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Storm surge, the onshore rush of sea water caused by the high winds
and low pressure associated with a hurricane, can compound the effects of
inland flooding caused by rainfall, leading to loss of property and loss of
life for residents of coastal areas. Numerical ocean models are essential for
creating storm surge forecasts for coastal areas. These models are driven pri-
marily by the surface wind forcings. Currently, the gridded wind fields used
by ocean models are specified by deterministic formulas that are based on
the central pressure and location of the storm center. While these equations
incorporate important physical knowledge about the structure of hurricane
surface wind fields, they cannot always capture the asymmetric and dynamic
nature of a hurricane. A new Bayesian multivariate spatial statistical model-
ing framework is introduced combining data with physical knowledge about
the wind fields to improve the estimation of the wind vectors. Many spatial
models assume the data follow a Gaussian distribution. However, this may
be overly-restrictive for wind fields data which often display erratic behavior,
such as sudden changes in time or space. In this paper we develop a semi-
parametric multivariate spatial model for these data. Our model builds on the
stick-breaking prior, which is frequently used in Bayesian modeling to cap-
ture uncertainty in the parametric form of an outcome. The stick-breaking
prior is extended to the spatial setting by assigning each location a different,
unknown distribution, and smoothing the distributions in space with a series
of kernel functions. This semiparametric spatial model is shown to improve
prediction compared to usual Bayesian Kriging methods for the wind field of
Hurricane Ivan.

1. Introduction. Modeling surface wind fields is essential for hurricane fore-
casting. A wind field gives the wind velocity at any location in the vicinity of the
hurricane. The numerical ocean models used to predict the storm surge for coastal
areas rely heavily on wind field inputs. Currently, deterministic formulas such as
the Holland model [Holland (1980)] are used to generate the wind fields for the
storm surge model based on a few meteorological inputs such as the radius and
central pressure of the storm.
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While the Holland model captures many of the important features of a wind
field, Foley and Fuentes (2006) show that this model does not allow for asymme-
tries often seen in wind fields and that storm surge prediction can be improved by
supplementing the Holland model with a Gaussian geostatistical model. Another
approach would be to introduce a more sophisticated deterministic wind model.
A coupled atmospheric—oceanic numerical model can be used to simulate the sur-
face winds at the boundary layer of the ocean model. However, the CPU time
required to produce these modeled winds at high enough resolution for coastal
prediction (1 to 4 km grids) prevents such model runs from being used in real-time
applications. Alternatively, one could write a stochastic version of the determin-
istic model and approximate the physical model using a stochastic spatial basis.
This is the approach of Wikle et al. (2001) for oceanic surface winds.

This paper proposes a semiparametric multivariate spatial model to predict a
wind field. The predictions in this paper are purely spatial predictions made us-
ing multiple sources of observed data and Holland model output from a single
time point. Several Gaussian multivariate spatial covariance models have been pro-
posed. For example, Brown, Le and Zidek (1994) model the joint covariance of the
observed multivariate data using an inverse Wishart distribution centered on a sep-
arable covariance matrix. Another approach is to represent the multivariate spatial
process as a linear combination of univariate spatial process. Variations of this
linear model of coregionization (LMC) have been used by Grzebyk and Wacker-
nagel (1994), Wackernagel (2003), Schmidt and Gelfand (2003), Banerjee, Carlin
and Gelfand (2004) and Gelfand et al. (2004). Foley and Fuentes (2006) apply the
LMC to the two orthogonal west/east and north/south components of hurricane
wind vectors.

Spatial models often assume the outcomes follow normal distributions. The
Gaussian assumption is difficult to verify empirically and may be overly-restrictive
for hurricane wind field data, which can display erratic behavior, such as sudden
changes in time or space. For example, on the periphery of the map in Figure 1(a)
the wind vectors vary smoothly from one measurement to the next. However, near
the eye of the hurricane (center of the plot), the wind vectors are extremely volatile.
Traditional Gaussian spatial models tend to oversmooth the area near the eye of
the hurricane, resulting in a poor fit. Therefore, in this paper we develop a new
multivariate semiparametric spatial model for these data that avoids specifying a
Gaussian distribution for the spatial random effects.

