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Abstract. Let BH = {BH (t), t ∈ R
N+} be an (N,d)-fractional Brownian sheet with index H = (H1, . . . ,HN) ∈ (0,1)N defined

by BH (t) = (BH
1 (t), . . . ,BH

d
(t)) (t ∈ R

N+ ), where BH
1 , . . . ,BH

d
are independent copies of a real-valued fractional Brownian

sheet BH
0 . We prove that if d <

∑N
�=1 H−1

�
, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao

and Zhang (Probab. Theory Related Fields 124 (2002)).
We also establish sharp local and global Hölder conditions for the local times of BH . These results are applied to study analytic

and geometric properties of the sample paths of BH .

Résumé. Désignons par BH = {BH (t), t ∈ R
N+} le (N,d)-drap Brownien fractionnaire de paramètre H = (H1, . . . ,HN) ∈

(0,1)N défini par BH (t) = (BH
1 (t), . . . ,BH

d
(t)) (t ∈ R

N+ ), où BH
1 , . . . ,BH

d
sont des copies indépendantes du drap Brownien

fractionnaire à valeurs réelles BH
0 . Nous montrons que le temps local de BH est bicontinu lorsque d <

∑N
�=1 H−1

�
. Cela résout

une conjecture de Xiao et Zhang (Probab. Theory Related Fields 124 (2002)). Nous obtenons aussi des résultats fins concernant la
régularité Hölderienne, locale et globale, du temps local. Ces résultats nous permettent d’étudier certaines propriétés analytiques
et géométriques des trajectoires de BH .

MSC: 60G15; 60G17
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1. Introduction

For a given vector H = (H1, . . . ,HN) ∈ (0,1)N , a real-valued fractional Brownian sheet BH
0 = {BH

0 (t), t ∈ R
N+} with

index H is a centered Gaussian random field with covariance function given by

E
[
BH

0 (s)BH
0 (t)

] =
N∏

�=1

1

2

(
s

2H�

� + t
2H�

� − |s� − t�|2H�
)
, s, t ∈ R

N+ . (1.1)

It follows from (1.1) that BH
0 (t) = 0 a.s. for every t ∈ ∂R

N+ , where ∂R
N+ denotes the boundary of R

N+ .
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We will make use of the following stochastic integral representation of BH
0 (cf. [2]):

BH
0 (t) = κ−1

H

∫ t1

−∞
· · ·

∫ tN

−∞

N∏
�=1

g
H�

(t�, s�)W(ds), (1.2)

where W = {W(s), s ∈ R
N } is a standard real-valued Brownian sheet and where, for every � = 1, . . . ,N ,

g
H�

(t�, s�) = (
(t� − s�)+

)H�−1/2 − (
(−s�)+

)H�−1/2
.

In the above, a+ = max{a,0} for all a ∈ R and κ
H

is the normalization constant given by

κ2
H =

∫ 1

−∞
· · ·

∫ 1

−∞

[
N∏

�=1

g
H�

(1, s�)

]2

ds.

Note that if H�0 = 1/2 for some �0, then we assume that g
H�0

(t�0, s�0) = 1[0,t�0 ](s�0), where 1[0,t�0 ] is the indicator of

the interval [0, t�0].
Let BH

1 , . . . ,BH
d be d independent copies of BH

0 . Then the Gaussian random field BH = {BH (t): t ∈ R
N+} with

values in R
d defined by

BH (t) = (
BH

1 (t), . . . ,BH
d (t)

)
, ∀t ∈ R

N+ , (1.3)

is called an (N,d)-fractional Brownian sheet with index H = (H1, . . . ,HN).
Note that if N = 1, then BH is a fractional Brownian motion in R

d with Hurst index H1 ∈ (0,1); if N > 1 and
H1 = · · · = HN = 1/2, then BH is the (N,d)-Brownian sheet. However, when H1, . . . ,HN are not the same, BH

is anisotropic and has the following operator-self-similarity (this can be verified easily using (1.1)): For any N × N

diagonal matrix A = (aij ) with aii = ai > 0 for all 1 ≤ i ≤ N and aij = 0 if i �= j , we have

{
BH (At), t ∈ R

N+
} d=

{
N∏

j=1

a
Hj

j BH (t), t ∈ R
N+

}
, (1.4)

where X
d= Y means that the two processes have the same finite dimensional distributions. These features of BH make

it a possible model for bone structure [8] and aquifer structure in hydrology [4].
Many authors have studied various properties of fractional Brownian sheets. See, for example, [3,11,21,24,29,33]

and the references therein for further information. This paper is concerned with regularity of the local times of an
(N,d)-fractional Brownian sheet BH . After having proved that a necessary and sufficient condition for the existence
of L2(P × λd) local times of BH is d <

∑N
�=1

1
H�

, Xiao and Zhang [33] give a sufficient condition for the joint

continuity of the local times. However, their sufficient condition is not sharp and they have conjectured that BH has
jointly continuous local times whenever the condition d <

∑N
�=1

1
H�

is satisfied. The main objective of this paper is to
verify this conjecture; see Theorem 3.1. The new ingredients for proving this result is the property of sectorial local
nondeterminism of BH

0 established in [29] (see Lemma 3.2) and a similar result for the fractional Liouville sheet
proved in Section 2. The results and techniques developed in this paper are applicable to more general anisotropic
Gaussian random fields with the property of sectorial local nondeterminism; see [32] for further development.

