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MULTI-CENTER CLINICAL TRIALS: RANDOMIZATION AND
ANCILLARY STATISTICS

BY LU ZHENG AND MARVIN ZELEN

Harvard School of Public Health

The purpose of this paper is to investigate and develop methods for analy-
sis of multi-center randomized clinical trials which only rely on the random-
ization process as a basis of inference. Our motivation is prompted by the
fact that most current statistical procedures used in the analysis of random-
ized multi-center studies are model based. The randomization feature of the
trials is usually ignored. An important characteristic of model based analy-
sis is that it is straightforward to model covariates. Nevertheless, in nearly
all model based analyses, the effects due to different centers and, in general,
the design of the clinical trials are ignored. An alternative to a model based
analysis is to have analyses guided by the design of the trial. Our develop-
ment of design based methods allows the incorporation of centers as well as
other features of the trial design. The methods make use of conditioning on
the ancillary statistics in the sample space generated by the randomization
process. We have investigated the power of the methods and have found that,
in the presence of center variation, there is a significant increase in power. The
methods have been extended to group sequential trials with similar increases
in power.

1. Introduction. The randomized multi-center clinical trial is widely recog-
nized as the ideal way to generate data to evaluate the benefit of therapies for the
treatment of disease. The randomization process tends to eliminate bias introduced
by physicians or patient preferences. In addition to randomization, sometimes dou-
ble blind trials are used to eliminate such bias when the outcomes are subjective.
Randomization also serves to balance unknown factors over treatments which may
affect outcome. Randomization was first introduced by Fisher in 1935 [see Fisher
(1971)] and was motivated by experimental design problems in agriculture. Ran-
domization has proved to be equally important in studies on humans so that today
randomized clinical trials are regarded as part of the foundation of the scientific
basis of modern medicine.

Current practice in the analyses of randomized clinical trials is to use statisti-
cal methods which are model based; for example, linear, logistic and proportional
hazard models. These methods are ideal for taking into account factors which in-
fluence outcome. However, the inference requires that subjects entering a trial con-
stitute a random sample of subjects from a well defined population. Unfortunately
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this is rare. Subjects entering a trial are not a random sample of patients. We re-
fer to these subjects as a “collection” of patients. Consequently, the basis of any
inference is questionable in the absence of a random sample of subjects.

The randomization process can serve as a basis of inference and is an alter-
native to relying on a random sample as the basis of inference. In our view, in
the absence of a random sample of patients, model based analyses are appropriate
when they serve as approximations to a randomization analysis. However, relying
on the randomization process limits the scope of the resulting inference. The infer-
ence strictly applies to the “collection” of subjects who have entered the trial. Any
generalization of the inference to a population with disease must be made on how
well the “collection” of patients in the trial approximates a well-defined disease
population.

Under a population model, model-based methods test the null hypothesis of
the equality of parameters from known distributions, while the null hypothesis of
a randomization-based test is that the assignment of treatments A and B had no
effect on the outcomes of the subjects enrolled in the study.

A 1988 special issue of Controlled Clinical Trials was devoted to discussing the
statistical properties of randomization procedures in clinical trials. Special topics
included simple randomization [Lachin (1988)], permuted block randomization
[Matts and Lachin (1988)] and the urn-adaptive biased-coin randomization [Wei
and Lachin (1988)]. Lachin, Matts, and Wei (1988), in the conclusion paper of the
issue, shared the same view as ours. The main ideas in these papers have been
summarized later in the book by Rosenberger and Lachin (2002).

The aim of this paper is to investigate randomization based analyses of random-
ized multi-center trials. A guiding principle in our development is that the analysis
should take into account the design of the trial. Most randomized clinical trials are
designed using permuted blocks. This feature of a trial is usually ignored in the
model driven analyses. Dividing the patients into blocks enables balance among
treatments with reference to a possible change in the population over time and
the possibility of changing benefit over time; that is, physicians acquiring expe-
rience in the administration of the treatment will be better able to administer the
treatment.

A widely accepted principle in frequentist inference is to condition the analy-
sis on the ancillary statistics. Conditioning on ancillary statistics will reduce the
sample space and generally will result in greater power compared to ignoring the
ancillary statistics. Nevertheless, most frequentist analyses of randomized trials
ignore the ancillary statistics. For example, ancillary statistics arise most natu-
rally in randomized multi-center clinical trials in which the ancillary statistics are
the number of patients assigned to each treatment within a center. Although the
treatment sample sizes within each center are random variables, nearly all model-
based analyses that incorporate center effects treat the sample sizes within centers
as fixed quantities and ignore the probability aspects of the sample sizes. When the
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sample sizes within a center are large, this distinction may not be important. How-
ever in many multi-center trials there may be large numbers of centers which enter
a relatively small number of patients. In such situations, modeling a parameter for
each institution can result in a significant reduction in the precision of the test sta-
tistic. An alternative to adding more parameters is to reduce the sample space by
conditioning [Pesarin (2001)]. The power of clinical trials may be increased by
conditioning on the institutional sample sizes for each treatment. Conditioning on
the sample sizes of centers is an illustration of how a randomization-based analysis
of a trial may adjust for covariates. In this case the centers are the covariates. This
idea generalizes when there are an arbitrary number of covariates.

