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SKIP SEQUENCING: A DECISION PROBLEM
IN QUESTIONNAIRE DESIGN

BY CHARLES F. MANSKI1 AND FRANCESCA MOLINARI2

Northwestern University and Cornell University

This paper studies questionnaire design as a formal decision problem,
focusing on one element of the design process: skip sequencing. We propose
that a survey planner use an explicit loss function to quantify the trade-off
between cost and informativeness of the survey and aim to make a design
choice that minimizes loss. We pose a choice between three options: ask all
respondents about an item of interest, use skip sequencing, thereby asking
the item only of respondents who give a certain answer to an opening ques-
tion, or do not ask the item at all. The first option is most informative but
also most costly. The use of skip sequencing reduces respondent burden and
the cost of interviewing, but may spread data quality problems across survey
items, thereby reducing informativeness. The last option has no cost but is
completely uninformative about the item of interest. We show how the plan-
ner may choose among these three options in the presence of two inferential
problems, item nonresponse and response error.

1. Introduction. Designing a questionnaire for administration to a sample of
respondents requires many decisions about the items to be asked, the wording and
ordering of the questions, and so on. Considerable research has investigated the
item response rates and patterns associated with alternative designs. See Krosnick
(1999) for a recent review of the literature. Researchers have also called attention
to the tension between the desire to reduce the costs and increase the informative-
ness of surveys. See, for example, Groves (1987) and Groves and Heeringa (2006).
However, survey researchers have not studied questionnaire design as a formal de-
cision problem in which one uses an explicit loss function to quantify the trade-off
between cost and informativeness and aims to make a design choice that minimizes
loss. This paper takes an initial step in that direction. We consider one element of
the design problem, the use of skip sequencing.

Skip sequencing is a widespread survey practice in which the response to an
opening question is used to determine whether a respondent should be asked cer-
tain subsequent questions. The objective is to eliminate inapplicable questions,
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thereby reducing respondent burden and the cost of interviewing. However, skip
sequencing can amplify data quality problems. In particular, skip sequencing ex-
acerbates the identification problems caused by item nonresponse and response
errors.

A respondent may not answer the opening question. When this happens, a com-
mon practice is to label the subsequent questions as inapplicable. However, they
may be applicable, in which case the item nonresponse problem is amplified. An-
other practice is to impute the answer to the opening question and, if the imputation
is positive, to also impute answers to the subsequent questions. Some of these im-
putations will inevitably be incorrect. A particularly odd situation occurs when the
answer to the opening question should be negative but the imputation is positive.
Then answers are imputed to subsequent questions that actually are inapplicable.

A respondent may answer the opening question with error. An error may cause
subsequent questions to be skipped, when they should be asked, or vice versa.
An error of the first type induces nonresponse to the subsequent questions. The
consequences of an error of the second type depend on how the respondent answers
the subsequent questions, having answered the opening one incorrectly.

ILLUSTRATION 1. The 2006 wave of the Health and Retirement Study (HRS)
asked current Social Security recipients about their expectations for the future of
the Social Security system. An opening question asked broadly: “Thinking of the
Social Security program in general and not just your own Social Security benefits:
On a scale from 0 to 100 (where 0 means no chance and 100 means absolutely
certain), what is the percent chance that Congress will change Social Security
sometime in the next 10 years, so that it becomes less generous than now?” If
the answer was a number greater than zero, a follow-up question asked “We just
asked you about changes to Social Security in general. Now we would like to know
whether you think these Social Security changes might affect your own benefits.
On a scale from 0 to 100, what do you think is the percent chance that the benefits
you yourself are receiving from Social Security will be cut some time over the next
10 years?” If a person did not respond to the opening question or gave an answer
of 0, the follow-up question was not asked.

ILLUSTRATION 2. The 1990 wave of the National Longitudinal Survey of
Older Men (NLSOM) queried respondents about their limitations in activities of
daily living (ADLs). An opening question asked broadly: “Because of a health or
physical problem, do you ever need help from anyone in looking after personal
care such as dressing, bathing, eating, going to the bathroom, or other such daily
activities?” If the answer was positive, the respondent was then asked if he/she re-
ceives help from another person in each of six specific ADLs (bathing/showering,
dressing, eating, getting in or out of a chair or bed, walking, using the toilet). If the
answer was negative or missing, the subsequent questions were skipped out.
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These illustrative uses of skip sequencing save survey costs by asking a broad
question first and by following up with a more specific question only when the
answer to the broad question meets specified criteria. However, nonresponse or
response error to the opening question may compromise the quality of the data
obtained.

This paper studies skip sequencing as a decision problem in questionnaire de-
sign. We suppose that a survey planner is considering whether and how to ask
about an item of interest. Three design options follow:

Option All (A): ask all respondents the question.
Option Skip (S): ask only those respondents who respond positively to an
opening question.
Option None (N ): do not ask the question at all.

These options vary in the cost of administering the questions and in the informa-
tiveness of the data they yield. Option (A) is most costly and is potentially most
informative. Option (S) is less costly but may be less informative if the opening
question has nonresponse or response errors. Option (N ) has no cost but is un-
informative about the item of interest. We suppose that the planner must choose
among these options, weighing cost and informativeness as he deems appropriate.
We suggest an approach to this decision problem and give illustrative applications.

The paper is organized as follows. As a prelude, Section 2 summarizes the few
precedent studies that consider the data quality aspects of skip sequencing. These
studies do not analyze skip sequencing as a decision problem.

Section 3 formalizes the problem of choice among design options. We assume
that the survey planner wants to minimize a loss function whose value depends on
the cost of a design option and its informativeness. Thus, evaluation of the design
options requires that the planner measure their cost and informativeness.