The rest of this paper is organized as follows. In Section 2, we prove some basic results on the fractional Liouville
sheets that will be useful to our arguments. In Section 3, we prove that the sufficient condition for the existence
of L2(P × λd) local times of BH in [33] actually implies the joint continuity of the local times. This verifies their
conjecture in Remark 4.11. Section 4 is on the local and uniform Hölder conditions for the local times and their
implications to sample path properties of BH . In particular, we derive some results on the Hausdorff measure of the
level sets and on the Chung-type law of the iterated logarithm for the sample function BH (t). The latter improves
Theorem 3 of [3].

We end the Introduction with some notation. Throughout this paper, the underlying parameter space is R
N or

R
N+ = [0,∞)N . A parameter t ∈ R

N is written as t = (t1, . . . , tN ), or as 〈c〉, if t1 = · · · = tN = c. For any s, t ∈ R
N
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such that sj < tj (j = 1, . . . ,N ), we define the closed interval (or rectangle) [s, t] = ∏N
j=1[sj , tj ]. We will let A

denote the class of all closed intervals I ⊂ (0,∞)N . We always write λm for Lebesgue’s measure on R
m, and use 〈·, ·〉

and | · | to denote the ordinary scalar product and the Euclidean norm in R
m respectively, no matter the value of the

integer m.
An unspecified positive and finite constant will be denoted by c, which may not be the same in each occurrence.

More specific constants in Section i are numbered as c
i,1, ci,2, . . . .

2. Fractional Liouville sheet

One of the main obstacles in studying the local times and other properties of fractional Brownian sheets is their
complicated dependence structure. Unlike the Brownian sheet or fractional Brownian motion, fractional Brownian
sheets have neither the property of independent increments nor the local nondeterminism.

To be more specific, we recall that fractional Brownian motion Zα = {Zα(t), t ∈ R
N } (0 < α < 1) in R has the

following property of strong local nondeterminism proved by Pitt [25]: For every interval I ⊆ R
N , there exist positive

constants c2,1 and r0 such that for all t ∈ I and all 0 < r ≤ min{|t |, r0},

Var
(
Zα(t)

∣∣ Zα(s): s ∈ I, r ≤ |s − t | ≤ r0
) ≥ c2,1r

2α. (2.1)

This property has played important rôles in studying the local times and many other properties of Zα ; see [31] and the
references therein for more information. On the other hand, it is known that the Brownian sheet W = {W(t), t ∈ R

N+}
does not have the property of local nondeterminism. In order to see this, we consider the Brownian sheet with N = 2
and I = [0,1]2. For any constant ε ∈ (0,1), let T ⊆ I be an interval with side-length ε. Let t denote the upper-right
vertex of T and let s1, s2, s3 be other vertices of T . For example, t = (1,1), s1 = (1 − ε,1), s2 = (1,1 − ε) and
s3 = (1 − ε,1 − ε). Then |t − sj | ≥ ε for j = 1,2,3. Considering the increment of W over the square T , we see
that Var(W(t)|W(s1),W(s2),W(s3)) ≤ ε2. Hence the Brownian sheet W does not satisfy (2.1) (this also proves that
the fractional Brownian sheet BH

0 is not locally nondeterministic). This is the main reason why, in most literature,
the methods for studying various properties of the Brownian sheet are different from those for fractional Brownian
motion. The property of independent increments of W has been crucial in studying the local times and self-intersection
local times of W ; see [12,27] and [22]. In solving an open problem in [22], Khoshnevisan and Xiao [19] showed
that W satisfies a type of sectorial local nondeterminism and applied this property to study geometric properties of the
Brownian sheet by using methods that are reminiscent to those for fractional Brownian motion; see [18] for further
applications of the sectorial local nondeterminism. Recently, Wu and Xiao [29] have extended several results in [18,
19] to fractional Brownian sheets.

In this paper we continue the above line of research and study the regularity of the local times of fractional Brown-
ian sheets. To overcome the difficulty due to the lack of local nondeterminism of BH , we will not only make use of the
sectorial local nondeterministic property of BH established in [29] (see Lemma 3.2), but also the analogous properties
of the so-called fractional Liouville sheet.

Given any vector α = (α1, . . . , αN) ∈ (0,∞)N , the centered Gaussian random field Xα
0 = {Xα

0 (t), t ∈ R
N+} defined

by

Xα
0 (t) =

∫
[0,t]

N∏
�=1

(t� − s�)
α�−1/2W(ds), t ∈ R

N+ , (2.2)

is called a fractional Liouville sheet with parameter α. It is easy to see that, when α1, . . . , αN are not the same,
Xα

0 = {Xα
0 (t): t ∈ R

N+} is an anisotropic Gaussian field which has the same operator self-similarity as in (1.4).
For the purpose of this paper, we will only be interested in the case α = H ∈ (0,1)N . It follows from (1.2) that for

every t ∈ R
N+ ,

BH
0 (t) = κ−1

H XH
0 (t) + κ−1

H

∫
(−∞,t]\[0,t]

N∏
�=1

g
H�

(t�, s�)W(ds), (2.3)



730 A. Ayache, D. Wu and Y. Xiao

and the two processes on the right-hand side of (2.3) are independent. We will show that in studying the regu-
larity properties of the local times of BH , the fractional Liouville sheet XH

0 plays a crucial role and the second
process in (2.3) can be neglected. More precisely, we will make use of the following property: For all integers n ≥ 2,
t1, . . . , tn ∈ R

N+ and u1, . . . , un ∈ R, we have

Var

(
n∑

j=1

ujB
H
0

(
tj

)) ≥ κ−2
H Var

(
n∑

j=1

ujX
H
0

(
tj

))
. (2.4)

