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Abstract. We study models of spatial growth processes where initially there are sources of growth (indicated by the colour green)
and sources of a growth-stopping (paralyzing) substance (indicated by red). The green sources expand and may merge with others
(there is no ‘inter-green’ competition). The red substance remains passive as long as it is isolated. However, when a green cluster
comes in touch with the red substance, it is immediately invaded by the latter, stops growing and starts to act as a red substance
itself. Our main model space is represented by a graph, of which initially each vertex is randomly green, red or white (vacant), and
the growth of the green clusters is similar to that in first-passage percolation. The main issues we investigate are whether the model
is well defined on an infinite graph (e.g. the d-dimensional cubic lattice), and what can be said about the distribution of the size of
a green cluster just before it is paralyzed. We show that, if the initial density of red vertices is positive, and that of white vertices
is sufficiently small, the model is indeed well defined and the above distribution has an exponential tail. In fact, we believe this to
be true whenever the initial density of red is positive. This research also led to a relation between invasion percolation and critical
Bernoulli percolation which seems to be of independent interest.

Résumé. Nous étudions des modèles de croissance spatiaux qui, au temps initial, ont des sources de croissance (indiquées par la
couleur verte) et des sources de substance paralysante arrêtant la croissance (indiquées en rouge). Les sources vertes augmentent
et peuvent fusionner avec les autres (il n’y a pas de compétition entre elles). La substance rouge reste passive quand elle est isolée.
Cependant, quand un amas vert touche la substance rouge, il est envahi immédiatement par cette dernière, il arrête de grandir et
commence à agir comme la substance rouge. Dans notre modèle principal, l’espace est représenté par un graphe dont, à l’instant
initial, tous les sommets sont tirés au hasard vert, rouge ou blanc (vide) et la croissance des amas verts est similaire à celle de la
percolation de premier-passage. Les problèmes principaux que nous considèrons sont les suivants ; est-ce que le modèle est bien
défini sur un graphe infini (par exemple le treillis d-dimensionnel) ? Que peut-on dire de la distribution de la taille d’un amas vert
juste avant qu’il soit paralysé ? Nous montrons que, si la densité initiale de sommets rouges est positive et que celle des sommets
blancs est suffisament petite, le modèle est en effet bien défini et la distribution ci-dessus mentionnée a une queue exponentielle.
Nous conjecturons que ce résultat est vrai dès que la densité initiale des rouges est positive. Ce travail mène également à une
relation entre la percolation d’invasion et la percolation de Bernouilli critique qui semble être d’intérêt indépendement.
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1. Introduction

1.1. Description of the model and the main problems

Consider the following model where different ‘objects’ (or ‘populations’) grow simultaneously until they hit a para-
lyzing substance, in which case they stop growing and become paralyzing themselves: Each vertex of a connected,
finite (or countably infinite, locally finite) graph G = (V ,E) is initially, independently of the other vertices, white, red
or green with probabilities pw, pr and pg respectively. Each edge of G is initially closed. By a green cluster we will
mean a maximal connected subgraph of G of which all vertices are green and all edges are open. We denote the green
cluster containing v at time t by Cg(v, t). (If v is not green at time t , then Cg(v, t) is empty.) It is clear from the above
that initially the only green clusters are single green vertices. These green clusters can grow, merge with other green
clusters and finally become paralyzed (red) as follows.

Whenever an edge e = 〈v,w〉 is closed and has at least one green end-vertex, say v, it becomes open at rate 1.
Moreover, immediately after it gets open the following action takes place instantaneously: If exactly one end-vertex,
say v, is green and the other, w, is white, w becomes green (and we say, informally, that the green cluster of v grows
by absorbing w). If w is red, then each vertex in the green cluster of v becomes red (and we say that the green cluster
of v becomes paralyzed). Finally, if both vertices are green, no extra action takes place. (Note that in this case the two
vertices may have been in two different green clusters right before the opening of e, but are now in the same green
cluster.)

Note that once an edge is open it remains open, that once a vertex is green it never turns white (but may become
red), and once a vertex is red it remains red.

Let us first consider the case where the graph G is finite. In that case the above process is clearly well defined and
has some obvious properties, which we will state after introducing the following terminology. By a configuration (or
‘site-bond configuration’) we mean an element of {0,1}E × {green, red, white}V , where 0 and 1 denote ‘open’ and
‘closed’ respectively. An ‘open-bond cluster’ (with respect to a configuration) is a maximal connected subgraph of
G of which all edges are open (for that configuration). We say that it is non-trivial if it has at least one edge. Note
that the earlier defined ‘green cluster’ is an open-bond cluster of which each vertex is green. A ‘red cluster’ is defined
similarly. We call a configuration admissible if each non-trivial open-bond cluster is either a red cluster or a green
cluster. Now we are ready to state the announced simple properties and observations: If G is finite, the process is a
Markov chain on the set of admissible configurations. The admissible configurations where no vertices are green or all
vertices are green are absorbing, and the chain will with probability 1 end in one of those configurations. In particular,
if initially there was at least one red vertex, then every green vertex will eventually become red. Moreover (because
initially all edges were closed) at any time, every non-empty red cluster C contains exactly one vertex v that was
originally red. We say that this vertex v is ‘responsible for’ the other vertices in C becoming red (or, that the vertices
in C became red ‘due to’ v).

If G is infinite, for instance the d-dimensional cubic lattice, the situation is much more problematic, due to the fact
that the range of the interaction is not bounded: an entire cluster, no matter how large, can change colour instanta-
neously. The main questions we address in this paper concerning the above process, and some other related models,
are:

1. Does the dynamics exist? This is a non-trivial issue for such interacting processes on infinite graphs: See for
instance, Aldous’ frozen percolation process [1], which was shown by Benjamini and Schramm ([3], private com-
munication) not to exist in Z

2. For related matters on the non-existence of that process, see also Remark (i) in
Section 3 of [4] and the example due to Antal Járai ([11], private communication) which follows it. A crucial dif-
ference between Aldous’ model and ours is that in Aldous’ model, clusters freeze only when they are infinite, while
we believe that in our model, due to the positive density of initially red vertices, the green clusters do not become
infinite (see the next item). A model which has more in common with ours is the forest-fire model studied in [7].
But again there is a major difference: in that model there is a uniform lower bound for the probability that a cluster
of interest is ‘destroyed’ before growing further, and this uniform bound is a crucial ingredient in the existence
proof in [7]. In our model there seems to be no analog of such a property.

2. Is a green cluster always finite at the moment it becomes red? Does the distribution of its radius (and of its volume)
have an exponential tail?
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3. Let w be an originally red vertex. Is the set of originally green vertices v with the property that w is responsible
for v becoming red, finite? Does the distribution of its volume have an exponential tail?

