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Chromosomal DNA is characterized by variation between individuals at
the level of entire chromosomes (e.g., aneuploidy in which the chromosome
copy number is altered), segmental changes (including insertions, deletions,
inversions, and translocations), and changes to small genomic regions (in-
cluding single nucleotide polymorphisms). A variety of alterations that occur
in chromosomal DNA, many of which can be detected using high density sin-
gle nucleotide polymorphism (SNP) microarrays, are linked to normal varia-
tion as well as disease and are therefore of particular interest. These include
changes in copy number (deletions and duplications) and genotype (e.g., the
occurrence of regions of homozygosity). Hidden Markov models (HMM) are
particularly useful for detecting such alterations, modeling the spatial depen-
dence between neighboring SNPs. Here, we improve previous approaches
that utilize HMM frameworks for inference in high throughput SNP arrays
by integrating copy number, genotype calls, and the corresponding measures
of uncertainty when available. Using simulated and experimental data, we, in
particular, demonstrate how confidence scores control smoothing in a proba-
bilistic framework. Software for fitting HMMs to SNP array data is available
in the R package VanillaICE.

1. Introduction. Chromosomal DNA is characterized by variation between
individuals at the level of entire chromosomes (e.g., aneuploidy in which the chro-
mosome copy number is altered), segmental changes (including insertions, dele-
tions, inversions, and translocations), and changes to small genomic regions (in-
cluding single nucleotide polymorphisms). A variety of alterations that occur in
chromosomal DNA, many of which can be detected using high density single
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nucleotide polymorphism (SNP) microarrays, are linked to normal variation as
well as disease and are therefore of particular interest [Shaw-Smith et al. (2004),
Aguirre et al. (2004), Aggarwal et al. (2005), Dutt and Beroukhim (2007), Sebat
et al. (2007), Szatmari et al. (2007)]. These include changes in copy number (dele-
tions and duplications) and genotype (e.g., the occurrence of regions of homozy-
gosity).

Copy number variations can arise through somatic and germline events. While
naturally occurring and often (but not always) benign, germline copy number vari-
ations are more abundant than previously thought [Freeman et al. (2006), Redon
et al. (2006), Eichler et al. (2007)]. On the other hand, somatic copy number
changes, such as gene amplifications and deletions, frequently contribute to tu-
morigenesis (or might be the consequence of it). Regions of homozygosity (i.e.,
long stretches of homozygous SNPs) can also occur through somatic and germline
events. A hemizygous deletion of one chromosomal allele results in only one DNA
copy, and therefore, SNPs in that region will appear as homozygous (given current
genotyping technologies that generate only biallelic calls). The definition of loss
of heterozygosity (LOH) refers to such a somatic event: for example, comparing
a tumor and normal sample from the same person, any heterozygous SNPs in the
normal sample appear as homozygous SNPs in the tumor sample, in any region
where an allele was lost. As already noted, regions of homozygosity can also oc-
cur through germline events. While chromosomal DNA is typically inherited from
both parents, under some circumstances an individual inherits two copies of a chro-
mosome from one parent. The inheritance of both homologues of a pair of chromo-
somes from only one parent can be due to autozygosity (homozygosity in which
alleles are identical by descent) or to uniparental disomy [UPD, Robinson (2000),
Engel (2006)]. Autozygosity and UPD do not involve an aneuploidy (change in
chromosomal copy number), and the region of homozygosity may extend over an
entire chromosome or segmentally across a subregion of a chromosome. The con-
dition is termed uniparental isodisomy (iUPD) if the two copies inherited from
one parent are identical, and results in stretches of homozygous SNPs. (If the two
inherited copies are different homologues, the result is uniparental heterodisomy,
hUPD, but does not result in stretches of homozygous SNPs.) In some cases, UPD
is thought to be benign, but can also be associated with disease [Prader—Willi syn-
drome, Angelman syndrome, Beckwith—Wiedemann syndrome, see, e.g., Altug-
Teber et al. (2005)]. UPD can disrupt genomic imprinting, such that imprinted
genes (expressed preferentially from the paternal or maternal alleles) fail to be ex-
pressed. UPD can also cause homozygosity for autosomal recessive traits such as
cystic fibrosis [Zlotogora (2004)].

A variety of technologies have been applied for the assessment of chromoso-
mal abnormalities including conventional karyotyping (e.g., Giemsa staining of
metaphase chromosomes) and fluorescence in situ hybridization (FISH). While the
former only allows for the genome-wide detection of major chromosomal amplifi-
cations and deletions, the latter allows for the verification of suspected microdele-
tions as well as translocations and some duplications. Array comparative genome
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hybridization (aCGH) permits a genome-wide measurement of copy number vari-
ation using bacterial artificial chromosome (BAC) clones deposited on a microar-
ray. This is a high throughput technique, but the resolution is limited to tens or
hundreds of thousands of base pairs and no genotype data are obtained.

SNP microarray technology permits the genome-wide search for chromosomal
abnormalities, providing genotype and copy number estimates for hundreds of
thousands of SNPs in genomic DNA isolated from a biological sample. Statisti-
cal tools for the analysis of such SNP chip data are typically employed to assess
where the chromosomal changes have occurred, and whether or not these changes
are associated with disease. Regions of interest are typically aneuploidies, that is,
regions where copy number changes (deletions and amplifications) have occurred,
or regions with unusually long stretches of homozygous genotypes (either natu-
rally occurring, e.g., through evolutionary pressure on a DNA segment, or through
loss of heterozygosity, LOH).

For the analysis of SNP chip data in general, three different tiers of estima-
tion problems arise. (1) By SNP: how can we use the low-level data (such as
the fluorescence measurements in Affymetrix SNP chips) to optimally estimate
the genotype and DNA copy number for each SNP in the array? (2) By sam-
ple: how can we borrow strength between neighboring SNPs, and infer regions
of LOH and copy number changes in the genome of the subject studied? (3) Be-
tween samples: how can we compare the genotype of many subjects, infer common
regions of abnormality, and, for example, assess differences between affected sub-
jects and normal controls? This manuscript revolves around methods for tier 2,
the assessment of chromosomal abnormalities in one particular sample. However,
information derived from tier 1, in particular, uncertainty estimates of copy num-
ber and genotype estimates, can be critically important and will be incorporated
in the analysis. In particular, for the Affymetrix platform, originally described as
a high-throughput assay for calling genotypes at thousands of SNPs [Kennedy
et al. (2003)], there have been several algorithms proposed for the appropriate ad-
justment and pre-processing of probe-level data, and the estimation of SNP-level
summaries of probe-level data for genotype [DM, Di et al. (2005), RLMM, Rabbee
and Speed (2006), BRLMM, Affymetrix (2006), CRLMM, Carvalho, Speed and
Irizarry (2007), SNiPer-HD, Hua et al. (2007)] and copy number (CNAG, Nannya
et al. (2005), CARAT, Huang et al. (2006), PLASQ, Laframboise, Harrington and
Weir (2007), CN-RLMM, Wang et al. (2007)]. Notably, Laframboise, Harrington
and Weir (2007) and Wang et al. (2007) provide allele-specific estimates of copy
number.