Here and in the sequel, Var(ξ) denotes the variance of the random variable ξ .
Next we use an argument in [3] to provide a useful decomposition for XH

0 (t). Let ε > 0 be fixed. For every
t ∈ [ε,∞)N , we decompose the rectangle [0, t] into the following disjoint union of sub-rectangles:

[0, t] = [0, ε]N ∪
N⋃

�=1

R�(t) ∪ Δ(ε, t), (2.5)

where R�(t) := R�(ε, t) = {r ∈ [0, t]N : 0 ≤ ri ≤ ε if i �= �, ε < r� ≤ t�} and Δ(ε, t) can be written as a union of
2N − N − 1 sub-rectangles of [0, t]. Denote the integrand in (2.2) by g(t, r). It follows from (2.5) that for every
t ∈ [ε,∞)N ,

XH
0 (t) =

∫
[0,ε]N

g(t, r)W(dr)

+
N∑

�=1

∫
R�(t)

g(t, r)W(dr) +
∫

Δ(ε,t)

g(t, r)W(dr)

:= X(ε, t) +
N∑

�=1

Y�(t) + Z(ε, t). (2.6)

Since {X(ε, t), t ∈ [ε,∞)N }, {Y�(t), t ∈ [ε,∞)N } (1 ≤ � ≤ N ) and {Z(ε, t), t ∈ [ε,∞)N } are defined by the stochastic
integrals w.r.t. W over disjoint sets, they are independent Gaussian random fields.

The following lemma shows that every process Y�(t) has the property of strong local nondeterminism along the
�th direction. It will be essential to our proofs.

Lemma 2.1. Let � ∈ {1,2, . . . ,N} and let I = [a, b] ∈A be a fixed interval. For any integer n ≥ 2, t1, . . . , tn ∈ [a, b]
such that

t1
� ≤ t2

� ≤ · · · ≤ tn� ,

the following inequality for the conditional variance holds:

Var
(
Y�

(
tn

) ∣∣ Y�

(
tj

)
: 1 ≤ j ≤ n − 1

) ≥ c2,2

∣∣tn� − tn−1
�

∣∣2H�, (2.7)

where c2,2 > 0 is a constant depending on ε, I and H only.

Proof. Working in the Hilbert space setting, the conditional variance in (2.7) is the square of the L2(P)-distance of
Y�(t

n) from the subspace generated by Y�(t
j ) (1 ≤ j ≤ n−1). Hence it is sufficient to show that there exists a constant

c2,2 such that for all aj ∈ R (j = 1, . . . , n − 1),

E

(
Y�

(
tn

) −
n−1∑
j=1

ajY�

(
tj

))2

≥ c2,2

∣∣tn� − tn−1
�

∣∣2H�. (2.8)
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However, by splitting R�(t
n) into two disjoint parts and using the independence, we derive that

E

(
Y�

(
tn

) −
n−1∑
j=1

ajY�

(
tj

))2

≥ E

(∫
R�(t

n)\R�(t
n−1)

g
(
tn, r

)
W(dr)

)2

=
∫ ε

0
· · ·

∫ tn�

tn−1
�

· · ·
∫ ε

0

N∏
k=1

(
tnk − rk

)2Hk−1 dr

≥ c2,2

∣∣tn� − tn−1
�

∣∣2H�. (2.9)

This proves (2.8) and hence Lemma 2.1. �

The following lemma relates the fractional Brownian sheet BH
0 to the independent Gaussian random fields Y�

(� = 1, . . . ,N ).

Lemma 2.2. Let I = [a, b] ∈ A be a fixed interval. For every integer n ≥ 2, t1, . . . , tn ∈ [a, b] and u1, . . . , un ∈ R,
we have

Var

(
n∑

j=1

ujB
H
0

(
tj

)) ≥ κ−2
H

N∑
�=1

Var

(
n∑

j=1

ujY�

(
tj

))
. (2.10)

Moreover, for every k ∈ {1, . . . ,N} and positive numbers p1, . . . , pk ≥ 1 satisfying
∑k

�=1 p−1
� = 1, we have

1

[detCov(BH
0 (t1), . . . ,BH

0 (tn))]1/2
≤

k∏
�=1

cn
2,3

[detCov(Y�(t1), . . . , Y�(tn))]1/(2p�)
, (2.11)

where detCov(Z1, . . . ,Zn) denotes the determinant of the covariance matrix of the Gaussian random vector
(Z1, . . . ,Zn).

Proof. The inequality (2.10) follows directly from (2.4), (2.6) and the independence of Y� (� = 1, . . . ,N ). To prove
(2.11), we note that for any positive definite n × n matrix Γ ,∫

Rn

[det(Γ )]1/2

(2π)n/2
exp

(
−1

2
x′Γ x

)
dx = 1. (2.12)

It follows from (2.10), (2.12) and the generalized Hölder inequality (see, e.g., [15], p. 140) that

1

[detCov(BH
0 (t1), . . . ,BH

0 (tn))]1/2

= 1

(2π)n/2

∫
Rn

exp

[
−1

2
Var

(
n∑

j=1

ujB
H
0

(
tj

))]
du1 · · ·dun

≤ 1

(2π)n/2

∫
Rn

exp

[
−c

N∑
�=1

Var

(
n∑

j=1

ujY�

(
tj

))]
du1 · · ·dun

≤ 1

(2π)n/2

k∏
�=1

{∫
Rn

exp

[
−c Var

(
n∑

j=1

ujY�

(
tj

))]
du1 · · ·dun

}1/p�

≤
k∏

�=1

cn
2,4

[detCov(Y�(t1), . . . , Y�(tn))]1/(2p�)
.