Suppose that a planner wants to combine sample data on an item with specified
assumptions in order to learn about a population parameter of interest. When the
sample size is large, we propose that informativeness be measured by the size of
the identification region that a design option yields for this parameter. As explained
in Manski (2003), the identification region for the parameter is the set of values that
remain feasible when unlimited observations from the sampling process are com-
bined with the maintained assumptions. The parameter is point-identified when
this set contains a single value and is partially identified when the set is smaller
than the parameter’s logical range, but is not a single point. In survey settings with
large samples of respondents, where identification rather than statistical inference
is the dominant inferential problem, we think it natural to measure informativeness
by the size of the identification region. The smaller the identification region, the
better. Section 6 discusses measurement of informativeness when the sample size
is small. Then confidence intervals for the partially identified parameter may be
used to measure informativeness.
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Sections 4 and 5 apply the general ideas of Section 3 in two polar settings hav-
ing distinct inferential problems. Section 4 studies cases in which there may be
nonresponse to the questions posed but it is assumed that there are no response
errors. We first derive the identification regions under options A, S and N . We
then show the circumstances in which a survey planner should choose each option.
To illustrate, we consider choice among options for querying respondents about
their expectations for future personal Social Security benefits. The HRS 2006 used
skip sequencing, as described in Illustration 1. Another option would be to ask all
respondents both the broad and the personal question. A third option would be to
ask only the broad question, omitting the one about future personal benefits.

Section 5 studies the other polar setting in which there is full response but there
may be response errors. Again, we first derive the identification regions under the
three design options and then show when a survey planner should choose each
option. To illustrate, we consider choice among options for querying respondents
about limitations in ADLs. The NLSOM used skip sequencing, as described in
Illustration 2. Another survey, the 1993 wave of the Assets and Health Dynamics
Among the Oldest Old (AHEAD) asked all respondents about a set of specific
ADLs. A third option would be to not ask about specific ADLs at all.

Section 6 concludes by calling for further analysis of questionnaire design as a
decision problem.

2. Previous studies of skip sequencing. As far as we are aware, there has
been no precedent research studying skip sequencing as a decision problem in
questionnaire design. Messmer and Seymour (1982) and Hill (1991, 1993) are the
only precedent studies recognizing that skip sequencing may amplify data quality
problems.

Messmer and Seymour studied the effect of skip sequencing on item nonre-
sponse in a large scale mail survey. Their analysis asked whether the difficult
structure of the survey, particularly the fact that respondents were instructed to
skip to other questions perhaps several pages away in the questionnaire, increased
the number of unanswered questions. Their analysis indicates that branching in-
structions significantly increased the rate of item nonresponse for questions fol-
lowing a branch, and that this effect was higher for older individuals. This work is
interesting but it does not have direct implications for modern surveys, where skip
sequencing is automated rather than performed manually.

Hill used data from five interview/reinterview sequence pairs in the 1984 Survey
of Income and Program Participation (SIPP) Reinterview Program. He examined
data errors that manifest themselves through a discrepancy between the responses
given in the two interviews, and categorized these discrepancies in three groups. In
his terminology, a response discrepancy occurs when a different answer is recorded
for an opening question in the interview and in the reinterview. A response induced
sequencing discrepancy occurs when, as a consequence of different answers to the
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opening question, a subsequent question is asked in only one of the two inter-
views. A procedurally induced sequencing discrepancy occurs when, in one of the
two interviews but not both, an opening question is not asked and, therefore, the
subsequent question is not asked either.

Hill used a discrete contagious regression model to assess the relative impor-
tance of these errors in reducing data quality. The contagion process was used to
express the idea that error spreads from one question to the next via skip sequenc-
ing. Within this model, the “conditional population at risk of contagion” expresses
the idea that the number of remaining questions in the sequence at the point where
the initiating error occurs gives an upper bound on the number of errors that can
be induced. Hill’s results suggest that the losses of data reliability caused by in-
duced sequencing errors are at least as large as those induced by response errors.
Moreover, the relative importance of sequencing errors strongly increases with the
sequence length. This suggests that the reliability of individual items will be lower,
all else equal, the later they appear in the sequence.

3. A formal design problem.

3.1. The choice setting. We pose here a formal questionnaire design problem
that highlights how skip sequencing may affect data quality. To focus on this mat-
ter, we find it helpful to simplify the choice setting in three major respects.

First, we suppose that a large random sample of respondents is drawn from
a much larger population. This brings identification to the fore as the dominant
inferential problem, the statistical precision of sample estimates receding into the
background as a minor concern. We also suppose that all sample members agree
to be interviewed. Hence, inferential problems arise only from item nonresponse
and response errors, not from interview nonresponse.

Second, we perform a “marginalist” analysis that supposes the entire design of
the questionnaire has been set except for one item. The only decision is whether
and how to ask about this item. Marginalist analysis enormously simplifies the de-
cision problem. In practice, a survey planner must choose the entire structure of
the questionnaire, and the choice made about one item may interact with choices
made about others. We recognize this but, nevertheless, find it useful for exposi-
tion to focus on a single aspect of the global design problem, holding fixed the
remainder of the questionnaire.

Third, we assume that the design chosen for the specific item in our marginalist
analysis affects only the informativeness of that item. In practice, the choice of how
to ask a specific item affects the length of the entire survey, which may influence
respondents’ willingness or ability to provide reliable responses to other items.
We recognize this but, nevertheless, find it useful for exposition to suppose that
the effect on other items is negligible.

Let y denote the item under consideration. As indicated in the Introduction, the
design options are as follows:
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A: ask all respondents to report y.
S: ask only those respondents who respond positively to an opening ques-
tion.
N : do not ask about y at all.

The population parameter of interest is labeled τ [P(y)], where P is the pop-
ulation distribution of y. For example, τ [P(y)] might be the population mean or
median value of y.

3.2. Measuring the cost, informativeness, and loss of the design options. The
design options differ in their costs and in their informativeness about τ [P(y)].
Abstractly, let ck denote the cost of option k, let dk denote its informativeness, and
let Lk = L(ck, dk) be the loss that the survey planner associates with option k. We
suppose that the planner wants to choose a design option that minimizes L(ck, dk)

over k ∈ (A,S,N).
To operationalize this abstract optimization problem, a survey planner must de-

cide how to measure loss, cost, and informativeness. Loss presumably increases
with cost and decreases with informativeness. We will not be more specific about
the form of the loss function here. We will, for simplicity, use a linear form in our
applications.

Cost presumably increases with the fraction of respondents who are asked the
item. In some settings, cost may be proportional to this fraction. Then ck = γfk,

where γ > 0 is the cost per respondent of data collection and fk is the fraction of
respondents asked the item under option k. It is the case that 1 = fA ≥ fS ≥ fN =
0. Hence, cA = γ, cS = γfS, cN = 0.

As indicated in the Introduction, we propose measurement of the informative-
ness of a design option by the size of the identification region obtained for the
parameter of interest. In general, the size of an identification region depends on
the specified parameter, the data produced by a design option, and the assumptions
that the planner is willing to maintain. Sections 4 and 5 show how in some leading
cases.