We caution that, as with gene expression technologies, pre-processing of probe-
level data is an important consideration. For instance, several recent papers have
described fragment-length and sequence effects that may be introduced by the
polymerase chain reaction (PCR) used to amplify the DNA [Nannya et al. (2005),
Carvalho, Speed and Irizarry (2007)]. We assume that SNP-level summaries for
each interrogated SNP have been adjusted for probe-specific biases to the extent
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possible. Statistical models such as CRLMM that use Hapmap data for training
have been shown to provide better genotype calls when the centers of the bivariate
scatterplots for the A and B allele intensities are less well defined [Carvalho, Speed
and Irizarry (2007)]. Genotype calls for most genotyping algorithms are concor-
dant for over 99.9% of the measured SNPs in the Affymetrix 100k and 500k chips
when performance is compared on apparently normal individuals represented in
the HapMap study.

Statistical methods that provide an indication of the uncertainty of the genotype
call [e.g., based on the single to noise ratio (SNR) and log likelihood ratio (LLR)
defined by CRLMM] can be particularly useful for statistical algorithms devised
to infer chromosomal abnormalities. Specifically, statistical models that borrow
strength from neighboring SNPs to infer loss or retention of heterozygosity should
incorporate the uncertainty of the genotype call estimate, giving less weight to
genotype calls that are measured with high uncertainty and more weight to well-
estimated genotypes. To our knowledge, this manuscript is the first one to address
this issue. Figure 1 illustrates why the uncertainty in genotype calls can differ
substantially. Similarly, probe-specific biases for copy number estimates have been
described before, see, for example, Wang et al. (2007).

Before high-throughput SNP chips were widely available, array comparative
genomic hybridization (aCGH) was the most commonly used method to assess
DNA copy numbers, and assess regions in the genome where deletions or ampli-
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F1G. 1. HapMap genotype calls (the gold standard) for a bad SNP (left) and a good SNP (right) for
269 samples measured on Affymetrix 100k SNP chips. The HapMap consensus genotype call (taken
to be the gold standard) is indicated by color: AA (medium grey), AB (white), and BB (dark grey).
The separation between genotype clusters is SNP-specific. This figure motivates an approach that
incorporates uncertainty estimates to control smoothing.
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fications occurred in a particular sample. Thus, many statisticians have proposed
approaches for aCGH based copy number estimation, and some of these proposed
methods are also relevant for SNP chip based copy number analysis. Approaches
for aCGH data include hidden Markov models [Fridlyand et al. (2004), Guha, Li
and Neuberg (2006)], segmentation algorithms [Olshen et al. (2004), Picard et al.
(2005), Venkatraman and Olshen (2007)], wavelets [Hsu et al. (2005)], smooth-
ing [Hupe et al. (2004), Eilers and de Menezes (2005)] regression [Houseman,
Coull and Betensky (2006), Huang et al. (2005)], clustering [Wang et al. (2005)],
and resampling [Lai and Zhao (2005)]. The manuscript by Lai et al. (2005) and
Willenbrock and Fridlyand (2005) contain reviews and comparisons of the per-
formances of several of these proposed methods. In addition, many useful exten-
sions or alternative approaches for the above listed methods are being proposed.
Some recent publications have confirmed that naturally occurring DNA copy num-
ber variations are more abundant than previously thought [Freeman et al. (2006),
Redon et al. (2006)], which can produce outliers in the aCGH data. Integrating
these known copy number variations as permissible outliers into a hidden Markov
model to assess where abnormal copy number alterations have occurred has been
proposed by Shah et al. (2006).

For the statistical analysis, SNP chip data differ from array CGH data in two
important ways: (a) SNP chips also provide information for the genotype, that is,
give homozygous/heterozygous SNP calls, and (b) provide a much denser cov-
erage, currently generating genotype information and copy number estimates at
locations in excess of 500,000 SNPs. The correlation structure between those es-
timates has to be an essential part of any statistical modeling approach. The most
promising methods currently available are based on hidden Markov models. In
particular, to infer LOH regions and to estimate copy numbers changes, the dChip
software and methods are among the most widely used in the scientific literature
for the analysis of SNP chip data. The dChip methods are based on separate hidden
Markov Models for genotype analysis [Lin et al. (2004), Beroukhim et al. (2006)]
and copy number [Zhao et al. (2004)]. The original dChipSNP HMM [Lin et al.
(2004)] was devised to assess loss of heterozygosity regions (a region with an al-
lelic loss, where heterozygote SNPs in a normal sample appear as homozygote
SNPs in a tumor sample). This required paired tumor and normal samples from
the same subject. As these are often not available, an extension of this model was
proposed by Beroukhim et al. (2006) to allow for LOH assessment without paired
samples (e.g., tumor only). Note that such an approach using unpaired data would
also be required in settings that do not involve abnormal tissue, for example, when
subjects with mental retardation and apparently normal controls are investigated
to assess possible differences in the karyotypes. The dChipSNP hidden Markov
Model for copy number assessment [Zhao et al. (2004)] is somewhat similar in
nature to the one used for LOH analysis; see Zhao et al. (2004).

