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Abstract. This paper studies countable systems of linearly and hierarchically interacting diffusions taking values in the positive

quadrant. These systems arise in population dynamics for two types of individuals migrating between and interacting within

colonies. Their large-scale space–time behavior can be studied by means of a renormalization program. This program, which has

been carried out successfully in a number of other cases (mostly one-dimensional), is based on the construction and the analysis of

a nonlinear renormalization transformation, acting on the diffusion function for the components of the system and connecting the

evolution of successive block averages on successive time scales. We identify a general class of diffusion functions on the positive

quadrant for which this renormalization transformation is well defined and, subject to a conjecture on its boundary behavior, can be

iterated. Within certain subclasses, we identify the fixed points for the transformation and investigate their domains of attraction.

These domains of attraction constitute the universality classes of the system under space–time scaling.

Résumé. Cet article étudie des systèmes dénombrables de diffusions en interaction hiérarchiques et linéaires vivant dans le qua-

drant positif. De tels systèmes apparaissent dans la dynamique d’individus de deux types qui migrent tout en interagissant dans des

colonies. Le comportement à grande échelle et temps long peut être étudié en utilisant le programme de renormalisation. Ce pro-

gramme, qui a permis de résoudre d’autres cas (principalement uni-dimensionnels) est basé sur la construction et l’analyse d’une

transformation de renormalisation non linéaire, agissant sur la fonction de diffusion des composants du système et connectant

l’évolution de blocs moyennés sur le temps à différentes échelles. Nous identifions une classe générale de fonctions de diffusion

dans le quadrant positif pour lequel la transformation de renormalisation est bien définie et qui, sous une conjecture de compor-

tement aux bords, peut-être itérée. À l’intérieur de certaines sous-classes, nous identifiens les points fixes de la transformation et

étudions leurs domaines d’attraction. Ces domaines d’attraction constitutent les classes d’universalité du système après changement

d’échelle dans le temps et l’espace.
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1. Introduction

1.1. Model and background

We are interested in the following system of coupled stochastic differential equations (SDE):

dXη,i(t) =
∑

ξ∈ΩN

aN(ξ, η)
[
Xξ,i(t) − Xη,i(t)

]
dt +

√
2gi

( �Xη(t)
)

dBη,i(t), η ∈ ΩN, i = 1,2. (1.1)

Here aN(·, ·) is the transition rate kernel of a random walk on ΩN , the hierarchical group (or lattice) of order N (see
(1.3)), { �Xη}η∈ΩN

with �Xη = (Xη,1,Xη,2) is a family of diffusions taking values in [0,∞)2, g = (g1, g2) is a pair of
diffusion functions on [0,∞)2, and { �Bη}η∈ΩN

with �Bη = (Bη,1,Bη,2) is a family of independent standard Brownian
motions on R

2. As the initial condition, we take

�Xη(0) = �θ = (θ1, θ2) ∈ [0,∞)2 ∀η ∈ ΩN. (1.2)

Equation (1.1) arises as the continuum limit of discrete models in population dynamics. In these models, individuals
live in colonies labeled by the hierarchical group ΩN . Each colony η ∈ ΩN consists of two types of individuals, whose
total masses are represented by the vector �Xη. Individuals migrate between colonies according to the migration kernel
aN(·, ·). At each colony, each individual undergoes branching at a rate that depends on the total masses of the two
types of individuals present at that colony. The system in (1.1) arises in the so-called “small-mass–fast-branching”
limit, where the number of individuals in each colony tends to infinity, the mass of each individual tends to zero,
and the effective branching rate grows proportionally to the number of individuals in each colony. The drift term in
(1.1) arises from the migration, which is the only source of interaction between colonies. The diffusion term in (1.1)
arises from the branching, where gi(x)/xi is the state-dependent branching rate of the ith type, which incorporates
the interaction between individuals within a colony. For more background, see, e.g. [7,9,16,27], Chapters 9 and 10 in
[19].

The goal of the present paper is to study the universality classes of the large-scale space–time behavior of (1.1). It
turns out that, for the specific form of the migration kernel aN(·, ·) given by (1.5) and in the limit as N → ∞, (1.1) is
susceptible to a renormalization analysis. The renormalization program for hierarchically interacting diffusions was
introduced by Dawson and Greven [10,11] for diffusions taking values in [0,1]. It has since been extended to several
other state spaces (see [22,23] for an overview). We will give more detailed references in Section 1.3. First we outline
the main ingredients of the renormalization program.

1.2. Renormalization program

The lattice in (1.1) is the hierarchical group of order N , which is defined as

ΩN =
{
η = (ηi)i∈N ∈ {0,1, . . . ,N − 1}N:

∑
i∈N

ηi < ∞
}
, (1.3)

with coordinatewise addition modulo N . Define a shift φ :ΩN → ΩN by (φη)i := ηi+1 (i ∈ N). On ΩN , the hierar-
chical distance is defined as

d(η, ξ) = min
{
k ∈ N0 = N ∪ {0}: φkη = φkξ

}
, (1.4)

which is an ultrametric, i.e., d(η, ξ) ≤ d(η, ζ ) ∨ d(ξ, ζ ) for all η, ξ, ζ ∈ ΩN . We choose the random walk transition
rate kernel in such a way that aN(ξ, η) depends only on the hierarchical distance between ξ and η. In view of what
follows, we write aN in the form

aN(ξ, η) =
∑

k≥d(ξ,η)

ck−1N
1−2k, ξ, η ∈ ΩN,ξ �= η, (1.5)
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where (cn)n∈N0 is a sequence of positive constants. Formula (1.5) says that the random walk associated with aN(·, ·)
jumps with rate ck−1/N

k−1 from η to an arbitrary site in the k-block {ξ ∈ Ωn: φkξ = φkη} around η.
The key objects in the renormalization analysis are the k-block averages:

Y
[k]
η,i (t) = 1

Nk

∑
ξ∈ΩN

φkξ=η

Xξ,i(t), η ∈ ΩN, i = 1,2, k ∈ N0. (1.6)

Using (1.5), we may rewrite (1.1) as

dXη,i(t) =
∑
k≥1

ck−1

Nk−1

[
Y

[k]
φkη,i

(t) − Xη,i(t)
]

dt +
√

2gi

( �Xη(t)
)

dBη,i(t), η ∈ ΩN, i = 1,2, (1.7)

where each component �Xη feels a drift towards the successive averages of k-blocks containing η. It can be seen that
the evolution of the 1-block averages is described in law by the SDE

dY
[1]
η,i (tN) =

∑
k≥1

ck

Nk−1

[
Y

[k+1]
φkη,i

(tN) − Y
[1]
η,i (tN)

]
dt

+
√√√√√ 2

N

∑
ξ∈ΩN

φξ=η

gi

( �Xξ(tN)
)

dBη,i(t), η ∈ ΩN, i = 1,2, (1.8)

where �Bη = (Bη,1,Bη,2) is a family of independent standard two-dimensional Brownian motions. Note that in the

limit N → ∞, we expect both the drift and the diffusion term in (1.8) to be of order one, which means that �Y [1]
η

evolves on the time scale tN .
Let us next see heuristically what happens if we let N → ∞, the so-called hierarchical mean-field limit. If we let

N → ∞ in (1.7), then the only drift term that survives is

c0
[
Y

[1]
φη,i(t) − Xη,i(t)

]
dt.

Furthermore, �Y [1]
φη (t) → �X(·)(0) ≡ �θ for all t ≥ 0, because �Y [1]

φη evolves on the time scale tN . Therefore the system

{ �Xη(t)}η∈ΩN
converges in law to an independent system of diffusions, each satisfying the autonomous SDE

dZi(t) = c0(θi − Zi)dt +
√

2gi

( �Z(t)
)

dBi(t), i = 1,2. (1.9)

This kind of behavior is frequently referred to as the “McKean–Vlasov limit” and “propagation of chaos.”
With the above fact in mind, we move one step up in the hierarchy. Since �Xξ(t) evolves on the time scale t , for

each fixed t the family{ �Xξ(tN)
}

ξ∈ΩN

φξ=η

(1.10)

decouples and converges almost instantly to the equilibrium distribution of (1.9) with the drift towards �θ replaced by
a drift towards the first block average �Y [1]

η (tN). Thus, we expect that

1

N

∑
ξ∈ΩN

φξ=η

gi

( �Xξ(tN)
) ∼

∫
[0,∞)2

Γ
c0,g

�Y [1]
η (tN)

(d�x)gi(�x) as N → ∞ for fixed t, η ∈ ΩN, i = 1,2, (1.11)

where Γ
c0,g

�θ denotes the equilibrium distribution of (1.9). Thus, if we set

(Fc0g)i(�θ) =
∫

[0,∞)2
Γ

c0,g

�θ (d�x)gi(�x), i = 1,2, �θ ∈ [0,∞)2, (1.12)
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then by (1.11), for large N , the SDE (1.8) for the 1-block averages �Y [1]
η takes exactly the same form as the SDE (1.7)

for the single components, provided that we rescale time by a factor N and replace the single component diffusion
functions gi by (Fc0g)i (i = 1,2). Here, Fc0 plays the role of a renormalization transformation acting on the pair of
diffusion functions g = (g1, g2).

We can iterate the above procedure. The upshot of this is that, as N → ∞, the k-block averages �Y [k]
η evolve on the

time scale tNk according to the SDE

dZ
[k]
i (t) = ck

(
θi − Z

[k]
i (t)

)
dt +

√
2
(
F [k]g

)
i

( �Z[k](t)
)

dBi(t), i = 1,2, (1.13)

with diffusion functions F [k]g = (F [k]g1,F
[k]g2) given by

F [k]g = Fck−1 ◦ · · · ◦ Fc0g, k ∈ N0. (1.14)

In fact, putting the successive iterates together and observing the sequence of block averages( �Y [k]
φkη

(
sNk

)
, �Y [k−1]

φk−1η

(
sNk

)
, . . . , �Y [0]

η

(
sNk

))
(1.15)

on the time scale sNk , as N → ∞, we expect this sequence to converge in distribution to a backward Markov chain( �M(−k), �M(−k + 1), . . . , �M(0)
)
, (1.16)

the so-called interaction chain, where

(1) The starting position �M(−k) is distributed as the weak solution of (1.13) at time s with initial condition �Z[k](0) =
�θ ;

(2) for 0 ≤ j ≤ k − 1, the transition probability kernel from �M(−j − 1) to �M(−j) is given by

P
[ �M(−j) ∈ d�y| �M(−j − 1) = �x] = Γ

cj ,F [j ]g
�x (d�y), (1.17)

where Γ
cj ,F [j ]g
�x (·) denotes the equilibrium distribution of (1.13) with k replaced by j .

The distribution of �M(−k) depends on s because �Y [k]
φkη

(sNk) evolves on the time scale sNk , while the transition

probability kernel from �M(−j − 1) to �M(−j) for 0 ≤ j ≤ k − 1 is independent of t because, conditioned on �Y [j+1]
φj+1η

,

�Y [j ]
φj η

equilibrates almost instantly on the time scale sNk . Note that (F [k]g)i(�θ) = E[gi( �M(0))| �M(−k) = �θ ], where E

denotes expectation with respect to the interaction chain.
With these heuristics in mind, the renormalization program consists of the following two steps:

(I) Stochastic part: Show that for all scales k ∈ N, in the hierarchical mean-field limit N → ∞, the block average in
(1.6) converges in law to the solution of the SDE in (1.13), and the sequence of block averages in (1.15) converges
in law to the interaction chain in (1.16).

(II) Analytic part: Analyze the renormalization transformation Fc and the iterates F [n], n ∈ N0.

Assuming that the stochastic part of the renormalization program can be completed, the large-scale space–time
behavior of (1.1) in the limit N → ∞ is characterized by the behavior of F [n] as n → ∞, in particular, by its fixed
shapes and their universality classes.

Here, by a fixed shape we mean a pair of diffusion functions g = (g1, g2) such that Fcg = λg for some c,λ > 0.
We speak of a downgoing fixed shape, fixed point or upgoing fixed shape depending on whether λ < 1,= 1, or > 1.
Note that since the factor λ can always be absorbed in time-scaling, such fixed shapes correspond to models that are
mapped into themselves after a suitable rescaling of space and time. Indeed, if we set ck = cλk (k ≥ 0), then such a
fixed shape satisfies F [k]g = λkg because the SDE associated with (ck,F

[k]g) is simply a time change of the SDE
associated with (c, g), which induces the same renormalization transformation. For the interacting model in (1.7),
this means that the k-block averages evolve on the time scale tNkλk according to the diffusion function g. We note
that our definition of a fixed shape deviates from the definition used in some earlier work, e.g. [21]. What is called a
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fixed shape there is, in our terminology, a joint fixed shape for all c > 0, i.e., a g such that for all c > 0 there exists a
λ = λ(c) with Fcg = λg.

By a universality class, we mean a set G of diffusion functions with the property that, given (ck)k∈N0 , for each g ∈ G
there exist scaling constants (sn)n∈N such that snF

[n]g converges to the same limit (possibly up to a multiplicative
constant). Typically, the limit will be a fixed shape or an asymptotic fixed shape (for the latter, see [21]). Note that
each joint fixed shape gives rise to a universality class, namely all models within a given universality class exhibit the
same large-scale space–time behavior.

Apart from being relevant in the study of large-scale space–time behavior, fixed shapes also give rise to continuum
models, by taking the so-called hierarchical mean-field continuum limit, which is a spatial continuum limit of the
hierarchical lattice ΩN with N → ∞. These continuum models also exhibit universality on small space–time scales,
which is governed by the same renormalization transformation Fc and its iterates F [n], n ∈ N0. For more details, see
[7] and [14].

The large-scale space–time behavior of (1.1) depends both on the diffusion function g and on the potential-theoretic
properties of the random walk with transition rate kernel (1.5). Based on earlier work, we expect nontrivial universality
classes to arise only when

∑
n∈N0

c−1
n = ∞, which is the “necessary and sufficient” condition for the random walk

with transition rate kernel aN(·, ·) on ΩN to be recurrent (except for a side condition that becomes irrelevant in the
limit N → ∞; see [27]). For linear systems such as (1.1), the recurrence of the random walk is usually associated
with clustering; see e.g. [8,11,30]. In our context, clustering means that the solution of (1.1) converges in law to a
mixture of distributions, each of which is concentrated on the configuration �Xη = �x, η ∈ ΩN , for some �x ∈ [0,∞)2

with g1(�x) = g2(�x) = 0. The choice of (cn)n∈N0 determines the pattern of cluster formation, such as whether only
small clusters appear, or only large clusters appear, or clusters of all scales appear. The latter is known as diffusive
clustering (see e.g. [11,20]).

With the above facts in mind, the analytic part of the renormalization program can be more precisely formulated
as follows.

1. Find classes of diffusion functions on which the renormalization transformations Fc and their iterates F [n], n ∈ N0,
are well defined.

2. Determine all the (asymptotic) fixed shapes.
3. Determine the universality classes of diffusion functions that, for given (cn)n∈N0 and after appropriate rescaling,

converge to these (asymptotic) fixed shapes, and determine the associated scaling constants.

1.3. Literature

The full renormalization program has been successfully carried out for hierarchically interacting diffusions taking
values in:

(1) the compact interval [0,1] [2,10,11], where the Wright–Fisher diffusion is the unique fixed shape and is globally
attracting with a scaling that is independent of the diffusion function;

(2) the halfline [0,∞) [3,12], where the Feller branching diffusion is the unique fixed point and is globally attracting
with a scaling that depends on the asymptotic behavior of the diffusion function at infinity.

For higher-dimensional diffusions, the analytic part has been carried out for:

(3) isotropic diffusions taking values in a compact convex subset of R
d [24,31], where the diffusion function with

constant curvature is the unique fixed shape and is globally attracting with a scaling that is independent of the
diffusion function;

(4) a class of probability-measure-valued diffusions [13,15], where the Fleming–Viot process is the unique fixed
shape and is globally attracting with a scaling that is independent of the diffusion function;

(5) a class of catalytic Wright–Fisher diffusions taking values in [0,1]2 [21], where the diffusion function for the
first component is an autonomous Wright–Fisher diffusion and the diffusion function for the second component
is an autonomous Wright–Fisher diffusion function multiplied by a catalyzing function depending only on the
first component. The renormalization transformation effectively acts on the catalyzing function. There are four
attracting shapes for the catalyzing function, depending on whether the initial catalyzing function is zero or strictly
positive at the boundary points of [0,1], and these attracting shapes are globally attracting with a scaling that is
independent of the catalyzing function.
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The stochastic part for higher-dimensional diffusions has only been completed for interacting Fleming–Viot processes
[13] and for mutually catalytic branching diffusions taking values in [0,∞)2 [7].

All previous studies deal with diffusions that have certain simplifying properties. In the one-dimensional cases (1)
and (2), as well as in the two-dimensional case (5), the equilibrium of (1.9) is reversible. As a result, many explicit
calculations can be performed that are crucial for the analysis. For certain diffusions with compact state space, which
includes the cases (1), (3) and (4), there is a common underlying structure (called “invariant harmonics,” see [30])
that allows the determination of the unique fixed shape and its domain of attraction. In all cases where the state space
is compact, the scaling needed for convergence to an attracting shape depends only on (cn)n∈N0 , not on the diffusion
function g. This is different in case (2), where the state space is not compact. In all cases except case (5), the fixed
shapes turn out to be joint fixed shapes for all c > 0.

The goal of the present paper is to carry out the analytic part of the renormalization program for a general class of
branching diffusions taking values in [0,∞)2. The multi-dimensionality and the noncompactness of the state space
pose significant challenges. Due to the multidimensionality, the well-definedness of the renormalization transforma-
tion is nontrivial. The structure of the fixed points/shapes turns out to be rather rich. In fact, we will prove that, under
certain restrictions, the class of fixed points is a 4-parameter family of diffusions with independent branching, catalytic
branching and mutually catalytic branching as the extremal fixed points, and they are joint fixed points of Fc for all
c > 0. Moreover, we will prove that all diffusion functions that are comparable to these fixed points in an appropriate
sense fall in their domains of attraction.

1.4. Outline

The rest of the paper is organized as follows. In Section 2 we formulate our main results, which come with varying
degrees of restrictions on the diffusion functions. Section 3 contains the proof of the ergodicity of the SDE (1.9),
and basic properties of the renormalization transformation. Section 4 proves the identification of fixed points/shapes.
Sections 5 and 6 identify the domains of attraction for the fixed points. In Appendices A and B we collect some
technical results needed for the proofs.

2. Main results

In Section 2.1, we formulate a key class of diffusion functions C , for which the SDE (1.9) has a unique weak solution.
Section 2.2 contains a theorem on the ergodicity of the SDE (1.9), defines the renormalization transformation, formu-
lates a subclass H0+ ⊂ C on which the renormalization transformation is well defined and, subject to a conjecture on
the preservation of certain boundary properties, can be iterated. Section 2.3 gives the definition of certain generalized
fixed points/shapes, and identifies some special fixed points/shapes. Section 2.4 contains results on the identification
of fixed points/shapes in H0+ under additional regularity assumptions. Section 2.5 contains our main result on the
domains of attraction to the fixed points under further assumptions. Lastly, Section 2.6 provides a brief discussion of
these results and lists some future challenges.

2.1. Key class and uniqueness for the autonomous SDE

The renormalization transformation Fc is based on (1.9), which is the SDE for the vector �X(t) = (X1(t),X2(t)) ∈
[0,∞)2 written out as

dX1(t) = c
[
θ1 − X1(t)

]
dt +

√
2g1

(
X1(t),X2(t)

)
dB1(t),

dX2(t) = c
[
θ2 − X2(t)

]
dt +

√
2g2

(
X1(t),X2(t)

)
dB2(t), (2.1)

where c > 0, �θ = (θ1, θ2) ∈ [0,∞)2, and �B(t) = (B1(t),B2(t)) are independent standard Brownian motions on R
2.