Many approaches have been proposed to adjust for center effect in multicen-
ter studies in the past. The majority of the adjustments use model-based meth-
ods, as reviewed by Localio, Berlin, Ten Have, and Kimmel (2001). The methods
adjusting for center effects include the following: mixed-effects, random-effects,
multistage hierarchical [Skene and Wakefield (1990), Matsuyama, Sakamoto, and
Ohashi (1998)], Bayesian approach [Gray (1994), Yamaguchi, Ohashi, and Mat-
suyama (2002)] and frailty models for survival data [Andersen, Klein, and Zhang
(1999)]. Boos and Brownie (1992) developed rank based methods to account for
institution variation. Davis and Chung (1995) developed a Mantel–Haenszel mean
score statistic using a randomization model for continuous or ordered categor-
ical outcomes. The estimator, which is a weighted average of the center-specific
mean differences, is equivalent to the estimate obtained using a fixed-effect model.
Potthoff, Peterson, and George (2001) investigated several permutation tests for
treatment-by-center interaction in multi-center clinical trials with survival out-
comes. Brunner, Domhof, and Puri (2002) considered nonparametric tests where
the statistics are weighted according to the different sample sizes within the levels
of one factor. In general, there is very limited literature related to adjusting center
effects using randomization-based methods.

The aim of this paper is to investigate randomization-based analyses, in which
the experimental design is a permuted block design, and covariate adjustments
are made by conditioning on the ancillary statistics. Comparisons are made with
model-based analyses for linear, logistic and proportional hazard models. The con-
ditioning on the ancillary statistics, in the presence of permuted blocks, generates
some difficult combinatorial problems. To deal with this class of problems, we
principally base our analyses on large sample procedures.

The paper is organized as follows. Section 2 formulates the problem and in-
troduces notation. Section 3 presents the method for the analysis of multi-center
trials using permuted block designs. Section 4 applies the idea to group sequential
randomized clinical trials. Section 5 concludes with a discussion.

2. Problem formulation and notation. The key idea in using the ran-
domization process as a basis for inference is that the only probability in a
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study is the introduction of uncertainty by the random assignment of treat-
ments to patients. Patient outcomes are considered fixed and are not governed
by probability distributions. The statistical procedures are based only on the
randomization process and are distribution free. Conceptually, the distribution
of the appropriate statistics can be obtained by enumerating the entire sam-
ple space. However, enumeration may not be feasible with large numbers of
observations. Instead, the distribution may be approximated by sampling the
sample space or using large sample approximations based on low order mo-
ments.

2.1. Permuted blocks. A major disadvantage of simple randomization is the
possibility of generating unbalanced numbers of patients in treatments. Per-
muted block designs eliminate such possible imbalances. The basic idea of a
permuted block design is to group patients into “blocks” according to the time
entered in the study. Randomization is then carried out within each individual
block, so that there is an equal number of subjects assigned to each treatment
within a block. The application of permuted blocks is also viewed as a pro-
tection against unknown time trends in either the treatment effects or patient
characteristics; that is, the application of the treatments may become more ef-
ficacious as more experience is gained with the treatments. A disadvantage of
permuted block designs for single institution studies is that at certain alloca-
tions in the trial, a treatment assignment could be known to investigators, in ad-
vance of randomization. However, this phenomenon is unlikely in multi-center
trials.

2.2. Notation and permuted blocks: Single institution. Consider a single-
center randomized clinical trial comparing two treatments denoted by A and B .
Let a single permuted block contain N patients. Suppose there are P permuted
blocks. Define the binary random variable

δij =
{

1, if ith patient in j th block is assigned to A,
0, otherwise,

where i = 1,2, . . . ,N; j = 1,2, . . . ,P . The treatments are randomly assigned,
that is, P {δij = 1} = 1

2 subject to
∑N

i=1 δij = N
2 for j = 1,2, . . . ,P . The distri-

bution properties of the {δij } for the permuted blocks is well known and easily
derived. The low order moments are

E

[
δij

∣∣∣ N∑
i=1

δij = N

2

]
= 1

2
, Var

(
δij

∣∣∣ N∑
i=1

δij = N

2

)
= 1

4
,

Cov

(
δij , δrj

∣∣∣ N∑
i=1

δij = N

2

)
= − 1

4(N − 1)
for i �= r.
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Let yij be the observed outcome for the ith patient in the j th block regardless of
treatment assignment. This formulation assumes no difference between treatments.
Then SA = ∑P

j=1
∑N

i=1 δij yij and SB = ∑P
j=1

∑N
i=1(1 − δij )yij are the observed

outcome totals for each treatment group. The outcomes {yij } are assumed to be
fixed quantities. Note that with this formulation, SA + SB = S = ∑B

j=1
∑N

i=1 yij is
a fixed quantity.

A comparison of the two groups is usually carried out by comparing the distri-
bution of the difference of the sample averages; that is,

D = SA

NP/2
− SB

NP/2
= 2

NP
(2SA − S).

The inference on the treatment difference may then be made by considering the
conditional randomization distribution of D or, equivalently, of SA, since SA is the
only random variable in D. The randomization distribution of SA can be obtained
by considering the randomization distribution in each block and taking the con-
volution among the blocks. For example, if N = 4, there will be

(4
2

) = 6 possible
assignment outcomes and the number of points in the sample space would be 6P ,
where P is the number of permuted blocks. Thus, a trial with 100 subjects would
have 625 = 2.8 × 1019 points in the sample space. It would be impossible to enu-
merate such a large sample space. However, the randomization distribution may
be approximated by using a normal distribution utilizing lower order moments or
sampling the sample space.

