1, . . . , uk} and {u′

1, . . . , u
′
k′ } be deterministic finite subsets of R2. By (i), almost

surely, a unique path lui
∈ W l starts from each ui , 1 ≤ i ≤ k, and a unique path

ru′
j
∈ W r starts from each u′

j , 1 ≤ j ≤ k′. Choose zn,i ∈ D l, z′
n,j ∈ D r such that

zn,i → ui and z′
n,j → u′

j as n → ∞. Since the Brownian web is a.s. continuous at
deterministic points (see Proposition 3.2), we have lzn,i

→ lui
and rz′

n,j
→ ru′

j
in

�, and hence,

L(lzn,1, . . . , lzn,k
, rz′

n,1
, . . . , rz′

n,k′ ) �⇒
n→∞L(lu1, . . . , luk

, ru′
1
, . . . , ru′

k′ ).(2.15)

By the continuity of left-right coalescing Brownian motions in its starting points,
it follows that (lu1, . . . , luk

, ru′
1
, . . . , ru′

k′ ) is distributed as a system of left-right co-

alescing Brownian motions starting from u1, . . . , uk, u
′
1, . . . , u

′
k′ , verifying prop-

erty (ii). �

3. Properties of the left-right Brownian web. In Sections 3.1–3.3 below we
collect some properties of solutions to the left-right SDE, the Brownian web and
its dual, and the left-right Brownian web and its dual, respectively.

3.1. Properties of the left-right SDE. Recall that a set X is perfect if X is
closed and x ∈ X\{x} for all x ∈ X, that is, X has no isolated points.

PROPOSITION 3.1 (Properties of the left-right SDE). Let (Lt ,Rt )t≥0 be the
unique weak solution of the SDE (1.11) with initial condition (L0,R0) ∈ R2, sub-
ject to the constraint that Lt ≤ Rt for all t ≥ T := inf{s ≥ 0 : Ls = Rs}. Let I :=
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{t ≥ 0 :Lt = Rt } and let µI be the measure on R defined by µI (A) := 
(I ∩ A),
where 
 denotes Lebesgue measure. Then:

(a) Almost surely, I is a nowhere dense perfect set.
(b) Almost surely, I is the support of µI .

PROOF. If T = ∞, the lemma is vacuous. Since (Lt ,Rt )t≥0 is a strong
Markov process and T is a stopping time, we may assume without loss of gen-
erality that T = 0, that is, L0 = R0. Define W as in (2.4), put W̃τ := Wτ + 2τ

(τ ≥ 0), and

Xτ := W̃τ + Rτ where Rτ := − inf
0≤s≤τ

W̃s (τ ≥ 0).(3.1)

Then X is a Brownian motion with diffusion constant 2 and drift 2, instantaneously
reflected at zero. It is well known (and not hard to prove) that {τ ≥ 0 :Xτ = 0} is
the support of dR.

Setting Dt := Rt − Lt (t ≥ 0), we see by (2.6), (2.7) and (2.11)(iii) that

Dt = XTt where Tt :=
∫ t

0
1{Ds>0} ds (t ≥ 0).(3.2)

It follows that I = {t ≥ 0 :Dt = 0} is the image of {τ ≥ 0 :Xτ = 0} under the map
τ 
→ T −1

τ . Since by (2.7) and (2.11)(iv),

St =
∫ t

0
1{Ds=0} ds = 1

2RTt (t ≥ 0),(3.3)

the measure µI is the image of the measure 1
2 dR under the map T −1. Since

T −1 is a continuous open map, it follows that supp(µI ) = T −1(supp(dR)) =
T −1({τ ≥ 0 :Xτ = 0}) = I . This proves part (b). It follows that I has no iso-
lated points, that is, is perfect. To see that I is nowhere dense, by the Markov
property, it suffices to show that Dt leaves the origin immediately. Indeed, setting
σ := inf{t ≥ 0 :Dt > 0} and using (2.2), we see that 0 = Dσ = ∫ σ

0 2dt = 2σ a.s.
This proves part (a). �

3.2. Properties of the Brownian web. In this section we recall some properties
of the standard Brownian web W and its dual Ŵ , which can all be found in [8,
9, 15, 17]. Recall that σ̂π̂ denotes the starting time of a dual path π̂ . Thus, a dual
path is a map π̂ : [−∞, σ̂π̂ ] → [−∞,∞] ∪ {∗} such that π̂ : [−∞, σ̂π̂ ] ∩ R →
[−∞,∞] is continuous, and π̂(±∞) := ∗ whenever ±∞ ∈ [−∞, σ̂π̂ ].

PROPOSITION 3.2 (Properties of the Brownian web). Let W be the Brownian
web and Ŵ its dual. Then:

(a) (W , Ŵ) is equally distributed with −(Ŵ ,W).
(b) Almost surely, paths in W coalesce when they meet, that is, for each π,π ′ ∈

W and t > σπ ∨ σπ ′ such that π(t) = π ′(t), one has π(s) = π ′(s) for all s ≥ t .
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(c) Almost surely, paths and dual paths do not cross, that is, there exist no
π ∈ W , π̂ ∈ Ŵ , and s, t ∈ [σπ, σ̂π̂ ] such that (π(s) − π̂(s)) · (π(t) − π̂(t)) < 0.

(d) Almost surely, paths and dual paths spend zero Lebesgue time together, that
is, we have

∫ σ̂π̂
σπ

1{π(t)=π̂(t)} dt = 0 for all π ∈ W and π̂ ∈ Ŵ .
(e) Almost surely, for each point z = (x, t) ∈ R2, x−

n ↑ x, x+
n ↓ x, π−

n ∈
W(x−

n , t), and π+
n ∈ W(x+

n , t), the limits πz− := limn→∞ π−
n and πz+ :=

limn→∞ π+
n exist and do not depend on the choice of π−

n ∈ W(x−
n , t) and

π+
n ∈ W(x+

n , t).

Points z ∈ R2 in the Brownian web are classified according to the number of
disjoint incoming and distinct outgoing paths at z. By definition, an incoming path
at z = (x, t) is a path π ∈ W such that σπ < t and π(t) = x. Two incoming paths
π,π ′ at z are equivalent if π = π ′ on [s,∞], for some σπ ∨ σπ ′ ≤ s < t . Let
min(z) denote the number of equivalence classes of incoming paths in W at z,
and let mout(z) denote the cardinality of W(z). Then (min(z),mout(z)) is the type
of the point z in W . Points of type (1,2) are distinguished into points of type
(1,2)l and (1,2)r, according to whether the incoming path continues along the left
or right of the two outgoing paths. We let (m̂in(z), m̂out(z)) denote the type of a
point z in Ŵ , which is defined to be the type of −z in −Ŵ , the rotation of Ŵ by
180◦ around the origin. We denote the joint type of z with respect to (W , Ŵ) by
(min(z),mout(z))/(m̂in(z), m̂out(z)). The next lemma, which was first established
in [17] (see also [9], Theorems 3.11 and 3.14), classifies all points in R2 according
to their types in (W , Ŵ). Note the relations m̂out = min + 1 and mout = m̂in + 1.

LEMMA 3.3 (Classification of points in the Brownian web).

(a) Almost surely, all z ∈ R2 are in (W , Ŵ) of one of the types (0,1)/(0,1),
(0,2)/(1,1), (0,3)/(2,1), (1,1)/(0,2), (1,2)l/(1,2)l, (1,2)r/(1,2)r and (2,1)/

(0,3). See Figure 6.
(b) For each deterministic t ∈ R, almost surely each point on R×{t} is of either

type (0,1), (0,2) or (1,1) in W .
(c) Each deterministic point z ∈ R2 is almost surely of type (0,1) in W .

The next lemma shows that convergent sequences of paths in W converge in a
rather strong sense.

FIG. 6. Types of points in the Brownian web and its dual (W , Ŵ).
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LEMMA 3.4 (Convergence of paths). Let W be the standard Brownian web.
Then:

(a) Almost surely, for any {πn}n∈N, π ∈ W such that πn → π , one has σπn →
σπ and sup{t ≥ σπn ∨ σπ :πn(t) �= π(t)} −→

n→∞σπ .

(b) Let D be a deterministic countable dense subset of R2. Let {πz}z∈D be the
skeleton of W relative to the starting set D . Then almost surely, for all π ∈ W and
ε > 0, there exists z = (x, t) ∈ D such that t ∈ (σπ − ε, σπ + ε) and πz(s) = π(s)

for all s ≥ σπ + ε.

PROOF. By [8], Proposition 4.1, W t,δ := {γ (t) :γ ∈ W , σγ ≤ t − δ} is a.s.
locally finite for each t, δ ∈ Q with δ > 0. Therefore, πn → π implies that, for
each σπ < t ∈ Q, πn(t) eventually equals π(t), and hence, πn = π on [t,∞),
which proves part (a). Part (b) is a trivial consequence of part (a) and Theorem 1.2
(see also Proposition 2.2 of [17] and Proposition 4.2 of [8]). �

In applications of Lemma 3.4, one mostly needs part (b). Typically, a property
is proved first for skeletal paths, and then extended to all paths in the web by
Lemma 3.4(b).

We say that a path π1 crosses a path π2 from left to right if there exist σπ1 ∨
σπ2 ≤ s < t such that π1(s) < π2(s) and π2(t) < π1(t). Likewise, we say that a
path π1 crosses a dual path π̂2 from left to right if there exist σπ1 ≤ s < t ≤ σ̂π̂2
such that π1(s) < π̂2(s) and π̂2(t) < π1(t). The next lemma will be useful in what
follows.

LEMMA 3.5 (Equivalence of crossing). Let (W , Ŵ) be the Brownian web and
its dual. A path γ ∈ � crosses some π ∈ W from left to right if and only if it also
crosses some π̂ ∈ Ŵ from left to right. The same is true if we interchange left and
right.

PROOF. Assume γ ∈ � crosses π ∈ W from left to right, that is, γ (s) < π(s)

and γ (t) > π(t) for some σγ ∨ σπ ≤ s < t . Then by the noncrossing property of
paths in W and Ŵ , for any π̂ ∈ Ŵ(x, t) with x ∈ (π(t), γ (t)), we have γ (s) <

π(s) ≤ π̂(s). Hence, γ crosses π̂ from left to right. The proof of the converse
implication is similar. By symmetry, the same statements hold for crossings from
right to left. �

3.3. Properties of the left-right Brownian web. In this section we collect some
basic properties of the left-right Brownian web (W l,W r) and its dual (Ŵ l, Ŵ r).
Recall the definitions of intersection times and crossing times from Section 1.4.
For any π1, π2 ∈ �, we let

I (π1, π2) := {t ∈ (σπ1 ∨ σπ2,∞) :π1(t) = π2(t)}(3.4)

denote the set of intersection times of π1 and π2.
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PROPOSITION 3.6 (Properties of the left-right Brownian web). Let (W l,W r,

Ŵ l, Ŵ r) be the standard left-right Brownian web and its dual. Then, almost surely,
the following statements hold:

(a) For each l ∈ W l and r ∈ W r such that σl ∨σr < ∞, one has Tcros := inf{t >

σl ∨ σr : l(t) < r(t)} = inf{t > σl ∨ σr : l(t) ≤ r(t)} < ∞, and l(t) ≤ r(t) for all
t ≥ Tcros.

(b) For each l ∈ W l and r ∈ W r, I (l, r) is a (possibly empty) nowhere dense
perfect set.

(c) For each l ∈ W l and r ∈ W l such that σl ∨ σr < ∞, the set I (l, r) is the
support of the measure µI on (σl ∨σr,∞) defined by µI(l,r)(A) := 
(I (l, r)∩A),
where 
 denotes Lebesgue measure.