The organization of the paper is as follows. In Section 1.2 we give a partial answer to the questions listed above.
In particular, Theorem 1.1 states that, for G = Z

d and pw sufficiently small, the answers to the above questions are
positive. Our research also led to a new result for invasion percolation (see Theorem 1.2 and Proposition 1.3). In
Section 1.3 we explain the notion of ‘autonomous region’ which plays an important role in this paper. In Section 1.4
we briefly discuss some alternative versions of the model. In Section 2 we give a proof of the main result for the special
case where pw = 0. It turns out that that case can be dealt with in a very elegant and transparent way. It serves as an
introduction to the proof of the more complicated case where pw is small but positive, which is given in Section 3. At
the end of Section 3 we come briefly back to the alternative versions of the model discussed in Section 1.4.

1.2. Statement of the main results

Let G be a connected, countably infinite graph of bounded degree, and consider the model presented in Section 1.1,
with parameters pw, pg and pr. Our main result, Theorem 1.1, states, among other things, that under certain conditions
the dynamics is well defined. The formulation of the condition requires some additional notation and terminology: By
the distance d(v,w) between two vertices v and w of G we mean the length (i.e. number of edges) of the shortest path
from v to w. The diameter of a set of vertices W of G is defined as maxv,w∈W d(v,w), and ∂W will denote the set of all
vertices that are not in W but have an edge with some vertex in W . The number of elements of a set W will be denoted
by |W |. For a finite graph H , denote by |H | the number of vertices in H . Let D denote the maximal degree in G.

For each vertex v of G and p ∈ (0,1), let ξv(p) denote the expectation of the volume (i.e. number of vertices) of
the occupied cluster of v in site percolation on G with parameter p. Further, define

ξ(p) = sup
v

ξv(p).

Recall the definition of Cg(v, t) in Section 1.1. We are now ready to state our main results.

Theorem 1.1. Suppose that

(D − 1)ξ(pw) < pr. (1)

We have:

(a) The dynamics on G is well defined. With probability 1, at any time, each red cluster has a unique initially red
vertex.

(b) For any originally green vertex v, let Cg(v) = ⋃
t≥0 Cg(v, t) be the green cluster of v just before it becomes red.

Let |Cg(v)| be the number of vertices of Cg(v). Then, with probability 1, |Cg(v)| is finite for each such v. Moreover,
the distribution of |Cg(v)| has an exponential tail.

(c) If G is a Cayley graph and w is an originally red vertex in G, then the set D(w) consisting of all green vertices
that become red due to w is finite; moreover, the diameter of D(w) has an exponential tail. (Here, extending the
definition given before in the case of finite G, if v is an originally green vertex and w is the (unique a.s.) originally
red vertex in the red clusters that eventually contain v, we say that v becomes red due to w.)

(d) If G is the d-dimensional cubic lattice, then the distribution of |D(w)| also has an exponential tail.

Note that in the case pw = 0, condition (1) of Theorem 1.1 is satisfied for every positive pr. For this case we
have, in addition to Theorem 1.1, considerably stronger results. In particular, the following theorem holds, where
we fix pw = 0 and then vary the parameter pr. In this theorem and its proof, Pp denotes the ordinary (Bernoulli)
bond percolation measure with parameter p and Pcr stands for Ppc , where pc denotes the critical probability for this
percolation model. By B(n) we denote the set of all vertices at (graph) distance ≤ n from some specified vertex O .
The event that there is an open path from O to ∂B(n) is denoted by {O ↔ ∂B(n)}. Further, the symbol ≈ denotes
logarithmic equivalence, i.e., we say for two positive functions g(n) and h(n) that g(n) ≈ h(n) as n → ∞, if

logh(n)

logg(n)
→ 1, n → ∞.
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Let W be a set of vertices in a graph G with a distinguished vertex O . By the radius of W we mean the maximal
distance from O to a vertex of W . We are now ready to state the following theorem.

Theorem 1.2. Let Cg(·) be as in part (b) of Theorem 1.1. If G is the square lattice in two dimensions (or the triangular
or the hexagonal lattice), and pw = 0, then

P
(
the radius of Cg(O) is at least n

) ↑ f (n), as pr ↓ 0,

where f is a function satisfying

f (n) ≈ Pcr
(
O ↔ ∂B(n)

)
.

Theorem 1.2 follows easily from the following proposition concerning invasion percolation on the lattices consid-
ered in the theorem. Before we state it, we briefly recall the invasion percolation model (on these lattices) and some of
its basic properties. (Invasion percolation was introduced by Wilkinson and Willemsen, see [18]. For a detailed study
of this process see [16], or the earlier works [2,6] and [12].) To each edge e we assign, independent of the other edges,
a random variable τe, uniformly distributed in the interval (0,1). We construct, recursively, a growing tree. Initially
the tree consists only of one vertex, say O . At each step we consider all edges that have exactly one endpoint in the
tree that has been created so far. From these edges we select the one with smallest τ value and add it (and its ‘external’
endpoint) to the tree. Let τ(n) be the τ value of the nth edge invaded by this procedure. For any infinite transitive
graph G, it is proved in [10] that

lim sup
n→∞

τ(n) = pc, (2)

where pc is the critical probability for bond percolation. Further, note that, if all τ(n) < pc, then O belongs to an
infinite cluster on which all τ values are smaller than pc. For the graphs in the statement of Theorem 1.2 this latter
event has probability 0. (See [8] for this classical result and references.) Hence, for these lattices, (a.s.) there is an
n with τ(n) > pc. This, together with (2), implies that (a.s.) τ(n) achieves its maximum (and that this maximum is
larger than pc). The following proposition is about the invaded region at the step where this maximum is achieved.
Although this and related regions have been under consideration before in the literature (see the subsection ‘Ponds
and outlets’ in [17]), this result is, as far as we know, new.

Remark. The invasion basin of O is defined similarly to the invasion tree, except that at every step, the edge of
minimal τ -value among the edges outside the current invasion basin that have at least one endpoint in the basin is
added to the basin. The invasion basin is typically not a tree. It is easy to see that each edge e in the invasion tree is
in the invasion basin, and the set of sites in the invasion basin immediately before such an edge e is added to it is the
same as the set of vertices in the invasion tree immediately before e is added.

Proposition 1.3. Consider invasion percolation on the square lattice (or the triangular or the hexagonal lattice) with
edge values τe. Let ê be the edge with maximal τ value in the invasion basin (as explained above). Let R̂ be the radius
of the region that has been invaded up to the step where ê is invaded. We have:

(a) P(R̂ > n) ≥ Pcr
(
O ↔ ∂B(n)

);
(3)

(b) P(R̂ > n) ≈ Pcr
(
O ↔ ∂B(n)

)
, n → ∞.