Define S
j
A = ∑N

i=1 δij yij and since S
j
A is a function of {δij }, we have

E

[
S

j
A

∣∣∣Nj
A = N

2

]
= 1

2
Nȳj where ȳj = 1

N

N∑
i=1

yij ;

σ 2
j = V

(
S

j
A

∣∣∣Nj
A = N

2

)
= N

4(N − 1)

N∑
i=1

(yij − ȳj )
2 for j = 1,2, . . . ,P .

Then the analysis proceeds by defining SA = ∑P
j=1 S

j
A and

E

[
SA

∣∣∣Nj
A = N

2
, j = 1,2, . . . ,P

]
= 1

2
N

P∑
j=1

ȳj ;

Var
(
SA

∣∣∣Nj
A = N

2
, j = 1,2, . . . ,P

)
= σ 2 =

P∑
j=1

σ 2
j .

Since permuted blocks are independent, by the central limit theorem, as P be-
comes large, (SA − E[SA|Nj

A = N
2 , j = 1,2, . . . ,P ])/σ will have an approximate

standard normal distribution under the hypothesis of no difference between the two
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treatments; that is,

SA − 1
2N

P∑
j=1

ȳj
·∼N

(
0,

P∑
j=1

σ 2
j

)
.

3. Multi-center clinical trials.

3.1. Treatment assignment and covariates. A characterization of clinical tri-
als is that patients are entered in a trial in a sporadic fashion over time. Ordinarily
most clinical trials are designed so that there are approximately equal numbers
of patients for each treatment at any point in time in the accrual phase of a trial.
This is accomplished by using permuted blocks to randomize patients over time.
If there are other prognostic factors influencing the outcomes, in the absence of
stratified randomization, the number of patients on each treatment within the level
of a prognostic factor would be a random variable. Multi-center trials are the most
notable example of this phenomenon. When patients are randomized over time,
the number of patients on each treatment, within an institution, is a random vari-
able. Furthermore, if there are other prognostic variables, the number of patients
assigned to each treatment at each variable level will be a random variable.

Note that if the trial design uses permuted blocks over time, then one cannot
carry out randomization with an institution. Alternatively, a trial may be designed
so that the randomization process is stratified by institution. Then permuted blocks
over time cannot be implemented. If the institutions enroll a relatively large num-
ber of patients, then it will be feasible to utilize permuted blocks within an in-
stitution. However, most trials have a large number of institutions which enroll a
relatively small number of patients. Consequently, it is not feasible to stratify us-
ing permuted blocks within an institution. As noted earlier, for most clinical trials,
randomization schemes are guided by permuted blocks over time.

In general, the method of analysis to adjust for a prognostic variable is to con-
dition on the ancillary statistics. The resulting conditional distribution of the test
statistic may be impossible to derive because it is necessary to also condition on
the permuted blocks. When there are two or more prognostic variables, the condi-
tioning can account for interactions between the prognostic variables. The method
of analysis will be illustrated by applying it to account for institutional variation.
It should be noted that, in practice, the usual model-based analyses do not account
for institutional variation.

3.2. Multi-center trials. In our development of multi-center trials, it will be
assumed that permuted blocks allocate patients to treatments over time. As a result,
the number of patients assigned to each treatment within an institution will be a
random variable. These are ancillary statistics and the analysis will condition on
patient treatment numbers within each institution.

We will use the following notation:
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P = number of permuted blocks;
K = number of institutions;
Njk = number of patients from institution k in the j th block;
N.k = ∑P

j=1 Njk = number of patients from institution k;

n
j
kA = number of patients assigned to A from institution k in the j th block;

nkA = ∑P
j=1 n

j
kA = number of patients assigned to A in kth institution;

yij = outcome of ith patient in j th block (i = 1,2, . . . ,N );
δij = 1 if ith patient in j th block is assigned to A; 0 otherwise.
It will be convenient to set Yj = (y1j , y2j , . . . , yNj )

′.
In considering the randomization distribution, the quantities {Njk} are assumed

to be fixed. Without conditioning, enumerating all possible treatment assignments
within blocks will result in different {nj

kA} and {nkA} values as the block assign-
ments are independent of institutions. The number of points in the sample space
is

S({nj
kA}) = ∑

S∗

P∏
j=1

K∏
k=1

(
Njk

n
j
kA

)
,

where we define
(m
n

) = 1 if either m or n is 0 and the summation is over the set

S∗ = {∑K
k=1 n

j
kA = N

2 , j = 1,2, . . . ,P }.
If we condition on {nkA}, enumerating the treatment assignments will be re-

stricted to keeping {nkA} as constants, that is, {nj
kA} can result in different nu-

merical values depending on treatment assignment, but is restricted to values that
satisfy

∑P
j=1 n

j
kA = nkA = constant, for k = 1,2, . . . ,K . The conditional sample

space has fewer points and is explicitly

T ({nj
kA}) = ∑

T ∗

P∏
j=1

K∏
k=1

(
Njk

n
j
kA

)
,

where T ∗ = {∑K
k=1 n

j
kA = N

2 , j = 1, . . . ,P ;∑P
j=1 n

j
kA = nkA, k = 1, . . . ,K}.

Consequently, the conditional distribution of the {nj
kA} is T ({nj

kA})/S({nj
kA}).

With K more restrictions on the possible assignments across the blocks, the {nj
kA}

are no longer independent of the blocks. As a result, the mean and variance of
the test statistic are difficult to calculate. Furthermore, resampling from the set T
is not readily carried out, so that resampling cannot be used to approximate the
distribution.