(d) Paths in W l cannot cross paths in Ŵ r from left to right, that is, there exist
no l ∈ W l, r̂ ∈ Ŵ r, and σl ≤ s < t ≤ σ̂r̂ such that l(s) < r̂(s) and r̂(t) < l(t).
Similarly, paths in W r cannot cross paths in Ŵ l from right to left.

PROOF. Let D l and D r be deterministic countable dense subsets of R2, and
let {lz}z∈D l and {rz}z∈D r be the corresponding skeletons of W l and W r. By The-
orem 1.5 and Lemma 3.4(b), it suffices to prove parts (a)–(c) for skeletal paths,
and hence for deterministic pairs (lz, rz′) where z ∈ D l and z′ ∈ D r. Since such
deterministic pairs satisfy the SDE (1.11) by Theorem 1.5, parts (a)–(c) follow
readily from Proposition 3.1(a) and (b). Property (d) is a consequence of (a) and
Lemma 3.5. �

4. The Brownian net. Let (W l,W r, Ŵ l, Ŵ r) be a left-right Brownian web
and its dual, and set

Nhop := Hcros(W l ∪ W r).(4.1)

Note that if D l,D r ⊂ R2 are deterministic countable dense sets, then by
Lemma 3.4(b), we also have Nhop = Hcros(W l(D l) ∪ W r(D r)). Define Nmesh
and Nwedge by formulas (1.16) and (1.24), respectively. In Sections 4.1 and 4.2 we
prove the inclusions Nhop ⊂ Nwedge and Nwedge ⊂ Nhop, respectively. As an appli-
cation, in Section 4.3 we establish Theorems 1.3 and 1.10, as well as Lemma 1.6. In
addition, we prove Theorem 1.9 in Section 4.2, and, as a preparation for the charac-
terization of the Brownian net using meshes, we prove the inclusion Nhop ⊂ Nmesh
in Section 4.1. The proof of the other inclusion is more difficult, and will be post-
poned to Section 7.

4.1. Nhop ⊂ Nwedge. Set

Pnoncros := {π ∈ � :π does not cross paths in W l from right
(4.2)

to left or paths in W r from left to right}.
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LEMMA 4.1 (Closedness of constructions). The sets Nwedge, Nmesh and
Pnoncros are closed.

PROOF. Note that if a path π ∈ � enters a mesh with bottom time t > σπ ,
then it must enter from outside. Likewise, if π crosses a dual path l̂ ∈ Ŵ l from
right to left, then it enters the open set {(x, t) ∈ R2 : t < σ̂

l̂
, x < l̂(t)} from outside.

Thus, taking into account Lemma 3.5, all statements follow from the fact that if
πn,π ∈ � satisfy πn → π , and π enters an open set A from outside, then for n

sufficiently large, πn also enters A from outside. �

LEMMA 4.2 (Noncrossing property). We have Nhop ⊂ Pnoncros a.s.

PROOF. It suffices to show that no path π ∈ Nhop crosses paths in W l from
right to left. By Lemma 4.1, it suffices to verify the statement for paths in
Hcros(W

l ∪ W r). By Propositions 3.2(b) and 3.6(a), paths π ∈ W l ∪ W r have the
stronger property that there exist no σπ < s < t and l ∈ W l such that l(s) ≤ π(s)

and π(t) < l(t). It is easy to see that this stronger property is preserved under
hopping. �

Let A be either a mesh or wedge with (finite) bottom point z = (x, t). We say
that a path π ∈ � enters A through z if σπ < t and there exists s > t such that
(π(s), s) ∈ A and (π(u),u) ∈ A for all u ∈ [t, s]. Note that if a path enters a mesh
(wedge) from outside, then it must either cross a left-most or right-most (dual)
path in the wrong direction, or enter the mesh (wedge) through its bottom point.

LEMMA 4.3 (Finite wedges contained in meshes). For every wedge W with
bottom point z, there exists a mesh M with bottom point z such that W ⊂ M .

PROOF. Write z = (x, t) and let r̂ , l̂ be the left and right boundary of W . By
Lemma 3.3, there exist r ∈ W r(z) and l ∈ W l(z) such that r(s) ≤ r̂(s) for all s ∈
(t, σ̂r̂ ) and l̂(s) ≤ l(s) for all s ∈ (t, σ̂

l̂
). It follows that r and l are the left and right

boundary of a mesh containing W (see Figure 3). �

LEMMA 4.4 (Hopping contained in mesh construction). We have Nhop ⊂
Nmesh a.s.

PROOF. By Lemma 4.1, it suffices to show that Hcros(W
l ∪W r) ⊂ Nmesh. We

will show that, even stronger, paths in Hcros(W
l ∪W r) do not enter meshes regard-

less of their bottom times. It is easy to see that this stronger property is preserved
under hopping, so it suffices to show that paths in W l ∪ W r do not enter meshes.
By symmetry, it suffices to show this for paths in W l. By Propositions 3.2(b) and
3.6(a), it suffices to show that paths in W l cannot enter meshes through their bot-
tom point. Let M = M(r, l) be a mesh with left and right boundary r and l and
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bottom point z = (x, t). Let l′ := lz− and r ′ := rz+ be the left-most path in W l(z)

and the right-most path in W r(z), respectively, in the sense of Proposition 3.2(e).
Then, by Proposition 3.6(a), l′(s) ≤ r(s) and l(s) ≤ r ′(s) for all s ≥ t (see Fig-
ure 3). If some l′′ ∈ W l enters M through z, then by Lemma 3.3, z must be of
the type (1,2)l or (1,2)r in W l, and therefore, l′′ continues along either l or l′. In
either case, l′′ does not enter M . �

LEMMA 4.5 (Hopping contained in wedge construction). We have Nhop ⊂
Nwedge a.s.

PROOF. By Lemma 4.1, it suffices to show that Hcros(W
l ∪ W r) ⊂ Nwedge.

Thus, we must show that paths in Hcros(W
l ∪ W r) do not cross paths in Ŵ l, Ŵ r

in the wrong direction or enter wedges through their bottom points. The first as-
sertion follows from Lemmas 3.5 and 4.2, while the second assertion is a result of
Lemmas 4.3 and 4.4. �

4.2. Nwedge ⊂ Nhop. In this section we prove that Nwedge ⊂ Nhop. We start
with a preparatory lemma.

LEMMA 4.6 (Compactness of Nhop). Nhop ∈ K(�) a.s.

PROOF. Recall (�1,�2) from (1.4). From the definition of the topology on �

introduced in Section 1.2, by Arzela–Ascoli, we note that a set K ⊂ � is precom-
pact if and only if the set of functions defined by the images of the graphs of π ∈ K

under the map (�1,�2) is equicontinuous, that is, the modulus of continuity of K ,

mK(δ) := sup{|�1(π(t), t) − �1(π(s), s)| :
(4.3)

π ∈ K, s, t ≥ σπ, |�2(s) − �2(t)| ≤ δ}
satisfies mK(δ) ↓ 0 as δ ↓ 0.

Lemma 4.2 implies that, for each π ∈ Nhop and s ≥ σπ , we have l ≤ π ≤ r

on [s,∞), where l := l(π(s),s)− and r := r(π(s),s)+ denote respectively the left-
most and the right-most paths in W l(π(s), s) and W r(π(s), s), in the sense of
Proposition 3.2(e). It follows that, for any t > s,

|�1(π(t), t) − �1(π(s), s)|
(4.4)

≤ |�1(l(t), t) − �1(l(s), s)| ∨ |�1(r(t), t) − �1(r(s), s)|.
Taking the supremum over all π ∈ Nhop and σπ ≤ s < t such that |�2(s) −
�2(t)| ≤ δ, we see that mNhop(δ) ≤ mW l∪W r(δ) (in fact, equality holds since
W l ∪ W r ⊂ Nhop), hence, the compactness of Nhop follows from the compactness
of W l ∪ W r a.s. �
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The next lemma is the main result of this section. This lemma and Proposi-
tion 1.8, which will be proved in Section 7, are the key technical results of this
paper.

LEMMA 4.7 (Hopping contains wedge construction). We have Nwedge ⊂ Nhop
a.s.

PROOF. We must show that any path π ∈ Nwedge can be approximated by a se-
quence of paths πn ∈ Hcros(W

l ∪ W r). By the compactness of Nhop (Lemma 4.6),
it suffices to show that, for any π ∈ Nwedge, ε > 0, and σπ < t1 < · · · < tn < ∞,
we can find πε ∈ Hcros(W

l ∪W r) such that σπε ∈ (σπ , t1) and |πε(ti)−π(ti)| ≤ ε

for all i = 1, . . . , n.
Our strategy is to first introduce piecewise continuous functions r̂ and l̂ on

[t1, tn], such that r̂(s) ≤ π(s) ≤ l̂(s) for s ∈ (t1, tn] and |r̂(ti) − π(ti)| ∨ |l̂(ti) −
π(ti)| ≤ ε for i = 2, . . . , n. These functions will be constructed by piecing together
paths in Ŵ r and Ŵ l. We then construct πε by steering a hopping path between r̂

and l̂.
We inductively choose n = n1 > · · · > nm > 1 and r̂1, . . . , r̂m such that

r̂k ∈ Ŵ r(π(tnk
) − ε, tnk

)
and

(4.5)
nk+1 := sup{i :nk > i > 1, r̂k(ti) < π(ti) − ε}.

This process terminates if r̂k(ti) ≥ π(ti) − ε for all nk > i > 1. In this case we
set m := k. We define r̂ := r̂j on (tnj+1, tnj

] (j = 1, . . . ,m − 1) and r̂ := r̂m on

[t1, tnm]. By left-right symmetry, we define n = n′
1 > · · · > n′

m′ > 1, l̂1, . . . , l̂m′ ,

and l̂ analoguously. We make the following claims:

(1) r̂ ≤ π ≤ l̂ on [t1, tn].
(2) ε′ := infs∈[t1,tn](l̂(s) − r̂(s)) > 0.
(3) |r̂(ti) − π(ti)| ∨ |l̂(ti) − π(ti)| ≤ ε for i = 2, . . . , n.
(4) limt↓ti r̂(t) ≤ r̂(ti) and limt↓ti l̂(t) ≥ l̂(ti) for i = 2, . . . , n−1, which are the

only possible discontinuities of r̂ and l̂.

Properties (1) and (2) follow from our assumption that π does not enter wedges
whose left and right boundaries are any of the dual paths r̂1, . . . , r̂m and l̂1, . . . , l̂m′ .
Properties (3) and (4) are now obvious from our construction. The pair (r̂, l̂) re-
sembles a fish-trap (see Figure 7).