4. Question design with nonresponse. This section examines how nonre-
sponse affects choice among the three design options. To focus attention on the in-
ferential problem created by nonresponse, we assume that when sample members
do respond, all answers are accurate. Section 4.1 considers identification of the
parameter τ [P(y)]. Section 4.2 shows how to use the findings to choose a design.
Section 4.3 uses questions on future generosity of Social Security to illustrate.

4.1. Identification with nonresponse. It has been common in survey research
to impute missing values and to use these imputations as if they are real data. Stan-
dard imputation methods presume that data are missing at random (MAR), condi-
tional on specified observable covariates; see Little and Rubin (1987). If the main-
tained MAR assumptions are correct, then parameter τ [P(y)] is point-identified
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under both of design options A and S. Option S is less costly, so there is no reason
to contemplate option A from the perspective of identification. If option A is used
in practice, the reason must be to provide a larger sample of observations in order
to improve statistical inference.

Identification becomes the dominant concern when, as is often the case, a survey
planner has only a weak understanding of the distribution of missing data. We
focus here on the worst-case setting, in which the planner knows nothing at all
about the missing data. It is straightforward to determine the identification region
for τ [P(y)] under design options A and S. We draw on Manski [(2003), Chapter 1]
to show how.

Option A. To formalize the identification problem created by nonresponse, let
each member j of a population J have an outcome yj in a space Y ≡ [0, s]. Here
s can be finite or can equal ∞, in which case Y is the nonnegative part of the
extended real line. The assumption that y is nonnegative is not crucial for our
analysis, but it simplifies the exposition and notation.

The population is a probability space and y :J → Y is a random variable with
distribution P(y). Let a sampling process draw persons at random from J . How-
ever, not all realizations of y are observable. Let the realization of a binary random
variable zA

y indicate observability; y is observable if zA
y = 1 and not observable if

zA
y = 0. The superscript A shows the dependence of observability of y on design

option A.
By the Law of Total Probability,

P(y) = P(y|zA
y = 1)P (zA

y = 1) + P(y|zA
y = 0)P (zA

y = 0).(1)

The sampling process reveals P(y|zA
y = 1) and P(zA

y ), but it is uninformative
regarding P(y|zA

y = 0). Hence, the sampling process partially identifies P(y). In
particular, it reveals that P(y) lies in the identification region

HA[P(y)] ≡ [P(y|zA
y = 1)P (zA

y = 1) + ψP(zA
y = 0),ψ ∈ �Y ].(2)

Here �Y is the space of all probability distributions on Y and the superscript A on
H shows the dependence of the identification region on the design option.

The identification region for a parameter of P(y) follows immediately from
HA[P(y)]. Consider inference on the parameter τ [P(y)]. The identification region
consists of all possible values of the parameter. Thus,

HA{τ [P(y)]} ≡ {τ(η), η ∈ HA[P(y)]}.(3)

Result (3) is simple but is too abstract to be useful as stated. Research on par-
tial identification has sought to characterize HA{τ [P(y)]} for different parame-
ters. Manski (1989) does this for means of bounded functions of y, Manski (1994)
for quantiles, and Manski [(2003), Chapter 1] for all parameters that respect first-
order stochastic dominance. Blundell et al. (2007) and Stoye (2005) characterize
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the identification regions for spread parameters such as the variance, interquartile
range and the Gini coefficient.

The results for means of bounded functions are easy to derive and instructive,
so we focus on these parameters here. To further simplify the exposition, we re-
strict attention to monotone functions. Let � be the extended real line. Let g(·) be
a monotone function that maps Y into � and that attains finite lower and upper
bounds g0 ≡ miny∈Y g(y) = g(0) and g1 ≡ maxy∈Y g(y). Without loss of gener-
ality, by a normalization, we set g0 = 0 and g1 = 1. The problem of interest is to
infer E[g(y)].

The Law of Iterated Expectations gives

E[g(y)] = E[g(y)|zA
y = 1]P(zA

y = 1) + E[g(y)|zA
y = 0]P(zA

y = 0).(4)

The sampling process reveals E[g(y)|zA
y = 1] and P(zA

y ), but it is uninformative
regarding E[g(y)|zA

y = 0], which can take any value in the interval [0,1]. Hence,
the identification region for E[g(y)] is the closed interval

HA{E[g(y)]} = [
E[g(y)|zA

y = 1]P(zA
y = 1),

(5)
E[g(y)|zA

y = 1]P(zA
y = 1) + P(zA

y = 0)
]
.

HA{E[g(y)]} is a proper subset of [0,1] whenever P(zA
y = 0) is less than one. The

width of the region is P(zA
y = 0). Thus, the severity of the identification problem

varies directly with the prevalence of missing data.

Option S. There are two sources of nonresponse under option S. First, a sam-
ple member may not respond to the opening question, in which case she is not
asked about item y. Second, a sample member may respond to the opening ques-
tion but not to the subsequent question about item y.

Let x denote the item whose value is sought in the opening question. As in Il-
lustrations 1 and 2, we suppose that x is a broad item and that y is a more specific
one. For simplicity, we suppose here that x ∈ {0,1} and that x = 0 �⇒ y = 0.
A respondent is asked about y only if she answers the opening question and re-
ports x = 1. For example, consider Illustration 2 discussed in the Introduction. If a
respondent does not have any limitation in ADLs (x = 0), then clearly the respon-
dent does not have a limitation in bathing/showering (y = 0). Hence, the NLSOM
asks about y only when a respondent reports x = 1.

To formalize the identification problem, we need two response indicators, zS
x

and zS
y , the superscript S showing the dependence of nonresponse on design op-

tion S. Let zS
x = 1 if a respondent answers the opening question and let zS

x = 0
otherwise. Let zS

y = 1 if a respondent who is asked the follow-up question gives a
response, with zS

y = 0 otherwise. Hence, zS
y = 1 �⇒ zS

x = 1. This and the Law of
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Iterated Expectations and the fact that g(0) = 0 give

E[g(y)] = E[g(y)|x = 1]P(x = 1) + E[g(y)|x = 0]P(x = 0)

= E[g(y)|x = 1, zS
y = 1]P(zS

y = 1, x = 1)

+ E[g(y)|x = 1, zS
x = 1, zS

y = 0]P(zS
x = 1, zS

y = 0, x = 1)

+ E[g(y)|x = 1, zS
x = 0]P(zS

x = 0, x = 1).