Copy number estimates and genotype calls, however, can provide complemen-
tary information. For example, without copy number information, genotype calls
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alone would not allow for a distinction of LOH due to deletion or uniparental
isodisomy (iUPD), which occurs when a subject inherits the same copy of a chro-
mosome (or parts thereof) twice from one parent. While this has been recognized
and concurrent analyses have been reported [see, e.g., Zhou et al. (2004, 2005)
and Ninomiya et al. (2006)], these analyses were carried out separately for geno-
type calls and copy number estimates, and the results visually compared. Not until
very recently has the need for an integrated analysis of copy number and genotype
been addressed for the first time. Colella et al. (2007) propose a Bayesian hidden
Markov model approach (QuantiSNP), using both genotype and copy number esti-
mates to infer underlying states (deletions, amplifications, copy neutral regions of
homozygosity, etc.) of interest. We caution though that data derived from cancer
samples might create substantial problems for HMM based methods like Quan-
tiSNP and our approach: DNA copy numbers larger than three are quite possible
in such settings, and thus, the number of possible states expands dramatically.
Further, noninteger copy numbers do make sense in tumors due to the mix of
normal and abnormal cells in the sample [i.e., mosaicism; see Ting et al. (2006)
for an example]. In these settings, copy number based segmentation approaches
might be more promising [Olshen et al. (2004), Picard et al. (2005), Venkatraman
and Olshen (2007)], in particular, as the definition of a “genotype” is unclear. In
this manuscript, we propose a hidden Markov model for the integrated analysis
of copy number and genotype estimates, most applicable for abnormalities as a
consequence of germline events. We also develop the methodology to integrate
genotype and copy number estimate uncertainty measures, and illustrate how inte-
grating such confidence scores of the SNP-level summaries in the HMM can im-
prove inference for the underlying hidden states using simulated and experimental
data. These ideas are implemented in the R package VanillalCE.

2. Methods. In this section we describe three HMMs, dependent on whether
genotype estimates (abbreviated GT ), copy number estimates (abbreviated CN ), or
both GT and CN are available as defined by three classes of objects for SNP array
data [Scharpf et al. (2007)].

2.1. Genotype calls. Most algorithms that provide SNP-level summaries of
genotype assume a copy number of two, and report the genotype estimates as such.
We therefore assume throughout this this paper that the GT are of the generic form AA

or BB and AB corresponding to HOM and HET, respectively. The vanilla HMM
with hidden states retention (©) and loss (O) of heterozygosity require specifica-
tion of the initial state probability distribution, the emission probabilities (denoted
by B below), and the transition probabilities (denoted by t below) between the true
states. Commonly employed in the literature for the transition probability is the
“instability-selection” model for LOH analysis [Newton et al. (1998), Beroukhim
et al. (2006)] that describes the dependencies between the underlying states of ad-
jacent SNPs as a function of distance. For any two adjacent SNPs, 6 is defined
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as the probability that the state of the first marker is not informative (denoted
by I¢) for the state of the second marker. As the distance between SNPs affects
this probability, it is modeled as 8(d) = 1 — e~2¢, where d is a genetic or physical
distance [e.g., 100 Mb units; see Beroukhim et al. (2006)] between adjacent SNPs.
We assume that with probability 1 — 6(d), SNP(;) is informative (denoted by I)
for SNP(; 1) and that no change in state occurs between the adjacent SNPs. For
example, this leads to

10/0(d) = P(Oi 4110, d)
= P(Oi41,110;,d) + P(Oj41, I°10;, d)
2.1 = P(Oj4+1l1,0;,d) x P(I10;,d)
+ P(O;1|1¢,0;,d) x P(I°|O;,d)
—1—6(d) + P(O) x 0(d),

as the probability that the state of SNP(; ;1) is O, given that the state of SNP;)
with distance d was O. Also,

(22) te/0(d) = P(0i41]10;,d) =1— P(Oi41/0;,d) =60(d) x P(0).

P(©) and P(O) refer to the initial probabilities for © and O, respectively.
These initial probabilities can be set as fixed constants using knowledge from pre-
vious experiments, or alternatively, learned via the EM algorithm [Dempster, Laird
and Rubin (1977)].

Emission probabilities for states O and © are estimated as

(2.3)  Bo(GT) ~ Binomial(p =0.99) and Bo(GT) ~ Binomial(p = 0.7),

where p is the probability of a homozygous genotype call. We use the above prob-
abilities as defaults to reflect values typically seen in experimental data. In a re-
gion of retention ©, about 70% of SNPs on average are homozygous, while in a
region of loss O all SNPs are homozygous, but genotyping errors do occur. Al-
ternatively, as these probabilities are affected by the quality of the assay, they can
also be learned via the EM algorithm. In practice, we find that our approaches are
rather insensitive to changes in these parameters. It is certainly also possible to use
SNP-specific homozygosity rates here if they are known from a reference popula-
tion. Efficient computation of the probability of the observed sequence given the
model is carried out using the forward algorithm as described in Rabiner (1989).
The most probable state sequence given the model is calculated via the Viterbi
algorithm [Viterbi (1967), Rabiner (1989)].

Integrating confidence estimates (ICE). When confidence estimates are avail-
able, the observed data at a SNP is the genotype call (GT) and the uncertainty
measure Sgy. The joint distribution of GT and Sy depends on the underlying
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state. For example, if the state for a particular SNP is O, the emission probability
is

(2.4) BolGT, Sgz} = fIGT | O} x f{Sgt | GT, O}.

Note that the first of the two terms on the right-hand side of equation (2.4) is
simply the emission probability when estimates of uncertainty are not available.
The second term can be understood as a weight for the former term that depends
on the confidence with which the call is made. The second term can be approx-
imated using a density estimate of the Sgt where the gold standard is available.
For example, using CRLMM on the 269 HapMap samples, the distributions of the
respective uncertainty measures for all four possible combinations of called and
true genotypes measured on the Affymetrix 100k SNP chips are known. We use
kernel based density estimates to obtain the distributions of the confidence scores,
given the true and called genotype (separately for the Xba and Hind 50k chips):
1 Sioy | HOM, HOM}, £{S;5x, | HOM, HET},

2.5) HoM

f{SuEr | HET, HOM}, f{Sypr | HET, HET}.

The first term in (2.5), for example, denotes the density of the scores when the

genotype is correctly called homozygous (Pm) and the true genotype is homozy-
gous (HOM). If the underlying state is O, then the true genotype is always HOM
and we assume that

FSaom | HOM, O} = F{Sgom | HOM, HOM} and
2.6) - o
f{Suer | HET, O} = f{Sygr | HET, HOM}.