(2.13)

This yields (2.11) and the lemma is proved. �
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3. Joint continuity of the local times

We start by briefly recalling some aspects of the theory of local times. For excellent surveys on local times of random
and deterministic vector fields, we refer to [13] and [10].

Let X(t) be a Borel vector field on R
N with values in R

d . For any Borel set T ⊆ R
N , the occupation measure of

X on T is defined as the following measure on R
d :

μ
T
(•) = λN

{
t ∈ T : X(t) ∈ •}

.

If μ
T

is absolutely continuous with respect to λd , we say that X(t) has local times on T , and define its local times,
L(•, T ), as the Radon–Nikodým derivative of μ

T
with respect to λd , i.e.,

L(x,T ) = dμ
T

dλd

(x), ∀x ∈ R
d .

In the above, x is the so-called space variable, and T is the time variable of the local times. Sometimes, we write
L(x, t) in place of L(x, [0, t]). Note that if X has local times on T then for every Borel set S ⊆ T , L(x,S) also exists.

By standard martingale and monotone class arguments, one can deduce that the local times have a version, still
denoted by L(x,T ), such that it is a kernel in the following sense:

(i) For each fixed S ∈ B(T ), where B(T ) is the family of Borel subsets of T , the function x �→ L(x,S) is Borel
measurable in x ∈ R

d .
(ii) For every x ∈ R

d , L(x, ·) is Borel measure on B(T ).

Moreover, L(x,T ) satisfies the following occupation density formula: For every Borel set T ⊆ R
N , and for every

measurable function f : Rd → R+,

∫
T

f
(
X(t)

)
dt =

∫
Rd

f (x)L(x,T )dx. (3.1)

See Theorems 6.3 and 6.4 in [13].
Suppose we fix a rectangle I = ∏N

i=1[ai, ai + hi] in A. Then, whenever we can choose a version of the local time,
still denoted by L(x,

∏N
i=1[ai, ai + ti]), such that it is a continuous function of (x, t1, . . . , tN ) ∈ R

d × ∏N
i=1[0, hi], X

is said to have a jointly continuous local time on I . When a local time is jointly continuous, L(x,•) can be extended
to be a finite Borel measure supported on the level set

X−1(x) ∩ I = {
t ∈ I : X(t) = x

}; (3.2)

see [1] for details. In other words, local times often act as a natural measure on the level sets of X. As such, they are
useful in studying the various fractal properties of level sets and inverse images of the vector field X. In this regard,
we refer to [6,12,27] and [30].

Berman [5–7] developed Fourier analytic methods for studying the existence and regularity of the local times of
Gaussian processes. His methods were extended by Pitt [25] and Geman and Horowitz [13] to Gaussian random fields.
Let X = {X(t), t ∈ R

N } be a Gaussian random field with values in R
d . It follows from (25.5) and (25.7) in [13] (see

also [14,25]) that for all x, y ∈ R
d , T ∈A and all integers n ≥ 1,

E
[
L(x,T )n

] = (2π)−nd

∫
T n

∫
Rnd

exp

(
−i

n∑
j=1

〈
uj , x

〉)

× E exp

(
i

n∑
j=1

〈
uj ,X

(
t j

)〉)
dudt (3.3)
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and for all even integers n ≥ 2,

E
[(

L(x,T ) − L(y,T )
)n] = (2π)−nd

∫
T n

∫
Rnd

n∏
j=1

[
e−i〈uj ,x〉 − e−i〈uj ,y〉]

× E exp

(
i

n∑
j=1

〈
uj ,X

(
t j

)〉)
dudt, (3.4)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ R
d , tj ∈ T ⊂ (0,∞)N . In the coordinate notation we then

write uj = (u
j

1, . . . , u
j
d). These identities are also very useful for studying the local times of infinitely divisible random

fields as well; see [10,12] and [20].
Xiao and Zhang [33] have proved that if d <

∑N
�=1

1
H�

, then for all intervals I ∈ A, BH has local times

{L(x, I ), x ∈ R
d} on I and L(·, I ) ∈ L2(P × λd). In the following, we prove that under the same condition, the

local time has a version that is jointly continuous in both space and time variables.

Theorem 3.1. Let BH = {BH (t), t ∈ R
N+} be a fractional Brownian sheet in R

d with index H = (H1, . . . ,HN) ∈
(0,1)N . If d <

∑N
�=1

1
H�

, then for all intervals I ∈A, BH has a jointly continuous local time on I almost surely.

To prove Theorem 3.1 we will, similar to [12,30,33], first use the Fourier analytic arguments to derive estimates on
the moments of the local times (see Lemmas 3.7 and 3.10) and then apply a multiparameter version of Kolmogorov
continuity theorem (cf. [17]). The new ingredients in this paper are the “sectorial local nondeterministic” properties
of fractional Brownian sheets proved in [29] and the results on fractional Liouville sheets proved in Section 2.

We will also make use of the following lemmas. Among them, Lemma 3.2 is proved in [29] and Lemma 3.3 is
essentially due to Cuzick and DuPreez [9] (see also [19]).

Lemma 3.2. Let BH
0 = {BH

0 (t), t ∈ R
N+} be a fractional Brownian sheet in R with index H = (H1, . . . ,HN) ∈

(0,1)N . Then for every ε > 0, there is a constant c3,1 > 0 such that for all integers n ≥ 2, t1, . . . , tn ∈ [ε,∞)N ,

Var
(
BH

0

(
tn

) ∣∣ BH
0

(
tj

)
, j �= n

) ≥ c3,1

N∑
�=1

min
{∣∣tn� − t

j
�

∣∣2H�,0 ≤ j ≤ n − 1
}
, (3.5)

where t0
� = 0 for � = 1, . . . ,N .