The sampling process reveals E[g(y)|x = 1, zS
y = 1], P(zS

x = 1, zS
y = 0, x = 1),

and P(zS
y = 1) = P(zS

y = 1, x = 1), where the last equality holds because zS
y =

1 �⇒ x = 1. The data are uninformative about E[g(y)|x = 1, zS
x = 1, zS

y = 0] and
E[g(y)|x = 1, zS

x = 0], which can take any values in [0,1]. The data are partially
informative about P(zS

x = 0, x = 1), which can take any value in [0,P (zS
x = 0)].

It follows that the identification region for E[g(y)] is the closed interval

HS{E[g(y)]} = [
E[g(y)|zS

y = 1]P(zS
y = 1),

E[g(y)|zS
y = 1]P(zS

y = 1)(6)

+ P(zS
x = 1, zS

y = 0, x = 1) + P(zS
x = 0)

]
.

Thus, the severity of the identification problem varies directly with the prevalence
of nonresponse to the opening question and to the follow-up question in the sub-
population in which it is asked.

4.2. Choosing a design. Now consider choice among the three design options
(A,S,N). The widths of the identification regions for E[g(y)] under these options
are as follows:

dA = P(zA
y = 0), dS = P(zS

x = 1, zS
y = 0, x = 1) + P(zS

x = 0), dN = 1.

For specificity, let the loss function have the linear form Lk = γfk +dk . The first
component measures survey cost and the second measures the informativeness of
the design option. We set the coefficient on dk equal to one as a normalization
of scale. The parameter γ measures the importance that the survey planner gives
to cost relative to informativeness. There is no universally “correct” value of this
parameter. Its value is something that the survey planner must specify, depending
on the survey context and the nature of item y.

It follows from the above and from the derivations of Section 4.1 that the losses
associated with the three design options are as follows:

LA = γ + P(zA
y = 0),

LS = γP (zS
x = 1, x = 1) + P(zS

x = 1, zS
y = 0, x = 1) + P(zS

x = 0),

LN = 1.
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Thus, it is optimal to administer item y to all sample members if

γ + P(zA
y = 0) ≤ min{1, γ P (zS

x = 1, x = 1)

+ P(zS
x = 1, zS

y = 0, x = 1) + P(zS
x = 0)}.

Skip sequencing is optimal if

γP (zS
x = 1, x = 1) + P(zS

x = 1, zS
y = 0, x = 1) + P(zS

x = 0)

≤ min{1, γ + P(zA
y = 0)}.

If neither of these inequalities hold, it is optimal not to ask the item at all.
Determination of the optimal design option requires knowledge of the response

rates that would occur under options A and S. This is where the body of survey
research reviewed by Krosnick (1999) has a potentially important role to play.
Through the use of randomized experiments embedded in surveys, researchers
have developed considerable knowledge of the response rates that occur when var-
ious types of questions are posed to diverse populations. In many cases, this body
of knowledge can be brought to bear to provide credible values for the response
rates that determine loss under options A and S.

When the literature does not provide credible values for these response rates, a
survey planner may want to perform his own pretest, randomly assigning sample
members to options A and S. The size of the pretest sample only needs to be large
enough to determine with reasonable confidence which design option is best. It
does not need to be large enough to give precise estimates of the response rates.

4.3. Questioning about expectations on the generosity of social security. Con-
sider the questions on expectations for the future generosity of the Social Security
program cited in Illustration 1. The opening question was posed to 10,748 re-
spondents to the 2006 HRS who currently receive social security benefits, and the
follow-up was asked to the sub-sample of 9356 persons who answered the opening
question and gave a response greater than zero. We assume here that the only data
problem is nonresponse. The nonresponse rate to the opening question was 7.23%.
The nonresponse rate to the follow-up question, for the subsample asked this ques-
tion, was 2.27%. It is plausible that someone may not be willing to respond to the
first question and yet be willing to respond to the second one. In particular, this
would happen if a person does not want to speculate on what Congress will do but,
nevertheless, is sure that if Congress does act, it would only change benefits for fu-
ture retirees, not for those already in the system. The HRS use of skip sequencing
prevents observation of y in such cases.

To cast this application into the notation of the previous section, we let x = 1 if a
respondent places a positive probability on Congress acting, with x = 0 otherwise.
The rest of the notation is the same as above.
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An early release of the HRS data provide these empirical values for the quan-
tities that determine the identification region for E[g(y)] and loss under design
option S:

P(zS
x = 1, zS

y = 0, x = 1) = 0.0197,

P (zS
x = 1, x = 1) = 0.8705,

P (zS
y = 1) = 0.8508,

P (zS
x = 0) = 0.0723,

E[g(y)|zS
y = 1] = 0.4039,

where g(y) ≡ y
100 . Hence, the identification region for E[g(y)] under option S is

HS{E[g(y)]} = [0.3436,0.4356] and loss is LS = 0.8705γ + 0.0920.
The HRS data do not reveal the quantities that determine the identification re-

gion for E[g(y)] and loss under design option A. For this illustration, we con-
jecture that the mean response to item y that would be obtained under option A

equals the mean response that is observed under option S. Thus, E[g(y)|zA
y =

1] = 0.4039. We suppose further that the nonresponse probability would be
P(zA

y = 0) = 0.08. Then the identification region for E[g(y)] under option A is
HA{E[g(y)]} = [0.3716,0.4516] and loss is LA = γ + 0.08.

It follows from the above that it is optimal to administer item y to all sample
members if

γ ≤ 0.0927.

Skip sequencing is optimal if

0.0927 ≤ γ ≤ 1.0431.

If neither of these inequalities hold, it is optimal not to ask the item at all.

5. Question design with data errors. This section examines how response
errors affect choice among the three design options. To focus attention on the infer-
ential problem created by such errors, we assume that all sample members respond
to the questions posed. Section 5.1 considers identification. Section 5.2 shows how
to use the findings to choose a design. Section 5.3 uses questions on limitations in
ADLs to illustrate.