The corresponding generator is

(
L

c,g

�θ f
)
(�x) = c

2∑
i=1

(θi − xi)
∂

∂xi

f (�x) +
2∑

i=1

gi(�x)
∂2

∂x2
i

f (�x), f ∈ C2
c

([0,∞)2). (2.2)
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Note that, due to the absence of mixed partial derivatives, L
c,g

�θ can be interpreted as the generator of a two-type
branching diffusion with state-dependent branching rates gi(�x)/xi (i = 1,2).

Abbreviate

A1 = [0,∞) × {0}, A2 = {0} × [0,∞). (2.3)

We will say that a function f : [0,∞)2 → [0,∞) has boundary property

(∂1) if lim
�x→�y

f (�x)

x1
= γ (�y) ∀�y ∈ A1 ∪ A2 with γ continuous and > 0 on A1 ∪ A2,

(∂2) if lim
�x→�y

f (�x)

x2
= γ (�y) ∀�y ∈ A1 ∪ A2 with γ continuous and > 0 on A1 ∪ A2,

(∂12) if lim
�x→�y

f (�x)

x1x2
= γ (�y) ∀�y ∈ A1 ∪ A2 with γ continuous and > 0 on A1 ∪ A2. (2.4)

Throughout the paper, the pair g = (g1, g2) will be assumed to be in the following class.

Definition 2.1 (Class C). Let C be the class of functions g(�x) = (g1(�x), g2(�x)) satisfying:

(i) For i = 1,2, gi is continuous on [0,∞)2 and > 0 on (0,∞)2.
(ii) For i = 1,2, gi satisfies boundary property (∂i) or (∂12).

Note that for (g1, g2) ∈ C we can write gi(�x) = xiγi(�x) or gi(�x) = x1x2γi(�x) for some positive continuous function
γi on [0,∞)2, depending on whether gi satisfies boundary property (∂i) or (∂12). Note also that g1 and g2 vanish on
A2, respectively, A1, which is necessary to guarantee that the diffusion stays within [0,∞)2. Thus, if we denote the
effective boundary of g by

∂g = {�x ∈ [0,∞)2: g1(�x) = g2(�x) = 0
}
, (2.5)

then ∂g can be either of the following:

A1 ∩ A2, A1, A2, A1 ∪ A2. (2.6)

These boundary constraints allow for the system (2.1) to be treated as a perturbation of either of the following diffu-
sions:

(1) Independent branching: (g1, g2) = (b1x1, b2x2), b1, b2 > 0, ∂g = A1 ∩ A2.
(2) Catalytic branching: either (g1, g2) = (b1x1, c2x1x2), b1, c2 > 0, ∂g = A2; or (g1, g2) = (c1x1x2, b2x2),

c1, b2 > 0, ∂g = A1.
(3) Mutually catalytic branching: (g1, g2) = (c1x1x2, c2x1x2), c1, c2 > 0, ∂g = A1 ∪ A2.

Such a perturbation is behind the following result of [1] and [6], which provides the starting point of our analysis. The
latter paper improves results in [17], where Hölder continuity is assumed rather than continuity.

Theorem 2.2 (Well-posedness of martingale problem [1,6]). For all c > 0, g ∈ C , �θ ∈ [0,∞)2 and �x ∈ [0,∞)2,
with the possible exception of the case when �x = (0,0), �θ ∈ (0,∞)2, and either g1 or g2 satisfies boundary property
(∂12), the martingale problem associated with the generator in (2.2) has a unique solution with starting position �x.

As a consequence of Theorem 2.2, the SDE (2.1) has a unique weak solution for all �θ ∈ [0,∞)2 and �x ∈ [0,∞)2,
with the possible exception of the case when �x = (0,0), �θ ∈ (0,∞)2, and either g1 or g2 satisfies boundary property
(∂12). For each fixed �θ ∈ [0,∞)2, the SDE (2.1) defines a Feller process satisfying the strong Markov property (see
e.g. Theorem 4.4.2 in [19] and Corollary 11.1.5 in [29]).



The renormalization transformation for two-type branching models 1045

Remark 1. When �θ ∈ (0,∞)2, g ∈ C , g1 and g2 satisfy (∂1), resp. (∂2), the well-posedness of the martingale problem
was established in [1] for all initial conditions �x ∈ [0,∞)2. When �θ ∈ (0,∞)2, g ∈ C , and g1, g2 both satisfy (∂12),
the well-posedness is established in [6] for all initial condition �x ∈ [0,∞)2\{(0,0)}. Both [1] and [6] use local
perturbation arguments and the results are not restricted to linear drift as considered here. Since the perturbation
arguments are local, this implies that well-posedness also holds for mixed boundaries, i.e., g1 satisfies (∂1) and
g2 satisfies (∂12), or vice versa. When either g1 or g2 satisfies (∂12), Lemma 35 of [17] shows that, for all �x ∈
[0,∞)2\(0,0), with probability 1 the unique weak solution of (2.1) with initial condition �x never hits (0,0), and
hence we can restrict the state space to [0,∞)2\{(0,0)}. When �θ ∈ ∂[0,∞)2, the local analysis of [1] and [6] still
applies until the diffusion first hits the absorbing boundary, at which time the diffusion becomes one-dimensional,
a situation for which the well-posedness of the martingale problem is standard.

Remark 2. The proof given in [1] requires the drift to be strictly positive in each component on ∂[0,∞)2. However, as
pointed out in [5], it is sufficient that the inward normal component of the drift is strictly positive on ∂[0,∞)2, which
holds in our setting when �θ ∈ (0,∞)2.

Remark 3. It would be considerably more difficult to deduce from Theorem 2.2 the well-posedness of the martingale
problem for the system (1.1), for which one would need to restrict the state space. To deduce the Feller property, one
would need to restrict the state space even further and impose growth conditions on the diffusion function g, typically
g1(�x)+g2(�x) = O(x2

1 +x2
2) (see, e.g., [7,28]). We will not resolve these issues here, since they belong to the stochastic

part of the renormalization program, which remains open.

2.2. Equilibrium distribution and renormalization transformation

Our first result shows that (2.1) has a unique equilibrium for the class C . The proof will be given in Section 3.1.
Henceforth L denotes law.

Theorem 2.3 (Equilibrium distribution). For all g ∈ C , �θ ∈ [0,∞)2 and c > 0, (2.1) has a unique equilibrium
distribution Γ

c,g

�θ , which is continuous in �θ with respect to weak convergence of probability measures, and

L
( �X(t)

) �⇒
t→∞Γ

c,g

�θ ∀ �X(0) ∈ [0,∞)2. (2.7)

The convergence in (2.7) is crucial for the stochastic part of the renormalization program (not considered here),
while the uniqueness of the equilibrium is crucial for the definition of the renormalization transformation, which we
now define.

Definition 2.4 (Renormalization transformation). The renormalization transformation Fc, acting on g ∈ C , is defined
as

(Fcg)i(�θ) =
∫

[0,∞)2
gi(�x)Γ

c,g

�θ (d�x), �θ ∈ [0,∞)2, c > 0, i = 1,2. (2.8)

Henceforth we will denote expectation with respect to Γ
c,g

�θ by E
c,g

�θ .
Without restrictions on the growth of g at infinity, it is possible that Fcg is infinite. We therefore need to consider

a tempered subclass of C .

Definition 2.5 (Class H0+ ).

(i) For a ≥ 0, let Ha ⊂ C be the class of all g ∈ C satisfying

g1(x1, x2) + g2(x1, x2) ≤ C(1 + x1)(1 + x2) + a
(
x2

1 + x2
2

)
, (x1, x2) ∈ [0,∞)2, (2.9)

for some 0 < C = C(g) < ∞.
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(ii) Let

H0+ =
⋂
a>0

Ha. (2.10)

Note that H0+ is much larger than H0. In particular, H0+ includes diffusion functions that along the axes grow
faster than linear but slower than quadratic.

Our second result shows that Fc is well defined on the class Ha when 0 ≤ a < c, preserves the effective boundary,
and preserves the growth bound in (2.9) though with a different coefficient. The proof will be given in Section 3.2.

Theorem 2.6 (Finiteness, continuity, preservation of ∂g and growth bound). For c > 0 and 0 ≤ a < c, if g ∈ Ha ,
then Fcg is finite and continuous on [0,∞)2, ∂Fcg = ∂g, and Fcg satisfies (2.9) with a replaced by c

c−a
a.

To proceed with our analysis, we need the following:

Conjecture 2.7 (Preservation of boundary properties). Let g ∈ H0+ .

(i) For i = 1,2, if gi satisfies (∂i), then so does (Fcg)i for all c > 0.
(ii) For i = 1,2, if gi satisfies (∂12), then so does (Fcg)i for all c > 0.

In Section 3.3 we will explain why this conjecture is plausible. Combining Theorem 2.6 with Conjecture 2.7, we
get:

Corollary 2.8 (Preservation of class H0+ ). For all c > 0, the class H0+ is preserved under Fc, i.e., Fcg ∈ H0+ for
all g ∈ H0+ .

The latter is a key property, because it allows us to iterate Fc on H0+ and investigate the orbit F [n]g = Fcn−1 ◦ · · · ◦
Fc0g, n ∈ N0. We will not need Conjecture 2.7 or Corollary 2.8 until we study the iterates F [n] in Section 2.5.

The subquadratic growth bound imposed by H0+ cannot be relaxed: we will see in Corollary 2.11 that Fc cannot
be iterated indefinitely on Ha for any a > 0.

2.3. Definition and examples of fixed points and fixed shapes

We next give the definition of fixed points and fixed shapes of Fc. Generalizing our definition given in the Introduction,
we allow for the case where Fcg = λg with λ not a constant but a diagonal matrix. These generalized fixed shapes do
not give rise to universality classes as defined in Section 1.2, but they may be relevant for studying finer properties of
the orbit (F [n]g)n∈N0 .

Definition 2.9 (Generalized fixed shapes and points). The pair g = (g1, g2) ∈ Ha with a ∈ [0, c) is called a general-
ized fixed shape of Fc if

Fc(g1, g2) = (λ1g1, λ2g2) for some λ1, λ2 > 0. (2.11)

If λ1 = λ2, then g is called a fixed shape, and if λ1 = λ2 = 1, then g is called a fixed point of Fc.

Our third result identifies a family of fixed points and (generalized) fixed shapes of Fc. The proof is nontrivial
because of integrability issues, and will be given in Section 3.2.

Theorem 2.10 (Examples of fixed points and fixed shapes).

(i) The pair

(g1, g2) = (b1x1 + c1x1x2, b2x2 + c2x1x2) (2.12)

is a fixed point of Fc in H0+ for all c > 0 and all b1, b2, c1, c2 ≥ 0 with (b1 + c1)(b2 + c2) > 0.
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(ii) The pair

(g1, g2) = (
a1x

2
1 + b1x1 + c1x1x2, a2x

2
2 + b2x2 + c2x1x2

)
(2.13)

is a generalized fixed shape of Fc in Ha1∨a2 for all c > 0, 0 < a1, a2 < c and b1, b2, c1, c2 ≥ 0. The corresponding
scaling constants are

λ1 = c

c − a1
, λ2 = c

c − a2
. (2.14)

Diffusion functions of the form in (2.12) are mixtures of independent branching, catalytic branching and mutually
catalytic branching (recall Section 2.1), all of which are in the class H0+. We will see in Theorem 2.15 that, under
additional regularity conditions, such mixtures are the only fixed points of Fc. Diffusion functions of the form in (2.13)
are mixtures of these fixed points and the Anderson branching diffusion (g1, g2) = (a1x

2
1 , a2x

2
2). The latter do not fall

in the class H0+.
The following corollary of Theorem 2.10 shows that Fcg cannot be defined for all g ∈ Ha with a ≥ c, and Fc

cannot be iterated indefinitely on Ha for any a > 0. The proof will be given in Section 3.2.

Corollary 2.11 (Divergence of iterated fixed shapes). Let gi(�x) = αix
2
i + βixi + γix1x2 with αi > 0 and βi ,

γi ≥ 0, i = 1,2. Let (cn)n∈N0 be the positive sequence that defines F [n] (see (1.14)). Let n0 = min{n ∈ N: (α1 ∨
α2)

∑n−1
i=0 c−1

i ≥ 1}. Then

((
F [n]g

)
1,

(
F [n]g

)
2

) =
(

1

1 − α1
∑n−1

i=0 c−1
i

g1,
1

1 − α2
∑n−1

i=0 c−1
i

g2

)
, 0 ≤ n < n0, (2.15)

while (F [n0]g)1 + (F [n0]g)2 ≡ ∞ on (0,∞)2.

2.4. Identification of fixed points and fixed shapes

Our fourth result rules out generalized fixed shapes in H0+ with an upgoing component. The proof will be given in
Section 4.3.

Theorem 2.12 (No fixed shapes in H0+ with an upgoing component). For c > 0, there is no g ∈ H0+ such that
either (Fcg)1 = λ1g1 with λ1 > 1 or (Fcg)2 = λ2g2 with λ2 > 1.

Our fifth result does the same for generalized fixed shapes with a downgoing component, but only under mild ad-
ditional regularity conditions. The proof will be given in Section 4.3. Below, in line with general topological notation,
lim inf�x→(∞,∞) denotes the infimum of all limits along sequences tending to (∞,∞).

Theorem 2.13 (Sufficient conditions for no downgoing fixed shapes in H0+ ). Let c > 0.

(i) There is no g ∈ H0+ such that Fc(g1, g2) = (λ1g1, λ2g2) with 0 < λ1, λ2 < 1 and

lim inf
�x→(∞,∞)

(
g1(�x)

x2
1

+ g2(�x)

x2
2

)
= 0. (2.16)

(ii) There is no g ∈ H0+ such that (Fcg)1 = λ1g1 for some 0 < λ1 < 1 and g satisfies any of the following condi-
tions:

• g1 > 0 on A1 \ {
(0,0)

}
, (2.17)

• lim inf
�x→(∞,∞)

g1(�x)

x1x2
> 0. (2.18)
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A similar result holds with the indices 1 and 2 interchanged.

Remark. Conditions (2.16) and (2.18) are complementary. Note that one particular case not covered by conditions
(2.16)–(2.18) is when g1 vanishes on both axes, g1(�x) = o(x1x2) as �x → (∞,∞), and g2(�x) = x1x2. In that case we
cannot rule out the possibility of g1 being a downgoing fixed shape.

In Theorem 2.10 we identified a 4-parameter family of fixed points. To show that these are the only fixed points,
we need to impose strong additional regularity conditions.

Abbreviate

R∞ = {
(0,∞), (∞,0), (∞,∞)

}
(2.19)

and

h(∞,0)(�x) = x1, h(0,∞)(�x) = x2, h(∞,∞)(�x) = x1x2. (2.20)

Definition 2.14 (Class Hr
0). Let Hr

0 be the set of g ∈ H0 satisfying

(i) inf
�x∈[s,∞)2

gi(�x) > 0 ∀s > 0, i = 1,2, (2.21)

(ii) lim
�x→�z

gi(�x)

h�z(�x)
= λi,�z ∈ [0,∞) ∀�z ∈ R∞, i = 1,2. (2.22)

Note that Hr
0 ⊂ H0 ⊂ H0+ . Also note that, because g1 vanishes on A2 and g2 on A1, necessarily λ1,(0,∞) =

λ2,(∞,0) = 0.
Our sixth result is the following. The proof will be given in Section 4.1.

Theorem 2.15 (Identification of fixed points in Hr
0). Let c > 0 and g = (g1, g2) ∈ Hr

0. If Fc(g1, g2) = (g1, g2), then

g1(�x) = λ1,(∞,0)x1 + λ1,(∞,∞)x1x2,

g2(�x) = λ2,(0,∞)x2 + λ2,(∞,∞)x1x2, (2.23)

where λi,�z, �z ∈ R∞, are defined in (2.22).

2.5. Domain of attraction of fixed points

Our seventh and final result is on the domain of attraction of the iterated maps F [n] = Fcn−1 ◦ · · · ◦ Fc0 , n ∈ N0, for a
fixed positive sequence (cn)n∈N0 . We show that, provided infn∈N0 cn > 0 and

∑
n∈N0

c−1
n = ∞, all diffusion functions

that are comparable to a mixture of the fixed points fall into its domain of attraction. In Section 5, we will give the
proof for the special case cn ≡ c, while in Section 6, we prove the result for varying cn.

Theorem 2.16 (Domain of attraction of fixed points). Let (cn)n∈N0 be a sequence such that infn∈N0 cn > 0 and∑
n∈N0

c−1
n = ∞. Let g ∈ Hr

0 be such that

gi(�x) ≥ αixi + βix1x2, αi, βi ≥ 0, αi + βi > 0, i = 1,2. (2.24)

Then

lim
n→∞

(
F [n]g

)
i
(�θ) =

∑
�z∈R∞

λi,�zh�z(�θ) ∀�θ ∈ [0,∞)2, i = 1,2, (2.25)

where h�z, λi,�z, �z ∈ R∞, are defined in (2.20) and (2.22).
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What this says is that under the iterates F [n], any g that is properly minorized and has the same behavior at infinity
as a mixture of the fixed points, converges to that mixture pointwise as n → ∞.

Remark 1. Note that Theorem 2.16 implicitly assumes Conjecture 2.7. To be formally correct, in Theorem 2.16 we
should replace Hr

0 by the largest subclass of Hr
0 that is preserved by Fc for all c > 0.

Remark 2. The condition infn∈N0 cn > 0 means that we partially exclude the regime of large clusters (see e.g. [11]).
We do not believe this assumption to be essential. As long as

∑
n∈N0

c−1
n = ∞, i.e., the associated random walk on

ΩN with transition rate kernel aN(·, ·) is recurrent, we expect there to be universality and the convergence in (2.25)
to hold.

2.6. Discussion and future challenges

The results in Sections 2.2–2.5 constitute a partial completion of the analytic part of the renormalization program
outlined in Section 1.2. We have formulated H0+ as the class on which the renormalization transformation is properly
defined and, apart from Conjecture 2.7, it can be iterated. We have proved absence of upgoing fixed shapes in this
class, and absence of downgoing fixed shapes under mild regularity conditions, given by (2.16)–(2.18). Furthermore,
we have identified our 4-parameter family of fixed points in (2.12) as the only fixed points in a subclass Hr

0 of the
smaller class H0, given by the strong regularity conditions (2.21) and (2.22). Finally, we have found the domain of
attraction of these fixed points in Hr

0 supplemented with the lower bound (2.24), i.e., diffusion functions that are
comparable to a mixture of the fixed shapes. There are several open problems remaining, the chief among which are:

(1) Verify Conjecture 2.7, i.e., establish that the renormalization transformation can be iterated on H0+ .
(2) Remove assumptions (2.16)–(2.18) in the proof of the absence of downgoing fixed shapes in H0+ .
(3) Show that the fixed points in (2.12) are the only fixed points in H0+ . In particular, remove assumption (2.22) and

the bound g1(�x) + g2(�x) ≤ C(1 + x1)(1 + x2) in Hr
0 ⊂ H0.

(4) Strengthen (2) and (3) by determining whether it is actually true that the fixed shapes in (2.13) are the only fixed
shapes in C .

(5) Study the orbit of (F [n]g)n∈N0 when the behavior of g at infinity is different from that of the fixed points. In that
case we still expect convergence, but only after F [n]g is scaled with n in some appropriate manner. For diffusions
on the halfline [0,∞), this study was successfully completed in [3], which raises some hope that it can be carried
through on the quadrant as well.

The questions we treated in this paper and the open problems we just mentioned have close connections to prob-
abilistic potential theory of diffusions and Markov chains taking values in the quadrant. Our proofs strongly lean on
the observation that the fixed points we build are mixtures of extremal universal harmonic functions of the interaction
chains described in Section 1.2. The problem of finding all fixed points then requires identifying the universal Martin
boundary of these Markov chains. The reader interested in this point of view can find the necessary concepts in [26].
Harmonic functions have played an important role in earlier studies of the analytic part of the renormalization pro-
gram. In particular, the convergence proofs in the cases (1), (3) and (4) mentioned in Section 1.3 all depend on a spe-
cial property of these models, called “invariant harmonics” (see [30]). Case (2) uses moment equations combined with
comparison arguments, while case (5) uses a representation in terms of a superprocess. Due to multi-dimensionality
and noncompactness, these tools either do not apply or are insufficient for our model. However, our present methods
have their limitations as well. In particular, in their present state they can only be used to prove convergence to joint
fixed points of Fc for all c > 0, as opposed to fixed shapes, or cases where there might be different fixed points of Fc

for different values of c. Moreover, we can treat only functions that are perturbations of these fixed points, albeit in a
rather large class.