We now construct a path πε ∈ Hcros(W
l ∪ W r) such that σπε ∈ (σπ , t1),

|πε(t1) − π(t1)| ≤ ε, and r̂(s) ≤ πε(s) ≤ l̂(s) for all s ∈ [t1, tn]. To this aim,
we inductively choose l1, l3, l5, . . . ∈ W l, r2, r4, r6, . . . ∈ W r, and τ1, τ2, . . . such
that τi is a crossing time of li and ri+1 if i is odd and a crossing time of ri and
li+1 if i is even, in the following way. First, we choose l1 such that σl1 ∈ (σπ , t1)

and l1(t1) ∈ (r̂(t1), l̂(t1)) ∩ [π(t1) − ε,π(t1) + ε]. Assuming that we have already
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FIG. 7. Steering a hopping path in the “fish-trap” (r̂, l̂).

chosen l1, . . . , li and r2, . . . , ri−1, we proceed as follows. If r̂(s) < li(s) ≤ l̂(s)

for all s ∈ [τi−1, tn] (where τ0 := t1), the process terminates. Otherwise, since
paths cannot cross dual paths [Proposition 3.2(c)], li must hit r̂ before time
tn. In this case, we set σi := inf{s ∈ [τi−1, tn] : li(s) = r̂(s)}. Using Proposi-
tions 3.2(c) and 3.6(a), we can choose δ > 0 sufficiently small and ri+1 ∈ W r

started in {(x, s) :σi − δ < s < σi, r̂(s) < x < li(s)}, such that ri+1 crosses li at
a time τi ∈ (σi − δ, σi) and ri+1(τi) − r̂(τi) ≤ 1

3ε′. In case the last path we have
chosen is a right-most path, by left-right symmetry, we proceed analogously. This
process must terminate after a finite number of steps, for if this were not the case,
then τi ↑ τ∞ for some τ∞ ≤ tn. By the piecewise continuity of l̂ and r̂ , we have
|ri(τi)− ri(τi−1)| ≥ 1

4ε′ for all sufficiently large even i, which contradicts the local
equicontinuity, and hence compactness of W r.

Defining πε ∈ Hcros(W
l ∪ W r) by hopping between the paths l1, l3, . . . and

r2, r4, . . . at the times τ1, τ2, . . . , we have found the desired approximation of π

by hopping paths. �

Since it is very similar to the proof of Lemma 4.7, we include here the proof of
Theorem 1.9.

PROOF OF THEOREM 1.9. Let Wwedge be defined by the right-hand side of
(1.21). Since paths in W cannot cross paths in Ŵ , to show that W ⊂ Wwedge, it
suffices that paths in W cannot enter wedges of Ŵ through their bottom points.
This can be proved by mimicking the proofs of Lemmas 4.3 and 4.4.

The inclusion Wwedge ⊂ W can be proved in the same way as the proof of
Lemma 4.7. Since W is compact, it suffices to show that path that does not en-
ter wedges from outside can be approximated by paths in W . We can define a
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“fish-trap” whose left and right boundary are constructed by piecing dual paths
together. In this case, any path in W entering the fish-trap from below must stay
between its left and right boundary, so no hopping is necessary. �

4.3. Characterizations with hopping and wedges.

PROOFS OF THEOREM 1.3, LEMMA 1.6 AND THEOREM 1.10. Consider a
left-right Brownian web and its dual (W l,W r, Ŵ l, Ŵ r), and let Nwedge be de-
fined as in (1.24) and Nhop be defined as in (4.1). By Lemmas 4.5 and 4.7,
Nhop = Nwedge. It follows from Lemma 4.2 that, for every z = (x, t) ∈ R2, we
have lz−(s) ≤ π(s) ≤ rz+(s) for all π ∈ Nhop(z) and s ≥ t , where lz−, rz+ are de-
fined for W l,W r as in Proposition 3.2(e). In particular, for deterministic z, the a.s.
unique paths lz ∈ W l(z) and rz ∈ W r(z) are respectively the left-most and right-
most paths in Nhop(z). Setting N := Nhop = Nwedge, we have found a K(�)-
valued (by Lemma 4.6) random variable that satisfies conditions (i)–(ii) of Theo-
rem 1.3. To see that condition (iii) is also satisfied, note that by Lemma 3.4(b),
Nhop = Hcros(W l(D l) ∪ W r(D r)) for any deterministic countable dense sets
D l,D r ⊂ R2. Since a random variable satisfying the conditions of Theorem 1.3 is
obviously unique in distribution, the proof of Theorem 1.3 is complete.

Since for each deterministic z, the a.s. unique paths lz ∈ W l(z) and rz ∈ W r(z)

are the left-most and right-most paths in N , this also shows that to each Brownian
net, there exists an associated left-right Brownian web, which is obviously unique
by properties (i) and (ii) of Theorem 1.3. This proves Lemma 1.6.

Finally, since N = Nwedge, we have also proved Theorem 1.10. �

5. Convergence. In this section we prove Theorem 1.1. In fact, we prove
something more: we prove the joint convergence under diffusive scaling of the
collections of all left-most and right-most paths (and their dual) in the arrow con-
figuration ℵβ to the left-right Brownian web (and its dual), and of the collection of
all ℵβ -paths to the associated Brownian net. Throughout this section, N denotes
the (standard) Brownian net, defined by the hopping or dual characterization (The-
orem 1.3 or 1.10), which have been shown to be equivalent. We will not use the
mesh characterization of the Brownian net (Theorem 1.7, yet to be proved) in this
section.

In Section 5.1 we prove the convergence of a single pair of left-most and right-
most paths in the arrow configuration ℵβ to a solution of the left-right SDE (1.11).
In Section 5.2 we prove the convergence of all left-most and right-most paths and
their dual to the left-right Brownian web and its dual. Finally, in Section 5.3, we
prove Theorem 1.1.

5.1. Convergence to the left-right SDE. Recall the definition of ℵβ and Uβ

from Section 1.1. Let Ul
β (resp. Ur

β ) denote the set of left-most (resp. right-most)
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paths in Uβ , that is, ℵβ -paths which follow arrows to the left (resp. right) at
branching points. We have the following convergence result for a single pair of
paths in (Ul

βn
,Ur

βn
). Below, CRn[0,∞) denotes the space of continuous functions

from [0,∞) to Rn, equipped with the topology of uniform convergence on com-
pacta.

PROPOSITION 5.1 (Convergence of a pair of left and right paths). Let
βn, εn → 0 with βn/εn → 1. Let x(n), y(n) ∈ Zeven be points such that (εnx

(n),

εny
(n)) → (x, y) for some (x, y) ∈ R2. Let (L

(n)
t )t≥0 denote the path in Ul

βn
start-

ing at (x(n),0), and (R
(n)
t )t≥0 the path in Ur

βn
starting at (y(n),0). Then

L
((

εnL
(n)

t/ε2
n
, εnR

(n)

t/ε2
n

)
t≥0

) �⇒
n→∞L

(
(Lt ,Rt )t≥0

)
,(5.1)

where ⇒ denotes weak convergence of probability laws on CR2[0,∞), and
(Lt ,Rt )t≥0 is the unique weak solution of (1.11) with initial state (L0,R0) =
(x, y), subject to the constraint that Lt ≤ Rt for all t ≥ T := inf{s ≥ 0 :Ls = Rs}.

PROOF. Set Tn := inf{s ≥ 0 : L(n)
s = R

(n)
s }. Since up to time Tn, L(n) and R(n)

are independent random walks with drift −βn and +βn respectively, it follows
from Donsker’s invariance principle and the almost sure continuity of the first in-
tersection time between two independent Brownian motions with drift ±1 that

L
((

εnL
(n)

t/ε2
n∧Tn

, εnR
(n)

t/ε2
n∧Tn

)
t≥0

) �⇒
n→∞L

(
(Lt∧T ,Rt∧T )t≥0

)
.(5.2)

Therefore, it suffices to prove Proposition 5.1 for the case x(n) = y(n). By transla-
tion invariance, we may take x(n) = y(n) = 0.

Note that (εnL
(n)

t/ε2
n
)t≥0 and (εnR

(n)

t/ε2
n
)t≥0 individually converge weakly to a

Brownian motion with drift −1, respectively, +1. This implies tightness for
the family of joint processes {(L(n),R(n))}n∈N. Our strategy is to represent
(L

(n)
t ,R

(n)
t )t≥0 as the solution of a difference equation, which in the limit yields

an SDE with a unique solution. Since the discontinuous coefficients of the SDE
(1.11) are problematic, we prefer to work with (2.2), which behaves better under
limits.

Let (V l
t )t∈N0 , (V r

t )t∈N0 and (V s
t )t∈N0 be independent discrete-time simple

symmetric random walks starting at the origin at time zero. For α = l, r, s,
let (D

(n),α,−
t )t∈N0 be a process such that whenever V α

t jumps one step to the

right, D
(n),α,−
t with probability βn jumps two steps to the left. Likewise, let

(D
(n),α,+
t )t∈N0 be the process that with probability βn jumps two steps to the right

whenever V α
t jumps one step to the left. As a result, V α

t + D
(n),α,−
t is a random

walk with drift −βn, and V α
t + D

(n),α,+
t is a random walk with drift +βn.
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The unscaled process (L
(n)
t ,R

(n)
t ) at integer times can be constructed as the

solution of

L
(n)
t = V l

T
(n)
t

+ D
(n),l,−
T

(n)
t

+ V s
S

(n)
t

+ D
(n),s,−
S

(n)
t

,

R
(n)
t = V r

T
(n)
t

+ D
(n),r,+
T

(n)
t

+ V s
S

(n)
t

+ D
(n),s,+
S

(n)
t

,

(5.3)

T
(n)
t =

t−1∑
s=0

1{L(n)
s <R

(n)
s },

S
(n)
t =

t−1∑
s=0

1{L(n)
s =R

(n)
s }

[compare with (2.11)]. We define L
(n)
t ,R

(n)
t , V α

t ,D
(n),α,±
t , T

(n)
t and S

(n)
t at nonin-

teger times by linear interpolation. Note that dT
(n)
t = 1{L(n)

�t�<R
(n)
�t� } dt . The rescaled

process then satisfies [compare with (2.2)] the following equations:

(i) εnL
(n)

t/ε2
n
= εn

(
V l + D(n),l,−)

T
(n)

t/ε2
n

+ εn

(
V s + D(n),s,−)

S
(n)

t/ε2
n

,

(ii) εnR
(n)

t/ε2
n
= εn

(
V r + D(n),r,−)

T
(n)

t/ε2
n

+ εn

(
V s + D(n),s,−)

S
(n)

t/ε2
n

,

(5.4)
(iii) ε2

n

(
T (n) + S(n))

t/ε2
n
= t,

(iv)
∫ t

0
1{εnR

(n)

s/ε2
n
−εnL

(n)

s/ε2
n
>εn} d

(
ε2
nS

(n)

s/ε2
n

) = 0,

where in the indicator event in (iv), we impose the lower bound of εn instead
of 0 for εnR

(n)

s/ε2
n
− εnL

(n)

s/ε2
n

to compensate the effect of linearly interpolating S(n)

between integer times.
Clearly,

(
εnV

l
t/ε2

n
, εnV

r
t/ε2

n
, εnV

s
t/ε2

n
,−εnD

(n),l,−
t/ε2

n
,

(5.5)
εnD

(n),r,+
t/ε2

n
,−εnD

(n),s,−
t/ε2

n
, εnD

(n),s,+
t/ε2

n

)
t≥0

converge weakly in law on CR7[0,∞) to

(B̃ l
t , B̃

r
t , B̃

s
t , t, t, t, t)t≥0.(5.6)

We have noted that the laws of {(εnL
(n)

t/ε2
n
, εnR

(n)

t/ε2
n
)t≥0}n∈N are tight. Since

t 
→ ε2
nT

(n)

t/ε2
n

increases with slope at most 1, the laws of {(ε2
nT

(n)

t/ε2
n
)t≥0}n∈N

are also tight. The same is true for {(ε2
nS

(n)

t/ε2
n
)t≥0}n∈N. Therefore, for n ∈ N,
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the laws of the 11-tuple, which consists of the 7-tuple in (5.5) joint with
(εnL

(n)

t/ε2
n
, εnR

(n)

t/ε2
n
, ε2

nT
(n)

t/ε2
n
, ε2

nS
(n)

t/ε2
n
)t≥0, are also tight. By going to a subsequence,

we may assume that the 11-tuple converges weakly to some limiting process

(B̃ l
t , B̃

r
t , B̃

s
t , t, t, t, t,Lt ,Rt , Tt , St )t≥0.(5.7)

By Skorohod’s representation theorem (see, e.g., Theorem 6.7 in [4]), we can cou-
ple the 11-tuples for n ∈ N and the limiting process in (5.7), such that the conver-
gence is almost sure in CR11[0,∞).