Remarks.
(a) Proposition 1.3 has triggered further research on the comparison of ponds and critical percolation clusters:

see recent refinements and generalizations in [5].
(b) The value R̂ above can also be described in the following, somewhat informal, way. Suppose each edge e is

closed at time 0 and becomes open at time τe (after which it remains open). The open cluster of O grows in time. Up
to time pc it is finite, but at some time larger than pc it will become infinite (a.s.). The radius of this cluster just before
it becomes infinite is R̂.
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1.3. Description of the model in terms of passage times. Autonomous regions

Consider the description of the dynamics in the beginning of this section, and assume for the moment that the graph
is finite. Recall that an open edge remains open and that a closed edge with at least one green end-vertex becomes
open at rate 1. This means that if we assign to each edge e an exponentially distributed (mean 1) random variable
τ(e), independent of the other edges (and of the initial colours of the vertices), the time evolution of the process can
be completely described in terms of the initial colours of the vertices and the τ -variables of the edges: Each edge e

remains closed until the time t at which Lt(e) (defined below) has Lebesgue measure τe. (If no such time exists, the
edge remains closed forever). Here Lt is defined by

Lt(e) = {s < t : e has at least one green end-vertex at time s}. (4)

(Since, once a vertex is green it can change colour only one more time, Lt(e) is clearly an interval or union of two
intervals.) When e becomes open and one of its end-vertices is white or red, the appropriate action in the description
in Section 1.1 is carried out instantaneously.

In the following this equivalent description of the process turns out to be very convenient. To illustrate it and to
emphasize the difference with one of the modified models that will be discussed in Section 1.4, we give the following
example.

Example 1.4. Consider the graph with vertices denoted by {1,2,3,4,5} and edges 〈i, i + 1〉, 1 ≤ i ≤ 4. Suppose that
the initial colours of the vertices 1, . . . ,5 are red, green, white, green, red respectively, and that the τ values of the
edges 〈1,2〉, . . . , 〈4,5〉 are 6, 3, 4 and 2 respectively. As one can check by following the above description, the initially
green vertex 2 becomes red at time 5 due to vertex 5.

Now suppose some finite, but possibly large, graph G is given, together with initial colours c(v), v ∈ V , and
‘opening times’ τ(e), e ∈ E. Further suppose we are only interested in the time evolution in a small subgraph of G,
for instance just one initially green vertex v. Do we need to ‘follow’ the process in the whole graph to reconstruct
what happens at v? Often this is not the case. An instructive example is when v is incident to three edges, e, e′ and
e′′ with the properties that τ(e) is smaller than τ(e′) and τ(e′′), and that the other end-vertex of e, which we denote
by w, is red. In that case we know that v is green until time τ(e) and from then on is red (which would also happen
in the ‘isolated’ graph consisting only of the vertices v and w and the edge e). This holds no matter what the initial
colours of the vertices in V \ {v,w} and the τ -values of the edges in E \ {e, e′, e′′} are. Note that this still holds when
we extend G to a bigger graph (with c- and τ -variables) as long as we don’t add extra edges to v.

This brings us to the notion of autonomous set: Let H = (V (H),E(H)) be a finite sub-graph of a graph G, and let
Ē be a finite set of external edges of H , i.e. edges in G, which have exactly one vertex in V (H). Assume that we have
given an initial colour assignment c(v) to all v ∈ V (H) and opening times τ(e) to all e ∈ E(H) ∪ Ē. Let H̄ be the
minimal graph containing H as subgraph and Ē ⊂ E(H̄ ). We say that (H, Ē) is autonomous (with respect to τ and
c), if for every finite subgraph G0 of G which has H̄ as a subgraph, the growth process on G0 starting with a colour
pattern and opening times extending the above given c’s and τ ’s has, restricted to H , always the same time evolution,
i.e. the same evolution as it would have with G0 = H̄ , and which does not depend on colours at the vertices in H̄

not in H . In the simple example considered in the previous paragraph, the graph with vertices v and w, and edge e,
together with the set of external edges Ē = {e′, e′′}, is autonomous.

Often, when the identity of Ē is obvious and the choice of c- and τ -variables is considered to be known, we simply
say that H is autonomous. For this reason we might refer to the autonomous set as “autonomous subgraph.”

Now suppose we have an infinite graph G with given τ - and c-variables. If every vertex (and every edge) is
contained in a finite autonomous subgraph of G, the infinite-volume time evolution on G can be defined in an obvious
way. The key of the proof of Theorem 1.1 is to show that, under the condition in the theorem, these autonomous
subgraphs exist with probability 1. That is, for almost-all initial colour patterns, and almost-all τ -values each vertex
and edge is contained in a finite autonomous region.

1.4. Some alternative versions of the model

There are many modifications or generalizations of our model (which we will sometimes call the basic model to
distinguish it from these modified versions). Below we mention four of them.
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(i) In the basic model the τ variables are exponentially distributed. It is easy to see that if the initial colours of the
vertices are given, and none of them is white, the time evolution is essentially determined by the order statistics of the
τ variables. It is also easy to see that in that case each edge e becomes open at time τe or remains closed forever. From
such observations it easily follows that, if pw = 0, replacing the exponential distribution of the τ variables by some
other continuous distribution, leaves the law of the process unchanged, apart from an obvious time change. This is not
true if pw > 0. However, as one can easily see from its proof, Theorem 1.1 remains valid under such replacement of
distribution.

(ii) Recall that in our basic model an edge e becomes open at the smallest time t with the property that the subset
of times s < t at which e has at least one green end-vertex, has Lebesgue measure τe. A natural modification of this
rule is the one where e = 〈v,w〉 becomes open at the smallest time t with the property that v is green throughout
the interval [t − τe, t) or w is green throughout the interval [t − τe, t). To illustrate the difference between the rules,
consider again the graph with τ values and initial colours in Example 1.4. As can be easily checked, under the modified
rule the vertex 2 will no longer become red due to vertex 5 but due to vertex 1 (and at time 6 instead of 5). It turns out
that Theorem 1.1 remains valid for this modified model and that its proof only needs some small modifications.

(iii) The third modification is the following model in continuous space. Consider two homogeneous Poisson point
processes ζG, ζR on R

d , with intensities λG = 1, λR ≡ λ ∈ (0,+∞) respectively. The points of ζG (green) are inter-
preted as sources of growth, and those of ζR (red) as sources of “paralyzing poison.” All other elements of R

d are
uncoloured. From each source in ζG at time zero a green Euclidean sphere begins to grow with constant speed 1 (of
its radius). When two or more green spheres intersect, they keep growing in the same manner, but we say that they
have become connected (are in the same connected green component). If a growing green sphere hits a red region, its
entire connected green component (note that this is a union of spheres) instantaneously gets red and stops growing.
Analogs of the questions for our basic model in Section 1.1, in particular the existence question, arise naturally, but
so far we have made very little progress. Although at first sight there is some resemblance with the model studied in
[9], the arguments used there seem not to work here.