Our semiparametric model avoids assuming normality by extending the stick-
breaking prior of Sethuraman (1994) to the multivariate spatial setting. For general
(nonspatial) Bayesian modeling, the stick-breaking prior offers a way to model a
distribution of a parameter as an unknown quantity to be estimated from the data.
The stick-breaking prior for the unknown distribution F' is the mixture

(1) FL3 pisdn,

i=l
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where the number of mixture components m may be infinite, p; are the mixture
probabilities, and §(6;) is the Dirac distribution with point mass at 6;. The mix-
ture probabilities “break the stick” into m pieces so the sum of the pieces is one,
that is, }7* | p; = 1. The first mixture probability is modeled as p; = Vl, where

V1 ~ Beta(a, b). Subsequent mixture probabilities are p; = (1 — > 1 Pi)\Vi,
where 1 — Zi_ 11 pi i is the probability not accounted for by the first i — 1 mixture

components, and V; b " Beta(a, b) is the proportion of the remaining probability

assigned to the ith component. The locations 6; tid " F,, where F, is a known prior
distribution. A special case of this prior is the Dirichlet process prior with m = oo
and a = 1 [Ferguson (1973, 1974)].

The stick-breaking prior in (1) has been extended to the univariate spatial set-
ting by incorporating spatial information into either the model for the locations
6; or the model for the masses p;. Gelfand, Kottas and MacEachern (2005a) and
Gelfand, Guindani and Petrone (2007) model the locations as vectors drawn from a
spatial distribution. This approach is generalized by Duan, Guindani and Gelfand
(2007) to allow both the weights and locations to vary spatially. However, these
approaches require replication, and thus are not appropriate for analyzing the wind
fields data. Griffin and Steel (2006) propose a spatial Dirichlet model that does not
require replication. Their model permutes the V; based on spatial location, allow-
ing the prior to be different in different regions of the spatial domain.

This paper is the first to extend the stick-breaking prior to the multivariate spatial
setting. Our semiparametric multivariate spatial model for a hurricane wind field
has bivariate normal priors for the locations @;. Similar to Griffin and Steel, the
probabilities p; vary spatially. However, rather than a random permutation of V;,
we introduce a series of kernel functions to allow the masses to change with space.
This results in a flexible spatial model, as different kernel functions lead to dif-
ferent relationships between the distributions at nearby locations. This model is
similar to that of Dunson and Park (2007), who use kernels to smooth the weights
in the non-spatial setting. Our model is also computationally convenient because it
avoids reversible jump MCMC steps and inverting large matrices which is crucial
for analysis of hurricane wind fields since estimates must be made in real time.

The paper proceeds as follows. Section 2 describes the various sources of data
used to map the wind field. The semiparametric spatial prior for univariate spatial
data is introduced in Section 3. This model is extended to a multivariate model to
analyze wind field data in Section 4. The model incorporates both a deterministic
wind model and multiple sources of wind observations and allows for potential
bias for each data source. This model is used to map the wind field of Hurricane
Ivan in Section 5. Section 6 concludes.

2. Description of the wind fields data. We model wind fields data from Hur-
ricane Ivan as it passed through the Gulf of Mexico at 12 pm on September 15,
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F1G. 1. Plot of various types of wind field data/output for Hurricane Ivan on September 15, 2004.

2004. The three sources of information used in this analysis are plotted in Fig-
ure 1. The first source is gridded satellite data [Figure 1(a)] available from NASAs
SeaWinds database (http://podaac.jpl.nasa.gov/products/product109.html). These
data are available twice daily on a 0.25 x 0.25 degree global grid. Due to the satel-
lite data’s potential bias, measurement error and course temporal resolution, we
supplement our wind fields analysis with data from NOAA’s National Data Buoy
Center. Buoy data are collected every ten minutes at a relatively small number of
marine locations [Figure 1(b)]. These measurements are adjusted to a common
height of 10 meters above sea level using the algorithm of Large and Pond (1981).

In addition to satellite and buoy data, our model incorporates the deterministic
Holland model [Holland (1980)]. The NOAA currently uses this model alone to
produce wind fields for their numerical ocean models. The Holland model predicts
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that the wind speed at location s is

B /Rmax\ B Rmax\ B\ 1/2
) H(s)=(—( ) (Pn—Pc)exp[—( ) ]) ,
,O r r

where 7 is the radius (km) from the storm center to site s, P, is the ambient pres-
sure (mb), P, is the hurricane central pressure (mb), p is the air density (kg m3),
Rmax is radius of the maximum wind (km), and B controls the shape of the pres-
sure profile.