Assuming this coupling, we claim that (Lt ,Rt , Tt , St )t≥0 solves the equa-
tion (2.2), and is therefore determined uniquely in law by Lemma 2.2. Indeed,
(2.2)(i)–(iii) follow immediately by taking the limit n → ∞ in (5.4)(i)–(iii). We
claim that (2.2)(iv) follows from (5.4)(iv). For each δ > 0, choose a continu-
ous nondecreasing function ρδ : [0,∞) → R, such that ρδ(u) = 0 for u ≤ δ and
ρδ(u) = 1 for u ≥ 2δ. Then, using (5.4)(iv) and taking the limit n → ∞, we find
that ∫ t

0
ρδ(Rs − Ls)dSs = 0(5.8)

for each δ > 0. Letting δ ↓ 0, we arrive at (2.2)(iv). �

5.2. Convergence to the left-right Brownian web. In this section we prove the
convergence, under diffusive scaling, of the collections of all left-most and right-
most paths in the arrow configuration ℵβ (and their dual) to the left-right Brownian
web (and its dual). As a corollary, we also prove formula (1.22).

Recall the scaling map Sε defined in (1.7).

PROPOSITION 5.2 (Convergence of multiple left-right paths). Let βn, εn → 0
with βn/εn → 1. Let z

(n)
1 , . . . , z

(n)
k , z

′(n)
1 , . . . , z

′(n)
k′ ∈ Z2

even be such that Sεn(z
(n)
i ) →

zi and Sεn(z
′(n)
j ) → z′

j for i = 1, . . . , k and j = 1, . . . , k′. Let l
(n)
i denote the path

in Ul
βn

starting from zi , and let r
(n)
j denote the path in Ur

βn
starting from z′

j . Then

on the space �k+k′
,

L
(
Sεn

(
l
(n)
1 , . . . , l

(n)
k , r

(n)
1 , . . . , r

(n)
k′

)) �⇒
n→∞L(l1, . . . , lk, r1, . . . , rk′),(5.9)

where (l1, . . . , lk, r1, . . . , rk′) is a collection of left-right coalescing Brownian mo-
tions as defined in Section 2.2, starting from (z1, . . . , zk, z

′
1, . . . , z

′
k′).

PROOF. Recall the inductive construction of (l1, . . . , lk, r1, . . . , rk′) from Sec-
tion 2.2. Note that (l

(n)
1 , . . . , l

(n)
k , r

(n)
1 , . . . , r

(n)
k′ ) can be constructed using the same

inductive approach. Since the inductive construction pieces together independent
evolutions of sets of paths, where each set consists of either a single left-most or
right-most path or a pair of left-right paths, the proposition follows easily from



1188 R. SUN AND J. M. SWART

Proposition 5.1 and the observation that the stopping times used in the inductive
construction are almost surely continuous functionals on �k+k′

with respect to the
law of independent evolutions of paths in different partition elements. �

Let ℵ̂β denote the arrow configuration dual to ℵβ , defined exactly as in (1.17),
and let Ûβ denote the set of all ℵ̂β -paths. Let Ûl

β (resp. Ûr
β ) denote the set of

ℵ̂β -paths dual to Ul
β (resp. Ur

β ), that is, the set of all left-most (resp. right-most)

paths in Ûβ after rotating the graph of Ûβ by 180◦. Let �̂ := {−π :π ∈ �}, the
image space of � under the rotation map −, while preserving the metric. We have
the following result:

THEOREM 5.3 (Convergence to the left-right Brownian web and its dual).
Let βn, εn → 0 with βn/εn → 1. Then Sεn(U

l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

) are K(�)2 ×
K(�̂)2-valued random variables, and

L(Sεn(U
l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

)) �⇒
n→∞(W l,W r, Ŵ l, Ŵ r),(5.10)

where (W l,W r, Ŵ l, Ŵ r) is the left-right Brownian web and its dual.

PROOF. It follows from Theorem 6.1 of [8], Theorem 1.2 and Proposition 3.2
that

L(Sεn(U
l
βn

, Ûl
βn

)) �⇒
n→∞ L(W l, Ŵ l) and

(5.11)
L(Sεn(U

r
βn

, Ûr
βn

)) �⇒
n→∞ L(W r, Ŵ r).

Therefore, {Sεn(U
l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

)}n∈N is a tight family. Let (Xl,Xr, X̂l, X̂r)

be any weak limit point. Then (Xl, X̂l) and (Xr, X̂r) are distributed as (W l, Ŵ l)

and (W r, Ŵ r) respectively. Therefore, (Xl,Xr) satisfies conditions (i) and (iii) of
Theorem 1.5. By Proposition 5.2, (Xl,Xr) also satisfies condition (ii) of Theo-
rem 1.5, and therefore, (Xl,Xr) has the same distribution as the standard left-right
Brownian web (W l,W r). Since W l and W r determine their duals Ŵ l and Ŵ r al-
most surely, (Xl,Xr, X̂l, X̂r) has the same distribution as (W l,W r, Ŵ l, Ŵ r). �

PROOF OF FORMULA (1.22). Since the analogue of (1.22) obviously holds in
the discrete setting, (1.22) is a consequence of the convergence in (5.10). �

5.3. Convergence to the Brownian net. In this section we prove Theorem 1.1.
It suffices to prove (1.8) for b = 1 and b = 0. The general case b > 0 follows the
same proof as for b = 1 if we set L(Nb) := L(S1/b(N )), which automatically
gives the scaling relation (1.9). Thus, Theorem 1.1 is implied by the following
stronger result.
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THEOREM 5.4 (Convergence to the associated Brownian net). Let βn, εn →
0 with βn/εn → b ∈ {0,1}. Then Sεn(Uβn,U

l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

) are K(�)3 ×
K(�̂)2-valued random variables. If b = 1, then

L(Sεn(Uβn,U
l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

)) �⇒
n→∞L(N ,W l,W r, Ŵ l, Ŵ r),(5.12)

where N is the (standard) Brownian net and (W l,W r, Ŵ l, Ŵ r) is its associated
left-right Brownian web and its dual. If b = 0, then

L(Sεn(Uβn,U
l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

)) �⇒
n→∞(W ,W ,W , Ŵ , Ŵ),(5.13)

where (W , Ŵ) is the Brownian web and its dual.

PROOF. We start with the case b = 1 and then say how our arguments can be
adapted to cover also the case b = 0.

Recall the modulus of continuity mK(·) of K ∈ K(�) from (4.3). Just as in the
proof of Lemma 4.6, we see that

mSεn(Uβn)(δ) ≤ mSεn(Ul
βn

∪Ur
βn

)(δ),(5.14)

hence, the tightness of {Sεn(Uβn)}n∈N follows from the tightness of Sεn(U
l
βn

) and
Sεn(U

r
βn

) (n ∈ N). Thus, by going to a subsequence, we may assume that the laws

in (5.12) converge to a limit L(N ∗,W l,W r, Ŵ l, Ŵ r), where by Theorem 5.3,
(W l,W r, Ŵ l, Ŵ r) is the left-right Brownian web and its dual. We need to show
that N ∗ is the Brownian net associated with (W l,W r, Ŵ l, Ŵ r). Our strategy will
be to show that Nhop ⊂ N ∗ ⊂ Nwedge, where Nhop and Nwedge are defined as in
Section 4. It then follows from the equivalence of the hopping and dual construc-
tions of the Brownian net (Theorems 1.3 and 1.10) that N ∗ = N .

Let D l,D r ⊂ R2 be deterministic countable dense sets. For each z ∈ D l (resp.
z′ ∈ D r), we fix a sequence zn ∈ Z2

even (resp. z′
n ∈ Z2

even) such that Sεn(zn) → z

(resp. Sεn(z
′
n) → z′), and we let l̂

(n)
z (resp. r̂

(n)
z′ ) denote the path in Sεn(Û

l
βn

) (resp.

Sεn(Û
r
βn

)) starting in Sεn(zn) (resp. Sεn(z
′
n)). Let

τ(π̂1, π̂2) := sup{t < σ̂π̂1 ∧ σ̂π̂2 : π̂1(t) = π̂2(t)}(5.15)

denote the first meeting time of the two dual paths π̂1, π̂2. Since, up to their first
meeting time, l̂

(n)
z and r̂

(n)
z′ are independent random walks, and since random walk

paths joint with their first meeting time converge under diffusive scaling to Brown-
ian motions joint with their first meeting time, we have

L
(
Sεn(Uβn,U

l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

),
(
τ
(
l̂(n)
z , r̂

(n)
z′

))
z∈D l, z′∈D r

)
(5.16)

�⇒
n→∞L

(
N ∗,W l,W r, Ŵ l, Ŵ r, (τ (l̂z, r̂z′))z∈D l, z′∈D r

)
.
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By Skorohod’s representation theorem, we can construct a coupling such that the
convergence in (5.16) is almost sure. Assuming such a coupling, we will show that
Nhop ⊂ N ∗ ⊂ Nwedge.

To show that Nhop ⊂ N ∗, it suffices to show that Hcros(W
l(D l) ∪ W r(D r)) is

contained in N ∗. Any π ∈ Hcros(W
l(D l) ∪ W r(D r)) is constructed by hopping

at crossing times between left-most and right-most skeletal paths π1, . . . , πm as in
(1.12). By the a.s. convergence of Sεn(U

l
βn

,Ur
βn

) to (W l,W r), there exist π
(n)
i ∈

Sεn(U
l
βn

∪ Ur
βn

) such that π
(n)
i → πi (i = 1, . . . ,m). By the structure of crossing

times [Proposition 3.6(a)], the crossing time between π
(n)
i and π

(n)
i+1 converges to

the crossing time between πi and πi+1 for all i = 1, . . . ,m − 1. Therefore, the
path π(n) that is constructed by hopping at crossing times between π

(n)
1 , . . . , π

(n)
m

converges to π . Since π(n) ∈ Sεn(Uβn) by the nearest-neighbor nature of ℵβn -
paths, this proves that Hcros(W

l(D l) ∪ W r(D r)) ⊂ N ∗.
To show that N ∗ ⊂ Nwedge, we need to show that a.s. no path π ∈ N ∗ enters

a wedge W(r̂, l̂) from outside. If π ∈ N ∗ enters a wedge W(r̂, l̂) from outside,
then by Lemma 3.4(b), π must enter some skeletal wedge W(r̂z′, l̂z), with z ∈ D l

and z′ ∈ D r, from outside. By the a.s. convergence of Sεn(Uβn) to N ∗, there exist

π(n) ∈ Sεn(Uβn) such that π(n) → π . By the a.s. convergence of r̂
(n)
z′ and l̂

(n)
z to

r̂z′ and l̂z and the convergence of their first meeting time, for n large enough, π(n)

must enter a discrete wedge from outside, which is impossible.
This concludes the proof for b = 1. The proof for b = 0 is similar. Note that if in

the left-right SDE (1.11), one removes the drift terms ±dt , then solutions (L,R)

are just coalescing Brownian motions. Using this fact, it is not hard to generalize
Propositions 5.1 and 5.2 in the sense that if βn/εn → 0, then left-most and right-
most paths converge to coalescing Brownian motions (with zero drift). Modifying
Theorem 5.3 appropriately, we find that

L
(
Sεn(U

l
βn

,Ur
βn

, Ûl
βn

, Ûr
βn

)
) �⇒
n→∞(W ,W , Ŵ , Ŵ).(5.17)

By going to a subsequence if necessary, we may assume that Sεn(Uβn) converges
to some limit W∗. The inclusion W ⊂ W∗ is now trivial, while the other inclusion
can be obtained by showing that no path in W∗ enters a wedge of Ŵ from outside,
applying Theorem 1.9. �

6. Density calculations. In this section we carry out two density calculations
for the Brownian net N , based on the hopping and dual characterizations (Theo-
rem 1.3 and Theorem 1.10), which have been shown in Section 4 to be equivalent.
In Section 6.1 we calculate the density of the set of points on R × {t} that are on
the graph of some path in N starting at time 0, that is, we prove Proposition 1.12.
In Section 6.2 we estimate the density of the set of times that are the first meeting
times between l ∈ W l(0,0) and some path in Nhop starting to the left of 0 at time
0. Our calculations show that both sets are a.s. locally finite. The second density
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calculation gives information on the configuration of meshes on the left of a gen-
eral left-most path l, which will be used in Section 7 to prove that paths in Nmesh
cannot enter the area to the left of l. From this, we then readily obtain Theorem 1.7,
as well as Propositions 1.4, 1.8 and 1.13.