Another interesting question is to study multi-type branching models with more than two types. The class of
random catalytic networks introduced in [17] and generalized in [25] provide a rich class of fixed points of the
renormalization transformation. However our results here do not extend trivially to higher dimensions, because we
need the well-posedness of the martingale problem (Theorem 2.2), which is more delicate in higher dimensions. Also,
our proof of the formula (A.3) for the mixed moment X1X2 does not extend to mixed moments of higher order.
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3. Proofs of Theorems 2.3, 2.6, 2.10 and Corollary 2.11

In Section 3.1 we give the proof of Theorem 2.3, in Section 3.2 that of Theorems 2.6, 2.10 and Corollary 2.11. In
Section 3.3 we discuss Conjecture 2.7. Along the way we need a proposition on moment equations for the equilibrium
distribution Γ

c,g

�θ , which will turn out to be fundamental in our analysis. This proposition is formulated and proved in
Appendix A.

3.1. Proof of Theorem 2.3

We break down the proof of Theorem 2.3 into four parts: existence, uniqueness, weak continuity and convergence. For
uniqueness and convergence, we need to distinguish between �θ ∈ (0,∞)2 and �θ ∈ ∂[0,∞)2.

Existence

Proof. If we denote the distribution of �X(t) by μt , with μ0 = δ�x for some arbitrary �x ∈ [0,∞)2, then it suffices
to show that {νt : νt = 1

t

∫ t

0 μs ds}t≥0 forms a tight family of distributions on [0,∞)2. Indeed, we can then find a
sequence (tn) tending to infinity such that νtn converges weakly to a limiting distribution ν. Consequently, for any
f ∈ C2

c ([0,∞)2),

∫ (
L

c,g

�θ f
)
(�x)ν(d�x)

= lim
n→∞

∫ (
L

c,g

�θ f
)
(�x)νtn(d�x) = lim

n→∞
1

tn

∫ tn

0

∫ (
L

c,g

�θ f
)
(�x)μs(d�x)ds

= lim
n→∞

1

tn
Eμ0

[∫ tn

0

(
L

c,g

�θ f
)( �X(s)

)
ds

]
= lim

n→∞
1

tn
Eμ0

[
f

( �X(tn)
) − f

( �X(0)
)] = 0, (3.1)

where the first line uses that νtn converges weakly to ν, the second line uses the definition of νtn , the third lines uses
the definition of μs and Fubini, and the fourth line uses that f ( �X(t))−f ( �X(0))− ∫ t

0 (L
c,g

�θ f )( �X(s))ds is a martingale

and f is bounded. Since
∫
(L

c,g

�θ f )(�x)ν(d�x) = 0 for all f ∈ C2
c ([0,∞)2), which form an algebra of functions that is

dense in the space of continuous functions on [0,∞)2 vanishing at ∞, it follows from Theorem 4.9.17 in [19] that ν

is an equilibrium distribution for (2.1).
Tightness of the family {νt }t≥0 follows from the following lemma.

Lemma 3.1 (Tightness estimate). Let ( �X(t))t≥0 be the unique solution of the martingale problem for L
c,g

�θ with

initial condition �X(0) = �x. Then

E
[
Xi(t) − θi

] ≤ (xi − θi)e
−ct , i = 1,2, t ≥ 0. (3.2)

Proof. For any ρ1, ρ2 > 0, the function f (t, �x) = ∑2
i=1 ρi(xi − θi)ect satisfies

(
L

c,g

�θ + ∂

∂t

)
f (t, �x) = c

2∑
i=1

ρi(θi − xi)e
ct + c

2∑
i=1

ρi(xi − θi)e
ct = 0, (3.3)

and therefore the process
∑2

i=1 ρi(Xi(t) − θi)ect is a local martingale. Introduce stopping times

τn = inf

{
t ≥ 0:

2∑
i=1

ρiXi(t) ≥ n

}
, n ∈ N. (3.4)
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Then

2∑
i=1

ρi(xi − θi) =
2∑

i=1

ρiE
[(

Xi(t ∧ τn) − θi

)
ec(t∧τn)

]

=
2∑

i=1

ρiE
[(

Xi(t) − θi

)
ect1{τn>t}

] +
2∑

i=1

ρiE
[(

Xi(τn) − θi

)
ecτn1{τn≤t}

]
. (3.5)

For n ≥ ∑2
i=1 ρiθi , the second term in the right-hand side is nonnegative, so letting n → ∞ we find that

2∑
i=1

ρiE
[
Xi(t) − θi

]
ect ≤

2∑
i=1

ρi(xi − θi). (3.6)

Since ρ1, ρ2 > 0 are arbitrary, we arrive at (3.2). �

This completes the proof of the existence. �

Uniqueness

Proof. We distinguish between �θ in the interior resp. on the boundary of [0,∞)2.
�θ ∈ (0,∞)2: By Theorem 2.2, the unique weak solution ( �X(t))t≥0 of (2.1) is a strong Markov process. By Remark 1

following Theorem 2.2, we restrict the state space to be [0,∞)2\{(0,0)} for the cases where weak uniqueness is not
known when �X(0) = (0,0). If ( �X(t))t≥0 has two distinct equilibrium distributions, then we can find two extremal
equilibrium distributions μ and ν that are singular with respect to each other (see e.g. Theorem 6.9 in [32]). This
implies that there exist �x, �y ∈ [0,∞)2 such that the transition kernels pt(�x, ·) and pt(�y, ·) are mutually singular for
all t > 0. However, if �x, �y ∈ (0,∞)2, then we can first apply Theorem B.4 to transport the diffusions started at �x,
resp. �y, to a common small neighborhood with positive probability, and subsequently apply Corollary B.3 to see that
pt (�x, ·) and pt (�y, ·) cannot be singular for all t > 0. On the other hand, when either �x or �y ∈ ∂[0,∞)2, it suffices
to note that the drift in (2.1) forces the diffusion to enter (0,∞)2 instantly, which we justify shortly. Then, again by
Theorem B.4, the diffusion can be kept in (0,∞)2 up to any fixed time with positive probability, which reduces it to
the case �x, �y ∈ (0,∞)2.

We now show that, for �X(0) = �x ∈ ∂[0,∞)2, ( �X(t))t≥0 enters (0,∞)2 instantly. Consider first the case �X(0) ∈
{0} × (0,∞). Let �X(0) = (0, y) with y > 0, and let τε = inf{t > 0: |X2(t) − X2(0)| ≥ y/2 or X1(t) ≥ ε}. Then
X1(t ∧ τε) − ∫ t∧τε

0 c(θ1 − X1(s))ds is a martingale, and

E
[
X1(t ∧ τε)

] = E

[∫ t∧τε

0
c
(
θ1 − X1(s)

)
ds

]
. (3.7)

Letting t → ∞, we find that for ε small,

ε ≥ E
[
X1(τε)

] = E

[∫ τε

0
c
(
θ1 − X1(s)

)
ds

]
≥ cθ1

2
E[τε]. (3.8)

Therefore E[τε] → 0 as ε ↓ 0, which is possible only if ( �X(t))t≥0 enters (0,∞)2 instantly. The case �X(0) ∈ (0,∞) ×
{0} is analogous. For �X(0) = (0,0), a similar argument shows that ( �X(t))t≥0 enters [0,∞)2\{(0,0)} instantly, which
reduces it to the previous cases.

�θ ∈ ∂[0,∞)2: If θ1 = 0, then E
c,g

�θ [X1] = θ1 = 0 for any equilibrium distribution Γ
c,g

�θ by Proposition A.1. In

particular, Γ
c,g

�θ is concentrated on {0} × [0,∞). Furthermore, (X1(t))t≥0 is a local supermartingale, and hence {0} ×
[0,∞) is an absorbing set. The equilibria for ( �X(t))t≥0 are therefore exactly the equilibria for ( �X(t))t≥0 restricted
to the axis {0} × [0,∞), which is a one-dimensional diffusion. The proof of the existence and the uniqueness of the
equilibrium distribution for this one-dimensional diffusion can be deduced either from explicit calculations as in [3],
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or from the same argument as above for the two-dimensional diffusion with �θ ∈ (0,∞)2. The situation is similar if
θ2 = 0. �

Weak continuity

Proof. We will show that Γ
c,g

�θ is weakly continuous in �θ . Let (�θn) be a sequence such that �θn → �θ in [0,∞)2. It

suffices to show that {Γ c,g

�θn
}n∈N is tight, and that any weak limit point of Γ

c,g

�θn
is an equilibrium distribution for the

SDE (2.1), which must be the unique Γ
c,g

�θ . Tightness of {Γ c,g

�θn
}n∈N follows from (A.2). Suppose that Γ

c,g

�θn
converges

weakly to a distribution ν. Then for any f ∈ C2
c ([0,∞)2),∫

[0,∞)2

(
L

c,g

�θ f
)
(x)ν(dx) =

∫
[0,∞)2

(
L

c,g

�θn
f

)
(x)Γ

c,g

�θn
(dx) +

∫
[0,∞)2

[(
L

c,g

�θ − L
c,g

�θn

)
f

]
(x)Γ

c,g

�θn
(dx)

+
∫

[0,∞)2

(
L

c,g

�θ f
)
(x)

[
ν(dx) − Γ

c,g

�θn
(dx)

]
, (3.9)

where the first term is zero because Γ
c,g

�θn
is an equilibrium distribution for the SDE in (2.1) with parameter �θn, the

second term tends to 0 as n → ∞ because f ∈ C2
c ([0,∞)2) and ‖Lc,g

�θ f (x) − L
c,g

�θn
f (x)‖∞ → 0 as θn → θ , and the

third term tends to 0 as n → ∞ by the weak convergence of Γ
c,g

�θn
to ν. Therefore

∫
[0,∞)2(L

c,g

�θ f )(x)ν(dx) = 0 for all

f ∈ C2
c ([0,∞)2). By Theorem 4.9.17 in [19], it follows that ν must be an equilibrium distribution for (2.1), and hence

ν = Γ
c,g

�θ . �

Convergence

Proof. We again distinguish between �θ in the interior resp. on the boundary of [0,∞)2.
�θ ∈ (0,∞)2: Firstly, note that by Theorem B.4 and the fact that ( �X(t))t≥0 started from ∂[0,∞)2 enters (0,∞)2

instantly (see the paragraph containing (3.7) and (3.8)), the equilibrium distribution Γ
c,g

�θ must assign positive measure

to every open subset of (0,∞)2.
Secondly, we show that for almost all �x ∈ [0,∞)2 with respect to Γ

c,g

�θ , L( �X(t)| �X(0) = �x) converges weakly to

Γ
c,g

�θ as t → ∞. We achieve this by showing that, for almost all (�x, �y) ∈ [0,∞)2 ×[0,∞)2 with respect to the product

measure Γ
c,g

�θ ×Γ
c,g

�θ , we can couple two solutions ( �X(t))t≥0 and ( �Y (t))t≥0 of (2.1) starting from �x, resp. �y, such that

limt→∞ P( �X(t) �= �Y (t)) = 0. This goes as follows.

Let ε, δ > 0 be chosen as in Corollary B.3, where b(�x) = c(�θ − �x) and a(�x) =
(

g1(�x) 0
0 g2(�x)

)
on [0,∞)2 (the

definition of (a, b) in the rest of the plane R
2 is irrelevant, for instance one may define it by reflection), D = {�x ∈

[0,∞)2 :‖�x −(1,1)‖ < 1
2 } and �x∗ = (1,1). Note that a(·) is nondegenerate on D for g ∈ C . If ( �X(t))t≥0, ( �Y (t))t≥0 are

two independent copies of the strong Markov process defined by (2.1), then the joint process ( �X(t), �Y (t))t≥0 is strong
Markov and, by the same argument as for a single diffusion ( �X(t))t≥0, the joint process has a unique equilibrium given
by the product measure Γ

c,g

�θ ×Γ
c,g

�θ , which implies that the stationary process ( �X(t), �Y (t))t≥0 with L( �X(0), �Y (0)) =
Γ

c,g

�θ × Γ
c,g

�θ is ergodic (see e.g. Theorem 6.9 in [32] and the remarks thereafter). Since Γ
c,g

�θ × Γ
c,g

�θ assigns positive

measure to Bε(�x∗) × Bε(�x∗), by the ergodic theorem almost surely ( �X(t), �Y (t))t≥0 visits the set Bε(�x∗) × Bε(�x∗)
after any finite time T . In particular, for almost all (�x, �y) with respect to Γ

c,g

�θ × Γ
c,g

�θ , almost surely the Markov

process ( �X(t), �Y (t))t≥0 starting from (�x, �y) visits Bε(�x∗) × Bε(�x∗) after any finite time T . For such a pair (�x, �y),
we construct the coupled process as follows. Start the independent processes ( �X(t))t≥0 and ( �Y (t))t≥0 with initial
conditions �x, resp. �y. Then τ = inf{t ≥ 0: ( �X(t), �Y (t)) ∈ Bε(�x∗)×Bε(�x∗)} < ∞ almost surely. By Corollary B.3, the
conditional transition probability kernels μ �X = P( �X(τ +δ) ∈ ·|( �X(τ), �Y (τ))) and μ �Y = P( �Y (τ +δ) ∈ ·|( �X(τ), �Y (τ)))

have a common part μ �X, �Y with measure at least 1
2 . From μ �X ×μ �Y , we can take out μ �X, �Y ×μ �X, �Y , which has measure

at least 1
4 , and couple ( �X(τ +δ+ t))t≥0 and ( �Y (τ +δ+ t))t≥0 so that they coincide for all t ≥ 0 and evolve as the strong
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Markov process defined by (2.1) with initial measure μ �X, �Y . With respect to the remaining measure μ �X ×μ �Y −μ �X, �Y ×
μ �X, �Y , we let ( �X(τ +δ+ t))t≥0 and ( �Y (τ +δ+ t))t≥0 continue to evolve independently. Since μ �X ×μ �Y −μ �X, �Y ×μ �X, �Y
is absolutely continuous with respect to μ �X × μ �Y , a.s. ( �X(τ + δ + t), ( �Y (τ + δ + t))t≥0 will visit Bε(�x∗) × Bε(�x∗)
again. We can therefore iterate the above coupling procedure. Each iteration reduces the probability that �X and �Y have
not been successfully coupled by a factor 1

4 . Continue the iteration indefinitely to get the desired coupling between
�X and �Y . We comment that, unlike in the context of Harris chains (see e.g. Section 5.6 of [18]) where one would
need P( �X(δ) ∈ ·| �X(0) = �x) to be dominated from below by a positive measure uniformly for �x ∈ Bε(�x∗), to get a
successful coupling it suffices that P( �X(δ) ∈ ·| �X(0) = �x) and P( �X(δ) ∈ ·| �X(0) = �y) overlap with probability at least
α for some α > 0 uniformly for all �x, �y ∈ Bε(�x∗).

Next we show that, for Lebesgue almost every �x ∈ [0,∞)2, L( �X(t)| �X(0) = �x) ⇒ Γ
c,g

�θ as t → ∞. Let A = {�x ∈
[0,∞)2: L( �X(t)| �X(0) = �x) �⇒ Γ

c,g

�θ }. By Theorem 2.2 and the remark following it, the process defined by (2.1) is
Feller continuous, and therefore A is Borel-measurable. If A has positive Lebesgue measure, then we can find a simply
connected bounded open domain D ⊂ (0,∞)2 with smooth boundary such that A∩D has positive Lebesgue measure.
We have shown above that Γ

c,g

�θ (A) = 0, and hence Γ
c,g

�θ (A ∩ D) = 0. If ( �X(t))t≥0 is the stationary solution of (2.1)

with marginal distribution Γ
c,g

�θ , then E[∫ T

0 1 �X(t)∈A∩D
dt] = 0 for all T > 0. On the other hand, by Theorem B.5, we

have for every �x ∈ D that E[∫ τD

0 1 �X(t)∈A∩D
dt | �X(0) = �x] > 0. Since Γ

c,g

�θ assigns positive probability to D, we have

∫
D

E

[∫ τD

0
1 �X(t)∈A∩D

dt

∣∣∣ �X(0) = �x
]
Γ

c,g

�θ (d�x) > 0.

By the monotone convergence theorem, we can choose T sufficiently large such that

∫
D

E

[∫ τD∧T

0
1 �X(t)∈A∩D

dt

∣∣∣ �X(0) = �x
]
Γ

c,g

�θ (d�x) > 0,

the left-hand side of which is in turn dominated by E[∫ T

0 1 �X(t)∈A∩D
dt] = 0, which is a contradiction. Therefore A has

Lebesgue measure 0.
Lastly, we show that L( �X(t)| �X(0) = �x) ⇒ Γ

c,g

�θ for all �x ∈ [0,∞)2. Indeed, for �x ∈ (0,∞)2, let ε > 0 be such

that Bε(�x) ⊂ (0,∞)2. By Corollary B.3 applied to D = Bε(�x), the transition kernel μ
Bε(�x)
t (�x, ·) with killing at

the boundary of Bε(�x) is absolutely continuous with respect to Lesbesgue measure. Since, for Lebesgue almost
every �y ∈ Bε(�x), L( �X(t + s)| �X(t) = �y) ⇒ Γ

c,g

�θ as s → ∞ and μ
Bε(�x)
t (�x,Bε(�x)) ↑ 1 as t ↓ 0 (see (B.3)), we have

L( �X(t))| �X(0) = �x) ⇒ Γ
c,g

�θ . The case �x ∈ ∂[0,∞)2 follows from our previous observation that �X(t) starting from �x
enters (0,∞)2 instantly (see (3.7) and (3.8)).

�θ ∈ ∂[0,∞)2: Without loss of generality we may assume that θ1 = 0. If X1(0) = 0, then X1(t) = 0 for all t ≥ 0
and (X1(t),X2(t)) = (0,X2(t)) is effectively a one-dimensional diffusion with diffusion function g2(0, x2). By the
same argument as before, albeit much simpler, this one-dimensional diffusion is ergodic, and the convergence in (2.7)
holds. If X1(0) �= 0, then it suffices to show that X1(t) → 0 a.s. and L(X2(t)) ⇒ Γ

c,g

�θ as t → ∞, where Γ
c,g

�θ is taken
as a measure on [0,∞).