If the underlying state is ©, then the true genotype can be HET or HOM. We
therefore estimate the emission probabilities for state © as

Bo{GT. Sg7}
= f{GT | ©} f{Sgr | GT, ©)
= f{GT| ©}(f{Sgs, HOM | GT, ©} + f{Sg7, HET | GT, ©})
(2.7) = f{GT | ©}(f{Sgs | HOM, GT, ©} f{HOM | GT, ©}
+ f{Sgr | HET, GT, ©} f {HET | GT, ©})
= f{GT | ©}(f{Sgr | HOM, GT} f {(HOM | GT, ©}
+ f{Sgr | HET, GT} f {HET | GT, ©}).

The unknown terms in equation (2.7), f{HOM | GT, ©} and f{HET | GT, O},
are also estimated from the HapMap samples.
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2.2. Copy number. The hidden states for autosomal copy numbers are hem-
izygous deletion (), two copies (— ), and more than two copies (). A typical,
and from practical experience, quite reasonable assumption when only copy num-
ber is considered (applied to aCGH and SNP chip data) is that the logarithm of the
copy number estimate, after normalization, is roughly normally distributed around
the true log copy number [see, e.g., Zhao et al. (2004)], although slightly heavier
tails may also be observed in practice. More important however is the fact that
the variability is not necessarily constant across SNPs, which we will address in
the ICE HMM. If the variance was assumed to be constant (as done in the vanilla
HMM), this parameter can be learned via the EM algorithm [Dempster, Laird and
Rubin (1977)], or estimated in a robust manner, for example, using quantiles from
the observed data. In the examples presented here, we obtained a robust estimate
for the standard deviation of copy number estimates using the 16th and 84th per-
centiles of the log, transformed CN (corresponding to plus minus one standard
deviation from the median). For a state 4, the mean s and variance a§ of the
Gaussians used to describe the emission probabilities can be fixed at starting val-
ues, or updated by EM. In the vanilla HMM we assume a constant o> and estimate
the emission probabilities for state \, for instance (on the log, scale, not divided
by 2), as

(2.8) A(CN) = f(CN\) ~ N (s =0, var =5?).

The transition probability for the copy number HMM is the same as the one de-
scribed above.

Integrating confidence estimates (ICE). The emission probabilities for the HMM
retains the same location parameters for the Gaussian, but with SNP-specific stan-
dard errors for the CN. For a given SNP, the emission probability for copy number
two (—), for example, is

(2.9) B {CN|Scx) ~ N(1, (0 x Sex)?)-
The scalar o can be estimated from the sample at hand, or set equal to one if Sy

measures the actual variability of the copy number estimate around the true copy
number.

2.3. Copy number and genotype. For the joint analysis of copy number and
genotype, we extend the transition probabilities in equations (2.1) and (2.2) to
the hidden states normal (@), amplification (@), LOH (©), and deletion (O). For
the emission probabilities, we assume conditional independence between the copy
number estimates and the genotype calls:

(2.10) f(CN, GT|8) = f(CN|8) x f(GT|%).
This equation can be further simplified, as the copy number distribution only de-

pends on the true copy number, and the genotype distribution only depends on the
true underlying state being © or O. For example, for the deletion state we have

2.11) f{CN,GT| O} = f{CN| O} x f{GT| S} = f{CN|\} x f{GT|O}.
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The terms in equation (2.11) can be estimated as described above for genotype and
copy number. Emission probabilities for the other states can be obtained similarly.

2.4. Simulation. The simulated data are available in the Bioconductor pack-
age VanillalCE. The simulation comprises one subject’s genotype, copy number,
and confidences scores for 9165 SNPs on chromosome 1. A description of the 5
features simulated in chromosome 1, referred to by regions A-E, and the underly-
ing hidden states in these regions follows.

Genotype calls. 'With the exception of Regions A, B and C in Figure 2, we simu-
lated 9165 genotypes (the approximate number of SNPs in the two 50k SNP chips)
from a Bernoulli distribution with probability 0.7 of HOM. Unless otherwise in-
dicated, confidence scores for GT were obtained by random draws of confidence
scores in the Hapmap data when the CRLMM GT agreed with the gold-standard as
defined by consensus of the HapMap genotyping centers. The reference distribu-
tions were made separately for the Affymetrix 50k Xba and Hind chips, and hence,
the confidence score sampled for each SNP were made respective to the chip.

Copy number. The Affymetrix CNAT tool (version 3.0) was used to obtain CN
for the 9165 SNPs from a presumably normal individual in the HapMap dataset
(sample NA06993). Deletions and amplifications were simulated from Gaussian
distributions with location parameters log,(1) and log,(3), respectively. For the
scale parameter, we used a robust estimate of the log, transformed copy number
standard deviation, denoted by €. To illustrate how a confidence score such as a
standard error of the copy number estimate could be useful, we simulated standard
errors from a shifted Gamma: I'(1, 2) 4+ 0.3, where 1 is the shape parameter and 2
is the rate parameter. To ascertain the effect of qualitatively high confidence scores
on the ICE HMM, we scaled € by 5 1 . Similarly, to simulate less precise CN, we
scaled € by 2.
Regions A-E were simulated as follows:

e Region A contains 200 SNPs spanning a physical distance of approximately
5 Mb. Two chromosomal segments of 99 homozygous genotypes are separated
by a chromosomal segment of 14 kb containing two heterozygous SNPs. Using
a 2-state hidden Markov model and using only the simulated genotypes as the
observed data, the true underlying states (number of SNPs) are O (99), © (2),
and O (99) for the 3 segments, respectively. We augment the genotype calls with
copy number estimates obtained directly from the CNAT analysis of a normal
Hapmap subject’s chromosome 1. Using the 3-state HMM for copy number, the
true underlying state is — (200). Modeled jointly, the true underlying state is ©
(99), @ (2) and © (99).

e Region B contains 100 SNPs spanning a physical distance of approximately
2 Mb. Two chromosomal segments each containing 49 SNPs are both in regions
of a hemizygous deletion. We assigned a homozygous genotype call to all 98



HMMS FOR THE ASSESSMENT OF CHROMOSOMAL ALTERATIONS 697

O Loss O Retention
A D B C E
Het — W VEEELMRLY | RS SR R AR Ry AR R e
Hom -
| | Van
| | ICE
Het — ® g o° °
Hom -
| | Van
| | IcE
T T T T T T
50 51 52 53 54 55

FI1G. 2. A simulated chromosome with 9165 SNPs. Top: The simulated GT with uniform noise
added to reduce overplotting (vertical axis) plotted against physical position (horizontal axis). Bot-
tom: A magnification of region A. Two SNPs in region A with high simulated confidence scores are
indicated by the square plotting symbol. Regions A-E are described in more detail in Section 2.4.
In truth, there are 4 different segments in state loss (O, indicated in light grey above). The predicted
hidden states from the vanilla (Van) and ICE HMMs are denoted by color in the two bars beneath the
data points. The ICE HMM detects each of the 4 O segments, whereas the vanilla HMM smoothes
over a segment in A containing two heterozygous SNPs at position 52.8 Mb. Utilizing confidence
scores for the genotype predictions, the ICE HMM may provide more precise locations for O break-
points.