In order to approximate the conditional distribution of SA, as defined in Sec-
tion 2.2, based on low order moments, we will consider the randomization process
as being generated by a permuted block design. The following notation is needed.
Define

Iijk =
{

1, if ith patient in j th block is from institution k,
0, otherwise.
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For each patient within a block, define a K × 1 vector Iij = (Iij1, Iij2, . . . , IijK)′,
i = 1, . . . ,N; j = 1, . . . ,P . Consequently, for each block, there exists a N × K

matrix Ij = (I ′
1j , I

′
2j , . . . , I

′
Nj )

′, j = 1,2, . . . ,P . The basic relations among the
{Iijk} are

K∑
k=1

Iijk = 1;
N∑

i=1

Iijk = Njk;
P∑

j=1

N∑
i=1

Iijk = N.k;

N∑
i=1

δij Iijk = n
j
kA;

K∑
k=1

N∑
i=1

δij Iijk = N

2
;

P∑
j=1

N∑
i=1

δij Iijk = nkA.

3.3. Approximation using multivariate normal distribution. In this section
we will extend the results for permuted block designs developed in Section 2.2
to multi-center trials. Consider n

j
kA = ∑N

i=1 δij Iijk (k = 1,2, . . . ,K) and S
j
A =∑N

i=1 δij yij . The joint distribution of S
j
A and {nj

kA} will be approximately multi-
variate normal. We can then obtain the distribution of SA conditional on {nkA}.

Note that SA and {nkA} are linear functions of {δij }; that is,

SA =
P∑

j=1

S
j
A =

P∑
j=1

N∑
i=1

δij yij ;

nkA =
P∑

j=1

n
j
kA =

P∑
j=1

N∑
i=1

δij Iijk, k = 1, . . . ,K.

Then by extending the results in Section 2.2, we have the conditional mean and
variance of S

j
A and {nj

kA} for any block j ; that is,

E

[
S

j
A

∣∣∣Nj
A = N

2

]
= 1

2

N∑
i=1

yij and

Var
(
S

j
A

∣∣∣Nj
A = N

2

)
= 1

4

N

N − 1

N∑
i=1

(yij − ȳj )
2,

E

[
nj

A

∣∣∣Nj
A = N

2

]
= 1

2
Nj. and

Var
(

nj
A

∣∣∣Nj
A = N

2

)
= 1

4

N

N − 1

(
Diag(Nj.) − Nj.N′

j.

N

)
,

Cov
(
S

j
A,n

j
kA

∣∣∣Nj
A = N

2

)
= 1

4

N

N − 1
Y ′

j

(
I − J

N

)
Ijk, k = 1,2, . . . ,K,

where nj
A = (n

j
1A,n

j
2A, . . . , n

j
KA)′ and Nj. = (Nj1,Nj2, . . . ,NjK)′ and Ijk =

(I1jk, I2jk, . . . , INjk)
′ is the kth column in Ij.
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Since the permuted blocks are independent, by the multivariate central limit
theorem, SA and {nkA} will have an approximate (K + 1)-multivariate normal
distribution, that is,

1√
P

⎛
⎜⎝

(
SA

n.A

)
−1

2

⎛
⎜⎝

P∑
j=1

N∑
i=1

yij

N..

⎞
⎟⎠

⎞
⎟⎠ ·∼N

(
0,

∑P
j=1 Vj

P

)
,

where n.A = (n1A,n2A, . . . , nKA)′,N.. = (N.1,N.2, . . . ,N.K)′ and

Vj =
⎛
⎜⎝ Var

(
S

j
A

∣∣∣Nj
A = N

2

)
Cov

(
S

j
A,nj

A

∣∣∣Nj
A = N

2

)′

Cov
(
S

j
A,nj

A

∣∣∣Nj
A = N

2

)
Var

(
nj

A

∣∣∣Nj
A = N

2

)
⎞
⎟⎠ .

Consequently, the conditional distribution of SA|n.A will be approximately nor-
mal with mean and variance given by standard multivariate normal theory; for
example,

E[SA|{nkA}] = 1

2

P∑
j=1

N∑
i=1

yij +
{

P∑
j=1

Cov
(
S

j
A,nj

A

∣∣∣Nj
A = N

2

)′}

×
{

P∑
j=1

Var
(

nj
A

∣∣∣Nj
A = N

2

)}−
·
(

n.A − 1

2
N..

)
;

Var(SA|{nkA}) =
P∑

j=1

Var
(
S

j
A

∣∣∣Nj
A = N

2

)
−

{
P∑

j=1

Cov
(
S

j
A,nj

A

∣∣∣Nj
A = N

2

)′}

×
{

P∑
j=1

Var
(

nj
A

∣∣∣Nj
A = N

2

)}−

×
{

P∑
j=1

Cov
(
S

j
A,nj

A

∣∣∣Nj
A = N

2

)}
,

where (·)− is a generalized inverse.
See Harville (1997) for more theory and application of the generalized inverse.

A generalized inverse of a matrix can be obtained using most standard statistical
software. In the simulation studies (Section 3.4), the R [R Development Core Team
(2007)] function ginv in package MASS was used to generate the Moore–Penrose
generalized inverse.