5.1. Identification with response errors. Section 4 showed that assumptions
about the distribution of missing data are unnecessary for partially informative
inference in the presence of nonresponse. In contrast, assumptions on the nature
or prevalence of response errors are a prerequisite for inference. In cases where
y is discrete, it is natural to think of data errors as classification errors. We con-
ceptualize response error here through a misclassification model previously used
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by Molinari (2003, 2008), and we draw on her findings. The Appendix discusses
the mixture model of data errors, which yields equivalent results beginning from a
different conceptualization of data errors.

The misclassification model is a simple formalism that does not have content
per se. It becomes informative when it is combined with an assumed upper bound
on the prevalence of data errors. When such a bound is available, Molinari (2003)
showed that E[g(y)] is partially identified under design option A. It is straight-
forward to show the same under option S. To simplify the exposition, we focus
here on the particularly simple case where y ∈ {0,1} and g(y) ≡ y. Corresponding
results for general discrete Y and any bounded function g(·) :Y → [0,1] may be
obtained from the authors.

Option A. As in Section 4, let each member j of a population J have an out-
come yj and let P(y) be the population distribution of y. Let a sampling process
draw persons at random from J . Let ỹ :J → Y denote the responses that popu-
lation members would give when queried about y. The researcher observes real-
izations of ỹ, which can either equal or differ from the corresponding realizations
of y. When ỹ �= y, data errors occur.

The misclassification model begins with the basic observation that, by the Law
of Total Probability,[

P(ỹA = 1)

P (ỹA = 0)

]
=

[
P(ỹA = 1|y = 1) P (ỹA = 1|y = 0)

P (ỹA = 0|y = 1) P (ỹA = 0|y = 0)

][
P(y = 1)

P (y = 0)

]
.

The superscript A shows that the response ỹA depends on design option A. The
sampling process reveals only P(ỹA), which per se is uninformative about P(y).
The basic maintained assumption is a known nontrivial lower bound 1 − λA > 0
on the probability that the realizations of ỹA and y coincide, or, strengthening this
assumption, a known nontrivial lower bound on the probability of correct report
for each value that y can take. Formally, these assumptions are as follows:

ASSUMPTION 1. P(y = ỹA) ≥ 1 − λA > 0.

ASSUMPTION 2. P(ỹA = k|y = k) ≥ 1 − λA > 0, ∀ k ∈ Y .

Molinari (2003) shows that, under Assumption 1,

HA[P(y = 1)] = [0,1] ∩ [P(ỹA = 1) − λA,P (ỹA = 1) + λA],(7)

while, under Assumption 2,

HA[P(y = 1)] = [0,1] ∩
[
P(ỹA = 1) − λA

1 − λA
,
P (ỹA = 1)

1 − λA

]
.(8)

Observe that these identification regions yield informative lower and upper bounds
on P(y = 1) when λA ≤ P(ỹA = 1) ≤ 1 − λA.
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Results (7) and (8) were derived earlier by Horowitz and Manski (1995), using a
different formalization of data errors. They studied partial identification of proba-
bility distributions under the mixture model of data errors used in studies of robust
inference following Huber (1964). Their main assumption was the availability of
an upper bound on the prevalence of data errors as defined in the mixture model,
just as Huber assumed in his seminal research. See the Appendix for further dis-
cussion of the relationship between the mixture model and the misclassification
model.

Option S. There are two sources of potential response error under option S.
First, a sample member may respond with error to the opening question. Then
she is erroneously not asked the follow up question if she gives a false negative
answer, and she is erroneously asked the follow up question if she gives a false
positive answer. Second, a sample member may (truthfully) respond affirmatively
to the opening question and then respond with error to the follow up.

As in Section 4, we let y denote the true value of the variable of interest and
x denote the true value of the variable elicited in the opening question. The error
ridden versions of these variables are ỹS and x̃S respectively. As in Section 4, skip
sequencing has certain logical implications when the opening question inquires
broadly about a subject and the follow up inquires more specifically. These logical
relations are x = 0 �⇒ y = 0 and x̃S = 0 �⇒ ỹS = 0.

The misclassification model begins with the observation that, by the Law of
Total Probability,

P(x̃S = i, ỹS = k)

= ∑
l=0,1

∑
m=0,1

P(x̃S = i, ỹS = k|x = l, y = m)P (x = l, y = m),

i, k ∈ {0,1}.
The sampling process reveals only the quantities P(x̃S = i, ỹS = k) on the

left-hand side of these equations, with the logic of skip sequencing implying
that P(x̃S = 1, ỹS = 1) = P(ỹS = 1), P(x̃S = 0, ỹS = 0) = P(x̃S = 0) and
P(x̃S = 0, ỹS = 1) = 0. The logic of skip sequencing also implies that P(x =
1, y = 1) = P(y = 1), P (x = 0, y = 0) = P(x = 0) and P(x = 0, y = 1) = 0.

The observable quantities and logical restrictions per se are uninformative about
P(y), but they become informative when combined with these extensions of As-
sumptions 1 and 2:

ASSUMPTION 3. P(x = x̃S, y = ỹS) ≥ 1 − λS > 0.

ASSUMPTION 4. P(x̃S = i, ỹS = k|x = i, y = k) ≥ 1 − λS > 0, i, k ∈ {0,1},
k ≤ i.
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Extension of the argument of Molinari (2003) shows that, under Assumptions 3,

HS[P(y = 1)] = [0,1] ∩ [P(ỹS = 1) − λS,P (ỹS = 1) + λS],(9)

while, under Assumption 4,

HS[P(y = 1)] = [0,1] ∩
[
P(ỹS = 1) − λS

1 − λS
,
P (ỹS = 1)

1 − λS

]
.(10)

These identification regions yield informative lower and upper bounds on P(y = 1)

when λS ≤ P(ỹS = 1) ≤ 1 − λS .
Whereas Assumptions 1 and 2 only concerned the coincidence of the true and

reported values of y, Assumptions 3 and 4 concern the joint coincidence of the true
and reported values of (x, y). Hence, it is reasonable to think that a survey planner
will ordinarily specify a higher lower bound in the first case than the second; that
is, 1 − λA > 1 − λS .

5.2. Choosing a design. Now consider choice among the three design op-
tions. The width of the identification region for P(y = 1) under option N remains
dN = 1, and therefore, the loss associated with this option is LN = 1.

For simplicity, we focus here on the case when the identification regions under
Options A and S yield informative lower and upper bounds; that is, λk ≤ P(ỹk =
1) ≤ 1 − λk, k ∈ (A,S). Table 1 contains the results for other cases.