Lemma 3.3. Let Z1, . . . ,Zn be mean zero Gaussian variables which are linearly independent, then for any nonneg-
ative Borel function g : R → R+,

∫
Rn

g(v1) exp

[
−1

2
Var

(
n∑

j=1

vjZj

)]
dv1 · · · dvn

= (2π)(n−1)/2

(detCov(Z1, . . . ,Zn))1/2

∫ ∞

−∞
g

(
v

σ1

)
e−v2/2 dv,

where σ 2
1 = Var(Z1|Z2, . . . ,Zn) is the conditional variance of Z1 given Z2, . . . ,Zn.

The following technical lemma is essential in establishing the moment estimates for the local times L(x,T ). Since
it may be of independent interest, we state it in a more general form than is needed in this paper.

Lemma 3.4. For any q ∈ [0,
∑N

�=1 H−1
� ), let τ ∈ {1, . . . ,N} be the integer such that

τ−1∑
�=1

1

H�

≤ q <

τ∑
�=1

1

H�

(3.6)
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with the convention that
∑0

�=1
1

H�
:= 0. Then there exists a positive constant δτ ≤ 1 depending on (H1, . . . ,HN) only

such that for every δ ∈ (0, δτ ), we can find τ real numbers p� ≥ 1 (1 ≤ � ≤ τ) satisfying the following properties:

τ∑
�=1

1

p�

= 1,
H�q

p�

< 1, ∀� = 1, . . . , τ, (3.7)

and

(1 − δ)

τ∑
�=1

H�q

p�

≤ Hτq + τ −
τ∑

�=1

Hτ

H�

. (3.8)

Furthermore, if we denote ατ := ∑τ
�=1

1
H�

− q > 0, then for any positive number ρ ∈ (0, ατ

2τ
), there exists an index

�0 ∈ {1, . . . , τ } such that

H�0q

p�0

+ 2H�0ρ < 1. (3.9)

Remark 3.5. It is important to note that the choice of the numbers p� ≥ 1 (1 ≤ � ≤ τ ) depends on δ. Moreover, it
follows from the proof below that, except for the case of τ = 2, we can always take δτ = 1.

Proof of Lemma 3.4. First we prove (3.7) and (3.8). If (3.6) holds for τ = 1, then for all 0 < δ < δ1 := 1, we can take
p1 = 1 and both (3.7) and (3.8) hold automatically.

We now prove the cases of τ ≥ 2 by induction. Our proof provides a general procedure for constructing a sequence
{p�,1 ≤ � ≤ τ } of real numbers p� ≥ 1 satisfying (3.7) and (3.8) (there are many possible choices).

Assume that (3.6) holds for τ = 2. We distinguish two cases: (i) H1 = H2 and (ii) H1 �= H2. In the first case, we
have H1

−1 ≤ q < 2H1
−1. We choose η > 0 such that

0 < η <
(2 − H1q)H1q

H1q − 1

(if H1q = 1, then η > 0 can be arbitrarily chosen) and define

1

p1
= 1

H1q + η
and

1

p2
= 1 − 1

p1
.

Then a few lines of calculation verify that p1 and p2 satisfy (3.7) and (3.8) for all δ ∈ (0,1).
To consider the case (ii) we may and will assume, without loss of generality, that H1 < H2. Since q < H−1

1 +H−1
2 ,

there exists δ2 > 0 such that for all δ ∈ (0, δ2),

H1H2q(H2 − H1 + δH1) < (H2 − H1)(H2 + H1 − δH1). (3.10)

For each fixed δ ∈ (0, δ2), we define

1

p1
= 1

1 − δ
· 1

H1q
− δ

1 − δ
· H2

H2 − H1
and

1

p2
= 1 − 1

p1
.

Then (3.7) follows from (3.6) and (3.10), and the equality sign in (3.8) holds.
Now we assume that the properties (3.7) and (3.8) hold for τ = n ∈ {2, . . . ,N − 1} and consider the case of

τ = n + 1. Then we have

n∑
�=2

1

H�

≤ q − 1

H1
<

n+1∑
�=2

1

H�

. (3.11)
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Let δ ∈ (0,1) be fixed and we choose δ′ ∈ (0, δ ∧ δn). Then it follows from (3.11) and the induction hypothesis that
there exist n constants p′

� ≥ 1 (� = 2, . . . , n + 1) such that

n+1∑
�=2

1

p′
�

= 1,
(q − 1/H1)H�

p′
�

< 1, ∀� = 2, . . . , n + 1, (3.12)

and

(
1 − δ′) n+1∑

�=2

H�(q − 1/H1)

p′
�

≤ Hn+1

(
q − 1

H1

)
+ n −

n+1∑
�=2

Hn+1

H�

. (3.13)

To define the constants p1, . . . , pn+1 with the desired properties, we choose a constant η > 0 small so that

H�q

p′
�

(
1 − 1

H1q
+ η

)
< 1, ∀� = 2, . . . , n + 1, (3.14)

and

(1 − δ)(1 + (H1qη)/(H1q − 1))

1 − δ′ ≤ 1. (3.15)

This is possible because of (3.12).
Now we define p� (1 ≤ � ≤ n + 1) by

1

p�

= 1

p′
�

(
1 − 1

H1q
+ η

)
, ∀� = 2, . . . , n + 1, (3.16)

and

1

p1
= 1

H1q
− η. (3.17)