Section 4’s multivariate spatial model decomposes the wind vectors into their
orthogonal west/east (1) and north/south (v) vectors. The Holland model for the u
and v components is

3) Hy(s) = H(s)sin(¢) and H,(s) = H(s)cos(¢),

where ¢ is the inflow angle at site s, across circular isobars toward the storm center,
rotated to adjust for the storm’s direction. We fix the parameters P, = 1010 mb,
P, =939 mb, p = 1.2 kg m™3, and Rmax = 49 and B = 1.9 using the meteo-
rological data from the national hurricane center (http://www.nhc.noaa.gov) and
recommendations of Hsu and Yan (1998). The output from this model for Hur-
ricane Ivan is plotted in Figure 1(c). By construction, the Holland model output
is symmetric with respect to the storm’s center, which does not agree with the
satellite observations in Figure 1(a).

3. The spatial stick-breaking (SSB) prior. In this section we develop a uni-
variate semiparametric spatial model for data from a single source. The spatial
stick-breaking prior developed here is incorporated into our model for the wind
fields data in Section 4. Let y(s), the observed value at site s = (s1, 52), have the
model

4) y(s) = p(s) +x(s)'B + &(s),
where (. (s) is a spatial random effect, x (s) is a vector of covariates for site s, 8 are

the regression parameters and &(s) 1L N(0,02).

The spatial effects are each assigned a different prior distribution, that is,
w(s) ~ F(s). The distributions F(s) are unknown and smoothed spatially. Extend-
ing (1) to depend on s, the prior for F(s) is the potentially infinite mixture

m
5) F& LY pi(9)36),

i=1
where pi(s) = Vi(s), pi(s) = Vi) T2\ (1 — Vj(8)) for i > 1, and Vi(s) =
w; (s)V;. The distributions F(s) are related through their dependence on the V;
and 6;, which are given the priors V; ~ Beta(a, b) and 6; ~ N (0, 72), each inde-
pendent across i. However, the distributions vary spatially according to the ker-
nel functions w; (s), which are restricted to the interval [0, 1]. The function w;(s)
is centered at knot ¥; = (V¥1;, ¥2;) and the spread is controlled by the band-
width parameter €; = (€1;, €2;). Both the knots and the bandwidths are modeled
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TABLE 1
Examples of kernel functions and the induced functions y (s, s'), where hj = |s| — si |+ |52 — sél,

hy = \/(sl — si)z + (sp — sé)z, 1 (-) is the indicator function, and x* = max(x, 0)

Name w; (S) Model for €1; and €y; y(s,s)

. ji Isj—=sil 4
Uniform 5y 10sj = ¥jil < 4 €1i, €2 = A o, = =55t
Uniform H2 i IUsj —vjil < e” €1;, €2; ~ Expo()) exp(— hl/k)

2
Squared exp. H2 _pexp(— (sj=¥5i)” w” ) €15, €1 =222 0.5 exp(—h—g)
2
Squared exp. ]‘[3 1 exp(— f") ) €15, €2 ~IG(1.5, )‘7) 0.5/(1 +( 2)2)

Jt

as unknown parameters with priors that are independent of the V; and 6;. The
knots ¥; are given independent uniform priors over the bounded spatial domain
(this is generalized in Section 4). The bandwidths can be modeled as equal for
each kernel function or varying across kernel functions following prior distribu-
tions.

Although there are many possible kernel functions, Table 1 gives two exam-
ples. Uniform kernels offer bounded support. This is an attractive feature when
modeling hurricane wind fields because wind behavior may be different in dif-
ferent subregions, for example, in the center of the storm versus the periph-
ery. We compare uniform kernels with squared-exponential kernels. Squared-
exponential kernels decay slowly in space which may be desirable in other ap-
plications.

To ensure that the stick-breaking prior is proper, we must choose priors for ¢;
and V; so that 3", p;(s) = 1 almost surely for all s. Appendix A.l shows that the
SSB prior with infinite m is proper if E(V;) =a/(a + b) and E[w;(s)] [where the
expectation is taken over (¥;, €;)] are both positive. For finite m, we can ensure
that 37", pi(s) = 1 for all s by setting V,,,(s) = 1 for all s. This is equivalent to
truncating the infinite mixture by attributing all of the mass from the terms with
i >mto py(s).