6.1. The density of the branching-coalescing point set. In this section we
prove Proposition 1.12. Let N be the Brownian net, defined by the hopping or
dual characterization (Theorem 1.3 and Theorem 1.10). Set

ξt := {π(t) :π ∈ N , σπ = 0} (t > 0).(6.1)

Note that ξt = ξ
R×{0}
t , the branching-coalescing point set (defined in Section 1.9)

started at time zero from R. The exact computation of the density of ξt is based on
the following two lemmas.

LEMMA 6.1 (Avoidance of intervals). Almost surely, for each s, t, a, b ∈ R

with s < t and a < b, there exists no π ∈ N (R×{s}) with π(t) ∈ (a, b) if and only
if there exist r̂ ∈ Ŵ r(a, t) and l̂ ∈ Ŵ l(b, t) such that sup{u < t : r̂(u) = l̂(u)} > s.

PROOF. If r̂ , l̂ with the described properties exist, then by the dual charac-
terization of the Brownian net (Theorem 1.10), no path in N starting at time
s can pass through (a, b) × {t}. Conversely, if there exists no π ∈ N (R × {s})
such that π(t) ∈ (a, b), then for each ε > 0 and for each r̂ε ∈ Ŵ r(a + ε, t)

and l̂ε ∈ Ŵ l(b − ε, t), we must have τε := sup{u < t : r̂ε(u) = l̂ε(u)} > s. For if
τε ≤ s, then by the steering argument used in the proof of Lemma 4.7 (see Fig-
ure 7), for each δ > 0 we can construct a path in Hcros(W

l ∪ W r) starting at
time s + δ in (r̂ε(s + δ), l̂ε(s + δ)) and passing through [a + ε, b − ε] × t . Let-
ting r̂ , l̂ denote any limits of paths r̂εn, l̂ε′

n
along sequences εn, ε

′
n ↓ 0, we see that

τ := sup{u < t : r̂(u) = l̂(u)} > s. In fact, by Lemma 3.4(a), we must have τ > s.
�

LEMMA 6.2 (Hitting probability of a pair of left-right SDE). Let Ls and Rs

be the solution of (1.11) with initial condition L0 = 0 and R0 = ε for some ε > 0.
Let Tε = inf{s ≥ 0 :Ls = Rs}. Then

1 − �ε(t) := P[Tε < t] = 


(
−√

2t − ε√
2t

)
+ e−2ε


(√
2t − ε√

2t

)
,(6.2)

where 
(x) = ∫ x
−∞ e−y2/2√

2π
dy.

PROOF. Let Yt = Bt + √
2t with Y0 = 0, and let Mt = − inf0≤s≤t Ys . Clearly,

Rt − Lt − ε is equally distributed with
√

2Yt before it reaches level −ε. There-
fore, P[Tε < t] = P[Mt ≥ ε/

√
2]. We compute this last probability by first finding
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the joint density of B ′
t , a standard Brownian motion, and M ′

t = − inf0≤s≤t B
′
s . We

then apply Girsanov’s formula to change the measure from (B ′
s)0≤s≤t to that of

(Ys)0≤s≤t .
For a standard Brownian motion B ′

t , it is easy to check by reflection principle
that, for x ≥ 0 and y ≥ −x,

P[M ′
t ≥ x,B ′

t ≥ y] = P[B ′
t ≥ 2x + y] =

∫ ∞
2x+y

e−z2/2
√

2π
dz.(6.3)

Differentiating with respect to x and y gives the joint density

P[M ′
t ∈ dx,B ′

t ∈ dy]
(6.4)

= 1√
2πt

· 2(2x + y)

t
· e−(2x+y)2/(2t) dx dy x ≥ 0, y ≥ −x.

By Girsanov’s formula, the measure for (Ys)0≤s≤t is absolute continuous with re-

spect to the measure for (B ′
s)0≤s≤t with density e

√
2B ′

t−t . Therefore,

P

[
Mt ≥ ε√

2

]

(6.5)

=
∫ ∞
ε/

√
2

∫ ∞
−x

e
√

2y−t 1√
2πt

· 2(2x + y)

t
· e−(2x+y)2/(2t) dy dx.

Split the integral into two regions: I = ∫ ∞
−ε/

√
2 dy

∫ ∞
ε/

√
2 dx; and II = ∫ −ε/

√
2

−∞ dy ×∫ ∞
−y dx. Then we have

I = e−t
∫ ∞
−ε/

√
2

e
√

2y

√
2πt

dy

∫ ∞
ε/

√
2

2(2x + y)

t
· e−(2x+y)2/(2t) dx

= e−t
∫ ∞
−ε/

√
2

1√
2πt

e
√

2y−(y+√
2ε)2/(2t) dy(6.6)

= e−2ε
∫ ∞
−ε/

√
2

1√
2πt

e−(y+√
2ε−√

2t)2/(2t) dy = e−2ε


(√
2t − ε√

2t

)
.

Similarly,

II = e−t
∫ −ε/

√
2

−∞
1√
2πt

e
√

2y−y2/(2t) dy

(6.7)

=
∫ −ε/

√
2

−∞
1√
2πt

e−(y−√
2t)2/(2t) dy = 


(
−√

2t − ε√
2t

)
.

This concludes the proof. �
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PROOF OF PROPOSITION 1.12. It follows from Lemmas 6.1 and 6.2, and the
continuity of ε 
→ �ε(t) that

P[ξt ∩ (a, b) �= ∅] = P
[
ξt ∩ [a, b] �= ∅

] = �b−a(t) (t > 0)(6.8)

for deterministic a < b. Since the law of ξt is clearly translation invariant in space,
to prove (1.28), without loss of generality, we may assume [a, b] = [0,1]. Let
R = { i

2n :n ∈ N,0 ≤ i ≤ 2n} denote the dyadic rationals. By (6.8), P[x ∈ ξt ] = 0
for each deterministic x ∈ R. Since R is countable, almost surely ξt ∩ R = ∅.
Therefore,

|ξt ∩ [0,1]| = lim
n→∞

∣∣∣∣
{

1 ≤ i ≤ 2n : ξt ∩
[
i − 1

2n
,

i

2n

]
�= ∅

}∣∣∣∣ a.s.(6.9)

By monotone convergence and translation invariance,

E
[|ξt ∩ [0,1]|] = lim

n→∞ 2nP

[
ξt ∩

[
0,

1

2n

]
�= ∅

]
= ∂

∂ε
�ε(t)

∣∣
ε=0,(6.10)

which yields equation (1.28). �

6.2. The density on the left of a left-most path. Let N be the Brownian net,
defined by the hopping or dual characterization (Theorem 1.3 and Theorem 1.10),
and let (W l,W r, Ŵ l, Ŵ r) be its associated left-right Brownian web and its dual.
For each l ∈ W l, let

C(l) := {t > σl :∃π ∈ N s.t. σπ = σl,
(6.11)

π(t) = l(t),π(s) < l(s) ∀s ∈ [σl, t)}
be the set of times when some path in N , started at the same time as l and to the left
of l, first meets l. We will prove that, almost surely, C(l) is a locally finite subset
of (σl,∞) for each l ∈ W l. By Lemma 3.4(b), it suffices to verify this property for
l ∈ W l with deterministic starting points, in particular, l started at (0,0), which is
implied by the following lemma.

PROPOSITION 6.3 (Density on the left of a left-most path). Let l be the a.s.
unique path in W l starting at the origin. Then, for each 0 < s < t ,

E
[|C(l) ∩ [s, t]|] ≤

∫ t

s
2ψ(u)2 du,(6.12)

where ψ(t) := ∂
∂ε

�ε(t)|ε=0 = e−t√
πt

+ 2
(
√

2t) is the density of the branching-

coalescing point set in (1.28).

PROOF. By a similar argument as in the proof of Proposition 1.12, it suffices
to show that

lim sup
ε→0

1

ε
P

[
C(l) ∩ [t, t + ε] �= ∅

] ≤ 2ψ(t)2.(6.13)
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For t > 0, let r̂[t] be the left-most [viewed with respect to the graph of (W r, Ŵ r)]
path in Ŵ r(l(t), t) and let l̂[t] be the right-most path in Ŵ l(l(t), t) that lies on
the left of l. Note that, by Lemma 3.3(b), for each deterministic t > 0, Ŵ l(l(t), t)

almost surely contains two paths, one lying on each side of l. Similar arguments
as in the proof of Lemma 6.1 show that

P
[
C(l) ∩ [t, t + ε] �= ∅

]
(6.14)

= P
[
r̂[t+ε](s) < l̂[t](s) ∀s ∈ (0, t)

]
.

Set

Ls := l(t + ε) − l(t − s), s ∈ [−ε, t],
L̂s := l(t + ε) − l̂[t](t − s), s ∈ [0, t],(6.15)

R̂s := l(t + ε) − r̂[t+ε](t − s), s ∈ [−ε, t].
It has been shown in [15] (see also [9]) that paths in W and Ŵ interact by Skorohod
reflection. Similar arguments show that if a path r̂ ∈ Ŵ r is started on the left of a
path l ∈ W l, then r̂ is Skorohod reflected off l. Therefore, on the time interval
[−ε,0], the process (Ls, R̂s) satisfies L ≤ R̂ and solves the SDE

dLs = dB l
s − ds,

(6.16)
dR̂s = dB r̂

s + ds + d�′
s,

where B l and B r̂ are independent Brownian motions, and �′
s is a reflection term

that increases only when Ls = R̂s . Set σ := inf{s > 0 : L̂s = R̂s} ∧ t . Then on the
time interval [0, σ ], the process (Ls, L̂s, R̂s) satisfies L ≤ L̂ ≤ R̂ and solves the
SDE

dLs = dB l
s − ds,

dL̂s = dB l̂
s − ds + d�s,(6.17)

dR̂s = dB r̂
s + ds,

where B l,B l̂,B r̂ are independent Brownian motions and �s increases only when
Ls = L̂s . By Lemma 6.4 below,

P[L̂s < R̂s ∀s ∈ (0, t)] ≤
∫

P[R̂0 − L0 ∈ dη]�η(t)
2.(6.18)

Set Xs := R̂s−ε − Ls−ε (s ∈ [0, ε]). Then X is a Brownian motion with diffusion
constant 2 and drift 2, Skorohod reflected at 0, which has the generator ∂2

∂η2 + 2 ∂
∂η
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with boundary condition ∂
∂η

f (η)|η=0 = 0. Therefore,

lim
ε→0

ε−1
∫

P[R̂0 − L0 ∈ dη]�η(t)
2

= lim
ε→0

ε−1E[�Xε(t)
2](6.19)

=
(

∂2

∂η2 + 2
∂

∂η

)
(�η(t)

2)
∣∣∣
η=0

= 2ψ(t)2,

where we have used that, for fixed t > 0, η 
→ �η(t)
2 is a bounded twice continu-

ously differentiable function satisfying our boundary condition. �

LEMMA 6.4 (Hitting estimate). Let (L, L̂, R̂) be a solution to the SDE (6.17)
started at (L0, L̂0, R̂0) = (0,0, η). Then

P[L̂s < R̂s ∀s ∈ (0, t)] ≤ �η(t)
2,(6.20)

where �η(t) is defined in (6.2).