It follows from this definition and (3.14) that

n+1∑
�=1

1

p�

= 1 and
H�q

p�

< 1, ∀� = 1,2, . . . , n + 1. (3.18)

That is, (3.7) holds for τ = n + 1. On the other hand, by some elementary calculation and (3.15) we can verify that

(1 − δ)

n+1∑
�=1

H�q

p�

≤ Hn+1q + (n + 1) −
n+1∑
�=1

Hn+1

H�

. (3.19)

That is, (3.8) also holds for τ = n + 1. Hence the proof of (3.7) and (3.8) is completed.
Finally we prove (3.9). By (3.7), for every � ∈ {1, . . . , τ }, ∃ε� ∈ (0,1) such that H�q

p�
= 1 − ε�. Hence,

τ∑
�=1

ε�

H�

=
τ∑

�=1

1

H�

−
τ∑

�=1

q

p�

=
τ∑

�=1

1

H�

− q = ατ > 0. (3.20)

Hence there exists �0 ∈ {1, . . . , τ } such that ε�0 ≥ H�0 ατ

τ
. Note that for every positive number ρ ∈ (0, ατ

2τ
), we have

2H�0ρ <
H�0 ατ

τ
≤ ε�0 . Therefore

H�0q

p�0

+ 2H�0ρ = 1 − ε�0 + 2H�0ρ < 1, (3.21)
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which completes the proof of (3.9). �

The following inequalities (3.22) and (3.23) with a = 0 are well known; see, e.g., [12]. The case a > 0 makes it
possible for us to apply Lemma 3.4 for proving Lemmas 3.7 and 3.10.

Lemma 3.6. For all integers n ≥ 1, positive numbers a, r , 0 < bj < 1 and an arbitrary s0 ∈ [0, a/2],
∫

a≤s1≤···≤sn≤a+r

n∏
j=1

(sj − sj−1)
−bj ds1 · · · dsn ≤ cn

3,2
(n!)(1/n)

∑n
j=1 bj −1

r
n−∑n

j=2 bj , (3.22)

where c3,2 > 0 is a constant depending on a and bj ’s only. In particular, if bj = α for all j = 1, . . . , n, then

∫
a≤s1≤···≤sn≤a+r

n∏
j=1

(sj − sj−1)
−α ds1 · · · dsn ≤ cn

3,2
(n!)α−1rn(1−(1−1/n)α). (3.23)

Proof. For simplicity, we only give the proof of (3.23) here. The proof of (3.22) is almost identical, and thus omitted.
By integrating the integral in (3.23) in the order of dsn,dsn−1, . . . ,ds1, and by using a change of variable in each step
to construct Beta functions, we derive

∫
a≤s1≤···≤sn≤a+r

n∏
j=1

(sj − sj−1)
−α ds1 · · · dsn

= 1

1 − α
· �(2 − α)[�(1 − α)]n−2

�(1 + (n − 1)(1 − α))

∫ a+r

a

(a + r − s1)
(n−1)(1−α)(s1 − s0)

−α ds1. (3.24)

The inequality (3.23) follows from (3.24) and the Stirling’s formula. �

In the rest of this section, we assume that d <
∑N

�=1
1

H�
and I ∈ A is a fixed interval. For convenience, we further

assume in the rest of this paper that

0 < H1 ≤ · · · ≤ HN < 1. (3.25)

We proceed to establish the moment estimates for the local times L(x,T ) which will be useful for proving the joint
continuity of local times.

Lemma 3.7. Let BH = {BH (t), t ∈ R
N+} be a fractional Brownian sheet in R

d with index H = (H1, . . . ,HN). If for
some integer τ ∈ {1, . . . ,N} we have

τ−1∑
�=1

1

H�

≤ d <

τ∑
�=1

1

H�

, (3.26)

then there exists a positive and finite constant c3,3 , depending on N,d , H and I only, such that for all intervals
T = [a, a + 〈r〉] ⊆ I with edge-length r ∈ (0,1), all x ∈ R

d and all integers n ≥ 1,

E
[
L(x,T )n

] ≤ cn
3,3

(n!)N−βτ rnβτ , (3.27)

where βτ = N − τ − Hτd + ∑τ
�=1 Hτ/H�.
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Remark 3.8. As we mentioned earlier, the local time L(x,•) may be extended as a random Borel measure supported
on the level set Γx = {t ∈ (0,∞)N : BH (t) = x}. Hence the moment estimate (3.27) contains a lot of information
about the fractal properties of Γx . By Theorem 5 of [3], the Hausdorff dimension of the level set is given by

dimHΓx = min

{
N − k − Hkd +

k∑
�=1

Hk

H�

,1 ≤ k ≤ N

}
, (3.28)

and the minimum is achieved by βτ = N − τ − Hτd + ∑τ
�=1 Hτ/H�, where τ satisfies (3.26). It is important to

note that (3.27) is sharp and can be applied to strengthen the Hausdorff dimension result (3.28). We believe that the
function ϕ1(r) = rβτ (log log 1/r)N−βτ is an exact Hausdorff measure function for Γx , and we will give a proof for the
lower bound of the ϕ1-Hausdorff measure of Γx in Section 4. However, since the upper bound part relies on different
methods, we will have to deal with it elsewhere.