Note that X1(t) is a local supermartingale and X1(t) ∧ 1 is a bounded supermartingale, so that X1(t) ∧ 1 → Y a.s.
as t → ∞ for some nonnegative random variable Y . By the bounded convergence theorem and (3.2),

E[Y ] = lim
t→∞ E

[
X1(t) ∧ 1

] ≤ lim
t→∞X1(0)e−ct = 0. (3.10)

Therefore Y ≡ 0 and X1(t) → 0 a.s. as t → ∞.
To show that L(X2(t)) ⇒ Γ

c,g

�θ as t → ∞, it suffices to show that E[φ(X2(t))] → E
c,g

�θ [φ(X2)] as t → ∞ for any

φ ∈ C2
c [0,∞). Abbreviate

α = E
c,g

�θ
[
φ(X2)

]
and u(t, �x) = E

[
φ
(
X2(t)

) | �X(0) = �x]
. (3.11)
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For �X(0) ∈ [0,∞)2 with X1(0) = 0, ( �X(t))t≥0 is effectively a one-dimensional diffusion that is ergodic, and hence
u(t, �x) → α as t → ∞ for each �x ∈ {0} × [0,∞). We claim that in fact u(t, �x) → α uniformly on compact intervals
of the form {0} × [0,K]. To see why, note that if Y(t) and Z(t) are solutions of the one-dimensional SDE

dX(t) = c
(
θ2 − X(t)

)
dt +

√
2g2

(
0,X(t)

)
dBt (3.12)

with initial condition Y(0) = y < Z(0) = z, then Z(t) stochastically dominates Y(t) for all t ≥ 0, i.e., if Ft,y(v) =
P(Y (t) < v|Y(0) = y), then Ft,y(v) ≥ Ft,z(v) for all t, v ≥ 0. Let F∞(v) = Γ

c,g

�θ (−∞, v). Then, for any x2 ≥ 0,
Ft,x2(v) → F∞(v) as t → ∞ for all but countably many v ∈ [0,∞). For any x2 ∈ [0,K], K > 0, we can write

u
(
t, (0, x2)

) =
∫ ∞

0
φ(v)dFt,x2(v) = −

∫ ∞

0
φ′(v)Ft,x2(v)dv =

∫ ∞

0

(
φ′−(v) − φ′+(v)

)
Ft,x2(v)dv, (3.13)

where φ′+(v) = φ′(v) ∨ 0 and φ′−(v) = −(φ′(v) ∧ 0). Since

∫ ∞

0
φ′−(v)Ft,K(v)dv ≤

∫ ∞

0
φ′−(v)Ft,x2(v)dv ≤

∫ ∞

0
φ′−(v)Ft,0(v)dv, (3.14)

where both ends of the inequality tend to
∫ ∞

0 φ′−(v)F∞(v)dv by the bounded convergence theorem,
∫ ∞

0 φ′−(v) ×
Ft,x2(v)dv converges uniformly to

∫ ∞
0 φ′−(v)F∞(v)dv for x2 ∈ [0,K] as t → ∞. A similar statement holds for∫ ∞

0 φ′+(v)Ft,x2(v)dv. Therefore u(t, �x) converges uniformly to α on {0} × [0,K].
Let �X(0) ∈ [0,∞)2 be arbitrary. By (3.2), (X2(t))t≥0 is tight, and hence for any ε > 0 we can choose K large

enough so that P(X2(t) > K) ≤ ε for all t ≥ 0. Since u(t, �x) → α uniformly on {0} × [0,K], we can choose t1 large
enough so that supx2∈[0,K] |u(t1, (0, x2)) − α| ≤ ε/2. Since {( �X(t))t≥0} �X(0)∈[0,∞)2 defines a Feller process (see the

remark below Theorem 2.2), u(t1, �x) is continuous in �x ∈ [0,∞)2. We can therefore choose δ > 0 sufficiently small so
that sup�x∈[0,δ]×[0,K] |u(t1, �x) − α| ≤ ε. Since X1(t) → 0 a.s., we can choose t2 large enough so that P(X1(t) > δ) ≤ ε

for all t ≥ t2. Then, by the Markov property, for any t ≥ t1 + t2 we have

u
(
t, �X(0)

) = E
[
u
(
t1, �X(t − t1)

)]
= E

[
u
(
t1, �X(t − t1)

)
1 �X(t−t1)∈[0,δ]×[0,K]

] + E
[
u
(
t1, �X(t − t1)

)
1 �X(t−t1)/∈[0,δ]×[0,K]

]
. (3.15)

Since P( �X(t − t1) /∈ [0, δ] × [0,K]) ≤ 2ε and ‖u‖∞ ≤ ‖φ‖∞, α ≤ ‖φ‖∞, we easily verify from (3.15) that

∣∣u(
t, �X(0)

) − α
∣∣ ≤ ε + 4ε‖φ‖∞ for all t ≥ t1 + t2. (3.16)

Since ε > 0 is arbitrary, u(t, �X(0)) → α as t → ∞, and hence L( �X(t)) ⇒ Γ
c,g

�θ . �

3.2. Proofs of Theorems 2.6, 2.10 and Corollary 2.11

Proof of Theorem 2.6. Let g = (g1, g2) ∈ Ha for some 0 ≤ a < c. Then, by (2.9), there exists a 0 < C = C(g) < ∞
such that

g1(�x) + g2(�x) ≤ C(1 + x1)(1 + x2) + a
(
x2

1 + x2
2

)
, (x1, x2) ∈ [0,∞)2. (3.17)

The finiteness of Fcg follows from Proposition A.1(ii). If �θn → �θ for some �θ ∈ [0,∞)2, then, by Proposition A.1(iii),
g1, g2 are uniformly integrable with respect to {Γ c,g

�θn
}n∈N. Combining this with the fact, shown in Theorem 2.3 and

proved in Section 3.1, that Γ
c,g

�θn
converges weakly to Γ

c,g

�θ as �θn → �θ , we have E
c,g

�θn
[gi( �X)] → E

c,g

�θ [gi( �X)], i.e.,

(Fcg)i(�θn) → (Fcg)i(�θ) for i = 1,2 (recall (2.8)).
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By the moment equations (A.2) and (A.3), we have

(Fcg)1(�θ) + (Fcg)2(�θ) = E
c,g

�θ
[
g1( �X) + g2( �X)

]
≤ E

c,g

�θ
[
C(1 + X1)(1 + X2) + a

(
X2

1 + X2
2

)]
= C(1 + θ1)(1 + θ2) + a

(
θ2

1 + θ2
2

) + a

c

(
(Fcg)1(�θ) + (Fcg)2(�θ)

)
. (3.18)

Therefore

(Fcg)1(�θ) + (Fcg)2(�θ) ≤ c

c − a

(
C(1 + θ1)(1 + θ2) + a

(
θ2

1 + θ2
2

))
. (3.19)

Consequently, if g ∈ H0+ , then Fcg satisfies (3.19) for all a > 0, and so it satisfies the subquadratic growth bound
imposed by the class H0+ .

To show ∂Fcg = ∂g, note that Fcg ≥ 0 is obvious. If �θ ∈ (0,∞)2, then the equilibrium distribution Γ
c,g

�θ has

positive mass in (0,∞)2, and so (Fcg)(�θ) > 0 follows from the fact that g > 0 on (0,∞)2. If θ1 = 0, then, by (A.2),
Γ

c,g

�θ is concentrated on the vertical axis A2. Since g1 vanishes on A2, it follows that (Fcg)1(�θ) = 0. Moreover,

(Fcg)2(�θ) = 0 if and only if g2 vanishes on A2 (recall (2.5) and (2.6)). A similar result holds for θ2 = 0. �

Proof of Theorem 2.10. Theorem 2.10(i) follows immediately from (A.2) and (A.3). To prove Theorem 2.10(ii), note
that, by (A.2)–(A.4),

(Fcg)1(�θ) = E
c,g

�θ
[
a1X

2
1 + b1X1 + c1X1X2

] = a1E
c,g

�θ
[
X2

1

] + b1θ1 + c1θ1θ2

= a1θ
2
1 + a1

c
(Fcg)1 + b1θ1 + c1θ1θ2 = g1(�θ) + a1

c
(Fcg)1(�θ). (3.20)

Solving for (Fcg)1(�θ), we get (Fcg)1(�θ) = c
c−a1

g1(�θ). Similarly, we have (Fcg)2 = c
c−a2

g2 for g2 = a2x
2
2 + b2x2 +

c2x1x2. The assumption (b1 + c1)(b2 + c2) > 0 is meant to rule out the uninteresting case g1 = 0 or g2 = 0. �

Proof of Corollary 2.11. Equation (2.15) follows from Theorem 2.10(ii) by induction. Note that if αi

∑n0−1
k=0 c−1

k ≥ 1

for either i = 1 or 2, then the coefficient of x2
i in (F [n0−1]g)i(�x) is αi/[1 − αi

∑n0−2
k=0 c−1

k ] ≥ cn0−1. To show
(F [n0]g)1 + (F [n0]g)2 = ∞ on (0,∞)2, it therefore suffices to show (Fcg)1 + (Fcg)2 ≡ ∞ on (0,∞)2 for g of
the form gi(�x) = αix

2
i + βixi + γix1x2 with α1 ∨ α2 ≥ c. Without loss of generality, assume α1 ≥ c. The proof

of Proposition A.1(ii) shows that the moment equations (A.2)–(A.4) are valid as long as (Fcg)1(�θ) + (Fcg)2(�θ) =
E

c,g

�θ [g1 + g2] < ∞. Assume (Fcg)1(�θ) + (Fcg)2(�θ) < ∞ for some �θ ∈ (0,∞)2. Then

E
c,g

�θ
[
X2

1

] = θ2
1 + 1

c
(Fcg)1(�θ) = θ2

1 + α1

c
E

c,g

�θ
[
X2

1

] + β1

c
θ1 + γ1

c
θ1θ2, (3.21)

which is not possible for α1 ≥ c. Therefore we must have (Fcg)1(�θ) + (Fcg)2(�θ) = ∞ for all �θ ∈ (0,∞)2. �

3.3. Discussion of Conjecture 2.7

In this section we explain why Conjecture 2.7 is plausible. We focus on the case where g1, g2 both satisfy boundary
property (∂12) in (2.4), i.e., g1(�x) = x1x2γ1(�x) and g2(�x) = x1x2γ2(�x) with γ1, γ2 > 0 continuous on [0,∞)2.

Consider the tilted equilibrium

Γ̂
c,g

�θ (d�x) = x1x2

θ1θ2
Γ

c,g

�θ (d�x), �θ ∈ (0,∞)2, (3.22)

where (A.3) implies the proper normalization. The conjecture amounts to showing that, as �θ → �θ∗ ∈ ∂[0,∞)2, this
tilted equilibrium converges weakly to some probability distribution on [0,∞)2, say Γ̂

c,g

�θ∗ (d�x), that is weakly con-
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tinuous in �θ∗ and, in addition, γi(�x) is uniformly integrable with respect to Γ̂
c,g

�θ (d�x) for �θ in a small neighborhood

of �θ∗. Indeed, this observation is immediate from the identity

∫
[0,∞)2

γi(�x)Γ̂
c,g

�θ (d�x) = 1

θ1θ2
(Fcg)i(�θ), i = 1,2. (3.23)

Now, recalling the generator in (2.2), we note that Γ̂
c,g

�θ (d�x) is the equilibrium associated with the time-changed
diffusion given by the generator

(
L̂

c,g

�θ f
)
(�x) = c(θ1 − x1)

x1x2

∂

∂x1
f (�x) + c(θ2 − x2)

x1x2

∂

∂x2
f (�x) + γ1(�x)

∂2

∂x2
1

f (�x) + γ2(�x)
∂2

∂x2
2

f (�x),

(3.24)
f ∈ C2

c

([0,∞)2), (�θ − �x) · ∇f (�x) = 0 on ∂[0,∞)2.

Let �θ → �θ∗ = (α,0) for some α > 0. Then, at least heuristically, we get a limiting generator

(
L̂

c,g

(α,0)f
)
(�x) = c(α − x1)

x1x2

∂

∂x1
f (�x) − c

x1

∂

∂x2
f (�x) + γ1(�x)

∂2

∂x2
1

f (�x) + γ2(�x)
∂2

∂x2
2

f (�x),

(3.25)

f ∈ C2
c

([0,∞)2), (�θ∗ − �x) · ∇f (�x) = 0 on ∂[0,∞)2\{�θ∗}, ∂

∂x1
f

(�θ∗) = ∂

∂x2
f

(�θ∗) = 0.

Here, the diffusion part has no singularity at the boundary, but the drift part does. As the process approaches the
vertical axis A2 it feels a growing drift downwards and to the right, while as it approaches the horizontal axis A1 it
feels a growing drift horizontally towards (α,0) and a constant drift downwards. Therefore, again heuristically, this
generator describes a process that is obliquely reflected in the direction of (α,0) upon hitting A2, and upon hitting A1

jumps to (α,0) instantly and then moves back into the interior by reflection. Like the original diffusion with generator
(2.2), this process ought to exist, be weakly unique, and have an ergodic equilibrium Γ̂

c,g

�θ∗ that is weakly continuous

in �θ∗ ∈ [0,∞)2.

4. Proofs of Theorems 2.12, 2.13 and 2.15

Section 4.1 contains the proof of Theorem 2.15, which is an immediate consequence of Proposition 4.1. Section 4.2
contains some preliminary lemmas needed for the proof of Proposition 4.1. Section 4.3 provides the proof of Propo-
sition 4.1 and of Theorems 2.12 and 2.13.

4.1. Proof of Theorem 2.15

The proof of Theorem 2.15 is based on an asymptotic analysis of the homogeneous Markov chain �Mc,g =
( �Mc,g(n))n∈N0 with transition probability kernel given by p(�θ,d�y) = Γ

c,g

�θ (d�y), the unique equilibrium distribution of

(2.1). For Fcg = g, �Mc,g is in fact the interaction chain in (1.16). Throughout the rest of the section, unless specified
otherwise, we will denote the Markov chain �Mc,g by �X. For Fcg = g and g ∈ Hr

0+ , both g1 and g2 are harmonic func-

tions of �X, i.e., both (g1( �X(n)))n∈N0 and (g2( �X(n)))n∈N0 are martingales. Theorem 2.15 then follows immediately
from the following proposition.

Proposition 4.1 (Harmonic functions of �X = �Mc,g). If g ∈ H0+ and satisfies (2.21) in the definition of Hr
0, then

every nonnegative harmonic function f of �X = �Mc,g , i.e., every f such that

E
[
f

( �X(n)
)| �X(0) = �θ] = f (�θ) ∀�θ ∈ [0,∞)2, n ∈ N0, (4.1)



The renormalization transformation for two-type branching models 1057

which furthermore satisfies the constraints

(i) f (�x) ≤ C(1 + x1)(1 + x2) for some 0 < C = C(f ) < ∞, (4.2)

(ii) lim
�x→�z

f (�x) = 0 ∀�z ∈ ∂g, (4.3)

(iii) lim
�x→�z

f (�x)

h�z(�x)
= λf,�z ∈ [0,∞) ∀�z ∈ R∞, (4.4)

is of the form

f (�x) =
∑

�z∈R∞

λf,�zh�z(�x) = λf,(∞,0)x1 + λf,(0,∞)x2 + λf,(∞,∞)x1x2, (4.5)

with h�z, �z ∈ R∞, given by (2.19) and (2.20).

The proof of Proposition 4.1 will be given in Section 4.3. The strategy is to first h-transform �X (see Definition 4.3)
to a new process �Xh = ( �Xh(n))n∈N0 using

h(�x) = (1 + x1)(1 + x2), (4.6)

i.e., �Xh is defined as the homogeneous Markov chain with transition probability kernel

p(�θ,d�y) = h(�y)
Γ

c,g

�θ (d�y)

h(�θ)
,

which is well defined since h(�x) is a harmonic function of �Mc,g . The function f is harmonic for �Mc,g if and only
if f/h is harmonic for �Xh. The constraint in (4.2) guarantees that f/h is bounded, the constraints in (4.3) and (4.4)
guarantee that f/h is continuous up to the boundary

R = ∂g ∪ R∞, (4.7)

while the constraint in (2.21) guarantees that limn→∞ �Xh(n) ∈ R a.s. It is then standard to show that f/h is uniquely
determined by its values at R, which will imply (4.5).

The proofs of Theorems 2.12 and 2.13 are also based on an asymptotic analysis of the Markov chain �Mc,g , even
though when g is not a fixed point of Fc , it no longer corresponds to the interaction chain in (1.16).

4.2. Preliminary lemmas

The key results in this section are Proposition 4.6 and Corollary 4.7.
Let �X = �Mc,g be as stated before Proposition 4.1. First we list some moment equations for �X(n), n ∈ N0, which

follow immediately from Proposition A.1.

Lemma 4.2 (Moment equations for �X = �Mc,g). Let c > 0, and g ∈ Ha for some 0 ≤ a < c. Fix �X(0) = �θ ∈ [0,∞)2.
Then for all n ∈ N0,

E
[
Xi(n)

] = θi, i = 1,2, (4.8)

E
[
X1(n)X2(n)

] = θ1θ2. (4.9)

If ((Fcg)1, (Fcg)2) = (λ1g1, λ2g2) for some λ1, λ2 > 0, then

E
[
gi

( �X(n)
)] = λn

i gi(�θ), i = 1,2, (4.10)

E
[
X2

i (n)
] = θ2

i + 1

c

n∑
j=1

λ
j
i gi(�θ), i = 1,2. (4.11)
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In the proof of Theorem 2.15, we will need Doob’s h-transform of a Markov chain, which we recall here. For more
information on the h-transform, see e.g. Section 4.1 of [26].

Definition 4.3 (h-transform). Let X = (X(n))n∈N0 be a Markov chain with state space E and n-step transition
probability kernel pn(x,dy). If h is a nonnegative (not identically zero) harmonic function of X, i.e., (h(X(n)))n∈N0

is a nonnegative martingale, then the h-transform of X, denoted by Xh, is defined as the Markov chain on the space
{x ∈ E: h(x) > 0} with n-step transition probability kernel ph

n(x,dy) = pn(x,dy)h(y)/h(x).

The next two lemmas are immediate consequences of Definition 4.3.

Lemma 4.4 (Harmonic functions of Xh). Let X, h and Xh be as in Definition 4.3. If f is a harmonic function of X,
then f/h restricted to {x ∈ E: h(x) > 0} is a harmonic function of Xh. The converse is true if h(x) > 0 for all x ∈ E.

Lemma 4.5 (Absolute continuity of Xh w.r.t. X at bounded stopping times). Let X, h and Xh be as in Definition
4.3. If X(0) = Xh(0) = x ∈ E where h(x) > 0, and τ is a bounded stopping time, then the law of Xh(τ) is absolutely
continuous with respect to the law of X(τ) with density h(·)

h(x)
.

The next proposition is the key to establishing Proposition 4.1. Such a result is referred to as almost sure extinction
versus unbounded growth, see e.g. [21].

Proposition 4.6 (Almost sure limit of h-transform of �X = �Mc,g). Let c > 0, and let g ∈ H0+ satisfy condi-
tion (2.21). Let h(�x) = (1 + x1)(1 + x2) and let �Xh be the h-transform of �X. Then, for any �Xh(0) ∈ [0,∞)2, almost
surely, limn→∞ �Xh(n) = �Xh(∞) exists and �Xh(∞) ∈ R (see (4.7)).

Before giving the proof of Proposition 4.6, which we defer to the end of this subsection, we first state and prove a
corollary and another prerequisite lemma.

Corollary 4.7 (Trapping probabilities). Let c, g, h, �Xh and �Xh(∞) be as in Proposition 4.6.

(i)

P
[ �Xh(∞) = (∞,∞)

] = Xh
1 (0)Xh

2 (0)

(1 + Xh
1 (0))(1 + Xh

2 (0))
. (4.12)

(ii) If (0,∞) × {0} /∈ ∂g, then

P
[ �Xh(∞) = (∞,0)

] = Xh
1 (0)

(1 + Xh
1 (0))(1 + Xh

2 (0))
. (4.13)

(iii) If {0} × (0,∞) /∈ ∂g, then

P
[ �Xh(∞) = (0,∞)

] = Xh
2 (0)

(1 + Xh
1 (0))(1 + Xh

2 (0))
. (4.14)

Proof. By Lemmas 4.2 and 4.4,

f1(�x) = x1x2

(1 + x1)(1 + x2)
, f2(�x) = x1

(1 + x1)(1 + x2)
, f3(�x) = x2

(1 + x1)(1 + x2)
, (4.15)

are bounded harmonic functions of �Xh, and therefore (fi( �Xh(n)))n∈N0 , i = 1,2,3, are bounded martingales. Since,
by Proposition 4.6, �Xh(n) → �Xh(∞) ∈ R a.s. as n → ∞, we have

fi

( �Xh(0)
) = E

c,g

�θ
[
fi

( �Xh(∞)
)]

, i = 1,2,3. (4.16)
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Now (4.12)–(4.14) follow from the following observations: (1) f1((∞,∞)) = 1 and f1 = 0 on R\{(∞,∞)}; (2) if
(0,∞)×{0} /∈ ∂g, then f2((∞,0)) = 1 and f2 = 0 on R\{(∞,0)}; (3) if {0}× (0,∞) /∈ ∂g, then f3((0,∞)) = 1 and
f3 = 0 on R\{(0,∞)}. �

The proof of Proposition 4.6 in turn relies on the next lemma, which gives a lower bound for Γ̂
c,g

�θ,h
(d�x) =

Γ
c,g

�θ (d�x)h(�x)/h(�θ), the transition kernel of �Xh with h(�x) = (1 + x1)(1 + x2), that is uniform in both g and �θ .
The uniformity in g is not needed for the proof of Proposition 4.6, but will be crucial for the proof of Theorem 2.16
in Section 5.