In practice, allowing m to be infinite is often unnecessary and computation-
ally infeasible. Choosing the number of components in a mixture model is no-
toriously problematic. Fortunately, in this setting the truncation error can easily
be accessed by inspecting the distribution of p,,(s), the mass of the final compo-
nent of the mixture. The number of components m can be chosen by generating
samples from the prior distribution of p,,(s). We increase m until p,,(s) is satis-
factorily small for each site s. Also, the truncation error is monitored by inspecting
the posterior distribution of p,,(s), which is readily available from the MCMC
samples.
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Assuming finite m, the spatial stick-breaking model can be written as a mixture
model where g(s) € {1, ..., m} indicates site s’s group, that is,

V() = Og) + XV B+e(s),  where e(s) < N (0, 02,
0; " N©O,TH, j=1,....m,

©) |
g(s) ~ Categorical(pi(s), ..., pm(S)),

pi®) = wie)V; [T —wi(s)Vil,
k<j

where w(s) = g(5), V; L Beta(a, b), and Hk<j[1 —wr(S)Vk] =1 for j =1.
To complete the Bayesian model, we specify priors for the hyperparameters. The
regression parameters f8 can be given vague normal priors. In the analysis of Hurri-
cane Ivan in Section 5, the mean term x(s)’ is replaced by the Holland model out-
put. The parameters that control the beta prior for the V;, a and b, have independent
Uniform (0, 10) priors, and the variances o2 and 72 have InvGamma(0.01, 0.01)
priors. We also tried InvGamma(0.5, 0.005) priors for the variances and found that
the prior had little effect. The knots that control the center of the kernel functions,
¥ ;, are given uniform priors over the spatial domain and examples of priors for
bandwidth parameters € ; are given in Table 1. The prior for the bandwidths depend
on a range parameter, A, which is given a Uniform(0, Amax ) prior. We take Apax to
be the maximum distance between any pair of points in the spatial grid. This model
can be implemented using WinBUGS. WinBUGS can be freely downloaded from
http://www.mrc-bsu.cam.ac.uk/bugs/.

The mixture model in (6) is nowhere continuous unless uniform kernels are
selected and V; € {0, 1} for all i. An alternative suggested by a referee is

) g(s)=j  where p;(s) =max{pi(s),..., pm(s)}.

This would result in a piece-wise constant random tessellation model which may
be preferred for smooth spatial data. However, to avoid oversmoothing micro-scale
phenomena in hurricanes, we use the everywhere discontinuous model in (6).

Figure 2(a) illustrates the spatially varying weights of the stick-breaking prior
for a one-dimensional example with m = 6 and squared exponential kernel func-
tions. We arbitrarily select knots ¥ = (0.5,0.0, 1.0,0.2, 0.8), bandwidths € =
(0.1,0.2,0.2,0.2,0.2) and V = (0.9,0.7,0.7,0.9, 0.9). The first kernel function
is centered at s = 0.5. Since V| = 0.9, the mass for the first component for s = 0.5
is p1(0.5) = 0.9 and decreases as s moves away from 0.5. The second and third
kernel functions are centered at s = 0.0 and s = 1.0 respectively, and dominate the
probabilities near the edges. For this example, p,,(s) is as large as 0.2, suggesting
m should be increased to give an acceptable approximation to the infinite spatial
stick-breaking prior.
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(a) Probabilities p;(s) (b) Cor(u(s), u(s")
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FIG. 2. Example to illustrate the spatial stick-breaking prior. In this example, the spa-
tial domain is the one-dimensional interval (0,1) and the model has Gaussian ker-
nels with knots ¢ = (0.5,0.0,1.0,0.2,0.8), bandwidths ¢ = (0.1,0.2,0.2,0.2,0.2) and
V =1(0.9,0.7,0.7,0.9,0.9). Panel (a) shows the masses p;(s) and panel (b) shows the correlation
between u(s) and p(s).