PROOF. We introduce new coordinates:

Vt := L̂t − Lt,
(6.21)

Wt := R̂t − Lt .

The process (V ,W) lives in the space {(v,w) ∈ R2 : 0 ≤ v ≤ w} up to the time
τ := inf{t > 0 :Vt = Wt } and solves the SDE

dVt := dB l̂
s − dB l

s + d�s,
(6.22)

dWt := dB r̂
s − dB l

s + 2ds,

where �s is a reflection term, increasing only when Vs = 0. Changing coordinates
once more, we set

Xt := Wt − Vt ,
(6.23)

Yt := Wt + Vt .

Then (X,Y ) takes values in {(x, y) ∈ R2 : 0 ≤ x ≤ y} up to the time τ := inf{t >

0 :Xt = 0} and solves the SDE

dXs := dB r̂
s − dB l̂

s + 2ds − d�s,
(6.24)

dYs := dB r̂
s + dB l̂

s − 2dB l
s + 2ds + d�s,

where �s increases only when Xs = Ys . Our strategy will be to compare (X,Y )

with a process (X′, Y ′) of the form X′ = U1 ∧ U2 and Y ′ = U1 ∨ U2, where
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U1,U2 are independent processes with generator ∂2

∂u2 + 2 ∂
∂u

. We will show that

X hits zero before X′. Note that if Ui
0 = u, then P[Ui

s > 0 ∀s ∈ [0, t]] = �u(t),
which is defined in (6.2). Therefore,

∂

∂t
�u(t) =

(
∂2

∂u2 + 2
∂

∂u

)
�u(t).(6.25)

Moreover, if (X′, Y ′) is started in (x, y), then P[X′
s > 0 ∀s ∈ [0, t]] = P[U1

s >

0 ∀s ∈ [0, t]]P[U2
s > 0 ∀s ∈ [0, t]] = �x(t)�y(t). With this in mind, we set

F(t, x, y) := �x(t)�y(t).(6.26)

Let G be the operator

G := ∂2

∂x2 + 2
∂

∂x
+ 3

∂2

∂y2 + 2
∂

∂y
.(6.27)

By Itô’s formula,

dF(t − s,Xs∧τ , Ys∧τ )

=
(
− ∂

∂t
+ 1{s<τ }G

)
F(t − s,Xs∧τ , Ys∧τ ) ds(6.28)

+ 1{s<τ }
(

∂

∂y
− ∂

∂x

)
F(t − s,Xs∧τ , Ys∧τ ) d�s

plus martingale terms. It follows from the definition of �u(t) that ∂
∂t

�u(t) ≤ 0 and
∂
∂u

�u(t) ≥ 0, and therefore, by (6.25), ∂2

∂u2 �u(t) ≤ 0. As a result, using (6.25) and

(6.26), we see that ( ∂
∂y

− ∂
∂x

)F (t, x, y)|x=y = 0 and

(
− ∂

∂t
+ G

)
F(t, x, y) = 2

∂2

∂y2 (�x(t)�y(t)) ≤ 0.(6.29)

Inserting this into (6.28), we find that (F (t − s,Xs∧τ , Ys∧τ ))s∈[0,t∧τ ] is a local
supermartingale, which implies that

P[τ > t] = E[F(t − t ∧ τ,Xt∧τ , Yt∧τ )] ≤ F(t,X0, Y0) = �η(t)
2.(6.30) �

As a corollary to Proposition 6.3, we obtain the following lemma, which de-
scribes the configuration of meshes on the left of a left-most path. (See Figure 8.)

LEMMA 6.5 (Meshes on the left of a left-most path). Almost surely, the set
C(l) in (6.11) is a locally finite subset of (σl,∞) for each l ∈ W l. For each con-
secutive pair of times t, u ∈ C(l) [i.e., t < u and C(l) ∩ (t, u) = ∅], there exists a
mesh M(r ′, l′) with bottom time s ∈ (σl, t) and top point (l(u), u), such that l′ < l

on [s, t) and l′ = l on [t, u]. If C(l) has a minimal element t , then there exists a
mesh M(r ′, l) with right boundary l, bottom point (l(σl), σl) and top point (l(t), t).
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FIG. 8. Meshes stack up on the left of a left-most path l ∈ W l.

PROOF. For any path π and ε > 0, define a trunctated path by π 〈ε〉 :=
{(π(t), t) : t ∈ [σπ + ε,∞]}. Let l(0,0) be the a.s. unique left-most path starting

in the origin. The proof of Proposition 6.3 applies to l
〈ε〉
(0,0) as well; in particular,

C(l
〈ε〉
(0,0)) has the same density as C(l(0,0)) for each ε > 0. By Lemma 3.4(b), if

follows that a.s., C(l〈ε〉) is a locally finite subset of (σl + ε,∞) for each l ∈ W l

and ε > 0. Since C(l〈ε〉) ∩ (σl + δ,∞) decreases to C(l) ∩ (σl + δ,∞) as ε ↓ 0,
for each fixed δ > 0, it follows that a.s., C(l) is a locally finite subset of (σl,∞)

for each l ∈ W l.
For any l ∈ W l (see Figure 8), consider t, u ∈ C(l) ∪ {σl} such that t < u and

C(l) ∩ (t, u) = ∅, that is, either t, u is a consecutive pair of times in C(l), or
t = σl and u is the minimal element of C(l). By an argument similar to the proof of

Lemma 6.1, there exist r̂[u] ∈ Ŵ r(l(u), u) and l̂[t] ∈ Ŵ l(l(t), t) such that r̂[u] ≤ l on
[σl, u], l̂[t] ≤ l on [σl, t], and τt,u := sup{s ≤ t : r̂[u](s) = l̂[t](s)} satisfies τt,u > σl

if τt,u < t . (Note that possibly τt,u = t .)
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Set zt,u := (r̂[u](τt,u), τt,u). Let r[u] denote the left-most path in W r(zt,u). Let
l[t] denote the right-most path in W l(zt,u) if τt,u < t , and let l[t] denote the path
in W l(zt,u) that is the continuation of l if τt,u = t . Set u′ := inf{s > τt,u : r[u](s) =
l(s)} and t ′ := inf{s > τt,u : l[t](s) = l(s)}. By Proposition 3.2(c) and (e), r[u] ≤ r̂[u]
on [τt,u, u], and therefore, by Propositions 3.6(a), (b), u′ ≥ u. Likewise, since l[t] ≥
l̂[t] on [τt,u, t], we have t ′ ≤ t . Now r[u] and l[t] are the left and right boundary of a
mesh M(r[u], l[t]) with bottom time τt,u and top point (l(u′), u′), such that l[t] < l

on (τt,u, t
′) and l[t] = l on [t ′, u′]. Since Nhop ⊂ Nmesh (Lemma 4.4) and both t (if

tσl) and u are times when a path in Nhop starting at time σl first meets l from the
left, it follows that t ′ = t and u′ = u. (If t = σl , then obviously τt,u = σl = t = t ′.)
To complete the proof, we must show that τt,u < t if t > σl . This follows from
Lemma 6.6 below. �

LEMMA 6.6 (Top and bottom points of meshes). Almost surely, no bottom
point of one mesh is the top point of another mesh.

PROOF. Assume that z ∈ R2 is the bottom point of a mesh M(r, l) and the
top point of another mesh M(r ′, l′). By Propositions 3.2(c) and 3.6(d), any r̂ ∈ Ŵ r

starting in M(r, l) must pass through z (and likewise for l̂ ∈ W l). Therefore, l′, r ′
and r̂ are three paths entering z disjointly. This can be ruled out just as in the proof
of Theorem 3.11 in [9], where it is argued that a.s. there is no point z ∈ R2 where
two forward and one backward path in (W , Ŵ) enter z disjointly. �

7. Characterization with meshes. In this section, we prove Theorem 1.7,
as well as Propositions 1.4, 1.8 and 1.13. We fix a left-right Brownian web and
its dual (W l,W r, Ŵ l, Ŵ r) and define Nhop,Nwedge and Nmesh as in Section 4. The
key technical result is the following lemma, which states that Proposition 1.8 holds
for Nmesh.

LEMMA 7.1 (Containment by left-most and right-most paths). Almost surely,
there exist no π ∈ Nmesh and l ∈ W l such that l(s) ≤ π(s) and π(t) < l(t) for
some σπ ∨ σl < s < t . An analogue statement holds for right-most paths.

PROOF. Without loss of generality, we may assume that σl > σπ ; otherwise,
consider a left-most path starting at any time in (σπ , s) that is the continuation of l.
By Lemma 6.5, there exists a locally finite collection of meshes on the left of l,
with bottom times in [σl,∞), that block the way of any path in Nmesh trying to
enter the area to the left of l. (See Figure 8.) �

PROOF OF THEOREM 1.7 AND PROPOSITION 1.8. We start by proving that
Nmesh ⊂ Nwedge. Since, by Lemma 4.3, paths in Nmesh do not enter wedges
through their bottom points, it suffices to show that paths in Nmesh do not cross
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dual left-most and right-most paths in the wrong direction. By Lemma 3.5, it suf-
fices to show that paths in Nmesh do not cross forward left-most and right-most
paths in the wrong direction. This follows from Lemma 7.1.

Since it has already been proved in Lemmas 4.4, 4.5 and 4.7 that Nmesh ⊃
Nhop = Nwedge, it follows that all these sets are a.s. equal. This proves Theo-
rem 1.7. Lemma 7.1 now translates into Proposition 1.8. �

PROOF OF PROPOSITION 1.4. By Theorem 1.7 and Proposition 1.8, the
Brownian net N associated with a left-right Brownian web (W l,W r) consists ex-
actly of those paths in � that do not enter meshes. It is easy to see that this set is
closed under hopping. �

PROOF OF PROPOSITION 1.13. Let (W l,W r) be the left-right Brownian web
associated with N . We have to show that, for each t ∈ [−∞,∞] and π ∈ �t such
that π ⊂ ∪ (N ∩ �t), we have π ∈ N . By Theorem 1.7, each mesh of (W l,W r)

with bottom time in (t,∞) has empty intersection with ∪(N ∩�t), and therefore,
π does not enter any such mesh. Again by Theorem 1.7, it follows that π ∈ N .