Under Assumptions 1 and 3, the widths of the identification regions for
P(y = 1), under design options A and S, are dk = 2λk, k ∈ (A,S). Therefore,

TABLE 1
Value of Lk depending on the relationship between λk and P(ỹk = 1), k ∈ (A,S)

Assumptions 1 and 3 Assumptions 2 and 4

1 − λA ≤ P(ỹA = 1) ≤ λA LA = γ + 1 LA = γ + 1

P(ỹA = 1) ≤ min{λA,1 − λA} LA = γ + P(ỹA = 1) + λA LA = γ + P(ỹA=1)

1−λA

λA ≤ P(ỹA = 1) ≤ 1 − λA LA = γ + 2λA LA = γ + λA

1−λA

P (ỹA = 1) ≥ max{λA,1 − λA} LA = γ + 1 − P(ỹA = 1) + λA LA = γ + 1−P(ỹA=1)

1−λA

1 − λS ≤ P(ỹS = 1) ≤ λS LS = γ δS
x + 1 LS = γ δS

x + 1

P(ỹS = 1) ≤ min{λS,1 − λS} LS = γ δS
x + P(ỹS = 1) + λS LS = γ δS

x + P(ỹS=1)

1−λS

λS ≤ P(ỹS = 1) ≤ 1 − λS LS = γ δS
x + 2λS LS = γ δS

x + λS

1−λS

P (ỹS = 1) ≥ max{λS,1 − λS} LS = γ δS
x + 1 − P(ỹS = 1) + λS LS = γ δS

x + 1−P(ỹS=1)

1−λS

NOTE. δS
x ≡ P(x̃S = 1).
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the losses associated with these two design options are

LA = γ + 2λA, LS = γP (x̃S = 1) + 2λS.

Thus, it is optimal to ask about item y to all sample members if

γ + 2λA ≤ min{1, γ P (x̃S = 1) + 2λS}.
Skip sequencing is optimal if

γP (x̃S = 1) + 2λS ≤ min{1, γ + 2λA}.
If neither of these inequalities hold, it is optimal not to ask the item at all.

Under Assumptions 2 and 4, the widths of the identification regions for P(y =
1) are dk = λk

1−λk , k ∈ (A,S). Therefore, the losses are

LA = γ + λA

1 − λA
, LS = γP (x̃S = 1) + λS

1 − λS
.

Thus, it is optimal to ask about item y to all sample members if

γ + λA

1 − λA
≤ min

{
1, γ P (x̃S = 1) + λS

1 − λS

}
.

Skip sequencing is optimal if

γP (x̃S = 1) + λS

1 − λS
≤ min

{
1, γ + λA

1 − λA

}
.

If neither of these inequalities hold, it is optimal not to ask the item at all.
Determination of the optimal design option requires information on the nature

and prevalence of response errors under options A and S. There have been occa-
sional validation and reliability studies documenting the extent of measurement
error in survey items; see, for example, Groves (1989) and Bound, Brown and
Mathiowetz (2001). When the literature does not provide credible upper bounds
for the probability of data errors, a survey planner may want to perform his own
pretest, randomly assigning sample members to options A and S, and then obtain
corresponding validation or reliability data. As in Section 4, the size of the pretest
sample only needs to be large enough to determine with reasonable confidence
which design option is best. It does not need to be large enough to give precise
estimates of the upper bounds on the probabilities of data errors.

5.3. Questioning about limitations in ADLs. Consider the questions on limi-
tations in ADLs cited in Illustration 2. The opening question was posed to 2092
respondents to the 1990 NLSOM, of whom 92.45% were self respondents and
7.55% were proxy respondents. The follow-ups were asked to the 192 persons
who responded to the opening question and gave an affirmative answer. We focus
here on the first follow-up ADL question: “Now I would like to be more specific.
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Because of a health or physical problem, do you receive help from another per-
son in bathing or showering?” The nonresponse rate to the opening question was
0.62%. The nonresponse rate to the follow-up question, for the subsample asked
this question, was 0.52%. Given these minimal nonresponse rates, we abstract from
nonresponse here and concentrate our attention on response error.

To keep this illustration simple, we suppose here that the question on bathing or
showering is the only follow up to the NLSOM opening question on limitations in
ADLs. A more realistic analysis would jointly consider the six follow up questions
that actually appear in the survey. This is a straightforward extension of our analy-
sis if one maintains the “marginalist” assumption that the design chosen for the set
of ADL items does not affect data quality elsewhere in the survey. We think this
assumption reasonable, because the NLSOM contains only six easily understood
questions on limitations in specific ADLs. Item nonresponse to these questions is
minimal. Item nonresponse also was minimal when similar questions were asked
in the AHEAD survey, described below, which does not use skip sequencing.

We caution that there are circumstances in which skip sequencing avoids hav-
ing to ask some respondents a long, laborious sequence of irrelevant questions.
When this is the case one may, as noted in Section 3.1, think that the skip sequenc-
ing decision may materially affect respondents’ willingness or ability to provide
reliable responses throughout the survey. When respondent burden is a potential
concern, one may find it necessary to move away from simple marginalist analysis
of the type we perform and instead treat the design of the entire questionnaire as a
complex joint decision problem.

For this illustration, we take the parameter of interest to be the cross-sectional
probability P(y = 1) that an individual in the population represented by the
NLSOM needs help in bathing/showering. This is one of several parameters of
potential interest when studying limitations in ADL. Connor et al. (2006) empha-
size the importance of longitudinal measurement of the duration of disability and
of transitions in and out of disability. Concern with these matters might lead one
to be interested in P [y(t)−y(t − k)] or P [y(t)|y(t − k)], where y(t) and y(t − k)

measure limitations in ADLs at two interviews spaced k years apart. It would be
of interest to characterize the identification regions for these transition parameters
under alternative questionnaire designs.

Consider P(y = 1). The reported probability is P(ỹS = 1) = 0.073. To apply
the misclassification model, we need to set values for the upper bounds λA and λS

on the probability of occurrence of data errors under options A and S. We are not
aware of validation studies placing upper bounds on the probability of data errors
in self reports of limitations in ADLs for populations similar to the one surveyed
by the NLSOM, under design option S. However, there have been studies that
compare self reports and proxy reports, as well as some that assess the time series
consistency of self reports across interviews. Most of this work analyzes surveys
in which the questionnaire uses design option A. See, for example, Rubenstein
et al. (1984), Mathiowetz and Groves (1985), Moore (1988), Mathiowetz and Lair
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(1994), Rodgers and Miller (1997), Mathiowetz and Wunderlich (2000) and Miller
and DeMaio (2006). In particular, Rubenstein et al. (1984) and Miller and DeMaio
(2006) report the results of reliability studies providing information on the preva-
lence of data errors.