Understanding the spatial correlation function is crucial for analyzing spatial
data. Although the spatial stick-breaking prior forgoes the Gaussian assumption
for the spatial random effects, we can still compute and investigate the covariance
function. Conditional on the probabilities p;(s) (but not the locations 6;), the co-
variance between two observations is

m
®) cov(y(s), y(8)) =T P(u(s) = pu(s)) =17 ) pi($)p;(s).
j=1

Figure 2(b) maps the correlation function induced by the probabilities in Fig-
ure 2(a). For these probabilities, the correlation is not simply a function of distance
between points, that is, the correlation is nonstationary. For example, the correla-
tion is near one for all sites in (0.4, 0.6) due to the large probability for the first
component throughout the region. In contrast, the correlation between nearby sites
is smaller near s = 0.35 and s = 0.65 where several components have substantial
probability.

As shown in Appendix A.2, integrating over (V;, ¥;, €;) and letting m — 00
gives

9) Var(y(s)) = 0% + 72,

b+1 -1
(10) Cov(y(s), () = 2y (5. 8) [2% - s/)] ,
where

ffwl'(S)wi(S,)p(ilfl-, Gi)dl/fi de;

11 8 =
(11) v(s,s) JJwi($)p(¥;,€)dy; de;

e [0,1].
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Since (V;, ¥;, €;) have independent priors that are uniform over the spatial do-
main, integrating over these parameters gives a stationary prior covariance. How-
ever, Figure 2 illustrates that the conditional covariance can be nonstationary.
Therefore, we conjecture the spatial stick-breaking model is more robust to non-
stationarity than traditional stationary Kriging methods.

If b/(a+1) is large, that is, the V; are generally small and there are many terms
in the mixture with significant mass, the correlation between y(s) and y(s') is ap-
proximately propotional to y (s, s’). Table 1 gives the function y (s, s") for several
examples of kernel functions and shows that different kernels can produce very dif-
ferent correlation functions. For example, y (s, s’) under the uniform kernel with
exponential priors for the bandwidth parameters is the familiar exponential cor-
relation function. If the bandwidths are shared across kernel functions, y (s, ") is
proportional to a squared exponential covariance under squared exponential kernel
functions. The uniform kernel with common bandwidth parameter A gives compact
support, as observations separated by more than A spatial units are uncorrelated.

4. A multivariate spatial model for wind fields data. Let u(s) and v(s) be
the underlying wind speed in the west/east and north/south directions, respectively,
for spatial location s. As described in Section 2, there are two types of observed
wind data: ur(s) and vy (s) are satellite measurements and ug(s) and vg(s) are
buoy measurements. Our model for these data is

12 ur(s) =ay, +u(s) +e,r(s), v7(8) =ay +v(s) +eyr(s),
upg(s) =u(s)+e,p(s), vg(s) =v(s) +eyB(s),

where {e,T, eyT, €un, eyp} are independent (with each other and with the underly-
ing winds), zero mean, Gaussian errors, each with its own variance, and {a,, a,}
account for additive bias in the satellite data. Of course, the buoy data may also
have bias, but it is impossible to identify bias from both sources, so we attribute
all the bias to the satellite measurements. It is also possible to add multiplicative
bias terms, but with the small number of buoy observations it will be difficult to
identify both types of bias and Foley and Fuentes (2006) found that the primary
source of bias is additive.

The underlying orthogonal wind components u(s) and v(s) are modeled as a
mixture of a deterministic wind model and a semiparametric multivariate spatial
process

u(s) = H,(s) + R,(s),
(13)
v(s) = Hy(s) + Ry(s),

where H,(s) and H,(s) are the orthogonal components of the deterministic Hol-
land model in (3) and R(s) = (R,(s), R,(s))’ follows a multivariate extension of
the non-Gaussian spatial stick-breaking prior of Section 3. We take R(s) ~ F (s),
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where F has the stick-breaking prior in (5) modified so the two-dimensional lo-

cations #; have multivariate normal priors ; L N(0, X), where X is a2 x 2
covariance matrix that controls the association between the two wind components.
The covariance ¥ has an InvWish(0.1, 0.1/,) prior and after transforming the spa-
tial grid to be contained in the unit square, the spatial knots ¥,; and ¥,; have
independent Beta(1.5, 1.5) priors to encourage knots to lie near the center of the
hurricane where the wind is most volatile. Also, we take the spatial range A ~
Uniform(0, 1).