�

8. The branching-coalescing point set. In this section we prove Theo-
rem 1.11. We start with two preparatory lemmas.

LEMMA 8.1 (Hopping paths starting from a closed set). Let N be the Brown-
ian net. Let K ⊂ R2 be closed. Let D l,D r ⊂ R2 be deterministic countable dense
sets such that, moreover, D l ∩ K is dense in K . Then

N (K) ⊂ �(K) ∩ Hcros
(
W l(D l) ∪ W r(D r)

)
.(8.1)

PROOF. By the dual characterization of the Brownian net (Theorem 1.10), it
suffices to show that any path π starting at some point z = (x, t) ∈ K that does
not enter wedges from outside can be approximated by paths in Hcros(W

l(D l) ∪
W r(D r)), also starting in K . By the compactness of N , it suffices to show that, for
each t < t1 < · · · < tn, and 0 < ε < t1 − t , there exists a path πε started at some
time in (t − ε, t + ε), such that |πε(ti) − π(ti)| ≤ ε for all i = 1, . . . , n. We use
the steering argument from the proof of Lemma 4.7 (see Figure 7). We construct
a “fish-trap” with left and right boundary r̂ , l̂ as in Figure 7. Set S := sup{s <

tn : r̂(s) = l̂(s)}. For any a, b ∈ R with a < b ≤ σ̂r̂ ∧ σ̂
l̂
, define an open set V(a,b)

by

V(a,b) := {(x, s) ∈ R2 :a < s < b, S < s, r̂(s) < x < l̂(s)}.(8.2)

We need to show that there exists a path πε , started at some time in (t − ε, t + ε),
that stays between r̂ and l̂. This will follow from the same arguments as in the
proof of Lemma 4.7, provided that the set V(t−ε,t+ε) ∩ D l is nonempty. Since
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D l ∩K is dense in K and V(t−ε,t+ε) is open, it suffices to show that V(t−ε,t+ε) ∩K

is nonempty. Assume that this is not the case. Then, by Lemma 3.4(b), we can
find a < b and r̂ ∈ Ŵ r(D r), l̂ ∈ Ŵ r(D l) starting at times σ̂r̂ , σ̂l̂

> b, such that
V(a,b) ∩ K = ∅ but z ∈ ∂V(a,b), where we define

∂V(a,b) := {(x, s) ∈ R2 :a < s < b, S ≤ s, x = r̂(s) or x = l̂(s)}.(8.3)

We claim that this is impossible. More precisely, we claim that if K ⊂ R2 is a
deterministic closed set and r̂ ∈ Ŵ r, l̂ ∈ Ŵ r are paths with deterministic starting
points, then almost surely, there exist no a, b ∈ R, with a < b < σ̂r̂ , σ̂l̂

, such that
V(a,b) ∩ K = ∅ and ∂V(a,b) ∩ K �= ∅. It suffices to prove the statement for deter-
ministic a, b. Set

Y := r̂(b) + l̂(b),

Z := r̂(b) − l̂(b),
(8.4)

R := (
r̂(s) − r̂(b)

)
s∈[a,b],

L := (
l̂(s) − l̂(b)

)
s∈[a,b].

We claim that, for any y ∈ R and continuous functions ωr,ωl : [a, b] → R, the
conditional probability

P
[
V(a,b) ∩ K = ∅ and ∂V(a,b) ∩ K �= ∅

∣∣Y = y, R = ωr, L = ωl
]

(8.5)

is zero. Indeed, for given Y,R and L, there can be at most one value of Z for which
the event V(a,b) ∩K = ∅ and ∂V(a,b) ∩K �= ∅ occurs. Since conditioned on S < b,
which is necessary for ∂V(a,b) �= ∅, the distribution of the random variable Z is
absolute continuous with respect to Lebesgue measure, the conditional probability
in (8.5) is zero. Integrating over the distributions of Y,R and L, we arrive at our
result. �

LEMMA 8.2 (Almost sure continuity). Let N be the Brownian net, and
let Kn,K ∈ K(R2

c ) be deterministic sets satisfying Kn → K . Assume that
(∗,−∞) /∈ K . Then N (Kn) → N (K) a.s.

PROOF. Using the compactness of N , by going to a subsequence if necessary,
we may assume that N (Kn) → A for some compact subset A ⊂ N . Obviously,
all paths in A have starting points in K , so A ⊂ N (K). Write K ′ := K ∩ R2

and K ′′ := K\K ′. Since N (z) is trivial for z ∈ K ′′, it is easy to see that A ⊃
N (K ′′). We are left with the task to show A ⊃ N (K ′). Choose a deterministic
countable dense set D ⊂ R2 such that, moreover, D ∩ K ′ is dense in K ′. For each
z ∈ D ∩ K ′, choose zn ∈ Kn such that zn → z. Then lzn → lz. If lz crosses a path
r ∈ W r, then for n large enough, lzn also crosses r . Therefore, it is not hard to see
that

A ⊃ �(K ′) ∩ Hcros
(
W l(D) ∪ W r(D)

)
.(8.6)

By Lemma 8.1, it follows that A ⊃ N (K ′). �
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REMARK. If (∗,−∞) ∈ K , then by Proposition 1.15(iii), the conclusion of
Lemma 8.2 still holds, provided there exist (xn, tn) ∈ Kn such that tn → −∞ and
lim supn→∞ |xn|/|tn| < 1. Here some of the (xn, tn) may be (∗,−∞), with the
convention that | ∗ |/|∞| := 0. As the proof of Proposition 1.15(iii) shows, this
condition cannot be relaxed very much.

PROOF OF THEOREM 1.11. The continuity of sample paths of (ξt )t≥0 is a
direct consequence of the definition of ξt and the fact that N is a K(�)-valued
random variable. The fact that ξt is a.s. locally finite in R for deterministic t > s

follows from Proposition 1.12.
For t ≥ 0, the transition probability kernel Pt on K(R) associated with ξ is

given by

Pt(K, ·) := P
[
ξ

K×{s}
s+t ∈ ·], K ∈ K(R).(8.7)

Note that the right-hand side of (8.7) does not depend on s ∈ R by the translation
invariance of the Brownian net. By Lemma 8.2, if Kn → K and tn → t , then

Ptn(Kn, ·) = P
[
ξ

Kn×{−tn}
0 ∈ ·] �⇒

n→∞ P
[
ξ

K×{−t}
0 ∈ ·] = Pt(K, ·),(8.8)

proving the Feller property of (Pt )t≥0. We still have to show that (Pt )t≥0 is a
Markov transition probability kernel. This is not completely obvious, but it fol-
lows, provided we show that, for any s < t0 < t1 and compact K ⊂ R,

P
[
ξ

K×{s}
t1

∈ · | (
ξK×{s}
u

)
u∈[s,t0]

] = Pt1−t0

(
ξ

K×{s}
t0

, ·) a.s.(8.9)

Let π |ts := {(π(u),u) :u ∈ [s, t] ∩ [σπ,∞]} denote the restriction of a path π ∈ �

to the time interval [s, t], and for A ⊂ �, write A|ts := {π |ts :π ∈ A}. In view of
the definition of ξt , it suffices to show that

P[N (K × {s})|∞t0 ∈ · | N (K × {s})|t0s ] = P
[
N ′(ξK×{s}

t0
× {t0}) ∈ ·],(8.10)

where N ′ is an independent copy of N . Let (W l,W r) be the left-right Brown-
ian web associated with N . By the properties of left-right coalescing Brownian
motions, (W l,W r)|t0−∞ and (W l,W r)|∞t0 are independent, and therefore, by the

hopping construction, it follows that N |t0−∞ and N |∞t0 are independent. In particu-

lar, ξ
K×{s}
t0

and N (K × {s})|t0s are independent of N (R × {t0}). To show (8.10), it
therefore suffices to show that

N (K × {s})|∞t0 = N
(
ξ

K×{s}
t0

× {t0}) a.s.(8.11)

The inclusion ⊂ is trivial. To prove the converse, we need to show that any path
π ∈ N (ξ

K×{s}
t0

× {t0}) is the continuation of a path in N (K × {s}); this follows
from Lemma 8.3 below.
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To prove (1.27), note that K ∈ K ′(R) if and only if supK < ∞, or sup(K ∩
R) = ∞ and ∞ ∈ K , and likewise at −∞. Thus, by symmetry, it suffices to show
that, almost surely:

(i) sup(ξs) < ∞ implies sup(ξt ) < ∞ ∀t ≥ s,

(ii) sup(ξs ∩ R) = ∞ implies sup(ξt ∩ R) = ∞ ∀t ≥ s,(8.12)

(iii) ∞ ∈ ξs implies ∞ ∈ ξt ∀t ≥ s.

Formula (i) follows from the fact that (sup(ξt ))t≥s is the right-most path in N (ξs ×
{s}), which is a Brownian motion with drift +1. Formula (ii) is easily proved by
considering the right-most paths starting at a sequence of points in ξs ∩ R tending
to (∞, s). Last, formula (iii) follows from the fact that N (∞, s) contains the trivial
path π(t) := ∞ (t ≥ s). �

In the proof of Theorem 1.11 we have used the following lemma, which is of
some interest on its own.

LEMMA 8.3 (Hopping at deterministic times). Let N be the Brownian net
and t ∈ R. Then almost surely, for each π,π ′ ∈ N such that σπ ∨ σπ ′ ≤ t and
π(t) = π ′(t), the path π ′′ defined by

π ′′ := {(π(s), s) : s ∈ [σπ, t]} ∪ {(π ′(s), s) : s ∈ [t,∞]}(8.13)

satisfies π ′′ ∈ N .

PROOF. If σπ = t , there is nothing to prove, so without loss of generality we
may assume that σπ ≤ s for some deterministic s < t . If π ′′ /∈ N , then by the dual
characterization of the Brownian net, π ′′ must enter a wedge from outside, which
can only happen if (π(t), t) lies on a dual path. But this is not possible since π(t)

lies in ξ
R×{s}
t , which is locally finite (by Proposition 1.12) and independent of

(Ŵ l, Ŵ r)|∞t0 , and a.s. no Brownian web path passes through a deterministic point.
�

We end this section with a proposition that will be used in the proof of
Lemma 9.2, and that is of interest in its own right. Note that the statement be-
low implies that, provided that the initial states converge, systems of branching-
coalescing random walks, diffusively rescaled, converge in an appropriate sense to
the branching-coalescing point set.

PROPOSITION 8.4 (Convergence of paths started from subsets). Let βn,

εn → 0 with βn/εn → 1. Let Kn ⊂ Z2
even, K ∈ K(R2

c ) satisfy Sεn(Kn) → K , where
→ denotes convergence in K(R2

c ). Assume (∗,−∞) /∈ K . Then

L(Sεn(Uβn(Kn))) �⇒
n→∞L(N (K)).(8.14)
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PROOF. By going to a subsequence if necessary, we may assume that
L(Sεn(Uβn,Uβn(Kn))) ⇒ L(N ,A) for some compact subset A ⊂ N (K). Write
K ′ := K ∩ R2 and K ′′ := K\K ′. Since N (z) is trivial for z ∈ K ′′, it is easy to
see that A ⊃ N (K ′′). We are left with the task to show A ⊃ N (K ′). Choose a
deterministic countable dense set D ⊂ R2

c such that, moreover, D ∩ K ′ is dense
in K ′. By the same arguments as those used in the proof of Theorem 5.4 to show
that Nhop ⊂ N ∗, we have

�(K ′) ∩ Hcros
(
W l(D) ∪ W r(D)

) ⊂ A.(8.15)

By Lemma 8.1, it follows that N (K ′) ⊂ A. �

9. The backbone. In Sections 9.1 and 9.2 we provePropositions 1.14 and 1.15,
respectively.

9.1. The backbone of branching-coalescing random walks. Let ℵβ be an ar-
row configuration. Recall the definition of ηA

t from (1.2). Let Zeven := 2Z and
Zodd := 2Z + 1. For any s ∈ Z and A ⊂ Zeven or A ⊂ Zodd depending on whether
s is even or odd, setting

ηt := η
A×{s}
t (t ∈ Z, t ≥ s)(9.1)

defines a Markov chain (ηt )t≥s taking values, in turn, in the spaces of subsets of
Zeven and Zodd, started at time s in A. We call η = (ηt )t≥s a system of branching-
coalescing random walks. We call a probability law µ on the space of subsets of
Zeven an invariant law for η if L(η0) = µ implies L(η2) = µ, and a homogeneous
invariant law if µ is translation invariant and L(η0) = µ implies L(η1 + 1) = µ.
Note that we shift η1 by one unit in space to stay on Zeven.