3.4. Simulation studies. Simulation studies are carried out to characterize the
behavior of the conditional test for continuous, binary and censored outcomes.
The simulations also explore the effect of block size and number of institutions.
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Block sizes are chosen to be 4, 6 and 8. The number of institutions varies from
10 to 140 depending on sample sizes (120, 240 and 360). For each sample size,
the average number of patients per institution ranges from 3 to 20. The size of the
treatment effect is chosen such that the power of the tests is at meaningful lev-
els for comparison purposes. Continuous outcomes are drawn from a lognormal
distribution with treatment difference of 1.07. Institution effects are drawn from a
normal distribution with a standard deviation of 2. For binary outcomes, the under-
lying distribution is Bernoulli with success probabilities 0.5 and 0.7, respectively.
A logistic model is used for the treatment and institution effects [drawn from a
N(0, 1.73)]. In the case of censored outcomes, the survival times are generated
from exponential distributions with a ratio of 1.5 for the two treatment mean sur-
vival times. Institution effects are introduced using a multiplicative model and are
drawn from a χ2 distribution with 1 df.

When the outcomes are right-censored time-to-event data with noninformative
censoring, the outcome variable yij is replaced with specific test statistics cal-
culated within each block and then aggregated over the blocks. In practice, the
logrank score or Gehan score is used to test the null hypothesis that there is no
difference in the survival of the individuals in the two groups. To test the null hy-
pothesis that the mortality rate is the same for the two groups, mortality rates are
calculated and used in place of ȳj . We used both logrank and Gehan scores in the
simulation studies. The simulations were set up so that each group had the same
censoring rate.

For all three types of outcomes, the power of the conditional test was com-
pared with commonly used tests ignoring institutions. Comparisons were made
both ignoring blocks and stratifying by blocks. For continuous outcomes, the con-
ditional test was compared with the two-sample t test based on the treatment
contrast within each block, which we denote as a “stratified t test” in the ta-
bles. Also, comparisons were made for a two-sample t test, which ignores both
institutions and blocks. In the case of binary outcomes, the conditional test was
compared with both the Mantel–Haenszel test of P 2 × 2 tables with each block
forming a 2 × 2 table and a simple 2 × 2 table which pooled all the data. For
censored outcomes, the reference tests are the block stratified Gehan and lo-
grank tests and the logrank test ignoring blocks and institutions. Those refer-
ence tests are chosen because, in practice, they are most likely to be employed
in the analyses of clinical trials using permuted blocks or ignoring the permuted
blocks. Also included in the comparisons was the test based on the randomization
distribution generated by permuted blocks, ignoring the conditioning on institu-
tions. The latter test is denoted as “the randomization test” in the tables. Type
I error rates were examined where there is no treatment difference. The simula-
tions (results not presented here) showed that all tests had the correct type I error
rates at levels 0.01 and 0.05. All censoring was noninformative for censored out-
comes.
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TABLE 1
Power comparison for continuous outcomes with no block variation

Sample size
No. of institutions

120 240 360

10 20 40 20 40 60 80 20 40 60 80 100

Block size 4
Conditional test 0.53 0.47 0.35 0.81 0.76 0.69 0.62 0.93 0.92 0.90 0.85 0.82
Randomization test 0.42 0.40 0.39 0.68 0.70 0.67 0.67 0.85 0.84 0.84 0.83 0.85
Stratified t 0.43 0.40 0.40 0.68 0.68 0.67 0.67 0.85 0.84 0.84 0.83 0.85
t-test 0.43 0.40 0.40 0.68 0.68 0.67 0.67 0.85 0.84 0.84 0.83 0.85

Block size 8
Conditional test 0.53 0.48 0.39 0.81 0.76 0.72 0.65 0.94 0.93 0.91 0.89 0.85
Randomization test 0.42 0.40 0.39 0.69 0.67 0.68 0.66 0.85 0.84 0.84 0.84 0.84
Stratified t 0.42 0.40 0.39 0.69 0.67 0.68 0.66 0.85 0.84 0.84 0.84 0.84
t-test 0.42 0.40 0.40 0.69 0.67 0.68 0.67 0.85 0.84 0.84 0.84 0.84

NOTE. Data are generated from a lognormal distribution. The difference between the two group
means is 1.07.

Tables 1–4 show selected results from the simulations. Each table entry is based
on the average of 5000 replications. All tests are two-sided with 0.05 type I er-
ror rate. Note that the conditional tests have higher power than their counterparts
for each of the three types of outcomes for nearly all institution sizes when in-
stitution variation is present. The power of the conditional test decreases as the
number of institutions increases for a fixed sample size. This is in contrast to the

TABLE 2
Power comparison for continuous outcomes with block variation

Sample size
No. of institutions

120 240 360

10 20 40 20 40 60 80 20 40 60 80 100

Block size 4
Conditional test 0.52 0.47 0.34 0.81 0.75 0.69 0.59 0.93 0.92 0.89 0.86 0.81
Randomization test 0.42 0.40 0.38 0.70 0.67 0.68 0.67 0.85 0.84 0.84 0.84 0.83
Stratified t 0.42 0.41 0.38 0.70 0.67 0.69 0.67 0.85 0.84 0.84 0.84 0.83
t-test 0.39 0.38 0.37 0.68 0.65 0.67 0.65 0.84 0.83 0.83 0.82 0.82

Block size 8
Conditional test 0.54 0.48 0.38 0.82 0.77 0.72 0.64 0.94 0.92 0.90 0.88 0.84
Randomization test 0.41 0.40 0.40 0.69 0.69 0.67 0.67 0.84 0.84 0.84 0.84 0.84
Stratified t 0.42 0.40 0.40 0.69 0.69 0.67 0.68 0.84 0.84 0.84 0.84 0.84
t-test 0.39 0.37 0.37 0.67 0.67 0.66 0.65 0.83 0.83 0.82 0.83 0.82