Lemma 4.8 (Uniform lower bound on Γ̂
c,g

�θ,h
(d�x)). Let A ⊂ H0+ .

(i) For any �θ ∈ [0,∞)2, if

∃ε′ > 0 such that inf
g∈A

�x∈Bε′ (�θ)

gi(�x) > 0 for i = 1 or i = 2 (4.17)

with Bε′(�θ) = {�x ∈ [0,∞)2: ‖�x − �θ‖ ≤ ε′}, then

∃ε > 0 such that inf
g∈A

�x∈Bε(�θ)

Γ̂
c,g

�x,h

([0,∞)2\Bε(�θ)
)
> 0. (4.18)

(ii) For any α > 0, if

∃ε′,N ′ > 0 such that inf
g∈A

�x∈[N ′,∞)×[α−ε′,α+ε′]
g2(�x) > 0 (4.19)

and

∀a > 0,∃Ca ∈ [0,∞) such that, uniformly for all �x ∈ [0,∞)2 and g ∈ A,
(4.20)

g1(�x) + g2(�x) ≤ Ca(1 + x1)(1 + x2) + a
(
x2

1 + x2
2

)
,

then

∃ε,N > 0 such that inf
g∈A

�x∈[N,∞)×[α−ε,α+ε]
Γ̂

c,g

�x,h

([0,∞)2\[N,∞) × [α − ε,α + ε]) > 0. (4.21)

A statement similar to (4.21) holds for vertical strips of the form [α − ε,α + ε] × [N,∞) if, in (4.19), g2 is replaced
by g1 and [N ′,∞) × [α − ε′, α + ε′] is replaced by [α − ε′, α + ε′] × [N ′,∞).

Proof. We first prove (4.18) and (4.21) with Γ̂
c,g

�x,h
replaced by Γ

c,g

�x . The main tool is the following moment equation

valid for g ∈ H0+ , �θ ∈ [0,∞)2 and i = 1,2:

E
c,g

�θ

[
1

(1 + Xi)2

]
= 1

1 + θi

E
c,g

�θ

[
1

1 + Xi

]
+ 2

c(1 + θi)
E

c,g

�x

[
gi( �X)

(1 + Xi)3

]
, (4.22)

where �X = ( �X(t))t≥0 in this proof denotes the stationary solution of the SDE (2.1). By stationarity, L( �X(s)) = Γ
c,g

�θ
for all s ≥ 0. Hence

Mi(t) = 1

1 + Xi(t)
− 1

1 + Xi(0)
−

∫ t

0
L

c,g

�θ

(
1

1 + xi

)∣∣∣∣∣�x= �X(s)

ds, i = 1,2, (4.23)
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are local martingales, where

L
c,g

�θ = c(θ1 − x1)
∂

∂x1
+ c(θ2 − x2)

∂

∂x2
+ g1(�x)

∂2

∂x2
1

+ g2(�x)
∂

∂x2
2

. (4.24)

Since E
c,g

�θ [Xi(s)] = θi and E
c,g

�θ [gi( �X(s))] = (Fcg)i(�θ) < ∞ by Proposition A.1, we have

E
c,g

�θ
[

sup
0≤s≤t

∣∣Mi(s)
∣∣] ≤ 2 + E

c,g

�θ

[∫ t

0

(
c
∣∣θi − Xi(s)

∣∣ + 2gi

( �X(s)
))

ds

]

≤ 2 + 2t
(
cθi + (Fcg)i(�θ)

)
< ∞. (4.25)

Therefore Mi = (Mi(t))t≥0, i = 1,2, are in fact martingales, and E
c,g

�θ [Mi(t)] = 0. By the stationarity of �X, we have

E
c,g

�θ

[
L

c,g

�θ

(
1

1 + xi

)∣∣∣∣∣�x= �X(s)

]
= E

c,g

�θ

[
−c · 1 + θi − 1 − Xi

(1 + Xi)2
+ 2gi( �X)

(1 + Xi)3

]
= 0, i = 1,2. (4.26)

Rearranging terms, we obtain (4.22).
(4.18): Suppose that (4.18) with Γ̂

c,g

�x,h
replaced by Γ

c,g

�x is false. Then

inf
g∈A

�x∈Bε(�θ)

Γ
c,g

�x
([0,∞)2\Bε(�θ)

) = 0 ∀ε > 0. (4.27)

By (4.17), we may assume without loss of generality that infg∈A,�x∈Bε0 (�θ) g1(�x) = δ > 0 for some ε0 > 0. In partic-

ular, infg∈A,�x∈Bε(�θ) g1(�x) ≥ δ for all ε ∈ [0, ε0]. Fix ε ∈ [0, ε0]. Let �x(n) ∈ Bε(�θ) and g(n) ∈ A be chosen such that

Γ
c,g(n)

�x(n) ([0,∞)2\Bε(�θ)) = o(1) as n → ∞. In (4.22) with i = 1, substitute �x(n) and g(n) for �θ and g. Then

l.h.s. ≤ 1

(1 + θ1 − ε)2
+ o(1),

r.h.s. ≥ 1

(1 + θ1)(1 + θ1 + ε)
+ 2

c(1 + θ1)
× (

1 − o(1)
) × δ

(1 + θ1 + ε)3
, (4.28)

where we applied Jensen’s inequality to obtain 1
(1+θ1)

2 in the estimate for the r.h.s. For ε > 0 sufficiently small and n

sufficiently large, the above two equations are incompatible, and therefore (4.18) with Γ̂
c,g

�x,h
replaced by Γ

c,g

�x holds.

Since h(�x) = (1 + x1)(1 + x2) ≥ 1 on [0,∞)2 and is bounded on Bε(�θ), it is easy to see by the definition of Γ̂
c,g

�x,h
that

(4.18) also holds.
(4.21): The proof that (4.21) holds with Γ̂

c,g

�x,h
replaced by Γ

c,g

�x is the same as above and we leave the details to the
reader. To get (4.21), we argue as follows.

Choose ε ∈ (0, α) and N0 > 0 such that

βα,ε,N0 = inf
g∈A

�x∈[N0,∞)×[α−ε,α+ε]
Γ

c,g

�x
([0,∞)2\[N0,∞) × [α − ε,α + ε]) > 0. (4.29)

By Proposition A.1, we have

E
c,g

�x
[
(X1 − x1)

2] = 1

c
(Fcg)1(�x), g ∈ H0+ , �x ∈ [0,∞)2. (4.30)

Therefore

Γ
c,g

�x

{
�y ∈ [0,∞)2: y1 <

x1

2

}
≤ Γ

c,g

�x

{
�y ∈ [0,∞)2: |y1 − x1| ≥ x1

2

}
≤ 4(Fcg)1(�x)

cx2
1

. (4.31)
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We claim that

lim
x1→∞ sup

g∈A
x2∈[α−ε,α+ε]

4(Fcg)1(�x)

cx2
1

= 0. (4.32)

Assume (4.32) for the moment. Since βα,ε,N is nondecreasing in N , we can choose N > N0 sufficiently large such
that

inf
g∈A

�x∈[N,∞)×[α−ε,α+ε]
Γ

c,g

�x

{
�y ∈ [0,∞)2\[N,∞) × [α − ε,α + ε]: y1 ≥ x1

2

}
≥ βα,ε,N0

2
. (4.33)

Then

inf
g∈A

�x∈[N,∞)×[α−ε,α+ε]
Γ̂

c,g

�x,h

([0,∞)2\[N,∞) × [α − ε,α + ε])

= inf
g∈A

�x∈[N,∞)×[α−ε,α+ε]

∫
[0,∞)2\[N,∞)×[α−ε,α+ε]

h(�y)

h(�x)
Γ

c,g

�x (d�y)

≥ inf
g∈A

�x∈[N,∞)×[α−ε,α+ε]

∫
{y1≥x1/2,

[0,∞)2\[N,∞)×[α−ε,α+ε]}

(1 + y1)(1 + y2)

(1 + x1)(1 + x2)
Γ

c,g

�x (d�y)

≥ inf
g∈A

�x∈[N,∞)×[α−ε,α+ε]

1 + x1/2

(1 + x1)(1 + α + ε)

∫
{y1≥x1/2,

[0,∞)2\[N,∞)×[α−ε,α+ε]}

Γ
c,g

�x (d�y)

≥ βα,ε,N0

4(1 + α + ε)
> 0, (4.34)

which establishes (4.21).
To verify (4.32), note that, by condition (4.20) and Proposition A.1,

E
c,g

�x [g1 + g2] ≤ E
c,g

�x
[
Ca(1 + X1)(1 + X2) + a

(
X2

1 + X2
2

)]
= Ca(1 + x1)(1 + x2) + a

(
x2

1 + x2
2

) + a

c
E

c,g

�x [g1 + g2] ∀g ∈ A. (4.35)

Solving for E
c,g

�x [g1 + g2], we get

E
c,g

�x [g1 + g2] = (Fcg)1(�x) + (Fcg)2(�x) ≤ c

c − a

(
Ca(1 + x1)(1 + x2) + a

(
x2

1 + x2
2

)) ∀g ∈ A.

Therefore

lim sup
x1→∞

sup
g∈A

x2∈[α−ε,α+ε]

4(Fcg)1(�x)

cx2
1

≤ 4ca

c − a
. (4.36)

Since a > 0 can be made arbitrarily small, (4.32) follows. �

Proof of Proposition 4.6. By Lemma 4.2, h1(�x) = 1 + x1, h2(�x) = 1 + x2 and h(�x) = (1 + x1)(1 + x2) are harmonic
for �X. Hence, by Lemma 4.4, h1(�x)/h(�x) = 1/(1 + x2) and h2(�x)/h(�x) = 1/(1 + x1) are harmonic for �Xh. There-
fore (1/(1 + Xh

1 (n)))n∈N0 and (1/(1 + Xh
2 (n)))n∈N0 are nonnegative martingales and, by the martingale convergence
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theorem, �Xh(n) → �Xh(∞) ∈ [0,∞]2 a.s. as n → ∞. We need to show that

(i) P
[ �Xh(∞) ∈ [0,∞)2, �Xh(∞) /∈ ∂g

] = 0.

(ii) P
[
Xh

1 (∞) = ∞,Xh
2 (∞) ∈ (0,∞)

] = P
[
Xh

2 (∞) = ∞,Xh
1 (∞) ∈ (0,∞)

] = 0.

If (i) is false, then there exists a �θ ∈ [0,∞)2\∂g such that, for all B ⊂ [0,∞)2 with �θ ∈ int(B), P[ �Xh(n) ∈
B for all n large enough] > 0. In particular, we must have

inf
�x∈B

1

h(�x)

∫
[0,∞)2\B

h(�y)Γ
c,g

�x (d�y) = 0 ∀B ⊂ [0,∞)2 with �θ ∈ int(B). (4.37)

Otherwise, there is a uniform probability of escaping from B at each step, and �Xh cannot be confined in B forever
with positive probability.

If (ii) is false, then (considering without loss of generality the first part of (ii)) there exists an α ∈ (0,∞) such that

P
[ �Xh(n) ∈ [N,∞) × [α − ε,α + ε] for all n large enough

]
> 0 ∀ε ∈ (0, α),N > 0. (4.38)

In particular, we must have

inf
�x∈[N,∞)×[α−ε,α+ε]

1

h(�x)

∫
[0,∞)2\[N,∞)×[α−ε,α+ε]

h(�y)Γ
c,g

�x (d�y) = 0 ∀ε > 0,N > 0. (4.39)

But both (4.37) and (4.39) contradict Lemma 4.8 applied to A = {g}, where conditions (4.19) and (4.20) in
Lemma 4.8 are easily verified by our assumption that g ∈ H0+ and that g satisfies (2.21). Therefore we must have
limn→∞ �Xh(n) = �Xh(∞) ∈ R a.s. �

4.3. Proofs of Proposition 4.1 and Theorems 2.12 and 2.13

Proof of Proposition 4.1. Let f be a nonnegative harmonic function of �X = �Mc,g satisfying the constraints in (4.2)–
(4.4). Since x1, x2 and x1x2 are harmonic for �X, so is f0(�x) = f (�x) − λf,(0,∞)x2 − λf,(∞,0)x1 − λf,(∞,∞)x1x2. Let
�Xh denote the h-transform of �X with h(�x) = (1 + x1)(1 + x2). Then, by Lemma 4.4, f0/h is harmonic for �Xh, and
so

f0(�θ)

h(�θ)
= E

[
f0( �Xh(n))

h( �Xh(n))

∣∣∣ �Xh(0) = �θ
]

∀n ∈ N, �θ ∈ [0,∞)2. (4.40)

Constraint (4.2) implies that f0/h is bounded, constraint (4.4) implies that lim�x→�z f0(�x)/h(�x) = 0 for all �z ∈ R∞,
while constraints (4.3) and (4.4) imply that lim�x→�z f0(�x)/h(�x) = 0 for all �z ∈ ∂g. Since, by Proposition 4.6,
limn→∞ �Xh(n) = �Xh(∞) ∈ R(= ∂g ∪ R∞) a.s., letting n → ∞ in (4.40) and applying the bounded convergence
theorem, we obtain f0/h ≡ 0 and f0 ≡ 0. Therefore f (�x) = λf,(0,∞)x2 + λf,(∞,0)x1 + λf,(∞,∞)x1x2. �

Proof of Theorem 2.12. Suppose the claim is false. Then, without loss of generality, we may assume that
((Fcg)1, (Fcg)2) = (λ1g1, λ2g2) for some g ∈ H0+ , λ1 > 1, λ1 ≥ λ2 > 0. By Definition 2.5, for any a > 0 there
exists a 0 < Ca < ∞ such that g1(�x) + g2(�x) ≤ Ca(1 + x1)(1 + x2) + a(x2

1 + x2
2). Fix �X(0) = �θ ∈ [0,∞)2, then by

Lemma 4.2, we have

λn
1g1(�θ) = E

[
g1

( �X(n)
)]

≤ E
[
Ca

(
1 + X1(n)

)(
1 + X2(n)

) + a
(
X2

1(n) + X2
2(n)

)]
≤ Ca(1 + θ1)(1 + θ2) + a

(
θ2

1 + θ2
2

) + a

c

n∑
j=1

(
λ

j

1g1(�θ) + λ
j

2g2(�θ)
)
. (4.41)
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Since λ1 > 1 and λ1 ≥ λ2 > 0, dividing both sides of the above inequality by λn
1 and letting n → ∞, we get

g1(�θ) ≤ aλ1

c(λ1 − 1)

[
g1(�θ) + 1λ1=λ2g2(�θ)

]
. (4.42)

Since a > 0 can be made arbitrarily small, (4.42) implies that g1(�θ) ≤ 0, which is a contradiction. �

Proof of Theorem 2.13. (i) Assume that, for some g ∈ H0+ with lim inf�x→(∞,∞)[g1(�x)/x2
1 + g2(�x))/x2

2 ] = 0,
Fc(g1, g2) = (λ1g1, λ2g2) for some 0 < λ1, λ2 < 1. Fix �X(0) = �θ ∈ [0,∞)2. By Lemma 4.2, we have

E
[(

Xi(n) − θi

)2] = 1

c

n∑
k=1

λk
i gi(�θ) <

λi

c(1 − λi)
gi(�θ) ∀n ∈ N. (4.43)

Next, choose �θ such that λigi (�θ)
c(1−λi)

≤ θ2
i

16 for i = 1,2, which is possible by the above assumptions. Then, by the Cheby-
chev inequality,

P

(
�X(n) ∈

[
θ1

2
,

3θ1

2

]
×

[
θ2

2
,

3θ2

2

]∣∣∣ �X(0) = �θ
)

≥ 1

2
∀n ∈ N, (4.44)

and hence

E
[
gi

( �X(n)
)] ≥ 1

2
inf

�x∈[θ1/2,3θ1/2]×[θ2/2,3θ2/2]
gi(�x) > 0 ∀n ∈ N, (4.45)

which contradicts the assumption that E[gi( �X(n))] = λn
i gi(�θ) → 0 as n → ∞.

(ii) We consider the conditions (2.17) and (2.18) separately.
(2.17): Assume that (Fcg)1 = λ1g1 with λ1 < 1 and g1(x1,0) > 0 for all x1 > 0 for some g ∈ H0+. For �θ = (θ1,0)

with θ1 ≥ 0, �Γ c,g

�θ (d�x) is supported on the horizontal axis A1 and is in fact the equilibrium distribution of the one-
dimensional diffusion

dX1(t) = c(θ1 − X1)dt + √
2g1(X1,0)dB1(t). (4.46)

Therefore the mapping g1(x1,0) �→ (Fcg)1(x1,0) is the renormalization transformation for diffusions on the halfline
which, by Lemma 2 and Theorem 2 in [3], cannot have a fixed shape with scaling constant λ1 �= 1.

(2.18): Assume that (Fcg)1 = λ1g1 with λ1 ∈ (0,1) for some g ∈ H0+ such that lim inf�x→(∞,∞) g1(�x)/x1x2 =
ε > 0. Then the h-transformed Markov chain �Xh with h(�x) = (1 + x1)(1 + x2) satisfies E[(g1/h)( �Xh(n))] =
λn

1(g1/h)( �Xh(0)). If Xh
1 (0),Xh

2 (0) > 0, then, by Corollary 4.7,

P
[ �Xh(∞) = (∞,∞)

] = Xh
1 (0)Xh

2 (0)

(1 + Xh
1 (0))(1 + Xh

2 (0))
> 0 (4.47)

and

0 = lim
n→∞λn

1
g1( �Xh(0))

h( �Xh(0))
= lim

n→∞ E

[
g1( �Xh(n))

h( �Xh(n))

]
(4.48)

≥ Xh
1 (0)Xh

2 (0)

(1 + Xh
1 (0))(1 + Xh

2 (0))
lim inf

�x→(∞,∞)

g1(�x)

h(�x)
> 0, (4.49)

which is a contradiction. �
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5. Proof of Theorem 2.16 with constant cn

Proof. Assume cn ≡ c > 0, in which case F [n] = Fn
c . The proof is based on an analysis of the interaction chain in-

troduced in Section 1.2. Let g satisfy the conditions in Theorem 2.16. Let �X = ( �X(−n))n∈N0 be the (inhomogeneous)
backward Markov chain on [0,∞)2 with transition probability kernel

P
( �X(−n) ∈ d�x| �X(−n − 1) = �θ) = Γ

c,Fn
c g

�θ (d�x). (5.1)

Denote the transition probability kernel from time −m to time −n > −m by K−m,−n(�x,d�u). By Proposition A.1,
the functions 1, x1, x2 and x1x2 are harmonic for �X. Let �Xh = ( �Xh(−n))n∈N0 denote the h-transform of �X with
h(�x) = (1 + x1)(1 + x2). Then 1, x1

1+x1
, x2

1+x2
and x1x2

h(�x)
are harmonic for �Xh. Now change variables and let

�Y (−n) = φ
( �Xh(−n)

)
, (5.2)

with φ : [0,∞)2 → [0,1)2 given by

φ(x1, x2) =
(

x1

1 + x1
,

x2

1 + x2

)
. (5.3)

Then �Y = ( �Y (−n))n∈N0 is a backward Markov chain on [0,1)2 with 1, y1, y2 and y1y2 harmonic. Denote its transition
probability kernel from time −m to time −n > −m by K̂−m,−n(�y,d�v). Then K̂−m,−n and K−m,−n are related via∫

[0,∞)2
f (�x)K−m,−n(�θ,d�x) = h(�θ)

∫
[0,1)2

(
f

h
◦ φ−1

)
(�y)K̂−m,−n

(
φ(�θ),d�y) ∀f measurable.