It is easy to see that L(η
(∗,−∞)
0 ) defines a homogeneous invariant law for η.

Our strategy for proving Proposition 1.14 will be as follows. First we prove that
the Bernoulli measure µρ with intensity ρ = 4β

(1+β)2 is a homogeneous invariant
law for η, and that µρ is reversible in a sense that includes information about the
arrow configuration ℵβ . Next, we prove Proposition 1.14(iii). From this, we derive

that there exists only one nontrivial invariant law for η, hence, L(η
(∗,−∞)
0 ) = µρ ,

which proves part (i). Last, part (ii) follows from the reversibility of µρ .
We first need to add additional structure to the branching-coalescing random

walks that also keeps track of the arrows in ℵβ that are used by the walks. To this
aim, if (ηt )t=s,s+1,... is defined as in (9.1) with respect to an arrow configuration
ℵβ , then we define

ηt+1/2 := {{x, x′} :x ∈ ηt ,
(
(x, t), (x′, t + 1)

) ∈ ℵβ

}
(9.2) (

t ∈ [s,∞) ∩ Z
)
.

Note that ηt+1/2 keeps track of which arrows in ℵβ are used by the branching-
coalescing random walks between the times t and t + 1. It is not hard to see that
(ηs+k/2)k∈N0 is a Markov chain.
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LEMMA 9.1 (Product invariant law). The Bernoulli product measure µρ on
Zeven with intensity ρ = 4β

(1+β)2 is a reversible homogeneous invariant law for the
Markov chain (ηs+k/2)k∈N0 defined above, in the sense that, if L(η0) = µρ , then
for all even t ≥ 0,

L(η0, η1/2, . . . , ηt−1/2, ηt ) = L(ηt , ηt−1/2, . . . , η1/2, η0).(9.3)

The same holds for all odd t ≥ 1, provided that the configurations on the right-
hand side of (9.3) are shifted in space by one unit.

PROOF. It suffices to prove the statement for t = 1, that is, we need to prove
that if L(η0) = µρ , then

L(η0, η1/2, η1) = L(η1 + 1, η1/2 + 1, η0 + 1).(9.4)

Indeed, since (ηt/2)t∈N0 is Markov, (η0, . . . , ηs−1/2) and (ηs+1/2, . . . , ηt ) are con-
ditionally independent given ηs for all s ∈ [1, t] ∩ Z. The identity (9.3) for general
even t ≥ 0, and its analogue for odd t ≥ 0, then follow easily from (9.4) by induc-
tion.

Note that η1/2 determines η0 and η1 a.s. Indeed,

η0 = {
x ∈ Zeven :∃x′ ∈ Zodd s.t. {x, x′} ∈ η1/2

}
,

(9.5)
η1 = {

x′ ∈ Zodd :∃x ∈ Zeven s.t. {x, x′} ∈ η1/2
}
.

Therefore, (9.4) follows, provided we show that

L(η1/2) = L(η1/2 + 1).(9.6)

We will prove (9.6) by showing that if L(η0) = µρ with ρ = 4β

(1+β)2 , then L(η1/2)

is a Bernoulli product measure on the set of all nearest neighbor pairs of integers.
Note that, for x ∈ Zeven, the event {x, x ± 1} ∈ η1/2 means that the arrow from
(x,0) to (x ± 1,1) is used by a random walker. Since L(η0) is a product measure,
arrows going out of different x, x′ ∈ Zeven are obviously independent. Thus, it
suffices to show that, for x ∈ Zeven, the events {x, x − 1} ∈ η1/2 and {x, x + 1} ∈
η1/2 are independent. Now, for x ∈ Zeven,

P[{x, x − 1} ∈ η1/2 and {x, x + 1} ∈ η1/2] = ρβ,(9.7)

while

P[{x, x − 1} ∈ η1/2] = P[{x, x + 1} ∈ η1/2] = ρ

(
1 − β

2
+ β

)
.(9.8)

Thus, we obtain the desired independence, provided that ρβ = (ρ
1+β

2 )2, which has

ρ = 4β

(1+β)2 as its unique nonzero solution. �

PROOF OF PROPOSITION 1.14(iii). By going to a subsequence if necessary,
we may assume that Uβ(xn, tn) → A for some A ⊂ Uβ . Since all paths in A start
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at (∗,−∞), A ⊂ Uβ(∗,−∞). To prove the other inclusion, it suffices to show
that, for each π ∈ Uβ(∗,−∞) and t ∈ Zeven, for n sufficiently large, we can find
π ′ ∈ Uβ(xn, tn) such that π ′ = π on [t,∞) ∩ Z. By hopping, it suffices to show
that, for each even N > 0 and t ∈ Zeven, there exists n0 such that, for all n ≥ n0,

[−N,N] ∩ {π(t) :π ∈ Uβ(xn, tn)}
(9.9)

⊃ [−N,N] ∩ {π(t) :π ∈ Uβ(∗,−∞)}.
Let l̂ := l̂(−N−1,t) and r̂ := r̂(N+1,t) be the dual left-most and right-most paths in
ℵ̂β started from (−N − 1, t) and (N + 1, t), respectively. By the strong law of
large numbers, almost surely,

lim
s→−∞

l̂(s)

−s
= β and lim

s→−∞
r̂(s)

−s
= −β.(9.10)

Therefore, by our assumptions on (xn, tn), we have r̂(tn) < xn < l̂(tn) for n suffi-
ciently large. Since forward paths and dual paths cannot cross, it follows that even-
tually l(xn,tn)(t) ≤ −N and N ≤ r(xn,tn)(t). Therefore, any path π ∈ Uβ(∗,−∞)

passing through [−N,N] × {t} must cross either l(xn,tn) or r(xn,tn). Since we can
hop onto π from either l(xn,tn) or r(xn,tn), formula (9.9) follows. �

PROOF OF PROPOSITION 1.14(i) and (ii). It is not hard to see that L(η
(0,−∞)
0 )

is the maximal invariant law of η with respect to the usual stochastic order. Propo-
sition 1.14(iii) implies that

P
[
η

(0,0)
2n ∈ ·] = P

[
η

(0,−2n)
0 ∈ ·] �⇒

n→∞P
[
η

(0,−∞)
0 ∈ ·].(9.11)

Using monotonicity, it is easy to see from (9.11) that L(η
(0,−∞)
0 ) is the limit law

of η2n as n → ∞ for any nonempty initial state η0. In particular, this implies
that L(η

(0,−∞)
0 ) is the unique invariant law of η that is concentrated on nonempty

states, and therefore, by Lemma 9.1, L(η
(0,−∞)
0 ) = µρ .

Part (ii) is now a consequence of the reversibility of µρ as formulated in
Lemma 9.1. �

9.2. The backbone of the branching-coalescing point set. In this section we
prove Proposition 1.15.

PROOF OF PROPOSITION 1.15(iii). This can be proved by the same arguments
as in the proof of Proposition 1.14(iii), except we now need Proposition 1.4 to hop
between paths in the net. �

We will derive parts (i) and (ii) of Proposition 1.15 from their discrete counter-
parts, by means of the following lemma.
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LEMMA 9.2 (Convergence of the backbone). If βn, εn → 0 with βn/εn → 1,
then

L(Sεn(Uβn(∗,−∞))) �⇒
n→∞L(N (∗,−∞)).(9.12)

PROOF. By going to a subsequence if necessary, using Theorem 1.1, we may
assume that

L(Sεn(Uβn,Uβn(∗,−∞))) �⇒
n→∞L(N ,A),(9.13)

where N is the Brownian net and A ⊂ N . Since all paths in A start in (∗,−∞),
obviously A ⊂ N (∗,−∞). To prove the other inclusion, it suffices to show that
(using notation introduced in the proof of Theorem 1.11)

N (∗,−∞)
∣∣∞
t = A

∣∣∞
t ,(9.14)

for all t ∈ R. As a first step, we will show that

{π(t) :π ∈ N (∗,−∞)} = {π(t) :π ∈ A}.(9.15)

The inclusion ⊃ is clear. Taking the limit in Proposition 1.14(i), we see that, for
all t ∈ R, {π(t) :π ∈ A} is a Poisson point set with intensity 2. On the other hand,
taking the limit in Proposition 1.12, we see that {π(t) :π ∈ N (∗,−∞)} is a trans-
lation invariant point set, also with intensity 2. Hence, (9.15) follows.

Since the inclusion ⊃ in (9.14) is clear, it suffices to show that N (∗,−∞)|∞t
and A|∞t are equal in law. Let P be the random set in (9.15). By Lemma 8.3,
N (∗,−∞)|∞t = N (P × {t}). By the independence of N |t−∞ and N |∞t (see the
proof of Theorem 1.11) and what we have just proved, it follows that N (P ×
{t}) is equally distributed with N (P ′ × {t}), where P ′ is a Poisson point set with
intensity 2, independent of N . By Proposition 8.4, the law of A|∞t is the same as
that of N (P ′ × {t}), and we are done. �

PROOF OF PROPOSITION 1.15(i) and (ii). The statements follow by a passage
to the limit in Propositions 1.14(i) and (ii), using Lemma 9.2. �

APPENDIX: DEFINITIONS OF PATH SPACE

In this appendix we compare the definition of the path space � and its topol-
ogy used in the present paper with the definitions used in [7, 8]. Let P be the
space of all functions π : [σπ,∞] → [−∞,∞], with σπ ∈ [−∞,∞], such that
t 
→ �1(π(t), t) is continuous on (−∞,∞). For π1, π2 ∈ P , define d(π1, π2) by
(1.5) and define d ′ in the same way, but with the supremum over all t ≥ σπ1 ∧ σπ2

replaced by an unrestricted supremum over all t ∈ R. Call two elements π1, π2 ∈ P
d-equivalent (resp. d ′-equivalent) if d(π1, π2) = 0 [resp. d ′(π1, π2) = 0], and let �

(resp. �′) denote the spaces of d-equivalence classes (resp. d ′-equivalence classes)
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in P . Then (�,d) is in a natural way isomorphic to the set of paths defined in Sec-
tion 1.2, while (�′, d ′) is the space of paths used in [7, 8]. The difference between
these two spaces is small. Indeed, two paths π1, π2 are d-equivalent if and only if

σπ1 = σπ2 and π1(t) = π2(t) ∀σπ ≤ t < ∞,(A.1)

while they are d ′-equivalent if and only if

σπ1 = σπ2 < ∞ and π1(t) = π2(t) ∀σπ ≤ t < ∞.(A.2)

Thus, the only difference between � and �′ is that, while the former has only one
path with starting time ∞, the latter has a one-parameter family (π(r))r∈[−∞,∞] of
such paths, given by

σπ(r) := ∞, π(r)(∞) := r
(
r ∈ [−∞,∞]).(A.3)

A sequence of paths πn converges in d ′ to the limit π(r) if and only if σπn → ∞
and πn(σπn) → r . Both the spaces (�,d) and (�′, d ′) are complete and separable,
and the former is the continuous image of the latter under a map that identifies the
family of paths (π(r))r∈[−∞,∞] with a single path.

Of course, it is more natural to identify all paths starting at infinity. In fact, it
seems that the authors of [8] used the metric in (1.5) in earlier versions of their
manuscript, but then by accident dropped the restriction that t ≥ σπ1 ∧ σπ2 in the
supremum [C. M. Newman, personal communication].
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