(iv) Consider the following change of rule of the previous model (model (iii)): When a green sphere hits a red
region, only the centers of all the spheres of its connected green component become red; the remaining parts of the
spheres disappear (become uncoloured). This change makes the model much easier to handle (using an invasion
procedure resembling the one we will use in Section 2 for the case pw = 0 of our basic model), but also considerably
less natural, and we will not discuss it in more detail.

2. Proofs for the case pw = 0

2.1. General properties for the case pw = 0

The case where pw = 0 is considerably easier than the general case and serves as a good introduction to the latter.
We start with some deterministic observations and claims. Let us first restrict to a finite graph G, with given τ -values
and c-values. We assume that at least one vertex has initial colour red, at least one vertex has initial colour green, and
no vertex has initial colour white. Let x be a vertex with initial colour green, and let t (x) denote the time at which x

becomes red. Let Π denote the set of all paths of which the starting point is x and the end-vertex has initial colour
red. It is easy to see that

t (x) ≥ min
π∈Π

max
e∈π

τ(e). (5)

Indeed, for each t smaller than the r.h.s. of (5) there is a ‘cut set’ of edges that are still closed at time t and
‘shield’ x from all initially red vertices. It is also quite easy to see that equality holds in (5). The algorithmic (and
inductive) argument below is not the most direct one but has the advantage that it gives more, namely an elegant and
suitable construction of an autonomous region. This particular construction will almost immediately lead to a proof
of parts (a) and (b) of Theorem 1.1 for the case pw = 0. The ‘algorithm’ is a modification (‘stopped’ version) of the
standard invasion percolation procedure (starting at x) described a few lines above Proposition 1.3. At each stage of
the procedure we have a tree which is a subgraph of G. Initially this tree consists only of the vertex x. At each step we
consider all edges that have exactly one end-vertex in the tree, also called the external edges of the tree. Among these
edges we select the one with minimal τ -value and add it (and its external end-vertex) to the tree. The procedure is
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stopped as soon as an initially red vertex is added to the tree. Let us denote this vertex by R, and the final tree given by
this procedure by T (x). Let τ ∗ be the maximal τ -value on this tree, and e∗ the edge where this maximum is attained.
Removing this edge from the tree T (x) ‘splits’ the tree in two parts. Let T ∗

1 (x) denote the part containing x.

Claim 2.1. (i) The vertex R is responsible for x becoming red.
(ii) x becomes red at time τ ∗. That is, t (x) = τ ∗. Moreover, Cg(x) (defined in part (b) of Theorem 1.1) is the set

of vertices of T ∗
1 (x).

(iii) Let Ē denote the set of all edges of which one end-vertex is a vertex of T (x), different from R, and one
end-vertex is not in T (x). Let T̂ (x) be the graph with the same vertices as T (x) and with all edges that have both
end-vertices in T (x). Then (T̂ (x), Ē) is autonomous (with respect to this coloring).

Proof. The proof of the claim is by induction on the number of steps in the above invasion procedure. If the number of
steps is 1 we are in the situation that the edge incident to x with minimal τ -value has a red end-vertex, and the above
claim follows easily. (Note that this case corresponds with the example in the second paragraph of Section1.3.) Now
suppose the number of steps is larger than 1. Consider the edge e∗ defined above. Let E∗ denote the set of external
edges, except e∗ itself, at the stage of the procedure immediately before e∗ was added. From the definition of invasion
percolation, all edges in E∗ have τ -value larger than τ ∗. On the other hand, all edges that were added after that step
have, by definition, τ -value smaller than τ ∗. Therefore the edges in E∗ were never added to the tree. Hence, since R

was added after e∗ (and was the first red point added to the tree), it follows that every path in G from x to a red point
contains e∗ or an edge in E∗. Therefore, by (5) we get that

t (x) ≥ τ ∗.

To get the reversed inequality, note the following. Let y denote the external end-vertex of e∗ when e∗ was added to
the tree. We already remarked that removing e∗ from T (x) ‘splits’ T (x) in two separate trees, and we denoted the part
containing x by T ∗

1 (x). Let T ∗
2 (x) denote the other part. It follows from the above that T ∗

2 (x) contains y and R. We
will assume that the initial colour of y is green (otherwise the claim follows easily). It is easy to see from the above
that a similar invasion procedure as before, but now starting at y instead of x, has as its final tree the tree T ∗

2 (x). By
the induction hypothesis we have that y becomes red at the time which is equal to the maximal edge value in T ∗

2 (x)

and hence before time τ ∗, and that R is responsible for y becoming red. Also note that, from the earlier observations,
just before time τ ∗ there is an open path from x to the end-vertex �= y of e∗. Since e∗ becomes open at time τ ∗ it
follows that x becomes red at time τ ∗. Moreover, since R is responsible for y becoming red, it is also responsible for
x becoming red. This (and the earlier made observation that all external edges �= e∗ of T ∗

1 (x) have τ value larger than
τ ∗) completes part (i) and (ii) of the proof of Claim 2.1. Similar arguments show part (iii). �

Now we are ready to handle the case where G is infinite. If G is infinite and pr > 0, it is not a priori clear that the
process described in Section 1.1 is well defined. However, the above invasion procedure and the corresponding claim
now give us the instrument to define it and to give a proof of Theorem 1.1 in this particular case.