In particular,

(
F

j
c g

)
i
(�θ) =

∫
[0,∞)2

gi(�x)K−j,0(�θ,d�x)

= h(�θ)

∫
[0,1)2

(
(FN

c g)i

h
◦ φ−1

)
(�y)K̂−j,−N

(
φ(�θ),d�y)

, 0 ≤ N ≤ j, i = 1,2, (5.4)

since (F
j
c g)i(�θ) = E[(FN

c g)i( �X(−N))| �X(−j) = �θ] for all 0 ≤ N ≤ j . For j ∈ N, if we let

�Y (j) = ( �Y (j)(−n)
)
n∈N0

(5.5)

denote the Markov chain �Y started at time −j with �Y (j)(−j) = φ(�θ), and for all −n < −j set �Y (j)(−n) = φ(�θ), then
we can rewrite (5.4) as

(
F

j
c g

)
i
(�θ) = h(�θ)E

[(
gi

h
◦ φ−1

)( �Y (j)(0)
)] = h(�θ)E

[(
(FN

c g)i

h
◦ φ−1

)( �Y (j)(−N)
)]

. (5.6)

To establish (2.25), and hence Theorem 2.16 for cn ≡ c, we need the following lemma, the proof of which is
postponed.

Lemma 5.1. For any fixed N ∈ N0, all weak limit points of { �Y (j)(−N)}j∈N as j → ∞ are supported on φ(R∞) ∪
([0,1) × {0}) ∪ ({0} × [0,1)).

We first complete the proof subject to Lemma 5.1. Without loss of generality, take i = 1. Note that, since g ∈ Hr
0,

we have g1(�x)+g2(�x) ≤ C(1+x1)(1+x2) for some C > 0. Consequently, by the moment equations (A.2) and (A.3),
the family of functions{(

(F k
c g)1

h
◦ φ−1

)
(�y)

}
k∈N0,�y∈[0,1)2

(5.7)
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is uniformly bounded. Now fix �θ ∈ [0,∞)2. If {j ′
m}m∈N is any subsequence along which limm→∞(F

j ′
m

c g)1(�θ) exists,
then we can find a further subsequence {jm}m∈N such that �Y (jm) converges weakly to a limit �Y∞ = ( �Y∞(−n))n∈N0 as
([0,1]2)N-valued random variables with the product topology. In particular, �Y (jm)(−N) converges weakly to �Y∞(−N)

for each N ∈ N0.
By Theorem 2.6, the family

{(
(F k

c g)1

h
◦ φ−1

)
(�y)

}
k∈N0

(5.8)

is continuous on [0,1)2. In fact, it is also continuous at φ(R∞) with(
(F k

c g)1

h
◦ φ−1

)
(�z) = λ1,�z ∀k ∈ N0, �z ∈ φ(R∞). (5.9)

Indeed, this follows from these observations: (1) g ∈ Hr
0, and hence ((g1/h) ◦ φ−1)(�z) = λ1,�z for �z ∈ φ(R∞) and

is continuous at �z; (2) by (5.6), (F k
c g)1(�θ)/h(�θ) = E[(g1/h) ◦ φ−1)( �Y (k)(0))]; (3) because Y

(k)
i , i = 1,2, are mar-

tingales while φ(R∞) = {(1,0), (0,1), (1,1)} are extremal in [0,1]2, it follows from the Markov inequality that
K̂−k,0(φ(�θ),d�y) converges weakly to the point mass at �z as φ(�θ) → �z for �z ∈ φ(R∞). By Lemma 5.1, we can now
substitute jm for j in (5.6) and take the limit m → ∞, to obtain

lim
m→∞

(
F

jm
c g

)
1(

�θ) = h(�θ)E

[(
(FN

c g)1

h
◦ φ−1

)( �Y∞(−N)
)] ∀N ∈ N0. (5.10)

Denote the distribution of �Y∞(−N) by μN . Again by Lemma 5.1, μN is concentrated on φ(R∞) ∪ [0,1) × {0} ∪
{0} × [0,1). Consequently, because ((FN

c g)1/h ◦ φ−1)(�y) vanishes on {0} × [0,1], we have

lim
m→∞

(
F

jm
c g

)
1(

�θ) = h(�θ)

(
μN

{
(1,1)

}
λ1,(∞,∞) +

∫ 1

0

(
(FN

c g)1

h
◦ φ−1

)
(y1,0)μN

(
dy1 × {0})). (5.11)

Since y1, y2, y1y2 are bounded continuous functions on [0,1]2 and since E[Y (jm)
i (−N)] = φi(�θ) and

E[Y (jm)

1 (−N)Y
(jm)

2 (−N)] = φ1(�θ)φ2(�θ) with φ = (φ1, φ2), we must also have
∫

yiμN(d�y) = φi(�θ) and
∫

y1y2 ×
μN(d�y) = φ1(�θ)φ2(�θ). By our property of the support of μN , we thus find

μN

{
(1,1)

} = φ1(�θ)φ2(�θ) = θ1θ2

h(�θ)
, (5.12)

∫
y1μN

(
dy1 × {0}) =

∫
y1(1 − y2)μN(d�y) = φ1(�θ)

(
1 − φ2(�θ)

) = θ1

h(�θ)
. (5.13)

Therefore∣∣∣ lim
m→∞

(
F

jm
c g

)
1(

�θ) − λ1,(∞,∞)θ1θ2 − λ1,(∞,0)θ1

∣∣∣
≤ h(�θ) sup

y1∈[0,1]

∣∣∣∣
(

(FN
c g)1

h
◦ φ−1

)
(y1,0) − λ1,(∞,0)y1

∣∣∣∣
= h(�θ) sup

x>0

∣∣∣∣ (FN
c g)1(x,0) − λ1,(∞,0)x

1 + x

∣∣∣∣. (5.14)

Next, note that ((FN
c g)1)N∈N0 restricted to (0,∞) × {0} are the iterates of the renormalization transformation acting

on diffusion functions on the halfline with initial diffusion function g1(x,0). Since limx→∞ g1(x,0)/x = λ1,(∞,0) ∈
[0,∞), Theorem 5 of [3] implies that supx>0 |(FN

c g)1(x,0) − λ1,(∞,0)x|/(1 + x) → 0 as N → ∞. (The case
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λ1,(∞,0) = 0 is not included in Theorem 5 in [3], but an examination of the proof shows that the same result holds.)
Since N can be taken arbitrarily large in (5.14), we have established the convergence in (2.25) along the subsequence
{jm}m∈N. Since {(F j

c g)1(�θ)}j∈N0 is uniformly bounded, (2.25) now follows and the proof of Theorem 2.16 for cn ≡ c

is complete. �

We now prove Lemma 5.1.

Proof of Lemma 5.1. We must prove that the weak limit of { �Y (jm)}m∈N, written �Y∞, satisfies

P
( �Y∞(−N) ∈ φ(R∞) ∪ [0,1) × {0} ∪ {0} × [0,1)

) = 1 ∀N ∈ N0. (5.15)

The proof consists of the following three steps:

(A) Show that (Y∞
i (−n))n∈N0 , i = 1,2, are backward martingales on [0,1], i.e.,

E
[
Y∞

i (−k)
∣∣(Y∞

i (−n)
)
n≥k+1

] = Y∞
i (−k − 1), i = 1,2, (5.16)

implying that limn→∞ �Y∞(−n) = �Y∞(−∞) exists a.s. by the backward martingale convergence theorem (see
e.g. Section 4.6 in [18]).

(B) Show that P{ �Y∞(−∞) ∈ φ(R∞) ∪ [0,1) × {0} ∪ {0} × [0,1)} = 1.
(C) Show that P{ �Y∞(−N) ∈ φ(R∞) ∪ [0,1) × {0} ∪ {0} × [0,1)} = 1 for all N ∈ N0.

Since (Y
(jm)
i (−n))n∈N0 , m ∈ N, i = 1,2, are bounded backward martingale sequences, (A) follows from a general

result on weak limits of backward martingale sequences, which we state as Lemma 5.2. The proof of (B) given below
uses Lemma 4.8, which relies on uniform lower and upper bounds on {Fn

c g}n∈N0 , where assumptions (2.24) and
g ∈ H0 are crucial. The proof of (C) given below is achieved after approximating �Y∞ by the Markov chains �Y (jm)

and using the fact that Y
(jm)
i , i = 1,2, are martingales. Note that it is not clear if �Y∞ is a Markov chain, because �Y (jm)

take values in [0,1)2 while �Y∞ takes values in [0,1]2. Even though the transition kernels of �Y (jm) are consistent for
m sufficiently large, they may not be (weakly) continuously extendable to [0,1]2\[0,1)2.

Lemma 5.2 (Weak limits of backward martingales). For j ∈ N, let Z(j) = (Z(j)(−n))n∈N0 be a backward martin-
gale, i.e.,

E
[
Z(j)(−k)

∣∣(Z(j)(−n)
)
n≥k+1

] = Z(j)(−k − 1). (5.17)

If {Z(j)(0)}j∈N are uniformly integrable, and Z(j) converges weakly to a random variable Z∞ = (Z∞(−n))n∈N0 in

the space R
N with the product topology, then (Z∞(−n))n∈N0 is also a backward martingale.

Proof. Since {Z(j)(0)}j∈N0 are uniformly integrable, we have

∀ε > 0,∃N > 0 such that E
[∣∣Z(j)(0)

∣∣1|Z(j)(0)|≥N

] ≤ ε ∀j ∈ N, (5.18)

which is easily seen to be equivalent to

∀ε > 0,∃N > 0 such that E
[(∣∣Z(j)(0)

∣∣ − N
)+] ≤ ε ∀j ∈ N. (5.19)

Since f (x) = (|x| − N)+ is a convex function, for all j, k ∈ N we have, by Jensen’s inequality,

E
[(∣∣Z(j)(−k)

∣∣ − N
)+] = E

[
f

(
Z(j)(−k)

)]
= E

[
f

(
E

[
Z(j)(0)

∣∣(Z(j)(−n)
)
n≥k

])]
≤ E

[
E

[
f

(
Z(j)(0)

)∣∣(Z(j)(−n)
)
n≥k

]]
= E

[
f

(
Z(j)(0)

)] = E
[(∣∣Z(j)(0)

∣∣ − N
)+]

. (5.20)
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Therefore {Z(j)(−n)}j∈N,n∈N0 is a uniformly integrable family.
For each k ∈ N0 and j ∈ N, and any bounded continuous function f : RN → R, the martingale property of Z(j)

implies that

E
[
f

((
Z(j)(−n)

)
n≥k+1

)(
Z(j)(−k) − Z(j)(−k − 1)

)] = 0. (5.21)

Since Z(j) converges weakly to Z∞, and {Zj (−k)}j∈N and {Zj(−k − 1)}j∈N are uniformly integrable, we may pass
to the limit j → ∞ and obtain

E
[
f

((
Z∞(−n)

)
n≥k+1

)(
Z∞(−k) − Z∞(−k − 1)

)] = 0. (5.22)

Indeed, the latter is easily verified by applying Skorohod’s representation theorem, which allows for a coupling be-
tween {Z(j)}j∈N and Z∞ such that the convergence is a.s. From (5.22) we have

E
[
f

((
Z∞(−n)

)
n≥k+1

)
E

[
Z∞(−k) − Z∞(−k − 1)

∣∣(Z∞(−n)
)
n≥k+1

]] = 0, (5.23)

which implies that

E
[
Z∞(−k) − Z∞(−k − 1)

∣∣(Z∞(−n)
)
n≥k+1

] = 0 a.s., (5.24)

and thus establishes the martingale property for Z∞. �

We are now ready to verify (B) and (C).
(B): Note that

φ(R∞) ∪ ([0,1) × {0}) ∪ ({0} × [0,1)
) = ([0,1] × {0}) ∪ ({0} × [0,1]) ∪ (1,1). (5.25)

Suppose that (B) fails. Then there exists a �u ∈ (0,1]2\(1,1) in the support of the distribution of �Y∞(−∞). In partic-
ular, for each ε > 0 there exist δ(ε) > 0 and N(ε) > 0 such that

P
{ �Y∞(−n) ∈ B̂ε/2(�u) ∀n ≥ N(ε)

}
> δ(ε), (5.26)

where B̂ε/2(�u) = {�y ∈ [0,1]2: ‖�y − �u‖ ≤ ε/2}. Since �Y (jm) converges weakly to �Y∞ as m → ∞, for each M ∈ N we
can find an m∗ = m∗(M) sufficiently large such that

P
{ �Y (jm∗ )(−n) ∈ B̂ε(�u) ∩ (0,1)2 ∀N(ε) ≤ n ≤ N(ε) + M

} ≥ 1

2
δ(ε). (5.27)

We now derive a contradiction with Lemma 4.8 as follows. By assumption (2.24) and the fact that g ∈ Hr
0, implying

g1(�x)+g2(�x) ≤ C(1+x1)(1+x2) for some 0 < C = C(g) < ∞, Fn
c g satisfy the same upper and lower bounds for all

n ∈ N. It is then easy to check that in Lemma 4.8 with A = {Fn
c g}n∈N0 condition (4.17) is satisfied for all �θ ∈ (0,∞)2,

and conditions (4.19) and (4.20) are satisfied for all α > 0 (and the analogue of (4.19) for vertical strips). Since the

transition kernel K̂−n−1,−n(φ(�θ),d�y) is related to the biased equilibrium measure Γ̂
c,F n

c g

�θ,h
(d�x) through the coordinate

change φ, Lemma 4.8(i) and (ii) imply that, for �u ∈ (0,1]2\(1,1) and ε > 0 sufficiently small,

inf
n∈N0

�v∈B̂ε(�u)∩[0,1)2

K̂−n−1,−n
(�v, [0,1)2\B̂ε(�u)

)
> 0. (5.28)

This uniform rate of escape from B̂ε(�u) contradicts (5.27), where M can be chosen to be arbitrarily large while
δ(ε) > 0 remains fixed.

(C): For ε > 0, let

Uε =
{
�y ∈ [0,1]2: inf

�z∈φ(R∞)∪[0,1)×{0}∪{0}×[0,1)
‖�y − �z‖ ≤ ε

}
. (5.29)



1068 D. A. Dawson, A. Greven, F. den Hollander, R. Sun and J. M. Swart

Since limn→∞ �Y∞(−n) = �Y∞(−∞) a.s., we can choose M = M(ε) sufficiently large such that P( �Y∞(−M) ∈ Uε) >

1 − ε. Since �Y (jm)(−M) → �Y∞(−M) in distribution as m → ∞, we can choose m∗(M) sufficiently large such that
P( �Y (jm)(−M) ∈ U2ε) > 1 − 2ε for all m ≥ m∗. By the geometry of φ(R∞) ∪ ([0,1) × {0}) ∪ ({0} × [0,1)) and the
fact that Y

(jm)
i (·), i = 1,2, are martingales for the Markov chain ( �Y (jm)(−n))n∈N0 , an elementary application of the

Chebychev inequality shows that, for all m ≥ m∗ and L > 2,

P
( �Y (jm)(0) ∈ U2Lε

) ≥ (1 − 2ε)

(
1 − 2

L

)
. (5.30)

By the weak convergence of �Y (jm)(0) to �Y∞(0) as m → ∞, the same holds for �Y∞(0). Now let ε → 0 and L → ∞
such that εL → 0. Then we find that

P
( �Y∞(0) ∈ φ(R∞) ∪ ([0,1) × {0}) ∪ ({0} × [0,1)

)) = 1.

The same argument works for �Y∞(−N) for any N ∈ N0. �

6. Proof of Theorem 2.16 with varying cn

Proof. The proof of Theorem 2.16 with varying cn follows the same line of argument as that for constant cn, except for
a few technical differences, which we now outline. For the rest of the section, let ( �X(−n))n∈N0 denote the backward
time-inhomogeneous Markov chain with transition kernels

P
( �X(−n) ∈ d�x| �X(−n − 1) = �θ) = Γ

cn,F [n]g
�θ (d�x), (6.1)

and let ( �Xh(−n))n∈N0 denote �X h-transformed by h(�x) = (1 + x1)(1 + x2), which is still a harmonic function for �X.
Both �X and �Xh generalize their counterparts in Section 5. We proceed by first establishing the analogue of Lemma 5.1,
where { �Y (j)}j∈N are now defined in terms of our current �X and �Xh.

The proof of Lemma 5.1 in Section 5 is based on Lemma 4.8, which no longer applies in our current con-
text, because if cn can be arbitrarily large, then we lose the uniformity of the escape probability with respect to

{Γ cn,F [n]g
�x }n∈N0 . So, the first task is to formulate a suitable analogue of Lemma 4.8 for our current �X and �Xh, which

would imply the analogue of Lemma 5.1 for the present context. In the derivation of Theorem 2.16 for constant
cn from Lemma 5.1, we used the following fact from [3]: for the renormalization transformation Fc acting on one-
dimensional diffusion functions f : [0,∞) → [0,∞), where f is positive and continuous on (0,∞), locally Lipschitz
at 0, f (0) = 0 and limx→∞ f (x)/x = λ ∈ [0,∞), we have supx>0 |(F n

c f )(x) − λx|/(1 + x) → 0 as n → ∞. Our
second task is therefore to establish the analogous result for F [n]f . The two technical points outlined above will be
addressed in Lemma 6.1 and Proposition 6.2.

Observe that, by Proposition A.1, for all −m ≤ −n ≤ 0 and �θ ∈ [0,∞)2, the backward Markov chain �X satisfies
the moment equations

E
[ �X(−n)| �X(−m) = �θ] = �θ, (6.2)

E
[
X1(−n)X2(−n)| �X(−m) = �θ] = θ1θ2, (6.3)

E
[
Xi(−n)2| �X(−m) = �θ] = θ2

i +
(

m−1∑
j=n

1

cj

)(
F [m]g

)
i
(�θ), i = 1,2, (6.4)

E
[
gi

( �X(0)
)| �X(−m) = �θ] = (

F [m]g
)
i
(�θ), i = 1,2. (6.5)

From the point of view of variance increment, (6.4) indicates that the natural time associated with ( �X(−n))n≥0 is
not n, but rather

∑n−1
i=0 c−1

i . Therefore to obtain a uniform bound on escape probabilities for the Markov chain �Xh,
we formulate the analogue of Lemma 4.8 as follows.
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Lemma 6.1 (Uniform rate of escape of ( �Xh(−n))n≥0 from small balls and thin strips). Let (cn)n∈N0 and g be as
in Theorem 2.16. Let ( �X(−n))n∈N0 denote the inhomogeneous backward Markov chain with transition kernel (6.1),
and let ( �Xh(−n))n∈N0 denote ( �X(−n))n∈N0 h-transformed by h(�x) = (1 + x1)(1 + x2). There exists an increasing

sequence (nk)k∈N0 ⊂ N0 with n0 = 0 such that
∑nk+1−1

i=nk
c−1
i ∈ [Λ−1,Λ] for some Λ > 1 for all k ∈ N0. For A ⊂

[0,∞)2, denote τ−m
A = inf{−j ≥ −m: �Xh(−j) /∈ A}. Then

(i) For each �θ ∈ (0,∞)2, there exists ε > 0 such that

inf
k∈N0

�x∈Bε(�θ)

P
(
τ

−nk+1

Bε(�θ)
≤ −nk

∣∣ �Xh(−nk+1) = �x)
> 0. (6.6)

(ii) For each α > 0, there exist ε,N > 0 such that

inf
k∈N0

�x∈[N,∞)×[α−ε,α+ε]
P
(
τ

−nk+1
[N,∞)×[α−ε,α+ε] ≤ −nk| �Xh(−nk+1) = �x)

> 0, (6.7)

inf
k∈N0

�x∈[α−ε,α+ε]×[N,∞)

P
(
τ

−nk+1
[α−ε,α+ε]×[N,∞) ≤ −nk

∣∣ �Xh(−nk+1) = �x)
> 0. (6.8)

Proof. The existence of the increasing sequence (nk)k∈N0 with the prescribed property follows immediately from
our assumptions that infn∈N0 cn > 0 and

∑
n∈N0

c−1
n = ∞. The rest of the proof parallels that of Lemma 4.8. First

we prove (6.6)–(6.8) with �Xh replaced by �X. By (4.22), for each m ∈ N0 and �x ∈ [0,∞)2, i = 1,2, conditioned on
�X(−m − 1) = �x, we have

E

[
1

(1 + Xi(−m))2

]
= 1

1 + xi

E

[
1

1 + Xi(−m)

]
+ 2

cm(1 + xi)
E

[
(F [m]g)i( �X(−m))

(1 + Xi(−m))3

]

≥ 1

(1 + xi)2
+ 2

cm(1 + xi)
E

[
(F [m]g)i( �X(−m))

(1 + Xi(−m))3

]
, (6.9)

where we applied Jensen’s inequality. Conditioned on �X(−nk+1) = �x, we can apply (6.9) iteratively to obtain, for
i = 1,2,

E

[
1

(1 + Xi(−nk))2

]
≥ 1

(1 + xi)2
+

nk+1−1∑
m=nk

2

cm

E

[
1

1 + Xi(−m − 1)

(F [m]g)i( �X(−m))

(1 + Xi(−m))3

]
. (6.10)

If (6.6) fails when �Xh is replaced by �X, then there exists �θ ∈ (0,∞)2 such that, for all ε > 0, there exist sequences
k(l) ↑ ∞ and �x(l) ∈ Bε(�θ) (depending on ε) such that

lim
l→∞ P

(
τ

−n
k(l)+1

Bε(�θ)
≤ −nk(l)

∣∣ �X(−nk(l)+1) = �x(l)
) = 0. (6.11)

Now we apply (6.10) to �X(−n) for −nk(l)+1 ≤ −n ≤ −nk(l) with �X(−nk(l)+1) = �x(l). By (6.11), as l → ∞, the two
sides of (6.10) satisfy

l.h.s. ≤ 1

(1 + θi − ε)2
+ o(1), (6.12)

r.h.s. ≥ 1

(1 + θi + ε)2
+

n
k(l)+1−1∑
m=n

k(l)

2

cm

(
1 − o(1)

) δ

(1 + θi + ε)4
, (6.13)

where in (6.13) we have used the assumption that gi(�x) ≥ αixi +βix1x2 for some αi,βi ≥ 0 and αi +βi > 0, i = 1,2,
which implies that {F [m]g}m∈N0 satisfy the same lower bound and (F [m]g)i(�x) ≥ δ > 0 uniformly for �x ∈ Bε(�θ)
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and m ∈ N0. Since
∑nk−1

m=nk

2
cm

≥ Λ−1 > 0 uniformly for all k ∈ N0, (6.12) and (6.13) are incompatible for ε > 0

sufficiently small and l ∈ N sufficiently large. Therefore (6.6) must hold for �X in place of �Xh. The proof of (6.7) and
(6.8) for �X in place of �Xh is similar, and we leave the details to the reader.