NOTE. Data are generated from a lognormal distribution. The difference between the two group
means is 1.07.
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TABLE 3
Power comparison for binary outcomes

Sample size
No. of institutions

120 240 360

10 20 40 20 40 60 80 20 40 60 80 100

Block size 4
Conditional test 0.37 0.32 0.25 0.64 0.58 0.52 0.46 0.82 0.79 0.76 0.72 0.67
Mantel–Haenszel & RTa 0.30 0.27 0.27 0.48 0.47 0.49 0.49 0.65 0.65 0.65 0.65 0.65
Single 2 × 2 table 0.30 0.28 0.28 0.49 0.48 0.50 0.50 0.66 0.65 0.66 0.65 0.65

Block size 8
Conditional test 0.45 0.41 0.32 0.72 0.68 0.63 0.58 0.89 0.87 0.84 0.82 0.79
Mantel–Haenszel & RT 0.39 0.38 0.37 0.63 0.62 0.62 0.63 0.80 0.80 0.79 0.80 0.81
Single 2 × 2 table 0.40 0.39 0.38 0.64 0.63 0.64 0.65 0.80 0.80 0.80 0.80 0.81

NOTE. Data are generated from the Bernoulli distribution. Success probabilities for two treatments
are 0.5 and 0.7 respectively.
aRT refers to the randomization test ignoring institutions.

power of the reference tests which decrease slightly or remain the same for a fixed
sample size. Keeping the total sample size fixed, but allowing the number of in-

TABLE 4
Power comparison for censored outcomes

Sample size
No. of institutions

120 240 360

10 20 40 20 40 60 80 20 40 60 80 100

Block size 4
CT (Gehan score)a 0.23 0.19 0.14 0.39 0.34 0.29 0.25 0.55 0.50 0.46 0.41 0.39
Stratified Gehan 0.16 0.14 0.12 0.24 0.23 0.21 0.22 0.34 0.31 0.30 0.29 0.29
CT (Logrank score)a 0.23 0.18 0.14 0.38 0.34 0.27 0.25 0.54 0.49 0.44 0.40 0.38
RT (Logrank score)a 0.16 0.15 0.13 0.25 0.23 0.21 0.22 0.36 0.32 0.31 0.30 0.30
Stratified Logrank 0.16 0.15 0.13 0.25 0.23 0.21 0.22 0.36 0.33 0.31 0.30 0.31
Logrank test 0.21 0.19 0.18 0.33 0.31 0.30 0.30 0.46 0.43 0.42 0.42 0.41

Block size 8
CT (Gehan score)a 0.27 0.25 0.20 0.47 0.41 0.37 0.33 0.64 0.59 0.56 0.53 0.49
Stratified Gehan 0.17 0.16 0.14 0.26 0.24 0.22 0.22 0.36 0.34 0.32 0.33 0.32
CT (Logrank score)a 0.27 0.24 0.19 0.45 0.39 0.35 0.31 0.62 0.57 0.53 0.51 0.47
RT (Logrank score)a 0.18 0.16 0.16 0.27 0.25 0.25 0.24 0.39 0.36 0.34 0.35 0.36
Stratified Logrank 0.18 0.16 0.16 0.27 0.26 0.25 0.24 0.39 0.36 0.35 0.35 0.36
Logrank test 0.21 0.19 0.18 0.31 0.31 0.30 0.29 0.45 0.43 0.41 0.42 0.42

NOTE. Data are generated from an exponential distribution. Ratio of two mean survival times is 1.5.
Percentage of censored observations is 19%.
aCT refers to the conditional test using the Gehan or the logrank score; RT refers to the randomization
test ignoring institutions using the logrank score.
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stitutions to increase, results in decreasing the average sample sizes within an in-
stitution. Also, there are more opportunities for treatment assignment imbalances
as the number of institutions increases. Treatment imbalances result in decreased
statistical efficiency. The imbalances are particularly acute with small institution
sample size. For example, an entry of one patient or two patients assigned to the
same treatment within an institution carry no information for comparing two treat-
ments.

Tables 1 and 2 show simulation results for continuous outcomes with and with-
out block effects. A block effect is added to the outcomes (−1, −0.5, 0.5 and 1 each
for one quarter of the blocks) to reflect a trend. With block effects, the superiority
of the conditional test tends to be greater compared to the t-test. The randomiza-
tion test and the stratified t-test also outperform the t-test as their performances
are not affected by the block variation. Also, it is more noticeable that, with block
variation, the power of the conditional tests is slightly higher with larger block
sizes.

4. Conditional group sequential tests based on randomization. Jennison
and Turnbull (1997) have extended group sequential analysis to incorporate co-
variates in a wide range of generalized linear models and the proportional hazards
model for survival data. However, to our knowledge, there is no method developed
for group sequential analysis using randomization based tests which also adjusts
for covariates.

We illustrate the details of the conditional group sequential test for contin-
uous outcomes. Procedures for censored outcomes and proportions are similar.
Suppose we intend to monitor the data to a maximum of L interim analyses.
At the lth interim analysis, let Pl refer to the cumulative number of permuted
blocks utilized up to this time. Hence, the number of patients at the lth interim
analysis will be NPl , where N is the block size. Let the information fraction
tl = Pl/Pmax, where PL = Pmax. The test statistic SA(tl) is the sum of the inner
product of the {δij } and outcomes {yij } in each block up to the Pl th block, that
is,

SA(tl) =
Pl∑

j=1

S
j
A =

Pl∑
j=1

N∑
i=1

δij yij .