Rubenstein et al. (1984) analyze two samples of individuals, one providing data
on hospitalized elderly persons and the other on nursing home residents. They
compare the reports of limitations in ADLs and additional daily activities (such
as telephoning, shopping, handling finances, cooking, etc.) of the institutional-
ized elderlies and of a “community proxy” (a spouse, child, or close friend) with
those of a nurse proxy. If one assumes that the report of the nurse proxy is al-
ways correct, one can conclude from this study that the probability of a data error
is bounded above by 0.36. Miller and DeMaio (2006) analyze data on limitations
in bathing/showering collected in the 2006 administration of the American Com-
munity Survey Content Test. Reliability estimates based on reinterviews suggest a
probability of data errors of at most 0.17.

The sampling frame and questionnaire design of the NLSOM differ from the
ones analyzed in these reliability studies. Hence, their findings can only be sugges-
tive for our purposes. In what follows we use the bounds in Assumption 5 below.
Table 2 collects the results obtained using different values of λA and λS, which en-
compass the upper bounds on probabilities of data errors reported by Rubenstein
et al. (1984) and Miller and DeMaio (2006).

ASSUMPTION 5. λA = 0.15, λS = 0.25.

The identification regions for P(y = 1) under design options A and S are given
in Table 1. [The forms given in Section 5.2 do not apply here because the in-
equalities λk ≤ P(ỹk = 1) ≤ 1 − λk, k ∈ (A,S) do not hold in this application.]
Using λS = 0.25 as the upper bound on data errors under design option S, the
identification region for P(y = 1) is HS[P(y = 1)] = [0,0.3230] under Assump-
tion 3 and HS[P(y = 1)] = [0,0.0973] under Assumption 4. The data reveal that
P(x̃S = 1) = 0.092. Hence, loss is LS = 0.092γ + 0.3230 under Assumption 3,
and LS = 0.092γ + 0.0973 under Assumption 4.

The NLSOM data do not reveal the quantity P(ỹA = 1) needed to determine
the identification region for P(y = 1) under design option A. For this illustration,
we conjecture that the rate of reported limitations in bathing/showering that would
be obtained under option A equals the rate that is observed under option S. Thus,
P(ỹA = 1) = 0.073. Using λA = 0.15 as the upper bound on data errors under op-
tion A, the identification region for P(y = 1) is HA[P(y = 1)] = [0,0.2230] under
Assumption 1 and HA[P(y = 1)] = [0,0.0859] under Assumption 2. Hence, loss
is LA = γ + 0.2230 under Assumption 1 and LA = γ + 0.0859 under Assump-
tion 2.
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TABLE 2
Values of γ that determine the choice of a certain design option, depending on (λA, λS )

Assumptions 1 and 3 Assumptions 2 and 4

λA λS Option A is chosen Option S is chosen Option A is chosen Option S is chosen

0.100 0.100 Never 0.000 ≤ γ ≤ 8.989 Never 0.000 ≤ γ ≤ 9.988
0.125 γ ≤ 0.027 0.027 ≤ γ ≤ 8.717 γ ≤ 0.003 0.003 ≤ γ ≤ 9.963
0.170 γ ≤ 0.077 0.077 ≤ γ ≤ 8.228 γ ≤ 0.007 0.007 ≤ γ ≤ 9.914
0.200 γ ≤ 0.110 0.110 ≤ γ ≤ 7.902 γ ≤ 0.011 0.011 ≤ γ ≤ 9.878
0.360 γ ≤ 0.286 0.286 ≤ γ ≤ 6.163 γ ≤ 0.036 0.036 ≤ γ ≤ 9.630
0.400 γ ≤ 0.330 0.330 ≤ γ ≤ 5.728 γ ≤ 0.045 0.045 ≤ γ ≤ 9.547

0.125 0.125 Never 0.000 ≤ γ ≤ 8.717 Never 0.000 ≤ γ ≤ 9.963
0.170 γ ≤ 0.050 0.050 ≤ γ ≤ 8.228 γ ≤ 0.005 0.005 ≤ γ ≤ 9.914
0.200 γ ≤ 0.083 0.083 ≤ γ ≤ 7.902 γ ≤ 0.008 0.008 ≤ γ ≤ 9.878
0.360 γ ≤ 0.259 0.259 ≤ γ ≤ 6.163 γ ≤ 0.034 0.034 ≤ γ ≤ 9.630
0.400 γ ≤ 0.303 0.303 ≤ γ ≤ 5.728 γ ≤ 0.042 0.042 ≤ γ ≤ 9.547

0.170 0.170 Never 0.000 ≤ γ ≤ 8.228 Never 0.000 ≤ γ ≤ 9.914
0.200 γ ≤ 0.033 0.033 ≤ γ ≤ 7.902 γ ≤ 0.004 0.004 ≤ γ ≤ 9.878
0.360 γ ≤ 0.209 0.209 ≤ γ ≤ 6.163 γ ≤ 0.029 0.029 ≤ γ ≤ 9.630
0.400 γ ≤ 0.253 0.253 ≤ γ ≤ 5.728 γ ≤ 0.037 0.037 ≤ γ ≤ 9.547

0.200 0.200 Never 0.000 ≤ γ ≤ 7.902 Never 0.000 ≤ γ ≤ 9.878
0.360 γ ≤ 0.176 0.176 ≤ γ ≤ 6.163 γ ≤ 0.025 0.025 ≤ γ ≤ 9.630
0.400 γ ≤ 0.220 0.220 ≤ γ ≤ 5.728 γ ≤ 0.033 0.033 ≤ γ ≤ 9.547

0.360 0.360 Never 0.000 ≤ γ ≤ 6.163 Never 0.000 ≤ γ ≤ 9.630
0.400 γ ≤ 0.044 0.044 ≤ γ ≤ 5.728 γ ≤ 0.008 0.008 ≤ γ ≤ 9.547

0.400 0.400 Never 0.000 ≤ γ ≤ 5.728 Never 0.000 ≤ γ ≤ 9.547

It follows that it is optimal to ask all sample member about item y if

γ + 0.2230 ≤ min{1,0.092γ + 0.3230} ⇐⇒ γ ≤ 0.1101

under Assumptions 1 and 3,

γ + 0.0859 ≤ min{1,0.092γ + 0.0973} ⇐⇒ γ ≤ 0.0126

under Assumptions 2 and 4.