2.2. Proof of Theorem 1.1 for the case pw = 0

For each green vertex x simply run the invasion procedure starting from x. Since the initial colours and the τ variables
are independent, we have, at each step in the invasion from x, probability pr of hitting a red vertex (independently
of the previous steps in this invasion). Hence the invasion procedure starting at x stops with probability 1, and (by
part (iii) of Claim 2.1) yields an autonomous region containing x. Since the graph has countably many vertices, this
yields a construction of the process on G and completes the proof of part (a) of the theorem. Moreover it shows that
Claim 2.1 also holds (a.s.) for G. Further, the number of steps in the invasion procedure from an initially green vertex
clearly has a geometric distribution: the probability that it is larger than n is (1−pr)

n. Since (by part (ii) of Claim 2.1)
|Cg(v)| is at most the number of steps in the invasion procedure, part (b) of the theorem follows.
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Proof of part (c). For each pair of vertices x, y, let I (x, y) denote the event that x is initially green and that y is
initially red and responsible for x becoming red. It follows immediately from the above that for all vertices x and
all m ∑

y:d(x,y)≥m

P
(
I (x, y)

) = P
(
d
(
x,R(x)

) ≥ m
) ≤ (1 − pr)

m. (6)

Further, using that G is a Cayley graph, the ‘mass transport principle’ (see e.g. Section 7.1 in [15] or [10]) gives:

P
(
D(w) has radius ≥ m

) ≤
∑

v: d(v,w)≥m

P
(
I (v,w)

) =
∑

v: d(v,w)≥m

P
(
I (w,v)

)
,

which by (6) is at most (1 − pr)
m. This completes the proof of part (c) of the theorem. �

Proof of part (d). As we will see, this follows from earlier observations, together with a block argument which is
quite similar to one in percolation theory, due to Kesten (see [13]). Below we denote the d-dimensional cubic lattice
simply by Z

d .
Let, as before, T (x) denote the tree produced by the invasion procedure starting at x. We want to prove exponential

decay for P(|D(v)| > n), where v is an initially red point. Without loss of generality we take v = 0. We say that a finite
set W of vertices containing 0 is a lattice animal (abbreviated as l.a.) if for all w ∈ W there is a path in Z

d from 0 to w

of which every vertex is in W . From the definitions (and since, as we saw in (c), D(0) is a.s. finite), it is clear that D(0)

is a lattice animal. Let L be an even integer and consider the partition of Z
d into cubes QL(x) := [−L/2,L/2)d +Lx,

x ∈ Z
d . We say that x ∈ Z

d is fine if QL(x) ∩ D(0) �= ∅. Let VF denote the set of all vertices that are fine. Since D(0)

is a lattice animal, VF is also a lattice animal. Further, we say that x ∈ Z
d is proper if QL(x) contains a vertex y with

|T (y)| > L/4, and write I (x is proper) for the indicator function of the corresponding event. (Here T (·) is as defined
in the invasion procedure earlier in this section.) Finally, a subset of Z

d is proper if every element in the set is proper.
It is clear that for every x �= 0, if x is fine, then x is proper. It is also clear that if D(0) contains vertices outside QL(0),
then 0 is also proper. Recall from Claim 2.1(iii) that for each tree T in Z

d and each vertex y, the event {T (y) = T }
depends only on the c-values of the vertices of T and the τ -values of the edges that have at least one end-vertex in
T . From this it easily follows that the process (I (x is proper), x ∈ Z

d) is 2-dependent (see e.g. [8] for this notion).
Let ε = ε(L) = ε(L,d) be the probability that a given vertex is proper. Since, for each y, the distribution of |T (y)| is
geometric (and |QL(y)| is polynomially bounded in L) it is clear that for fixed d

ε(L,d) → 0 as L → ∞.

The above mentioned 2-dependence gives that there is a constant C1 = C1(d) such that for every set W ⊂ Z
d

P (W is proper) ≤ ε|W |/C1 . (7)

Finally, we use that there is a constant C2 = C2(d) such that the number of lattice animals of size m is at most Cm
2 ,

see [8]. Together, the above gives that (noting that each l.a. of size ≥ m contains a l.a. of size m) for n large enough
(depending on L),

P
(∣∣D(0)

∣∣ > n
) ≤ P

(
∃ a proper l.a. of size

⌈
n

|QL|
⌉)

≤ C
n/|QL|+1
2 ε(L)n/(|QL|C1)

= C2
[(

C2ε(L)1/C1
)1/QL

]n
. (8)

Taking L so large that C2ε(L)(1/C1) < 1 completes the proof of part (d). �

This completes the proof of Theorem 1.1 for the special case where pw = 0.
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2.3. Proofs of Proposition 1.3 and Theorem 1.2

We first prove Proposition 1.3. We say that an edge is p-open if τe < p. Define p-open paths and p-open clusters in
the obvious way. To prove the proposition we will derive suitable lower and upper bounds for the l.h.s. of (3) in terms
of an expression of the form of its r.h.s.

The lower bound is very easy: Since τê > pc (see the paragraph below (2)), it follows immediately that (a.s.) the
region which is already invaded at the step where ê is invaded, contains all the vertices of the pc-open cluster of O .
Hence the l.h.s. of (3) is larger than or equal to the r.h.s.

The upper bound is more complicated. We use the standard percolation notation θ(p) for the probability that O is
in an infinite p-open cluster.

Define, for each p and n, the following two events:

An,p = {∃ a p-closed circuit with diameter ≥ n in

the dual lattice that contains O in its interior}.

Dp = {O belongs to an infinite p-open cluster}.

Note that P(Dp) = θ(p) and that if p1 < p2, then Dp1 ⊂ Dp2 and An,p2 ⊂ An,p1 .
Let τ̂ = τê. Let p′ be some number between pc and 1. The following observation is straightforward.

Observation.
(a) If τ̂ > p′ and R̂ ≥ n, then there is a p > p′ such that the event An,p occurs.
(b) If τ̂ < p′, then there is a p < p′ such that Dp occurs.

Let, for p > pc, L(p) be the correlation length (=L(p, ε0)) as defined in Section 1 in the paper by Kesten [14] on
scaling relations. (See [14].) That is, L(p) is the smallest n such that the probability that there is a p-open horizontal
crossing of a given n × n box is larger than 1 − ε0. Here ε0 is an appropriately (sufficiently small) chosen positive
constant. (From this definition it is clear that L(p) is non-increasing in p on the interval (pc,1].) It is well known (see
(2.25) in [14] and the references preceding that equation) that there are constants C1 > 0 and C2 > 0 such that for all
p > pc and all n,

Pp(An,p) ≤ C1 exp

(
− C2n

L(p)

)
. (9)

Further, Theorem 2 in [14] says that there is a constant C3 > 0 such that, for all p > pc,

θ(p) ≤ C3Pcr
(
O ↔ ∂B

(
L(p)

))
. (10)

Now take, for p′, the supremum of those p for which L(p) > n/(C4 logn), where C4 is a positive constant that
will be appropriately chosen later. Obviously,

P(R̂ ≥ n) ≤ P
(
R̂ ≥ n, τ̂ > p′) + P

(
τ̂ < p′). (11)

The first term in the r.h.s. of (11) is, by Observation (a) and the ‘nesting’ property of the events An,p (stated in the
sentence below the definition of these events), smaller than or equal to

lim
p↓p′ P(An,p) ≤ lim sup

p↓p′
C1 exp

(
− C2n

L(p)