To verify that (6.6) also holds for �Xh, we apply Lemma 4.5 and note that h(�x) = (1 + x1)(1 + x2) is bounded
uniformly from above for �x ∈ Bε(�θ), and bounded uniformly from below by 1 for �x ∈ [0,∞)2. The proof of (6.7) and
(6.8) for �Xh is essentially the same as its counterpart in the proof of Lemma 4.8. Note that by Lemma 4.5, the law of
�Xh(τ

−nk+1
[N,∞)×[α−ε,α+ε] ∧ (−nk)) conditioned on �Xh(−nk+1) = �x ∈ [N,∞) × [α − ε,α + ε] is absolutely continuous

with respect to the law of �X(τ
−nk+1
[N,∞)×[α−ε,α+ε] ∧ (−nk)) conditioned on �X(−nk+1) = �x, where the density is h(·)

h(�x)
. As

in the proof of Lemma 4.8, it suffices to show that for any fixed 0 < ε < α < ∞,

lim
x1→∞ sup

k∈N0
x2∈[α−ε,α+ε]

P
(
τ

−nk+1
[x1/2,∞)×R

≤ −nk| �X(−nk+1) = �x) = 0. (6.14)

Since (X1(−n))n≤nk+1 is a martingale, by Doob’s inequality and (6.2)–(6.4), we have

P
(
τ

−nk+1
[x1/2,∞)×R

≤ −nk| �X(−nk+1) = �x)
≤ P

(
sup

−nk+1≤−n≤−nk

∣∣X1(−n) − x1
∣∣ ≥ x1

2

∣∣∣ �X(−nk+1) = �x
)

≤ 16

x2
1

E
[(

X1(−nk) − x1
)2| �X(−nk+1) = �x]

= 16

x2
1

(
nk+1−1∑
n=nk

1

cn

)(
F [nk+1]g

)
1(�x). (6.15)

Note that
∑nk+1−1

n=nk

1
cn

≤ Λ uniformly in k. Since g ∈ Hr
0, we have g1(�x) + g2(�x) ≤ K(1 + x1)(1 + x2) for some

K ∈ (0,∞), and by Proposition A.1, {F [n]g}n∈N0 all share the same upper bound. Equation (6.14) then follows
immediately. �

Remark. Note that (6.6)–(6.8) with �X in place of �Xh are proved using only the assumptions that
∑

n∈N0
c−1
n = ∞ and,

{F [n]g}n∈N0 have a uniform lower bound which is positive and uniformly bounded away from 0 on (a,∞)2 for each
a > 0. Only in deriving (6.7) and (6.8) from their analogues for �X, did we use the assumptions that infn∈N0 cn > 0
and, {F [n]g}n∈N0 have a uniform upper bound φ = (φ1, φ2), where φ1(x1, x2) grows sub-quadratically in x1 and
φ2(x1, x2) grows sub-quadratically in x2.

Using Lemma 6.1 and the fact that 1, x1, x2, x1x2 are still harmonic functions for the Markov chain { �X(−n)}n∈N0 ,
we deduce the analogue of Lemma 5.1 in our present context by the same arguments as in the original proof. To
deduce Theorem 2.16 with varying cn from the analogue of Lemma 5.1, we need to address the second technical point
outlined at the beginning of this section.

Proposition 6.2 (Convergence to fixed points under F [n]: the halfline case). Let (cn)n∈N0 satisfy
∑

n∈N0
c−1
n =

∞. Let f (x) : [0,∞) → [0,∞) be positive and continuous on (0,∞), locally Lipschitz at 0, f (0) = 0 and
limx→∞ x−1f (x) = λ ∈ [0,∞). Then we have

lim
n→∞ sup

x>0

∣∣∣∣ (F [n]f )(x) − λx

1 + x

∣∣∣∣ = 0, (6.16)

where F [n] are renormalization transformations acting on one-dimensional diffusion functions.
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Proof. Note that we do not require infn∈N0 cn > 0 as in Lemma 6.1. The case cn ≡ c is covered by Theorem 5 of [3].
Here we give a proof along the same line of argument as we have been pursuing so far in this section for the proof of
Theorem 2.16 with varying cn, except that we do not need to appeal to the current proposition.

As in Section 2.3 of [3], we make use of the concave upper envelope f + and the convex lower envelope f −
of f . It is easy to see that f + and, f − in the case λ > 0, satisfy the same constraints as specified for f in the
proposition. Since, for any c > 0, Fc is convexity preserving and order preserving by Proposition 3 of [3], together
with Jensen’s inequality we have, for each x ∈ [0,∞), (F [n]f +)(x) ↓ f +∞(x) and (F [n]f −)(x) ↑ f −∞(x) for some f +∞
and f −∞ as n → ∞, and (F [n]f −)(x) ≤ (F [n]f )(x) ≤ (F [n]f +)(x) for all n ∈ N0. We claim that it suffices to show
that f +∞(x) = f −∞(x) = λx. Indeed,

sup
x>0

∣∣∣∣ (F [n]f )(x) − λx

1 + x

∣∣∣∣ = sup
y∈(0,1)

∣∣(1 − y)
(
F [n]f

) ◦ φ−1
1 (y) − λy

∣∣,
where φ1(x) = x

1+x
. Since Fc preserves the slope at infinity, we have that

ψ+
n (y) = (1 − y)

(
F [n]f +) ◦ φ−1

1 (y),

ψn(y) = (1 − y)
(
F [n]f

) ◦ φ−1
1 (y), (6.17)

ψ−
n (u) = (1 − y)

(
F [n]f −) ◦ φ−1

1 (y),

are all continuous functions on [0,1]. If f +∞(x) = f −∞(x) = λx, then, on [0,1], ψ+
n (y) decreases monotonically to λy

as n → ∞, while ψ−
n (y) increases monotonically to λy as n → ∞. Since the monotone convergence of a sequence of

continuous functions to a continuous limit is necessarily uniform on compacts, the sup-norm convergence of ψn(y) to
λy on [0,1] follows since ψn is sandwiched between ψ+

n and ψ−
n .

The proof that f +∞(x) = limn→∞(F [n]f +)(x) = λx and f −∞(x) = limn→∞(F [n]f −)(x) = λx now follows the
same argument as that used for Theorem 2.16 with varying cn. First consider the case {F [n]f +}n∈N0 with λ > 0. In
the proof of Theorem 2.16 with varying cn, we replace �X there by the [0,∞)-valued Markov chain (X(−n))n∈N0

with transition kernels

P
(
X(−n) ∈ ·|X(−n − 1) = x

) = Γ
cn,F [n]f +
x (·);

�Xh is replaced by Xh, which is the h-transform of X by the harmonic function h(x) = 1 + x; φ(�x) is replaced by
φ1(x) = x

1+x
; in Lemma 5.1, the relevant boundary points now consist of only {0} ∪ {1}. Lastly, because of the one-

dimensional setting, we only need to establish the analogue of (6.6). By the remark following the proof of Lemma 6.1,
the only assumptions we need here are

∑
n∈N0

c−1
n = ∞ and, a uniform lower bound on {F [n]f +}n∈N0 which is

positive and bounded away from 0 on [a,∞) for each a > 0. Note that f − provides such a lower bound. The case
{F [n]f −}n∈N0 with λ > 0 is identical. For the case λ = 0, we only need to consider {F [n]f +}n∈N0 . Everything remains
the same, except that the uniform lower bound on {F [n]f +}n∈N0 is now provided by f +∞. Indeed, as a limit of concave
functions, f +∞ is also concave, hence either f +∞ ≡ 0, in which case we are done, or f +∞ is positive and nondecreasing
on (0,∞), which is sufficient for the proof of the analogue of (6.6) to go through. �

With Lemma 6.1 and Proposition 6.2, we can now proceed as in the proof of Theorem 2.16 for constant cn and
extend it to varying cn. We leave the details to the reader. �

Appendix A. Moment equations and estimates

Proposition A.1 (Moment equations and estimates). Let g ∈ C , �θ ∈ [0,∞)2, c > 0 and let Γ
c,g

�θ be any equilibrium

distribution of (2.1) with generator (2.2). Let �X = (X1,X2) be a random variable with distribution Γ
c,g

�θ . Then:
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(i) For any f (�x) ∈ C2
b([0,∞)2) that differs from a function with compact support by only a constant,

E
c,g

�θ
[(

L
c,g

�θ f
)
( �X)

] = E
c,g

�θ

[
c

2∑
i=1

(θi − Xi)
∂

∂xi

f ( �X) +
2∑

i=1

gi( �X)
∂2

∂x2
i

f ( �X)

]
= 0. (A.1)

(ii) For all g ∈ Ha with 0 ≤ a < c, all �θ ∈ [0,∞)2 and i = 1,2,

E
c,g

�θ [Xi] = θi, (A.2)

E
c,g

�θ [X1X2] = θ1θ2, (A.3)

E
c,g

�θ
[
X2

i

] = θ2
i + 1

c
E

c,g

�θ
[
gi( �X)

] = θ2
i + 1

c
(Fcg)i(�θ), (A.4)

where all expectations are finite.
(iii) Let g ∈ Ha with 0 ≤ a < c, and let K be any compact subset of [0,∞)2. Then

sup
c′≥c,�θ∈K

E
c′,g
�θ

[
(X1 + X2 + 2)2 log(X1 + X2 + 2)

]
< Cc,K,g (A.5)

for some Cc,K,g < ∞ depending only on c, K and g. Consequently, g1 and g2 are uniformly integrable with respect

to {Γ c′,g
�θ }c′≥c,�θ∈K .

Proof. (i) This part follows from the observation that, with our choice of f ,

f
( �X(t)

) − f
( �X(0)

) −
∫ t

0

(
L

c,g

�θ f
)( �X(s)

)
ds (A.6)

is a martingale. Taking expectation and noting the stationarity of the distribution of �X(t), we obtain (A.1).
(ii) We first prove that the expectations in (A.2)–(A.4) are all finite. Once this is settled, the equalities will follow

easily.
Finiteness: Let h ∈ C2

b([0,∞)) be such that h(r) = r for r ∈ [0,1], h is constant on [3,∞), h′ ∈ [0,1] and h′′ ∈
[−1,0]. Let hn(r) = nh( r

n
). Then h′

n ∈ [0,1], h′′
n ∈ [− 1

n
,0], and hn(r) ↑ r , h′

n(r) ↑ 1, h′′
n(r) → 0 as n → ∞.

(A.2): We apply (A.1) for f (x1, x2) = hn(ρ1x1 + ρ2x2) with fixed ρ1, ρ2 > 0. Since (in the formulas below we
suppress the argument)

∂xi
hn(ρ1x1 + ρ2x2) = ρih

′
n,

(A.7)
∂2
xi

hn(ρ1x1 + ρ2x2) = ρ2
i h′′

n,

and hn(ρ1x1 + ρ2x2) differs from a function with compact support by a constant, by substituting the partials into
(A.1), we get

E
c,g

�θ

[
c

2∑
i=1

ρi(θi − Xi)h
′
n +

2∑
i=1

ρ2
i gi( �X)h′′

n

]
= 0, (A.8)

which can be rewritten as

cE
c,g

�θ
[
(ρ1X1 + ρ2X2)h

′
n

] = cE
c,g

�θ
[
(ρ1θ1 + ρ2θ2)h

′
n

] + E
c,g

�θ
[(

ρ2
1g1 + ρ2

2g2
)
h′′

n

]
≤ cE

c,g

�θ [ρ1θ1 + ρ2θ2] (A.9)

since h′′
n ≤ 0 and g1, g2 ≥ 0. By monotone convergence as n → ∞, we get

ρ1E
c,g

�θ [X1] + ρ2E
c,g

�θ [X2] ≤ ρ1θ1 + ρ2θ2. (A.10)
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Since ρ1, ρ2 are arbitrary, we obtain E
c,g

�θ [Xi] ≤ θi < ∞, i = 1,2.
(A.3): Here we apply (A.1) for f (x1, x2) = hn((1 + x1)(1 + x2)). The calculations are similar to that for (A.2),

which we skip.
(A.4): Here we apply (A.1) for f (x1, x2) = hn(ρ1x

2
1 + ρ2x

2
2) with fixed ρ1, ρ2 > 0. Since

∂xi
hn

(
ρ1x

2
1 + ρ2x

2
2

) = 2ρixih
′
n,

∂2
xi

hn

(
ρ1x

2
1 + ρ2x

2
2

) = 2ρih
′
n + 4ρ2

i x2
i h′′

n, (A.11)

by substituting the partials into (A.1), we get

E
c,g

�θ
[
2cρ1X1(θ1 − X1)h

′
n + 2cρ2X2(θ2 − X2)h

′
n + 2(ρ1g1 + ρ2g2)h

′
n + 4

(
ρ2

1X2
1g1 + ρ2

2X2
2g2

)
h′′

n

] = 0.

Rearranging terms, we obtain

2cE
c,g

�θ
[(

ρ1X
2
1 + ρ2X

2
2

)
h′

n

] = 2cE
c,g

�θ
[
(ρ1θ1X1 + ρ2θ2X2)h

′
n

] + 2E
c,g

�θ
[
(ρ1g1 + ρ2g2)h

′
n

]
+ E

c,g

�θ
[
4
(
ρ2

1X2
1g1 + ρ2

2X2
2g2

)
h′′

n

]
(A.12)

≤ 2c
(
ρ1θ

2
1 + ρ2θ

2
2

) + 2E
c,g

�θ
[
(ρ1g1 + ρ2g2)h

′
n

]
.

Since g ∈ Ha with 0 ≤ a < c, we have g1(�x) + g2(�x) ≤ C(1 + x1)(1 + x2) + a(x2
1 + x2

2). Substituting this bound into
(A.12) and setting ρ1 = ρ2 = 1, using the fact that E

c,g

�θ [Xi] ≤ θi and E
c,g

�θ [X1X2] < ∞, and rearranging terms, we get

2(c − a)E
c,g

�θ
[(

X2
1 + X2

2

)
h′

n

]
< C′ < ∞. (A.13)

By monotone convergence as n → ∞, we obtain E
c,g

�θ [X2
i ] < ∞. This also implies E

c,g

�θ [gi] < ∞.
Equality: Having thus proved that the expectations in (A.2)–(A.4) are finite, we are now ready to prove that equality

holds. To that end, return to (A.9). Since E
c,g

�θ [ρ2
1g1 +ρ2

2g2] < ∞, h′′
n ∈ [− 1

n
,0] and h′′

n → 0 as n → ∞, (A.2) follows
by applying the dominated convergence theorem. By the same argument, (A.4) follows by applying the dominated
convergence theorem to (A.12), provided that(

ρ2
1x2

1g1 + ρ2
2x2

2g2
)∣∣h′′

n

(
ρ1x

2
1 + ρ2x

2
2

)∣∣ ≤ C
(
x2

1 + x2
2

)
(A.14)

for some C < ∞ independent of n. To see the latter, note that h′′
n(r) = 1

n
h′′( r

n
) = r

n
h′′( r

n
) 1
r

≤ 3
r
, since h′′ ∈ [−1,0]

and h′′( r
n
) �= 0 only when r

n
≤ 3. The bound in (A.14) then follows readily.

To verify (A.3), we apply (A.1) for f (x1, x2) = hn((x1 + x2)
2) instead of hn((1 + x1)(1 + x2)). This gives

E
c,g

�θ
[
2c(θ1 + θ2 − X1 − X2)(X1 + X2)h

′
n + 2(g1 + g2)h

′
n + 4(X1 + X2)

2(g1 + g2)h
′′
n

] = 0. (A.15)

Since (x1 + x2)
2h′′

n((x1 + x2)
2) ≤ 3 and E

c,g

�θ [g1 + g2] < ∞, we can apply the dominated convergence theorem in
(A.15) as n → ∞. Then, together with (A.2) and (A.4), we obtain (A.3).

(iii) This part follows from similar computations as in part (ii). Let c′ ≥ c be arbitrary, and abbreviate X̄i = 1 +Xi ,
θ̄i = 1 + θi , x̄i = 1 + xi for i = 1,2. We first show that

E
c′,g
�θ

[
X̄1X̄2 log(X̄1 + X̄2)

]
< ∞ (A.16)

by applying (A.1) to hn(x̄1x̄2 log(x̄1 + x̄2)). Then we apply (A.1) to hn((x̄1 + x̄2)
2 log(x̄1 + x̄2)) to prove (A.5).