SNPs in the two hemizygous deletions. The two hemizygous deletions are sep-
arated by a chromosomal segment of 360 basepairs with copy number two. To
simulate an incorrect genotype call (the true genotype is homozygous for the
2 SNPs on the diploid segment), confidence scores for the two heterozygous
SNPs are drawn from the distribution of confidence scores when the CRLMM
genotype call of HET was incorrect. Copy number estimates and corresponding
confidence scores (standard errors) for the hemizygous deletion were simulated
as described above, with the exception that high confidence scores were as-
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signed to the two SNPs in the chromosomal segment with normal copy number.
The true underlying state for the genotypes in Region B is O (100). The true
state for the copy number in region B is N\ (49), — (2), and \{ (49). Modeled
jointly, the true states are © (49), @ (2) and © (49).

e Region C is a segment containing 100 homozygous SNPs spanning < 2 Mb in
a hemizygous deletion. The true underlying states are O (100) in the genotype
HMM, @ (100) in the copy number HMM, and © (100) in the joint HMM.

e Region D contains two segments with copy number 3 (< 1 Mb), separated by
a diploid segment containing 2 SNPs (9.8 kb). The two amplified fragments are
< 1 Mb. The true underlying states are © (200) in the genotype HMM; 7 (99),
— (2), and ' (99) in the copy number HMM; and @ (99), @ (2) and @ (99)
in the joint HMM.

e Region E contains a microdeletion spanning 5 SNPs (94 kb) and a microampli-
fication containing 3 SNPs (294 kb). We assigned high confidence scores to the
copy number estimates in both regions. The true underlying states are O (5) and
© (3) in the genotype HMM, \( (5) and  (3) in the copy number HMM and
O (5) and @ (3) in the joint HMM.

3. Results. This section describes results obtained from fitting HMMs to sim-
ulated and experimental data. The HMMs are written in the statistical language
R (http://www.r-project.org) using S4 classes and methods [Chambers (1998)].
In particular, the HMM is dependent on whether genotype estimates (abbreviated

GT), copy number estimates (abbreviated CN), or both GT and CN are available as
defined by three classes of objects for SNP array data [Scharpf et al. (2007)]. Orga-
nizing the statistical methods in this way allows more flexibility to users interested
only in characterizing chromosomal abnormalities in genotype (loss of heterozy-
gosity, LOH) or copy number (deletion or amplification) respectively. When both
GT and CN are available, the HMM will distinguish between copy-neutral LOH
and deletion-induced LOH. We use the term LOH in this context as an unusu-
ally long stretch of homozygous SNPs, though these regions can be completely
naturally occurring, for example, due to evolutionary pressure on chromosomal
segments. For the simulation, we simulate GT and CN as described in Section 2.4,
analyzing the GT and CN separately and then jointly. For the experimental data,
we use a HapMap sample with a previously identified region of uniparental isodi-
somy, a mechanism for copy neutral LOH. Both the simulation and experimental
data are based on 100k Affymetrix SNP chips (comprised of the Xba and Hind 50k
chips). All figures shown are also available in color as supplementary material at
http://biostat.jhsph.edu/~iruczins/publications/sm/.

3.1. Simulated data. SNP-level summaries were obtained using a combina-
tion of real (experimental) and simulated data for 1965 SNPs measured on chro-
mosome 1 of the 50k Hind and Xba Affymetrix SNP chips, as described in Sec-
tion 2.4 for additional details. Because the states of the HMM are determined by


http://biostat.jhsph.edu/~iruczins/publications/sm/

HMMS FOR THE ASSESSMENT OF CHROMOSOMAL ALTERATIONS 699

whether genotype estimates (GT), copy number estimates (CN), or both GT and
CN are available, we organize the results accordingly. For each example, we plot
both the predictions of a HMM that uses only the observed SNP-level summaries
as input (vanilla), and a HMM that integrates confidence estimates (ICE) for the
SNP-level summaries.

Genotype HMM. The hidden states for the genotype HMM are retention (©) and
loss (O) of heterozygosity. In the upper panel of Figure 2 the simulated GT are
plotted with uniform noise added to reduce overplotting. The predicted states from
the vanilla and ICE HMMs are also shown. The predictions from the vanilla HMM
are the same as the predictions of the ICE HMM shown, with the exception of the
region (A) magnified in the lower panel of Figure 2, where the ICE HMM correctly
identifies the © segment. Both approaches miss the 5 SNP spanning microdeletion
in region E, but otherwise correctly predict the true underlying states (see Sec-
tion 2.4 for details). In general, for both the vanilla and ICE HMMs, the Viterbi
algorithm (conditional on other parameters of the HMM model) chooses an op-
timal sequence of states that maximizes the likelihood of the observed genotype
calls. The predicted states reflect a trade-off between the likelihood of the observed
genotypes given the underlying states, and the transition probabilities. Unlike the
vanilla HMM, emission probabilities in the ICE HMM are a function of the confi-
dence scores (as described in Section 2), and factor into the likelihood. Intuitively,
a high confidence score at a particular SNP has the effect of giving more weight
to the emission probability and less weight to the state of the neighboring SNPs
when determining the optimal sequence of states in the Viterbi algorithm. Hence,
the sequence of states that maximizes the likelihood of the observed genotype calls
differ in the ICE and vanilla HMMs when the confidence scores shifts the balance
between the opposing forces of the emission and transition probabilities. In partic-
ular, the high confidence scores at the two heterozygous SNPs in region A favor
the emission probability for ©, causing two breakpoints in this region of O and,
hence, a more local smoothing of the HMM. Although the emission probability
for state © is greater than for state O at these two SNPs in the vanilla HMM, the
probability of having two breakpoints in a region of O for SNPs that are physi-
cally close is small as reflected in the transition probability. Therefore, the vanilla
HMM provides a smoothing that is less localized, corresponding to a sequence of
O predictions in region A without transitions to the normal state.