Conditional on n.A(tl) = (n1A(tl), n2A(tl), . . . , nKA(tl))
′, where nkA(tl) is the

number of patients assigned to treatment A in the kth institution up to the time
before the lth interim analysis, SA(tl) is approximately normal with mean and
variance given in Section 3.3.

The test statistic T (tl) at each interim analysis is computed as

T (tl) = SA(tl) − E[SA(tl)|n.A(tl)]√
Var(SA(tl)|n.A(tl))
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and compared to a pre-specified boundary Cl , l = 1,2, . . . ,L. The null hypothesis
of no difference in treatments is rejected if |T (tl)| > Cl for some l = 1, . . . ,L.

We carried out simulations comparing conditional group sequential tests and
their counterparts for continuous, binary and censored outcomes. The simula-
tion setting was chosen to be the same for all types of outcomes. The test was
one-sided with significance level 0.025. Equal numbers of patients (240) com-
ing from a number of institutions (ranging from 10 to 60) are assigned to the
two treatments using a permuted block design (Block sizes: 4, 6 and 8). Treat-
ment differences and institution effects followed the same data generating scheme
as in section 3.4. For continuous outcome, the institution effects were drawn
from a N(0, 2) and for binary outcome, a logistic model was used and insti-
tution effects were drawn from a N(0, 1.73). For censored outcomes, institu-
tion effects were drawn from a scaled χ2 distribution with 4 df. Block effects
were not implemented in the simulation. Four interim analyses (L = 4) were
made where the increment of information changed by 1

4 . Stopping boundaries
were calculated using the commonly used O’Brien–Fleming rule [O’Brien and
Fleming (1979)], which is a special case of the α spending approach [Lan and
DeMets (1983)]. The O’Brien–Fleming boundary gives Cl = 2.024(4/l)1/2 for
l = 1,2,3 and 4. In our simulations we first checked the type I error rate and
found that the observed size of the test was satisfactory close to the nominal
level. Table 4 summarizes a comparison of the conditional group sequential tests
verses the usual group sequential tests (unconditional) for block sizes of N = 4
and 8 for continuous, binary and censored outcomes. For all three types of out-
comes, the conditional tests have higher power than the unconditioned tests; cf.
Table 5.

TABLE 5
Power comparison in the presence of institutional variation for group sequential tests: conditional

group sequential tests vs. standard tests (group sequential tests without conditioning)

Block size 4 Block size 8
No. of institutions No. of institutions

Outcomes Type of test 10 20 40 60 10 20 40 60

Continuous Conditional 0.72 0.70 0.69 0.67 0.72 0.73 0.70 0.68
Unconditional 0.51 0.49 0.48 0.47 0.52 0.50 0.46 0.48

Binary Conditional 0.91 0.91 0.90 0.88 0.95 0.96 0.95 0.94
Unconditional 0.76 0.76 0.77 0.77 0.89 0.89 0.89 0.90

Censoreda Conditional (Logrank score) 0.64 0.63 0.62 0.56 0.86 0.83 0.83 0.80
Stratified Logrank 0.57 0.57 0.57 0.57 0.78 0.77 0.75 0.75

NOTE. Sample size is 480 with 4 looks at equal information increments. One-sided test with α =
0.025.
aPercentage of censored outcomes is 18.5%.
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5. Discussion. In this paper we investigated methods of analysis which are
guided by the design of the study. More specifically, the analysis is based on the
randomization process generated by permuted blocks that are used to allocate treat-
ments to patients over time. Another feature of this paper is to take account of the
effects associated with hospitals/treatment centers.

Institutional variation abounds in nearly all clinical trials. The more se-
vere/common the side effects, the greater the reliance on patient management in
a center. Discontinuation of treatment due to not managing the side effects prop-
erly will result in different institutional outcomes in any intent to treat analysis.
Since many trials may be carried out with both community hospitals and major
treatment centers, there is substantial variation among hospitals with regard to
patient management. Trials involving surgery, as an adjunct treatment, show insti-
tution preference for different surgical procedures. Patient recruitment is also an
important factor leading to institutional differences among populations. In some
institutions, patients with co-morbid disease are not approached to enter a trial
despite being eligible. The reporting of patient refusals to participate in a clinical
trial is not usually done in a published paper. However, there are large variations
in the declination rate among institutions, which reflect on the different popula-
tions being entered on a trial. Closely related is the proportion of eligible patients
actually entered in a trial. Intensive safety monitoring generally leads to more fa-
vorable outcomes. Such monitoring greatly varies within centers. There may be
important institutional differences in the use of ancillary nontrial treatments. For
example, trials of aspirin and heparin in patients with acute ischaemic stroke often
receive nontrial treatments such as glycerol and steroids. The European Carotid
Surgery Trial on endarterectomy for symptomatic carotid stenosis showed sub-
stantial differences in the speed with which patients were entered in the trial based
on the last symptomatic event. It ranged from weeks to months depending on in-
stitutions. Benefit from endarterectomy depended significantly on delay to surgery
after the presenting event [Rothwell et al. (2004)]. Cancer chemotherapy trials are
carried out among major cancer centers as well as community hospitals. The dif-
ferences among centers with regard to patient management are large—especially
in the management of side effects. As clinical trials become more global, there
may be substantial differences within a country on methods of diagnosis and treat-
ment, probably resulting in even more variation among centers. The effects of the
centers may be ameliorated by conditioning on the ancillary statistics which are
the treatment sample sizes within each institution. In practice, the institution vari-
ation can be substantial. For example, the trial used as an illustration by Skene
and Wakefield (1990) showed that the variation of placebo response rates was
of the same magnitute as the variation of the treatment effect. In another exam-
ple, Yamaguchi and Ohashi (1999) reported a much larger center variation for the
baseline risk than the variation of the treatment effects in a multi-center clinical
bladder cancer trial. Andersen, Klein, and Zhang (1999) showed that if center ef-
fect is ignored, the estimator of the main treatment effect may be quite biased and
is inconsistent.
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We have shown that the design based analysis, in the presence of institu-
tion variation, results in greater power for commonly used clinical trial de-
signs, compared to model based analyses in which institutions, permuted blocks
and the randomization process are ignored. This is true for binary, continu-
ous and censored outcomes. Also, this advantage holds for group sequential tri-
als.