(A.16): Let f (x1, x2) = hn(x̄1x̄2 log(x̄1 + x̄2)), which differs from a function with compact support by a constant.
Since

∂x1hn

(
x̄1x̄2 log(x̄1 + x̄2)

) =
(

x̄2 log(x̄1 + x̄2) + x̄1x̄2

x̄1 + x̄2

)
h′

n,

∂2
x1

hn

(
x̄1x̄2 log(x̄1 + x̄2)

) =
(

x̄2

x̄1 + x̄2
+ x̄2

2

(x̄1 + x̄2)2

)
h′

n +
(

x̄2 log(x̄1 + x̄2) + x̄1x̄2

x̄1 + x̄2

)2

h′′
n,
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and since the same holds if we interchange the indices 1 and 2, by substituting the partials into (A.1) and noting that
∂2
x1

hn ≤ 2h′
n, ∂

2
x2

hn ≤ 2h′
n, we get

E
c′,g
�θ

[
c′(θ̄1 − X̄1)

(
X̄2 log(X̄1 + X̄2) + X̄1X̄2

X̄1 + X̄2

)
h′

n

+ c′(θ̄2 − X̄2)

(
X̄1 log(X̄1 + X̄2) + X̄1X̄2

X̄1 + X̄2

)
h′

n + 2(g1 + g2)h
′
n

]
≥ 0. (A.17)

Rearranging terms and noting that X̄1X̄2
X̄1+X̄2

< X̄1 ∧ X̄2, we find that

2c′
E

c′,g
�θ

[
X̄1X̄2 log(X̄1 + X̄2)h

′
n

] ≤ E
c′,g
�θ

[
c′(θ̄1X̄2 + X̄1θ̄2)

(
1 + log(X̄1 + X̄2)

) + 2(g1 + g2)
]
. (A.18)

By assumption, g1(�x) + g2(�x) ≤ C(1 + x1)(1 + x2) + a(x2
1 + x2

2). Substituting this bound into (A.18), applying

monotone convergence as n → ∞, and noting that (A.4) implies that E
c′,g
�θ [X2

1 + X2
2] ≤ φ(θ1, θ2) for some quadratic

polynomial φ depending only on c and g, we easily verify that

E
c′,g
�θ

[
X̄1X̄2 log(X̄1 + X̄2)

] ≤ φ̃(θ1, θ2) (A.19)

for some cubic polynomial φ̃ depending only on c and g.
By applying (A.1) to hn((x̄1 + x̄2)

2 log(x̄1 + x̄2)) and using (A.19), it can be shown that

E
c′,g
�θ

[
(X̄1 + X̄2)

2 log(X̄1 + X̄2)
] ≤ φ̂(θ1, θ2) (A.20)

for some cubic polynomial φ̂ depending only on c and g. The uniform bound in (A.5) then follows. The calculations,
which we omit, are similar as before.

Since g1(�x) + g2(�x) ≤ C(x̄2
1 + x̄2

2) for some C < ∞, which by (A.20) is uniformly integrable with respect to

{Γ c′,g
�θ }c′≥c,�θ∈K for any compact K ⊂ [0,∞)2, it follows that g1 and g2 are also uniformly integrable. �

Remark. By similar computations, it can be shown that (A.5) is still valid when the logarithm in the left-hand side of
the inequality is raised to an arbitrary power.

Appendix B. Properties of uniformly elliptic diffusions

In this Appendix, we list some facts about uniformly elliptic diffusions that are needed in the proof of Theorem 2.3. We
thank S. R. S. Varadhan for pointing out some of the relevant results and references on uniformly elliptic diffusions.

Theorem B.1 (Uniformly elliptic diffusions in R
d ). Let b : Rd → R

d be a bounded measurable map, and let
a : Rd → Sd be a continuous map, where Sd is the space of symmetric nonnegative definite d × d real matrices.
Assume further that a(·) is uniformly elliptic, i.e., there exists 0 < Λ < ∞ such that for all �x, �θ ∈ R

d , �θ �= 0,

Λ−1 ≤ 〈�θ, a(�x)�θ〉
〈�θ, �θ〉 ≤ Λ.

Then, for each �x ∈ R
d , the martingale problem with generator

Lf =
d∑

i,j=1

aij (�x)
∂2

∂xi ∂xj

f (�x) +
d∑

i=1

bi(�x)
∂

∂xi

f (�x), f ∈ C2
c

(
R

d
)
, (B.1)

has a unique solution P
�x in the space of probability measures on Ω = C([0,∞),R

d) with P
�x(ω ∈ Ω :ω(0) = �x) = 1.

The family of solutions {P�x}�x∈Rd defines a strong Feller and strong Markov process that admits a transition probability
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density pt (�x, �y) with respect to Lebesgue measure for each t > 0 and �x ∈ R
d . Furthermore, for each t > 0 and

�x∗ ∈ R
d ,

lim
�x→�x∗

∥∥pt(�x, ·) − pt(�x∗, ·)∥∥1 = lim
�x→�x∗

∫
Rd

∣∣pt (�x, �y) − pt

(�x∗, �y)∣∣d�y = 0.

Proof. All facts follow from results in [29]. For the well-posedness of the martingale problem, see Theorem 7.2.1
therein. For the strong Markov property, see Theorem 6.2.2. For the strong Feller property, see Theorem 7.2.4. For the
existence of the transition density, see Theorem 9.1.9 and Lemma 9.2.2. Lastly, for the L1-continuity of the transition
density, see Theorem 11.4.3. �

Theorem B.2 (Diffusions restricted to bounded domains). Let a and b satisfy the conditions in Theorem B.1, and
let {P�x}�x∈Rd denote the family of solutions to the martingale problem with coefficients (a, b) in (B.1). If ā : Rd → Sd

and b̄ : Rd → R
d are locally bounded measurable maps with ā = a and b̄ = b on a bounded open set D, then for any

�x ∈ D and any solution P̄
�x to the martingale problem with coefficients (ā, b̄), P̄

�x = P
�x on FτD

, the sigma-field on Ω

generated by the family of projection maps {πs :Ω → R
d |πs(ω) = ω(s ∧ τD)}s≥0, where τD(ω) = inf{t ≥ 0: ω(t) /∈

D}.
Proof. See Theorem 10.1.1 in [29]. �

Corollary B.3 (Transition density for diffusions restricted to bounded domains). Let b : Rd → R
d be a locally

bounded measurable map, and let a : Rd → Sd be continuous such that the martingale problem with coefficients a

and b in (B.1) is well-posed. Assume further that a is nondegenerate on D for a simply connected bounded open set
D ⊂ R

d with smooth boundary. For any �x ∈ D, if P
�x is the solution of the martingale problem starting from �x, then, for

each t > 0, the measure μD
t (�x, ·) on Borel-measurable sets defined by μD

t (�x, ·) = P
�x(ω: t < τD(ω),ω(t) ∈ ·) admits

a density pD
t (�x, �y) with respect to Lebesgue measure. Furthermore, for each �x∗ ∈ D, there exist ε, δ > 0 sufficiently

small such that, for all �x, �x′ ∈ Bε(�x∗), the ball of radius ε centered at �x∗, the overlap between μD
δ (�x, ·) and μD

δ (�x′, ·)
satisfies

μD
δ (�x,D) + μD

δ (�x′,D) − ‖pD
δ (�x, ·) − pD

δ (�x′, ·)‖1

2
≥ 1

2
. (B.2)

Proof. By our assumptions on a, b and D, we can find coefficients (ā, b̄) on R
d such that (ā, b̄) = (a, b) on D, (ā, b̄)

are bounded, a is continuous and uniformly elliptic on R
d . For instance, we can define b̄ = b on D and b̄ ≡ 0 on R

d\D,
define ā = a on D and ā ≡ I on R

d\B where B is a large open ball containing D, and on B\D define ā to be the
harmonic interpolation between its values on ∂B and ∂D. By Theorem B.1, the martingale problem with coefficients
(ā, b̄) has a unique family of solutions {P̄ �x}�x∈Rd , which is strong Markov and admits a transition density p̄t (�x, �y) for
all t > 0 and �x ∈ R

d . By Theorem B.2, for �x ∈ D, P̄
�x = P

�x on FτD
. In particular, μD

t (�x, ·) = μ̄D
t (�x, ·) = P̄

�x{ω: t <

τD(ω),ω(t) ∈ ·}. Since μ̄D
t (�x, ·) is absolutely continuous with respect to P̄

�x(ω: ω(t) ∈ ·) with density p̄t (�x, �y),
μD

t (�x, ·) = μ̄D
t (�x, ·) also admits a density pD

t (�x, �y) with respect to Lebesgue measure for all �x ∈ D and t > 0.
It is not difficult to see that the left-hand side of (B.2) is the mass of the maximal positive measure that is dominated

by both μD
δ (�x, ·) and μD

δ (�x′, ·). To verify (B.2), fix �x∗ ∈ D and choose ε′ > 0 such that B2ε′(�x∗) ⊂ D. Then we can
choose δ > 0 sufficiently small such that, for all �x ∈ Bε′(�x∗), P

�x(τD ≤ δ) ≤ 1
5 . To verify this claim, note that, given

�z ∈ Bε′(�x∗), if we define f (�x) = ‖�x − �z‖2 = ∑d
i=1(xi − zi)

2, then

f
( �X(t ∧ τD)

) − f
( �X(0)

) −
∫ t∧τD

0
Lf

( �X(s)
)

ds

is a martingale, where ( �X(s))s≥0 has law P
�z. In particular,(

ε′)2
P

�z(τD ≤ δ) ≤ E
[∥∥ �X(δ ∧ τD) − �z∥∥2]

= E

[∫ δ∧τD

0
2

d∑
i=1

(
bi

( �X(s)
)(

Xi(s) − zi

) + aii

( �X(s)
))

ds

]
≤ δCD,a,b, (B.3)
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where CD,a,b depends only on D and (a, b) on D. Therefore P
�z(τD ≤ δ) ≤ δCD,a,b(ε

′)−2 uniformly for all �z ∈
Bε′(�x∗). Choosing δ sufficiently small, we then verify the claim.

Applying Theorem B.1 to {P̄ �x}�x∈Rd , we can choose ε ∈ (0, ε′) small such that, for all �x ∈ Bε(�x∗), ‖p̄δ(�x, ·) −
p̄δ(�x∗, ·)‖1 ≤ 1

10 , and hence, for all �x, �x′ ∈ Bε(�x∗), ‖p̄δ(�x, ·) − p̄δ(�x′, ·)‖1 ≤ 1
5 . Since for �z ∈ Bε(�x∗), ‖p̄δ(�z, ·) −

p̄D
δ (�z, ·)‖1 = P̄

�z(τD ≤ δ) ≤ 1
5 , we have ‖p̄D

δ (�x, ·) − p̄D
δ (�x′, ·)‖1 ≤ 3

5 for all �x, �x′ ∈ Bε(�x∗). Finally, note that, for
�x, �x′ ∈ Bε(�x∗), μD

δ (�x,D) = 1 − P̄ �x(τD ≤ δ) ≥ 1 − 1
5 and the same holds for μD

δ (�x′,D), hence, substitution of all the
estimates into the left-hand side of (B.2) yields the desired result. �

Remark. Note that the constant on the right-hand side of (B.2) can be made arbitrarily close to 1 by choosing ε, δ

sufficiently small.

Theorem B.4 (Support theorem for uniformly elliptic diffusions). Let a, b,D and {P �x}�x∈D be as in Corollary
B.3. For any �x ∈ D, ε > 0, and any continuous function ψ : [0, t] → D with ψ(0) = �x,

P
�x(ω: sup

0≤s≤t

∣∣ω(s) − ψ(s)
∣∣ ≤ ε

)
> 0.

Proof. The support theorem is a classic result of Stroock and Varadhan. The statement above follows Theorem 2.5 in
Chapter V of [4] and Theorem B.2. �

Theorem B.5 (Occupation time measure for uniformly elliptic diffusions). Let a, b, D and {P�x}�x∈D be as in
Corollary B.3. If A ⊂ D has positive Lesbegue measure, then, for all �x ∈ D, E

�x[∫ τD

0 1ω(s)∈A ds] > 0, where E
�x

denotes expectation with respect to P
�x , and τD = inf{t ≥ 0: ω(t) /∈ D}.

Proof. The statement above follows from Theorem 8.5 in Chapter V of [4] (which goes back to Krylov) in combina-
tion with the support theorem, Theorem B.4, and the Girsanov transformation (see Theorem 7.2.2 in [29]). �
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Grant. JMS is supported by GAČR Grant 201/06/1323. JMS and RS received travel support from the ESF scientific
program “Random Dynamics in Spatially Extended Models.” FdH and RS are grateful to the Pacific Institute for the
Mathematical Sciences and the Mathematics Department of the University of British Columbia, Vancouver, Canada,
for hospitality: FdH from January to August 2006, RS from mid-April to mid-May 2006 when part of the work in
this paper was completed. RS was a postdoc at EURANDOM from October 2004 to October 2006. DD, FdH and RS
thank Ed Perkins for valuable discussions. The authors thank the associate editor and the referee for an exceptionally
careful reading of the paper and many helpful suggestions.

References

[1] S. R. Athreya, M. T. Barlow, R. F. Bass and E. A. Perkins. Degenerate stochastic differential equations and super-Markov chains. Probab.
Theory Related Fields 123 (2002) 484–520. MR1921011

[2] J.-B. Baillon, P. Clément, A. Greven and F. den Hollander. On the attracting orbit of a non-linear transformation arising from renormalization
of hierarchically interacting diffusions, Part I: The compact case. Canad. J. Math. 47 (1995) 3–27. MR1319687

[3] J.-B. Baillon, P. Clément, A. Greven and F. den Hollander. On the attracting orbit of a non-linear transformation arising from renormalization
of hierarchically interacting diffusions, Part II: The non-compact case. J. Funct. Anal. 146 (1997) 236–298. MR1446381

[4] R. F. Bass. Diffusions and Elliptic Operators. Springer, New York, 1998. MR1483890
[5] R. F. Bass and E. A. Perkins. Countable systems of degenerate stochastic differential equations with applications to super-Markov chains.

Electron. J. Probab. 9 (2004) 634–673. MR2110015
[6] R. F. Bass and E. A. Perkins. Degenerate stochastic differential equations arising from catalytic branching networks. Preprint.

http://www.ams.org/mathscinet-getitem?mr=1921011
http://www.ams.org/mathscinet-getitem?mr=1319687
http://www.ams.org/mathscinet-getitem?mr=1446381
http://www.ams.org/mathscinet-getitem?mr=1483890
http://www.ams.org/mathscinet-getitem?mr=2110015


The renormalization transformation for two-type branching models 1077

[7] J. T. Cox, D. A. Dawson and A. Greven. Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization
Analysis. Amer. Math. Soc., Providence, RI, 2004. MR2074427

[8] J. T. Cox and A. Greven. Ergodic theorems for infinite systems of locally interacting diffusions. Ann. Probab. 22 (1994) 833–853. MR1288134
[9] D. A. Dawson, L. G. Gorostiza and A. Wakolbinger. Degrees of transience and recurrence and hierarchical random walks. Potential Anal. 22

(2005) 305–350. MR2135263
[10] D. A. Dawson and A. Greven. Multiple scale analysis of interacting diffusions. Probab. Theory Related Fields 95 (1993) 467–508.

MR1217447
[11] D. A. Dawson and A. Greven. Hierarchical models of interacting diffusions: Multiple time scales, phase transitions and cluster formation.

Probab. Theory Related Fields 96 (1993) 435–473. MR1234619
[12] D. A. Dawson and A. Greven. Multiple space–time analysis for interacting branching models. Electron. J. Probab. 1 (1996) 1–84. MR1423467
[13] D. A. Dawson, A. Greven and J. Vaillancourt. Equilibria and quasi-equilibria for infinite collections of interacting Fleming–Viot processes.

Trans. Amer. Math. Soc. 347 (1995) 2277–2360. MR1297523
[14] D. A. Dawson, A. Greven and I. Zähle. Continuum limits of multitype population models on the hierarchical group. In preparation.
[15] D. A. Dawson and P. March. Resolvent estimates for Fleming–Viot operators and uniqueness of solutions to related martingale problems.

J. Funct. Anal. 132 (1995) 417–472. MR1347357
[16] D. A. Dawson and E. A. Perkins. Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab. 26 (1998)

1088–1138. MR1634416
[17] D. A. Dawson and E. A. Perkins. On the uniqueness problem for catalytic branching networks and other singular diffusions. Illinois J. Math.

50 (2006) 323–383. MR2247832
[18] R. Durrett. Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1996. MR1609153
[19] S. N. Ethier and T. G. Kurtz. Markov Processes – Characterization and Convergence. Wiley, New York, 1986. MR0838085
[20] K. Fleischmann and A. Greven. Diffusive clustering in an infinite system of hierarchically interacting Fisher–Wright diffusions. Probab.

Theory Related Fields 98 (1994) 517–566. MR1271108
[21] K. Fleischmann and J. M. Swart. Renormalization analysis of catalytic Wright–Fisher diffusions. Electron. J. Probab. 11 (2006) 585–654.

MR2242657
[22] A. Greven. Renormalization and universality for multitype population models. In Interacting Stochastic Systems 209–246. J.-D. Deuschel

and A. Greven, Eds. Springer, Berlin, 2005. MR2118576
[23] F. den Hollander. Renormalization of interacting diffusions. In Complex Stochastic Systems 219–233. O. E. Barndorff–Nielsen, D. R. Cox

and C. Klüppelberg, Eds. Chapman & Hall, Boca Raton, 2001. MR1893414
[24] F. den Hollander and J. M. Swart. Renormalization of hierarchically interacting isotropic diffusions. J. Stat. Phys. 93 (1998) 243–291.

MR1656371
[25] S. Kliem. Degenerate stochastic differential equations for catalytic branching networks. Preprint. Available at arXiv:0802.0035v1.
[26] R. G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, 1995. MR1326606
[27] S. Sawyer and J. Felsenstein. Isolation by distance in a hierarchically clustered population. J. Appl. Probab. 20 (1983) 1–10. MR0688075
[28] T. Shiga and A. Shimizu. Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (1980) 395–416.

MR0591802
[29] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer, New York, 1979. MR0532498
[30] J. M. Swart. Clustering of linearly interacting diffusions and universality of their long-time distribution. Probab. Theory Related Fields 118

(2000) 574–594. MR1808376
[31] J. M. Swart. Uniqueness for isotropic diffusions with a linear drift. Probab. Theory Related Fields 128 (2004) 517–524. MR2045951
[32] S. R. S. Varadhan. Probability Theory. Amer. Math. Soc., Providence, RI, 2001. MR1852999

http://www.ams.org/mathscinet-getitem?mr=2074427
http://www.ams.org/mathscinet-getitem?mr=1288134
http://www.ams.org/mathscinet-getitem?mr=2135263
http://www.ams.org/mathscinet-getitem?mr=1217447
http://www.ams.org/mathscinet-getitem?mr=1234619
http://www.ams.org/mathscinet-getitem?mr=1423467
http://www.ams.org/mathscinet-getitem?mr=1297523
http://www.ams.org/mathscinet-getitem?mr=1347357
http://www.ams.org/mathscinet-getitem?mr=1634416
http://www.ams.org/mathscinet-getitem?mr=2247832
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=1271108
http://www.ams.org/mathscinet-getitem?mr=2242657
http://www.ams.org/mathscinet-getitem?mr=2118576
http://www.ams.org/mathscinet-getitem?mr=1893414
http://www.ams.org/mathscinet-getitem?mr=1656371
http://arxiv.org/abs/0802.0035v1
http://www.ams.org/mathscinet-getitem?mr=1326606
http://www.ams.org/mathscinet-getitem?mr=0688075
http://www.ams.org/mathscinet-getitem?mr=0591802
http://www.ams.org/mathscinet-getitem?mr=0532498
http://www.ams.org/mathscinet-getitem?mr=1808376
http://www.ams.org/mathscinet-getitem?mr=2045951
http://www.ams.org/mathscinet-getitem?mr=1852999

	Introduction
	Model and background
	Renormalization program
	Literature
	Outline

	Main results
	Key class and uniqueness for the autonomous SDE
	Equilibrium distribution and renormalization transformation
	Definition and examples of fixed points and fixed shapes
	Identification of fixed points and fixed shapes
	Domain of attraction of fixed points
	Discussion and future challenges

	Proofs of Theorems 2.3, 2.6, 2.10 and Corollary 2.11
	Proof of Theorem 2.3
	Existence
	Uniqueness
	Weak continuity
	Convergence

	Proofs of Theorems 2.6, 2.10 and Corollary 2.11
	Discussion of Conjecture 2.7

	Proofs of Theorems 2.12, 2.13 and 2.15
	Proof of Theorem 2.15
	Preliminary lemmas
	Proofs of Proposition 4.1 and Theorems 2.12 and 2.13

	Proof of Theorem 2.16 with constant cn
	Proof of Theorem 2.16 with varying cn
	Appendix A. Moment equations and estimates
	Appendix B. Properties of uniformly elliptic diffusions
	Acknowledgments
	References