Assuming the same priors for the p;(s) as in Section 3 and following the same
steps as in Appendix A.2, it can be shown that Cov(R(s), R(s")) is separable, that
is, the product of the spatial covariate and the cross-dependency covariance ma-
trix X. This could be generalized by allowing the prior covariance of the 6; to vary
spatially. Alternatively, the spatial stick-breaking prior could be combined with the
linear model of coregionalization to give a nonseparable multivariate spatial model
by modeling the u# and v components of R(s) as linear combinations of univariate
spatial terms given spatial stick-breaking priors described in Section 3.

5. Analysis of Hurricane Ivan’s wind field. We fit three models to 182 satel-
lite observations and 7 buoy observations for the Hurricane Ivan. We use the mul-
tivariate SSB model in Section 4 with both uniform and squared-exponential ker-
nels. Also, to illustrate the effect of relaxing the normality assumption, we also
fit a fully-Gaussian Bayesian Kriging model [Handcock and Stein (1993)] that re-
places the stick-breaking prior for R(s) = (R,(s), R, (s))’ in (13) with a zero-mean
Gaussian prior with separable covariance

(14)  Var(R(s)) =X and Cov(R(s),R(s")) == x exp(—|s —s'||/2),

where X controls the dependency between the wind components at a given location
and A is a spatial range parameter. The covariance parameters ¥ and XA have the
same priors as the covariance parameters in Section 4.

Since our primary objective is to predict wind vectors at unmeasured locations
to use as inputs for numerical ocean models, we compare models in terms of ex-
pected mean squared prediction error [Laud and Ibrahim (1995) and Gelfand and
Ghosh (1998)], that is,

EMSPE = E(Z(IAT(S) —ir () + (vr(s) — 57 (s))’

(15)
+ (up(s) — ips)’ + (vp(s) — 6B(s))2>,

where, say, ur(s) is viewed as a replicate of the observed u component of the
satellite measurement at site s, the summation is taken over all observation loca-
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F1G. 3.  Squared residuals (value-posterior mean) for the u and v components of the Gaussian and
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spatial stick-breaking model with uniform kernels. The “x” represents the storm’s center.

tions, and the expectation is taken over the full posterior of all the parameters in
the model. This model selection criteria favors predictive models centered near the
observed data with small predictive variances.

The EMSPE is smaller for the semiparametric model uniform kernels
(EMSPE = 3.46) than for the semiparametric model squared exponential ker-
nels (EMSPE = 4.19) and the fully-Gaussian model (EMSPE = 5.17). Figures
3(a) and 3(b) show that the squared residuals from the fully-Gaussian fit are near
zero for most of the spatial domain but are large near the center of the hurricane for
both components. The Gaussian model oversmooths in this area with high volatil-
ity in the underlying wind surface. In contrast, the semiparametric model with
uniform kernel functions is able to capture the peaks near the eye of the hurricane
and the squared residuals [Figures 3(c) and 3(d)] show less spatial structure than
the residuals from the Gaussian model.
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(a) Posterior mean of u(s)
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FIG. 4. Summary of the posterior of the spatial stick-breaking model with uniform kernels. Panels
(a) and (b) give the posterior mean surface for the u and v components, panel (c) shows the posterior
of the cross-correlation between the residual wind components R, (s) and Ry(s) (Z12/v/Z11222)s
and panel (d) plots the posterior of the parameter that controls the average kernel bandwidth A
assuming the spatial grid has been transformed to lie in the unit square. The “x” represents the
storm’s center.

Figure 4 summarizes the posterior from the spatial stick-breaking prior with
uniform kernel functions. The fitted values in Figures 4(a) and 4(b) vary rapidly
near the center of the storm and are fairly smooth in the periphery. After accounting
for the Holland model, the correlation between the residual # and v components
R, (s) and R,(s) [Z12/4/211 222, Where %, is the (k, [) element of %] is generally
negative [Figure 4(c)], confirming the need for a multivariate analysis. Figure 4(d)
plots the posterior of the parameter that controls the size of bandwidths, A. The
posterior median of A is 0.17, so on average the uniform kernels span about 17%
of the spatial domain.
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The satellite data are significantly biased relative to the buoy data. The 95% pos-
terior intervals for the bias terms a, and a, are (—6.91, —2.16) and (0.04, 4.38)
respectively. The biases seem to be driven by the third buoy’s wind vector in Fig-
ure 1(b), which is quite different from the nearby satellite observations in Fig-
ure 1(a).