Proof of Lemma 3.7. For later use, we will start with an arbitrary closed interval T = ∏N
�=1[a�, a� + r�] ⊆ I . It

follows from (3.3) and the fact that BH
1 , . . . ,BH

d are independent copies of BH
0 that for all integers n ≥ 1,

E
[
L(x,T )n

] ≤ (2π)−nd

∫
T n

d∏
k=1

{∫
Rn

exp

[
−1

2
Var

(
n∑

j=1

u
j
kB

H
0

(
tj

))]
dUk

}
dt, (3.29)

where Uk = (u1
k, . . . , u

n
k) ∈ R

n. Fix k = 1, . . . , d and denote the inner integral in (3.29) by Jk . Then by Lemma 2.2,
we have

Jk ≤
∫

Rn

exp

[
−1

2
κ−2
H

N∑
�=1

Var

(
n∑

j=1

u
j
kY�

(
tj

))]
dUk

≤
∫

Rn

exp

[
−1

2
κ−2
H

τ∑
�=1

Var

(
n∑

j=1

u
j
kY�

(
tj

))]
dUk. (3.30)

Since (3.26) holds, we apply Lemma 3.4 with δ = n−1 and q = d to obtain τ positive numbers p1, . . . , pτ ≥ 1
satisfying (3.7) and (3.8).

Applying the generalized Hölder inequality ([15], p. 140) to the last integral in (3.30), we derive that

Jk ≤
τ∏

�=1

{∫
Rn

exp

[
−p�

2
κ−2
H Var

(
n∑

j=1

u
j
kY�

(
tj

))]
dUk

}1/p�

= cn
3,4

τ∏
�=1

[
detCov

(
Y�

(
t1), . . . , Y�

(
tn

))]−1/(2p�), (3.31)

where the last equality follows from (2.12). Hence it follows from (3.29) and (3.31) that

E
[
L(x,T )n

] ≤ cn
3,5

∫
T n

τ∏
�=1

[
detCov

(
Y�

(
t1), . . . , Y�

(
tn

))]−d/(2p�) dt . (3.32)

To evaluate the integral in (3.32), we will first integrate [dt1
� · · · dtn� ] for � = 1, . . . , τ . To this end, we will make

use of the following fact about multivariate normal distributions: For any Gaussian random vector (Z1, . . . ,Zn),

detCov(Z1, . . . ,Zn) = Var(Z1)

n∏
j=2

Var(Zj |Z1, . . . ,Zj−1). (3.33)



738 A. Ayache, D. Wu and Y. Xiao

By the above fact and Lemma 2.1, we can derive that for every � ∈ {1, . . . , τ } and for all t1, . . . , tn ∈ T =∏N
�=1[a�, a� + r�] satisfying

a� ≤ t
π�(1)
� ≤ t

π�(2)
� ≤ · · · ≤ t

π�(n)
� ≤ a� + r� (3.34)

for some permutation π� of {1, . . . ,N}, we have

detCov
(
Y�

(
t1), . . . , Y�

(
tn

)) ≥ cn
3,6

n∏
j=1

(
t
π�(j)
� − t

π�(j−1)
�

)2H�, (3.35)

where t
π�(0)
� := ε (recall the decomposition (2.6)). We have chosen ε < 1

2 min{a�,1 ≤ � ≤ N} so that Lemma 3.6 is
applicable.

It follows from (3.34) and (3.35) that∫
[a�,a�+r�]n

[
detCov

(
Y�

(
t1), . . . , Y�

(
tn

))]−d/(2p�) dt1
� · · · dtn�

≤
∑
π�

cn

∫
a�≤t

π�(1)

� ≤···≤t
π�(n)

� ≤a�+r�

n∏
j=1

1

(t
π�(j)
� − t

π�(j−1)
� )H�d/p�

dt1
� · · · dtn�

≤ cn
3,7

(n!)H�d/p�r
n(1−(1−1/n)H�d/p�)

� . (3.36)

In the above, the last inequality follows from (3.23).
Combining (3.32), (3.36) and continuing to integrate [dt1

� · · ·dtn� ] for � = τ + 1, . . . ,N , we obtain

E
[
L(x,T )n

] ≤ cn
3,8

(n!)
∑τ

�=1 H�d/p�

τ∏
�=1

r
n(1−(1−1/n)H�d/p�)

� ·
N∏

�=τ+1

rn
� . (3.37)

Now we consider the special case when T = [a, a + 〈r〉], i.e. r1 = · · · = rN = r . Equations (3.37) and (3.8) with
δ = n−1 and q = d together yield

E
[
L(x,T )n

] ≤ cn
3,9

(n!)
∑τ

�=1 H�d/p�rn(N−(1−n−1)
∑τ

�=1 H�d/p�)

≤ cn
3,10

(n!)N−βτ rnβτ . (3.38)

This proves (3.27). �

Remark 3.9. In the proof of Lemma 3.7, if we apply the generalized Hölder inequality to the first integral in (3.30)
with N positive numbers p1, . . . , pN defined by

p� =
N∑

i=1

H�

Hi

, � = 1, . . . ,N,

then the above proof leading to (3.37) shows that the following inequality

E
[
L(x,T )n

] ≤ cn
3,11

(n!)NνλN(T )n(1−ν) (3.39)

holds for every interval T ⊂ I , where ν = d/(
∑N

�=1 H−1
� ) ∈ (0,1). We will apply this inequality in the proof of

Theorem 3.1.