Copy number HMM. The hidden states for autosomal copy numbers are hemi-
zygous deletion (), normal (two) copies (— ), and more than two copies ().
Figure 3 (upper panel) shows the CN of the simulated dataset. In our simulation,
chromosome 1 contains three amplifications ' (two segments in D separated by
a segment with normal copy number, and one in E), and four deletions \ (two
segments in B separated by a segment with normal copy number, and one segment
each in regions C and E). Also shown are the predicted states from the vanilla and



700 SCHARPF ET AL.

@ Deletion
O Normal
5 -{ ® Amplification
B C E
4 T B
3 -
2 -

° o
o =
o0 & o
go0 * o
* 8°8s o ® 00
S g o .
o 0o e ::ae % ag?ga,,og 13 u:
2 qopob, o I LR 8 w $2 0 4 5% ° o "R
%0 °° 8 s ? oo L .
o] . Gl MR
8® o oo -
o ® °
. g .
. .o .
&
| | I | Van
|| L H || ice

T T T T T T T T T T T T T T T T
69 70 71 72 73 74 174 175 176 177 178 238 240 242 244 246

Mb

F1G. 3.  Top: Copy number estimates (vertical axis) versus physical position (horizontal axis) for
9165 SNPs on a simulated chromosome. Bottom: A magnification of regions D, B, and E. High
confidence scores for the copy number estimates were simulated for the square points in regions D,
B, and E. The two bars beneath the data points in each figure show the predicted hidden states from
the vanilla (Van) and ICE HMMs. Note that where the predictions differ in regions D, B, and E, the
ICE correctly classified the hidden states. Note that the vanilla HMM also indicates a (spurious)
deletion to the left of region A, not indicated by the ICE HMM due to high variability in those copy
number estimates.

ICE HMMs, respectively. The predictions from the two HMMs differ in regions
B, D, and E magnified in the lower panel. Without confidence estimates for the
copy number, the transition probabilities dominate the likelihood as specified by
the emission probabilities, and the vanilla HMM smoothes over the two SNPs
with copy number 2 in regions B and D, and the amplification in region E. The
high confidence scores used in this simulation for the copy number estimates in
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these regions make the transition between states more favorable, and thus, the ICE
HMM makes the transition back to the normal state for regions B and D, and
detects the amplification in region E. Note that when the confidences scores for
the CN are low, as for the 2 SNPs with copy number near two in the hemizygous
deletion in region C, the predictions with ICE and vanilla are identical. Also, the
vanilla HMM detects a spurious deletion to the left of region A. As the confidence
scores for those copy number estimates were low, the likelihood specified in the
ICE HMM does not favor a transition to a nonnormal state.

Genotype and copy number HMM. We plot both the GT and CN in the upper
panel of Figure 4. By modeling GT and CN simultaneously, we expand the state
space of the HMM to include deletion-induced LOH (O), copy neutral LOH (©),
normal (@), and amplification (@). The predicted states from the vanilla and ICE
HMMs are also shown, and differences in predictions are indicated in the lower
panel. As before, ICE correctly classifies all SNPs into the respective states, while
the vanilla HMM, in the absence of uncertainty estimates, smoothes over some
loci (regions A, B, D), and fails to detect the amplification (with high confidence
scores) in region E. In contrast, the vanilla HMM does detect the microdeletion in
region E. The ability of the vanilla HMM to detect the microdeletion in this exam-
ple even in the absence of confidence scores is attributable to the additional infor-
mation that the genotype provides: SNPs in deleted regions all appear as homozy-
gous, in contrast to amplifications, where homozygous and heterozygous SNPs
occur. Additionally, the extra genotype information may reduce the occurrence of
predicted deletions that are spurious. For instance, in the absence of information
on genotype calls in Figure 3, the vanilla HMM predicts a small deletion to the left
of region A. As heterozygous genotype estimates in this region are incompatible
with a deletion, the vanilla HMM no longer predicts this region to be a deletion in
Figure 4.

3.2. Experimental data. To illustrate the HMM approaches on experimental
data, we used a HapMap sample with a previously identified (but not experimen-
tally confirmed) UPD in chromosome 2. The Affymetrix tool CNAT (version 3.0)
and the R software CRLMM were used to obtain SNP-level summaries of copy
number and genotype respectively. We caution that at this point in time the GT
obtained using CRLMM (or the Affymetrix tools) implicitly assume that the copy
number is two—ideally, allele specific estimates should be used, and methods are
under development (Rafael Irizarry, personal communication). Also, software to
obtain confidence scores for CN based on probe-level variability and signal-to-
noise ratio on the chip [such as described in Wang et al. (2007)] is not yet available.
However, differences in the SNP-specific standard deviations of the CN across
a reference set of 90 HapMap samples have previously been reported [see, e.g.,
Zhao et al. (2004)], and can be used in a straightforward manner as measures of
uncertainty [specifically, using those deviations as the Sy in equation (2.9), and
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F1G. 4. Top: The CN in Figure 3 are superimposed on the GT in Figure 2. We fit HMMs to the
Joint observation sequence of CN and GT without (vanilla) and with (ICE) confidence scores of the
SNP-level summaries. The predictions from these two HMMSs are represented by different shades
of grey in the two bars beneath the data points in each panel. We used square plotting symbols
to indicate SNPs for which we assigned high confidence scores to the genotype and copy number
estimates.

estimating the scalar o from the autosomal SNP copy number estimates in the
sample].