)
≤ C1 exp(−C2C4 logn), (12)

where the first inequality follows from (9) and the second inequality from the definition of p′.
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The second term of (11) is, by Observation (b) and the ‘nesting’ property of the events Dp , smaller than or equal
to

lim
p↑p′ θ(p) ≤ lim sup

p↑p′
C3Pcr

(
O ↔ ∂B

(
L(p)

)) ≤ C3Pcr

(
O ↔ ∂B

(
n

C4 logn

))
, (13)

where the first inequality follows from (10) and the second follows by (again) using the definition of p′. Putting (11),
(12) and (13) together we have

P(R̂ ≥ n) ≤ C3Pcr

(
O ↔ ∂B

(
n

C4 logn

))
+ C1 exp(−C2C4 logn). (14)

It is believed that Pcr(O ↔ ∂B(n)) has a power law behaviour. This has only been proved for site percolation on
the triangular lattice. However, for the percolation models we are considering, we do know that this function of n has
power-law lower and upper bounds. As a consequence we can choose C4 so large that the second term in the r.h.s. of
(14) is (for all large enough n) smaller than the first term. Finally, it follows quite easily from RSW arguments (see
e.g. Sections 11.7 and 11.8 in [8]) that Pcr(O ↔ ∂B(n/C4 logn)) ≈ Pcr(O ↔ ∂B(n)). This completes the proof of
Proposition 1.3.

Now we are ready to prove Theorem 1.2. The invasion procedure in Section 2.1, which was used in the proof of
Theorem 1.1, differs from the ‘ordinary’ invasion percolation model (described in the paragraphs preceding Proposi-
tion 1.3), in that it stops as soon as the growing tree ‘hits’ a red vertex. There is strictly speaking another difference:
the τ -values in the former case were exponentially distributed and those in the latter case were uniformly distributed
on (0,1). However, that difference clearly does not matter, and in the rest of this proof we assume the τ variables to be
uniformly distributed on (0,1). Let us call the former procedure a ‘stopped’ invasion procedure (with parameter pr),
and the latter an ordinary invasion procedure. All these procedures (the stopped procedures with pr varying between 0
and 1, and the ordinary procedure) can be coupled in the following natural way: Assign to each vertex v, independent
of the others, (and of the τ variables) a random variable ρ(v), uniformly distributed on the interval (0,1). When we
now do invasion percolation (w.r.t. the τ variables) and stop when we hit a vertex with ρ value smaller than pr, this
corresponds exactly with the above mentioned stopped invasion with parameter pr. In this coupled setting, the set
Cg(O) for the stopped model with parameter pr is clearly non-increasing in pr, and the union of these sets over all
the values pr > 0 is exactly the region mentioned in Proposition 1.3. Theorem 1.2 now follows from this proposition.

3. Proof for the case pw > 0

In this section we prove Theorem 1.1 for the case pw > 0. Recall that in the special case where there are no white ver-
tices (see Section 2) there was an elegant invasion procedure which produced, with probability 1, a finite autonomous
set containing a given vertex or edge. This is much more complicated in the general case, when there are white ver-
tices. We still have a procedure which, if it stops, gives an autonomous set containing, say, a given vertex x. This
algorithm starts as before, with one invasion tree, which initially consists only of the vertex x, and which grows by
invading the edge with minimal τ value. However, when we hit a ‘fresh’ white vertex y we have to investigate the
‘space–time paths from outside’ that have possibly influenced y. This is done by starting new invasion trees in the
green vertices on the boundary of the white cluster of y. As before, an invasion tree stops when it invades a red vertex.
In the situation in the previous section this also marked the end of the algorithm. But in the current situation it only
marks the end of one invasion tree, while the others keep growing and creating new invasion trees. In this way the
algorithm might go on forever. However, we show that under the condition in Theorem 1.1 the algorithm, which is
described more precisely below, does end.

The input is a connected graph G = (V ,E), the initial colours c(v), v ∈ V , and the opening times τ(e), e ∈ E, and
the vertex x or edge e for which we want to find an autonomous region. Here we only handle the case concerning a
vertex x and we assume that x is green; the other cases can be done in a very similar way. For the moment it suffices
to restrict to finite graphs. The algorithm will produce an autonomous subgraph H and, for some vertices v of H ,
non-negative numbers tg(v) and tr(v), and for some edges e of H a positive number t (e). Here tg(v) and tr(v) will
denote the time at which v becomes green and red, respectively. The value t (e) will be the time when e becomes open.
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It will be clear from the description below that, at each stage of the algorithm the edges to which a t -value has been
assigned form a collection of disjoint trees. Each tree in this collection has one of two labels: ‘active’ or ‘paralyzing.’
How these labels are assigned is described in Section 3.1. The collection of active trees is denoted by Ta and the
collection of paralyzing trees by Tp. As we will see, new active or paralyzing trees are ‘created’ during the algorithm,
and active trees can merge with each other or with a paralyzing tree. In the former case the new tree is active, in the
latter case it is paralyzing.

The set of edges which have at least one end-vertex in an active tree (and not both end-vertices in the same active
tree) is denoted by E . With some abuse of terminology we say that a vertex is in Ta if it is a vertex of some tree in Ta.
A similar remark holds w.r.t. Tp.

Apart from the above, we need the following auxiliary variables and structures, which will be assigned during the
algorithm.

The first auxiliary structure we mention here is a set S, which can be interpreted as the set of all initially white
vertices that ‘have been seen until the current stage’ in the algorithm. We say that a vertex ‘is registered’ if it is in Tp,
Ta or S. Further, to each edge e ∈ E (as introduced above) a value t1(e) will be assigned, which can be interpreted as
a tentative, possible value for t (e).

Finally, the following definition will be important: The white cluster Cw(v) of a vertex v is defined as the maximal
connected subset of G of which all vertices y have initial colour c(y) = white. Note that this notion, in contrast with
the notion of green clusters (defined in Section 1) does not involve the state (open/closed) of the edges. The boundary
of the white cluster of v, denoted by ∂Cw(v), is the set of all vertices that are not in Cw(v) but have an edge to some
vertex in Cw(v). If c(v) is not white, then Cw(v) and ∂Cw(v) are empty.

3.1. Description of the algorithm

Using the notions above we are now ready to describe the algorithm. It starts with action 1 below, followed by an
iteration of (some of) the other actions. Recall that c(x) is green.

1. Initialization of some of the variables and structures.
Set Tp = ∅, Ta = {{x}} and S = ∅.
Set tg(x) = 0, E as the set of all edges incident to x, and t1(e) = τ(e) for all edges e ∈ E .