To show that the semiparametric model with uniform kernel functions fits the
data well, we randomly (across # and v components and buoy and satellite data) set
aside 10% of the observations and compute 95% predictive intervals for the miss-
ing observations. The prediction intervals contain 94.7% (18/19) of the deleted u
components and 95.2% (20/21) of the deleted v components. These statistics sug-
gest that our model is well calibrated.

6. Discussion. Modeling hurricane wind fields is an important and challeng-
ing problem. This paper presents a semiparametric multivariate spatial model
for these data. The semiparametric model avoids oversmoothing near the center
of Hurricane Ivan’s wind field, resulting in a well-calibrated predictive model.
Gaussian models with highly-structured covariance functions, for example, Wikle
et al. (2001) and Fuentes et al. (2005), are an alternative. However, our non-
parametric model offers greater flexibility by allowing for nonstationarity and non-
normality which is advantageous when building an automated procedure.

In the statistical model for wind fields data, the spatial random effects with
the spatial stick-breaking prior are mixed with independent normal errors. An ex-
tension of this model would be to replace the independent normal effects with a
Gaussian spatial process. This would give a mixture of two spatial terms: a semi-
parametric term to handle discontinuities and a Gaussian process which performs
well in smooth areas. A mixture of this nature has been considered by Lawson
and Clark (2002), who propose a fully-parametric mixture of spatial models for
disease mapping with a real spatial data. As Lawson and Clark point out, it can be
difficult to identify the contribution of each component of the mixture, but using a
combination of spatial terms can lead to an improvement in fit.

This paper focused on estimating the wind field at a single time point because
satellite data are only available twice daily. However, the spatial stick-breaking
prior developed here could be extended to the spatiotemporal setting to improve
real-time estimates. One possibility is to use three-dimensional kernel functions
in space and time. An alternative spatiotemporal model would be an extension
of the dynamic linear model of Gelfand, Banerjee and Gammerman (2005b), that
is, R(s,7) = BR(s,t — 1) + A(s, t), where R(s, t) is the vector of residual wind
components at location s at time ¢, B is diagonal with B;; € [—1, 1], and A(s, )
is the vector of changes from time r — 1 to time ¢. The spatial stick-breaking prior
could be applied to the mean at the first time point, R(s, 1), and each A(s, t).
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APPENDIX A.1: PROPRIETY OF THE SSB PRIOR

For infinite m, Ishwaran and James (2001) show that >/, p;(s) = 1 almost
surely if and only if Y72 | E(log(1 — V;(s))) = —oo. Applying Jensen’s inequality,

Eflog(1 — Vi(s))] < log[E(1 — Vi(s))] =log[1 — E{w; ()} E(V))].

If both E{w;(s)} and E(V;) are positive, log(1 — E{w;(s)} E(V;)) is negative and

o0

Y Eflog(1—Vi(s))] < Y log(1 — E{w;($)}E(V})) = —00
i=l i=1
APPENDIX A.2: Cov(u(s), u(s'))

Due to the discrete nature of the stick-breaking prior, Cov(u(s), u(s’)) =
> Prob(u(s) = p(s):

Prob[u(s) = u(sH1Vi, ¥;, €il

= pi(s)pi(s)

i=1
= Z[u)i ©Owi VAT = (wj6) +w;s))V; +w; (s)wj(s/)ij)]
i=1 Jj<i

Integrating over the (V;, ¥;, €;) gives
w .
Prob(u(s) = u(bs)) = c292 Y _[1 —2¢1 91 + c2d2] ™,
i=1

where c; = [ [wi(S)p(¥;, €)d¥;de;, c2 = [ [wiw;(p(WP;,€;)d¥; de;,
v =E(Vi)=a/(a+b),and vy = E(Vlz) =a(a+1)/[(a+b)(a+ b+ 1)]. Since
1 —2c¢101 + 20y = E[(1 — pi(s))(1 — pi(s'))] € [0, 1], we apply the formula for
the sum of a geometric series and simplify, leaving

c202 y(s,s)

Prob(u(s) = pu(s")) = 2e101 —catn 20+ b/(a+ D) —y(s,8)

where y (s,s') = c2/cy.
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