Skip sequencing is optimal if

0.092γ + 0.3230 ≤ min{1, γ + 0.2230} ⇐⇒ 0.1101 ≤ γ ≤ 7.3587

under Assumptions 1 and 3,

0.092γ + 0.0973 ≤ min{1, γ + 0.0859} ⇐⇒ 0.0126 ≤ γ ≤ 9.8116

under Assumptions 2 and 4.

Otherwise, it is optimal not to ask the item at all.
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We conclude this section by calling attention to the fact that the 1993 wave of the
Assets and Health Dynamics Among the Oldest Old (AHEAD) survey targeted a
population similar in age to the NLSOM. The AHEAD survey also asked respon-
dents about their limitations in ADLs, but it used neither design option A or S.
Instead, AHEAD omitted the opening broad question of the NLSOM and im-
mediately posed a series of specific questions to all respondents. The fraction of
AHEAD respondents who reported limitations in bathing/showering was 0.085, a
value close to that elicited in the NLSOM. To compare the AHEAD and NLSOM
designs would require generalization of the decision problem that we set up in
Section 3. In particular, we would need to take into account the loss of informa-
tion on limitations in ADLs that may potentially occur in AHEAD by dropping the
opening question.

6. Conclusion. Survey planners have long had to cope with the tension be-
tween the desire to reduce the costs and increase the informativeness of surveys.
However, they have not studied questionnaire design as a formal decision problem
in which one uses an explicit loss function to quantify the trade-off between cost
and informativeness. Groves (1987) called attention to this in an article in Public
Opinion Quarterly (POQ), writing (page S167):

“The inextricable link between costs and errors rarely is formally acknowledged in
methods articles in POQ, or in any other scholarly journal for that matter. That state
of affairs has two detrimental effects: (1) methodologists invent methods to reduce an
error, but fail to measure the cost impact of the new idea, and (2) practitioners reject
new ideas until it becomes clear that they result in reduced costs. Given the link between
errors and costs, many new ideas require spending money to reduce an error.”

Groves went on to contrast the situation in questionnaire design with that in
survey sampling, which has long used formal models of cost and sampling error to
analyze the problem of choosing sample size. See also Spencer (1980, 1985, 1994),
who has argued broadly for benefit–cost analysis of programs of data collection,
with particular attention to the U.S. Census.

This paper has formally analyzed skip sequencing as a decision problem in
questionnaire design. We have intentionally kept the exposition simple in order
to highlight the basic trade-off between cost and informativeness in choosing a de-
sign option. Survey researchers and statisticians with traditional training may be
least familiar with our measurement of informativeness by the size of the identifi-
cation region for a population parameter of interest. Although identification is the
central problem generated by nonresponse and response errors, the research liter-
atures in survey research and statistics contain remarkably little formal analysis of
identification. We think that the illustrative cases considered in Sections 4 and 5
give a constructive sense of how to proceed, without getting bogged down in math-
ematical detail.

While identification is the dominant issue in assessing data quality in large
surveys, sampling error can also be a significant concern in smaller surveys.
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A straightforward extension of our work to smaller surveys is to measure in-
formativeness through a confidence interval for the partially identified parame-
ter of interest. The literature on partial identification has recently spawned many
approaches to the construction of asymptotically valid confidence intervals. See,
for example, Imbens and Manski (2004), Chernozhukov, Hong and Tamer (2007)
and Beresteanu and Molinari (2008). Another approach, with a firmer decision-
theoretic foundation, would be to address the questionnaire design problem from
the perspective of Wald (1950).

APPENDIX: MIXTURE MODEL AND MISCLASSIFICATION MODEL

The mixture model of robust statistics introduces latent variables e ∈ Y and
w ∈ {0,1}, and views the reported values ỹ as generated by the mixture ỹ = wy +
(1 −w)e. The unobservable binary variable w denotes whether y or e is observed.
Realizations of ỹ with w = 1 are said to be error free and those with w = 0 are
said to be data errors. By the Law of Total Probability, the relationship between
the observable distribution P(ỹ) and the unobservable distribution P(y) is

P(ỹ) = P(y|w = 1)P (w = 1) + P(e|w = 0)P (w = 0),(11)

P(y) = P(y|w = 1)P (w = 1) + P(y|w = 0)P (w = 0).(12)

The mixture model per se is a formalism without content. It becomes informative
when accompanied by assumption of an upper bound on the occurrence of data
errors, as follows:

ASSUMPTION A.1. P(w = 0) ≤ λ < 1.

It is sometimes also assumed that the occurrence of errors is statistically inde-
pendent of the value of y. That is,

ASSUMPTION A.2. y ⊥ w.

Horowitz and Manski (1995) studied the implications of the mixture model for
partial identification of probability distributions; see also Manski (2003), Chap-
ter 4. They derived the identification region for P(y) and for parameters of this
distribution that respect stochastic dominance, under Assumption A.1 alone and
under Assumptions A.1 and A.2. They refer to the first case as “corrupted sam-
pling,” and to the second as “contaminated sampling.”

The relationship between the mixture model and the misclassification model
can be easily established starting from equation (11). Observe that

P(ỹ = j |y = k)
(13)

=
⎧⎨
⎩

P(w = 1|y = k) + P(e = k|y = k,w = 0)P (w = 0|y = k),

if j = k,
P(e = j |y = k,w = 0)P (w = 0|y = k), if j �= k.
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Hence, assumptions on P(w|y) translate immediately into assumptions for the
misclassification model. Molinari (2003) shows that if the distribution of e is un-
restricted, the mixture model with Assumptions A.1 and A.2 is equivalent to the
misclassification model with an assumption specifying a common lower bound on
the probabilities of correct report, P(ỹ = k|y = k), k ∈ Y . The mixture model with
Assumption A.1 alone is equivalent to the misclassification model with an assump-
tion specifying a lower bound on the probability that ỹ and y coincide, P(ỹ = y).
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