2. Selection of minimal external edge.
Remove from E all edges of which both endpoints are in the same tree of Ta.
Comment: such edges can have resulted from some of the actions below.
If E = ∅, stop. Otherwise, let e be the edge in E with minimal t1-value.
Write e = 〈v, y〉 with v in Ta. (This way of writing is of course not unique if both end-vertices of e are in Ta but
that doesn’t matter.) Let T denote the tree in Ta of which v is a vertex.
If y is not in Ta, Tp or S (that is, y is ‘fresh’) go to 2a, else go to 2b.

2a. Fresh vertex.
Determine c(y).
If c(y) = red, set t (e) = t1(e) and go to 3a.
If c(y) = green, set t (e) = t1(e) and go to 4.
If c(y) = white, go to 6.

2b. Registered vertex.
Set t (e) = t1(e).
If y is in Tp go to 3b.
If y is in Ta go to 5.
Else go to 7.

3a. Fresh red.
Comment: This case can be handled in almost the same way as 3b below and therefore, with an ‘administrative
trick,’ we simply turn it into the latter case:
Set tr(y) = 0. Add to Tp the tree which consists only of the vertex y.
Go to 3b.

3b. Active tree T becomes paralyzed.
Set tr(z) = t (e) for all vertices z of T .
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Remove from E all edges of which one end-vertex is in T and the other end-vertex is not in Ta. Let T ′ be the tree
in Tp of which y is a vertex. Replace, in Tp, the tree T ′ by that obtained from ‘gluing together’ T and T ′ via the
edge e. Remove T from Ta.
Go to 2.

4. Fresh green.
Set tg(y) = 0. For each edge e′ incident to y that was not yet in E : add e′ to E and set t1(e

′) = τ(e′). Replace, in
Ta, the tree T by a new tree obtained from gluing y to T by the edge e.
Go to 2.

5. Two active trees join.
Let T ′ ∈ Ta be the active tree of which y is a vertex. Replace, in Ta, the trees T and T ′ by a new tree obtained
from ‘gluing together’ T and T ′ with the edge e.
Go to 2.

6. Fresh white.
Add every vertex of Cw(y) to S.
For each vertex z in ∂Cw(y) that has c(z) = green and is not in Ta or Tp, do the following:
Set tg(z) = 0; add the tree {z} to Ta; add to E each edge e′ incident to z that is not yet in E , and set t1(e

′) = τ(e′).
For each vertex z in ∂Cw(y) that has c(z) = red and is not in Tp, set tr(z) = 0 and add the tree {z} to Tp.
Go to 2.

7. Registered white.
Set tg(y) = t (e). Replace, in Ta, the tree T by the tree obtained from T by ‘gluing’ the vertex y to it by the edge e.
For each edge e′ = 〈y, z〉 of y that is not in E , add it to E and set t1(e

′) as follows:
If z is in Tp but c(z) �= red, set

t1
(
e′) = t (e) + τ

(
e′) − (

tr(z) − tg(z)
)
, (15)

else set

t1
(
e′) = t (e) + τ

(
e′).

Comment: The subtracted term in (15) accounts for the time that e′ already had a green end-vertex. See also the
Remark at the end of Section 3.2.
Go to 2.

Remark. Note that initially there is only one active tree and that new active trees are only formed in part 6 of the
algorithm. Also note that initially there are no paralyzing trees; these can be formed in part 6 and in part 3a. Moreover,
3a always leads, via 3b, to the elimination of an active tree. Now consider the case that G has no vertices with initial
colour white. Then the algorithm never enters part 6 (neither part 7) so that throughout the algorithm there is one
active tree until a red vertex is ‘hit.’ From such considerations it is easily seen that in this case the algorithm reduces
to the one described in Section 2.

3.2. Correctness of the algorithm

If G is finite the above algorithm will clearly stop. Moreover, we claim that if G has at least one vertex with initial
colour red, we have the following situation at the end of the algorithm: The set of active trees Ta is empty. The set Tp
contains one or more trees, and the vertex x is in one of them. Each of these trees has exactly one vertex with initial
colour red, and this vertex is ‘responsible’ for the other vertices in that tree to become red. The following pair, (H, Ē),
is autonomous: The vertices of H are the vertices in Tp together with all vertices in S. The edges of H are all edges
of which both end-vertices are in the above set. The set Ē is the set of all edges of which one end-vertex is a vertex v

of H with c(v) �= red, and the other end-vertex is not in H . Further, each initially green vertex v of H becomes red at
time tr(v).

The ‘correctness’ of the above algorithm (that is, the above claim) can, in principle, be proved by induction,
e.g. on the number of edges. Instead of giving a full proof (which would be extremely tedious) we present the key
ideas/observations ((a)–(d) below) to be used in such proof.



Random spatial growth with paralyzing obstacles 1185

(a) As in many induction proofs it is useful, or even necessary, (for carrying out the induction step) to generalize
the statement one wants to prove. In the current situation this generalization is as follows: In the above algorithm,
information is stored in the administration when the vertices involved are ‘encountered’ by the algorithm. In particular,
in action 6 a white cluster and its boundary are ‘stored’ because a vertex of the white cluster had been encountered
(as endpoint of the edge selected in action 2). The same algorithm still works if at one or more stages of the algorithm
such information about a white cluster (and its boundary) is stored ‘spontaneously’ (that is, without this cluster having
been encountered in the sense above).

(b) The main observation for doing induction on the number of edges is the following: Let, among all edges with
at least one initially green endpoint, ê be the one with minimal τ -value. Let x̂ and ŷ denote its endpoints. We may
assume that x̂ is initially green. It is clear that the first thing that happens in the ‘real’ growth process is the opening
of ê (namely, at time τ(ê)). It is also clear that from that moment on the growth process behaves as if starting on a
graph with one vertex less, namely the graph obtained by ‘identifying’ (or gluing together) x̂ and ŷ (with an obviously
assigned colour: green if c(y) is white or green; red if c(y) is red).

(c) To carry out the induction step it has to be shown that the algorithm has a property analogous to that for the
real process described in (b) above. That this is indeed the case can be seen as follows: As long as x̂ and ŷ are not
‘registered’ in the algorithm, the algorithm behaves the same as it would behave for the graph obtained after the
identification described in (b). Moreover, one can easily see from the description of the algorithm that immediately
after one of these vertices is registered, the other one also is, and that they are immediately ‘attached to each other’
(by the edge ê) in the same tree.

(d) The following side remark must be added to (c) above: Suppose that ŷ ∈ Cw(y) in action 6 at some stage of the
algorithm. This cluster Cw(y) could be larger than that in the graph obtained by identifying ŷ and x̂. This means that
in that step ‘more information is collected’ than in the situation where x̂ and ŷ would be identified from the beginning.
It is exactly for this issue that the generalized algorithm (and claim) in (a) was given.