The upper panel in Figure 5 shows CN on the vertical axis against physical po-
sition on chromosome 2. The region of predominantly called homozygous SNPs
at 190-200 Mb is a previously identified UPD [Ting et al. (2006)]. Also shown
are the predictions from the vanilla and ICE HMMs. The confirmed UPD between
190 and 200 Mb is detected by both HMMSs, though the vanilla HMM incorrectly
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FIG. 5. Top: A confirmed UPD between 190 and 200 Mb is detected by both HMMs in a HapMap
sample from the CEPH dataset. Note that the vanilla HMM incorrectly predicts a small deletion of 3
SNPs in the middle of this region, whereas the ICE HMM provides a more global smoothing of the
copy number estimates. Bottom left: a magnified view of three possible LOH regions (not confirmed).
Only the middle region (143 Mb) is identified by both HMMs as LOH. Because the CRLMM genotype
calls agree with the HapMap consensus, the chromosomal segment containing the two heterozygous
SNPs at 140 Mb is not a region of LOH, as predicted by the vanilla HMM. Bottom right. magnifi-
cation of the vanilla (top) and ICE (bottom) predictions for the feature at 150 Mb. Again, the true
genotype calls are heterozygous, and so the ICE HMM correctly identifies the chromosomal segment
containing the two heterozygous SNPs as normal.

predicts a small deletion of 3 SNPs in the middle of this region, whereas the ICE
HMM provides a more global (and correct) smoothing of the copy number esti-
mates. Also, the vanilla HMM finds a spurious amplification at about 210 Mb. The
lower panel on the left provides a magnified view of the region between 135 and
155 Mb, where the vanilla and ICE HMMs differ. Only the middle region (at about
143 Mb) is identified by both HMMs as LOH (we again stress that we use the term
LOH here as copy neutral stretches of homozygous SNPs, naturally occurring pos-
sibly due to evolutionary pressure on this chromosomal segment). The chromoso-



704 SCHARPF ET AL.

mal segment at about 140 Mb contains the two heterozygous SNPs (confirmed in
the HapMap data, and called as such by CRLMM), and thus is not a region of LOH,
as predicted by the vanilla HMM. The lower panel on the right further zooms in on
the vanilla and ICE predictions in the region around 150 Mb. The two SNPs with
heterozygous genotype calls at about 151 Mb are truly heterozygous SNPs, and
therefore, the ICE HMM correctly identifies the chromosomal segment containing
these two heterozygous SNPs as normal. Due to the abundance of markers in the
segment around 151.25 Mb exclusively called homozygous, the ICE HMM still in-
dicates an LOH segment. Several studies have recognized the abundance of short,
copy-neutral, entirely homozygous regions [see, e.g., Beroukhim et al. (2006)]. To
illustrate the prevalence of short, homozygous sequences, we fit the vanilla and
ICE HMMs to the chromosome 2 data of the 30 CEPH trio parents available from
HapMap (60 independent samples), and highlight these copy-neutral, all homozy-
gous regions in Figure 6. Clearly visible is the abundance of these regions, and
the enriched locations along chromosome 2 (possibly explained by evolutionary
pressure).

3.3. A vanilla/ICE comparison. We performed additional simulations to con-
trast the performances of the vanilla and ICE HMMs. Since large deletions and
amplifications can easily be picked up by both approaches, we focused on small
deletions and amplifications, spanning between 2 and 10 consecutive SNPs. Since
the results were as expected, we only describe the effects of the copy number vari-
ability and confidence scores on the detection of small deletions in detail.

The experimental data consisted of genotype calls and copy number as de-
scribed in Section 2.4. Copy number confidence scores were obtained by weight-
ing the robust estimate of the within-chip log, copy number standard deviation by
the standardized SNP specific standard deviation derived from a reference set of
90 HapMap samples (e.g., this weight for one particular SNP was the ratio of the
across sample standard deviation for the SNP and the median of all those numbers
across all SNPs). Simulated in these data were 450 sets of copy number estimates
and confidence scores for deletions ranging from two to ten consecutive SNPs (50
data sets for each deletion size). The locations of the deletions were randomly se-
lected on chromosome 1 for each data set. The copy numbers in the deletions were
simulated from a log-normal distribution with mean zero (indicating a true DNA
copy number equal to one), and a standard deviation equal to a scaled version of the
SNP specific variability described above. The scalar K controlled whether more
(K < 1) orless (K > 1) precise copy number data than average were encountered
in the deletion. For both vanilla and ICE, we calculated for each simulated data
set the difference in log likelihoods between making a transition to the state for
deletion (©) from the normal state (@) for the range of the simulated deletion (and
back after the deletion), versus staying in the normal state throughout. In other
words, we calculated the difference of the log likelihood of the true state sequence
minus the log likelihood of assigning the normal state @ to all SNPs.
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FIG. 6. An image of the predictions from the vanilla HMM fit to chromosome 2 of the 60 parental
samples in the CEPH trios dataset (top). The x-and y-coordinates used for the image are physical
position and subject, respectively. Subject NAO7056 has a confirmed UPD at 195 Mb. Also plotted
are the frequencies of LOH across the 60 samples (middle) and the cytoband (bottom).

The upper row of panels in Figure 7 indicate the distributions of the differ-
ences in the log likelihoods for both the vanilla (light grey) and ICE (dark grey)
HMMs, shown for the deletions of different sizes, and using four different scale
parameters K. For the first two panels, the variability in the simulated copy num-
ber estimates in the deleted region was less than in the original data (the standard
deviations were reduced to 40% and 70% of the original, respectively), and for the
fourth panel the standard deviation in the simulated copy number estimates in the
deleted region was increased by 30%. The middle row of panels shows the respec-
tive estimated probabilities of the differences in log likelihoods being positive, for
example, the proportion of instances when the correct model was favored over the
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FIG. 7. Differences between the log likelihoods for the correct and incorrect state sequences for
the vanilla (light grey) and ICE (dark grey) HMMs are indicated in the upper panels. The differences
are shown for deletions of different sizes (horizontal axis), and four different scale parameters K for
the copy number estimate variability in the simulated deletions (0.4, 0.7, 1.0, 1.3, left to right). The
data were scaled to fit the panels, and slightly smoothed from the raw data by exploiting an obvious
mean and variance relationship. The middle row of panels shows the estimated probabilities of the
differences in log likelihoods being positive (e.g., the proportion of instances when the correct model
was favored over the incorrect one), assuming normality of the differences in the log likelihoods. The
lower row of panels shows the estimated differences in these probabilities between ICE and vanilla.