The novel idea of conditioning on the ancillary statistics provides an alternative
method to adjust for covariates in a randomization based inference. Conditioning
on the sample sizes of institutions is an illustration of how a randomization based
analysis of a trial may adjust for covariates. In this case the centers are the covari-
ates and the sample size of each center is an ancillary statistic. For an arbitrary
covariate, the number of patients assigned to one treatment for each level of the
covariate is an ancillary statistic. Conditioning on the ancillary statistics in a ran-
domization based analysis is a way of adjusting for the covariate effect. This idea
generalizes when there are an arbitrary number of covariates. Discretized contin-
uous covariates can also be adjusted using the same idea. Another approach to
adjust for the continuous covariates is to employ a regression model and use the
residuals from the model as responses in the proposed methods. Details of this
approach will be discussed in a follow-up paper.

The conditional test is based on the randomization distribution generated by
the random assignment of treatments to patients. It does not make any assump-
tions about sampling from a target population. Thus, inference based on the ran-
domization distribution is applicable to patients who entered the study. Alter-
natively, model based analyses assume that patients are random samples drawn
from a population and that centers are also randomly drawn from a population
of centers. This assumption is rarely true. In fact, patients are recruited into a
study from a nonrandom selection of centers. Centers are often chosen because
of their affiliations, locations and/or expertise. Within each center, patients are
recruited because they are eligible and willing to participate in randomized clin-
ical trials. Thus, neither the centers nor the patients are random samples. This
raises the issue of whether the assumptions of the model based analysis are cor-
rect. Lachin (1988) concluded that using model based analysis on a random-
ized clinical trial “becomes a matter of faith that is based upon assumptions that
are inherently untestable.” Ludbrook and Dudley (1998) surveyed 252 compar-
ative studies published in 5 biomedical journals and concluded that randomiza-
tion tests are superior to t and F tests in biomedical research where randomiza-
tion is the norm rather than random sampling from patient and institution popula-
tions.

One of the reviewers has asked about whether randomization techniques can be
used for estimation in the context of particular models. Confidence intervals can be
obtained by inverting the test. Garthwaite (1996) used simulation in conjunction
with a Robbins–Monro search process to locate the two ends of the confidence
interval by inverting randomization tests. For censored observation, confidence
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intervals from the inversion of normal tests are described in Kalbfleisch and Pren-
tice (2002). Alternatively, one can also obtain confidence intervals by simulation.
For example, if the ratio of two mortalities is the parameter of interest, let p̂ be
the observed ratio of mortalities (m1/m2, where m = total number of deaths/total
follow-up time). Order the survival times from the smallest to the largest. At each
time when there is a death, assign the observation to treatment 1 with probability
p̂ ∗ n1/(p̂ ∗ n1 + n2), where ni is the number of people at risk for treatment i.
At each censored time, assign the observation to treatment 1 with probability
n1/(n1 + n2). The ratio of mortalities can be calculated for each realization. One
can approximate the distribution of the ratio of mortalities by repeating the reran-
domization a large number of times. The 2.5th and 97.5th percentile values of the
distribution are the 95% confidence limits for the ratio of two mortalities. Initial
numeric studies have shown correct coverage probabilities of the confidence inter-
vals under various settings including the null and alternative hypothesis, when the
true mortality ratio is less than 2. We have found that the coverage probabilities
may tend to be less than 0.95 as the true ratio of mortalities tend to be greater
than 2. In practice, a mortality ratio of 2 or greater is unlikely to be encountered
in a trial. Such a superiority is likely to be shown in pilot and preliminary stud-
ies. It may be unethical to evaluate such a large outcome discrepency in a clinical
trial.

In conclusion, we advocate that analyses of randomized multi-center clinical
trials should be guided by the design of the trial and rely on the randomization
process for making the inference. The methods discussed in this paper only rely
on the randomization process. Consequently, they are distribution free and are ca-
pable of accounting for institutional variation and time trends in patient popula-
tions. In practice, the methods discussed in this paper may lead to greater power
than the conventional analysis, when there are institution and time trends (block
effects). When there is an absence of institution and/or block effects, the power of
the conditional test will be lower than statistical tests which ignore these effects.
This possibility may be regarded as the “insurance” one must pay in accounting
for potential institution and block effects.

The conditional tests discussed here may be generalized to deal with more com-
plex situations. The generalizations can incorporate more than two treatments,
stratified permuted block designs, the post-hoc modeling of covariates and missing
observations. In a follow-up paper we intend to discuss these topics.
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