3.3. Proof of Theorem 1.1

Proof of Theorem 1.1. It follows, in the same way as in the case pw = 0, that on an infinite graph the dynamics
is well defined provided the algorithm stops with probability 1. We will show that, under the condition (1) in the
statement of the theorem, the algorithm indeed stops. In fact, the arguments we use will give something stronger,
namely Proposition 3.1, from which not only part (a) of Theorem 1.1 follows, but which we will also use to prove
parts (b), (c) and (d).

Proposition 3.1. Under the condition of Theorem 1.1, we have that, for each x, the above mentioned algorithm stops,
and, moreover, the distributions of the volume and the diameter of the graph H defined above have an exponential
tail.

Proof. By the kth step of the algorithm we mean everything done by the algorithm between the kth and (k + 1)th
time the algorithm ‘enters’ part 2a in the description in Section 3.1. Recall that we say that a vertex is registered if
it is in Ta, Tp or S. Let νk be the number of registered vertices at the beginning of step k. (In particular, ν1 = 1.) If
the algorithm is already terminated during step j for some j < k, we set νk equal to the number of registered vertices
at the moment of termination. Further, let yk denote the ‘fresh’ vertex (i.e. the vertex y in part 2a of the description
in Section 3.1) treated in step k of the algorithm. (In particular, y1 is the end-vertex of the edge incident to x with
minimal τ value.) Let ηk = νk+1 − νk . Further, let αk denote the net increase of the number of active trees during step
k of the algorithm. If the algorithm is terminated during step k, we set αk = −1. (This choice is somewhat arbitrary;
it is simply a suitable choice to ensure that certain statements below hold for all k.)

Note that the initial colours of the vertices are independent random variables, each being white, red or green with
probability pw, pr and pg respectively. It is clear from the algorithm that we may consider the colour of a vertex as
‘hidden’ until the moment the vertex becomes registered. Let Fk be all information obtained by the algorithm until
the beginning of step k (including the identity but not the colour of yk).
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Let N = min{n: 1 + ∑n
k=1 αk = 0}. It is easy to see that if N is finite the algorithm stops during or before step N ,

and the number of vertices in the above defined graph H is

1 +
N∑

k=1

ηk. (16)

Note that if c(yk) is white, the procedure is sent to part 6, and the newly registered vertices in step k of the algorithm
are exactly the vertices of Cw(yk) and the not yet registered vertices of ∂Cw(yk); moreover, |Ta| increases during this
step by at most the number of green vertices in ∂Cw(yk). We write at most, because during the remainder of step k no
new active trees are created but already present active trees may disappear (which happens if the algorithm enters part
3b before it enters part 2a again).

Similarly, if c(yk) is red or green, then the only newly registered vertex is yk itself; moreover, in the former case
|Ta| goes down during step k by at least 1, while in the latter case it goes down or doesn’t change.

For every connected set W of vertices with |W | ≥ 2, the number of vertices in the boundary of W is at most
(D − 1)|W |; hence, we have

ηk ≤ D
∣∣Cw(yk)

∣∣ + I{c(yk) not white}, (17)

αk ≤ (D − 1)
∣∣Cw(yk)

∣∣ − I{c(yk) is red}. (18)

Note that (since yk is ‘fresh’) the conditional probability that c(yk) is red, white or green, given Fk , is pr, pw and
pg respectively. Also note that, by the condition in the theorem, pw < 1/(D − 1) and hence (as is well known and
easy to check) there is a q < 1 such that for all n and all vertices v,

P
(∣∣Cw(v)

∣∣ ≥ n
) ≤ qn. (19)

Moreover, it is easy to see that conditioned on Fk , which includes the information that yk is a specific vertex, say
y, the cluster size |Cw(yk)| is stochastically smaller than |Cw(y)|. Hence the bound (19) also holds (a.s.) if we replace
its l.h.s. by P(|Cw(yk)| ≥ n|Fk). This, combined with (17) immediately gives that there is a γ < 1 such that for all k

and n,

P(ηk ≥ n|Fk) ≤ γ n. (20)

As to the α’s, define (compare (18)), for every vertex v,

α(v) = (D − 1)
∣∣Cw(v)

∣∣ − I{c(v) is red}. (21)

Let α′(v), v ∈ V , be independent copies of the α(v), v ∈ V . By a similar stochastic domination argument that led
to (20), we have for all vertices v, and all positive integers k and n,

P(αk ≥ n|Fk, yk = v) ≤ P
(
α(v) ≥ n

) = P
(
α′(v) ≥ n

)
. (22)

And, again by (19), there is a λ < 1 such that for all n and v

P
(
α′(v) ≥ n

) = P
(
α(v) ≥ n

) ≤ λn. (23)

Further note that, for each vertex v, we have E(|Cw(v)|) = ξv(pw). Hence, condition (1) in Theorem 1.1 says that
there is an ε > 0 such that for all vertices v we have

E
(
α′(v)

) = E
(
α(v)

)
< −ε. (24)

From (22) and the definition of the random variables α′(v), v ∈ V , it follows (from stochastic domination) that, for all
positive integers K ,

P

(
K∑

k=1

αk ≥ 0

)
≤ ∗

supP

(
K∑

k=1

α′(vk) ≥ 0

)
, (25)
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where we use ‘*’ to indicate that the supremum is taken over all tuples of K distinct vertices v1, v2, . . . , vK . From
(23) and (24) it follows (by standard large-deviation upper bounds for independent random variables) that there is a
β < 1 such that for all K and all distinct vertices v1, v2, . . . , vk ,

P

(
K∑

k=1

α′(vk) ≥ 0

)
≤ βK.

From this and (25) it follows that the distribution of N has an exponential tail.
Putting this together with (20) and (16) we get that the number of vertices in H has an exponential tail. Indeed

the event that 1 + ∑N
k=1 ηk ≥ n is contained in the union of the events N ≥ an and

∑an
k=1 ηk ≥ n; the probabilities of

these events decay exponentially in n for suitable a.
This completes the proof of Proposition 3.1. (Note that the diameter of H is at most its volume, since H is a

connected graph.) �

Parts (a) and (b) of Theorem 1.1 follow immediately from Proposition 3.1 (noting that the vertices of Cg(x) belong
to H ).

Using Proposition 3.1, Parts (c) and (d) of Theorem 1.1 can now be derived in the same way as in the special case
pw = 0 in Section 2. This completes the proof of Theorem 1.1. �

Remark. For the alternative model (i) in Section 1.4, the proof of Theorem 1.1 is exactly the same. Note that the proof
doesn’t use that the τ ’s are exponentially distributed, it applies in the same manner to any continuous distribution.

For the alternative model (ii) the algorithm in Section 3.1 needs a few small adaptations. Apart from this the proof
remains practically the same.
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