incorrect one. The lower row of panels shows the difference in these probabili-
ties between ICE and vanilla. Quite obvious is the fact that the ability to detect
micro-deletions of a few SNPs depends on precise data, and the knowledge of that
precision. For example, when the standard deviation of the simulated copy number
estimates in the deletion was reduced to 40%, ICE was able to consistently detect
even the smallest deletions, while vanilla was only able to do so for deletions of
size 5 or larger (left panels). Naturally, larger deletions are easier to detect for both
methods. As the quality of the data decreases (simulated here as an increase in
the variability of the copy number estimates in the deletion), the ability of ICE to
detect the deletion suffers substantially, while vanilla is almost agnostic to these
changes. When the standard deviation of the simulated copy number estimates in
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the deletion was increased by 30%, vanilla picked up the deletion more often than
ICE (right panels). The reason for this is as follows: since the variability in the
copy number estimates is increased, the evidence of a deletion being present de-
creases, and ICE acknowledges this fact by incorporating the confidence estimates.
Thus, the decrease in the proportion of instances where ICE favors a deletion over
the normal state is a feature of the algorithm. The price to pay, otherwise, is in
the number of false positives (i.e., the number of incorrectly inferred deletions at
other loci). Simulating 200 “synthetic” normal chromosome 1q arms with K = 1.3
across all SNPs, vanilla indicated spurious small deletions in 50 of these artificial
chromosomal arms (for a total of 86 incorrect state predictions), while ICE indi-
cated none.

4. Discussion. Chromosomal DNA varies between individuals at the level of
entire chromosomes, chromosomal segments, and changes in small genomic re-
gions down to one nucleotide (including single nucleotide polymorphisms, SNPs).
Many of these variations appear to be completely benign, but some are known
or suspected to be associated with disease. Association studies often use some
SNPs (in candidate gene studies) or hundreds of thousands of SNPs (in genome
wide association studies) as potential candidates or markers of genes to investi-
gate the relationship between genotype and phenotype. However, the abundance
of copy number variations in the human genome and their role in disease have
played an increasingly prominent role. In particular, the “common disease, com-
mon variant” paradigm has been challenged for some diseases [McClellan, Susser
and King (2007); see, e.g., Sebat et al. (2007) for a case study on autistic and ap-
parently normal subjects]. Undoubtedly, this change is due in part to the recent
technological advancement, in particular, on high density single nucleotide poly-
morphism (SNP) microarrays which allow for the detection of these alterations.
Besides copy number variations such as deletions and duplications, copy-neutral
stretches of homozygosity can also be of scientific interest, as uniparental disomy
as one such example has been implicated in disease.

Copy number variations and loss of heterozygosity can arise through somatic
and germline events. In this manuscript, we developed methods most applicable
for abnormalities as a consequence of germline events. Undoubtedly, the stochastic
process as defined by our transition probability could be too rigid for the analysis
of data arising from a cancer sample, where microdeletions as well as a loss of an
entire chromosomal arm might be present. Further, noninteger copy numbers do
make sense in such samples due to the mix of normal and abnormal cells in the
sample [i.e., mosaicism; see Ting et al. (2006) for an example], while we assume
the copy numbers to be integers in our approach. While rare, noninteger copy
numbers may occur even in “normal” genomes (this can occur throughout the body
or in specific regions), and thus, may pose a problem for our algorithm. In general,
even if our method could be extended to allow for noninteger copy numbers (at
least the HMM for copy numbers, since the definition of “genotype” is unclear in
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such a setting), the ability to pick up noninteger copy numbers obviously depended
on the quality of the data, the length of the non-normal region, and the actual value
of said copy number. For example, delineating a small mosaic region in a sample
with 95% normal cells and 5% of cells with a hemizygous deletion would likely
not be possible.

Our paper builds on a modular approach for analyzing SNP chip data, ex-
tending the functionality of statistical algorithms that pre-process probe-level
data to produce SNP-level summaries of genotype and copy number. Notice-
ably, these approaches have mostly been developed for the Affymetrix platform
(such as CRLMM for improved genotype estimates), but our ideas are portable
to other high throughput platforms such as Illumina. In particular, the vanilla

HMM only relies on genotype (CN) and copy number (GT) estimates without
any confidence scores, which can be exported directly from the Beadstudio soft-
ware (http://www.illumina.com/). With one noticeable (and very recent) exception
suggested by Colella et al. (2007), previous approaches using HMMs have consid-
ered genotype and copy number separately, not simultaneously in a single unifying
statistical model that allows for the detection of copy number changes as well as
copy neutral stretches of homozygosity in the genome. In this sense, this manu-
script is not the first to propose such a unifying approach, albeit ours differs in
several aspects from the Bayesian HMM of Colella et al. (2007). In particular, the
incorporation of uncertainty estimates can be critical, for example, in the detection
of microdeletions. The investigation of one particular sample as discussed in this
manuscript, however, does not allow for conclusive statements how the detected
alterations are associated with the phenotype. In particular, it has been well es-
tablished that copy number variations and copy neutral stretches of homozygous
genotypes are prevalent in many phenotypically normal individuals. Identifying
features that may be associated with a particular phenotype are better handled by
statistical models for between-sample variation in studies with phenotypically nor-
mal and diseased populations. Such models reside in the next tier of our modular
approach to the analysis of SNP chip data and are an extension of the ideas pre-
sented here.

In summary, we developed a HMM for SNP chips using the joint observation
sequence of copy number (CN) and genotype (GT) estimates as input. We demon-
strated that a HMM model that uses both CN and GT can, for example, distinguish
copy-neutral LOH from deletion-induced LOH. We also demonstrated how pre-
processing algorithms that provide confidence scores of SNP-level summaries can
be integrated into the emission probabilities of the HMM to control smoothing
in a probabilistic framework, and showed that this can lead to much improved
results. Specifically, confidence estimates allow smoothing to be more local or
global depending on the uncertainty of the pointwise estimates. We demonstrated
how high confidence scores helped in identifying a very small amplification other-
wise missed (Figure 4, region E), while low confidence scores for CN and GT had
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the desirable effect of providing a more global smoothing (Figure 5). In particu-
lar, in the experimental data example, this helped to reduce the number of regions
identified as LOH in the vanilla HMM, and eliminated the (presumably, spurious)
indication of a small deletion and a small amplification. We believe that the ability
to detect microdeletions and microamplifications could be of utmost importance to
explain the genetic basis of many diseases. Undoubtedly, this ability will greatly
depend not only on the number of markers investigated (such as the number of
SNPs used on a particular platform) and the quality of the data produced (i.e., the
precision of the genotype and copy number estimates), but also on how the un-
certainty of the estimates is utilized. In this sense, we hope that our method and
software provides a useful tool for the scientific community.
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