Lemma 3.7 implies that for all n ≥ 1, L(x,T ) ∈ Ln(Rd) a.s. (see [13], p. 42). Our next lemma estimates the
moments of the increments of L(x,T ) in x.
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Lemma 3.10. Assume (3.26) holds for some τ ∈ {1, . . . ,N}. Then there exists a constant c3,12 , depending on N,d , H

and I only, such that for all hypercubes T = [a, a + 〈r〉] ⊆ I , x, y ∈ R
d with |x − y| ≤ 1, all even integers n ≥ 1 and

all γ ∈ (0,1 ∧ ατ

2τ
),

E
[(

L(x,T ) − L(y,T )
)n] ≤ cn

3,12
(n!)N−βτ +(1+Hτ )γ |x − y|nγ rn(βτ −Hτ γ ). (3.40)

Proof. Let γ ∈ (0,1 ∧ ατ

2τ
) be a constant. Note that by the elementary inequalities

∣∣eiu − 1
∣∣ ≤ 21−γ |u|γ for all u ∈ R (3.41)

and |u + v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ R
d ,

n∏
j=1

∣∣e−i〈uj ,x〉 − e−i〈uj ,y〉∣∣ ≤ 2(1−γ )n|x − y|nγ
∑′ n∏

j=1

∣∣uj
kj

∣∣γ , (3.42)

where the summation
∑′ is taken over all the sequences (k1, . . . , kn) ∈ {1, . . . , d}n.

It follows from (3.4) and (3.42) that for every even integer n ≥ 2,

E
[(

L(x,T ) − L(y,T )
)n]

≤ (2π)−nd2(1−γ )n|x − y|nγ

×
∑′ ∫

T n

∫
Rnd

n∏
m=1

∣∣um
km

∣∣γ E exp

(
−i

n∑
j=1

〈
uj ,BH

(
tj

)〉)
dudt

≤ cn
3,13

|x − y|nγ
∑′ ∫

T n

dt

×
n∏

m=1

{∫
Rnd

∣∣um
km

∣∣nγ exp

[
−1

2
Var

(
n∑

j=1

〈
uj ,BH

(
tj

)〉)]
du

}1/n

, (3.43)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, k2, . . . , kn) ∈ {1, . . . , d}n and n points t1, . . . , tn ∈ T such that t1

� , . . . , tn� are all
distinct for every 1 ≤ � ≤ N (the set of such points has full (nN)-dimensional Lebesgue measure). Let M = M(k, t, γ )

be defined by

M =
n∏

m=1

{∫
Rnd

∣∣um
km

∣∣nγ exp

[
−1

2
Var

(
n∑

j=1

〈
uj ,BH

(
tj

)〉)]
du

}1/n

. (3.44)

Note that BH
� (1 ≤ � ≤ N ) are independent copies of BH

0 . By Lemma 3.2, the random variables BH
� (tj ) (1 ≤ � ≤

N,1 ≤ j ≤ n) are linearly independent. Hence Lemma 3.3 gives

∫
Rnd

∣∣um
km

∣∣nγ exp

[
−1

2
Var

(
n∑

j=1

〈
uj ,BH

(
tj

)〉)]
du

= (2π)(nd−1)/2

[detCov(BH
0 (t1), . . . ,BH

0 (tn))]d/2

∫
R

(
v

σm

)nγ

e−v2/2 dv

≤ cn
3,14

(n!)γ
[detCov(BH

0 (t1), . . . ,BH
0 (tn))]d/2

1

σ
nγ
m

, (3.45)
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where σ 2
m is the conditional variance of BH

km
(tm) given BH

i (tj ) (i �= km or i = km but j �= m), and the last inequality
follows from Stirling’s formula.

Combining (3.44) and (3.45) we obtain

M ≤ cn
3,15

(n!)γ
[detCov(BH

0 (t1), . . . ,BH
0 (tn))]d/2

n∏
m=1

1

σ
γ
m

. (3.46)

For δ = 1/n and q = d , let p� (� = 1, . . . , τ ) be the constants as in Lemma 3.4. Observe that, since γ ∈ (0, ατ

2τ
),

there exists an �0 ∈ {1, . . . , τ } such that

H�0d

p�0

+ 2H�0γ < 1. (3.47)

It follows from (3.46) and Lemma 2.2 that

M ≤ cn
3,16

(n!)γ
τ∏

�=1

1

[detCov(Y�(t1), . . . , Y�(tn))]d/(2p�)

n∏
m=1

1

σ
γ
m

. (3.48)

The second product in (3.48) will be treated as a “perturbation” factor and will be shown to be small when inte-
grated. For this purpose, we use again the independence of the coordinate processes of BH and Lemma 3.2 to derive

σ 2
m = Var

(
BH

km

(
tm

)∣∣BH
km

(
tj

)
, j �= m

)

≥ c2
3,17

N∑
�=1

min
{∣∣tm� − t

j
�

∣∣2H� : j �= m
}
. (3.49)

For any n points t1, . . . , tn ∈ T , let π1, . . . , πN be N permutations of {1,2, . . . , n} such that for every 1 ≤ � ≤ N ,

t
π�(1)
� ≤ t

π�(2)
� ≤ · · · ≤ t

π�(n)
� . (3.50)

Then, by (3.49) and (3.50) we have

n∏
m=1

1

σ
γ
m

≤
n∏

m=1

1

c3,18

∑N
�=1[(tπ�(m)

� − t
π�(m−1)
� ) ∧ (t

π�(m+1)
� − t

π�(m)
� )]H�γ

≤
n∏

m=1

1

c3,18[(t
π�0 (m)

�0
− t

π�0 (m−1)

�0
) ∧ (t

π�0 (m+1)

�0
− t

π�0 (m)

�0
)]H�0 γ

≤ c−n
3,18

n∏
m=1

1

(t
π�0 (m)

�0
− t

π�0 (m−1)

�0
)
qm
�0

H�0 γ
, (3.51)

for some (q1
�0

, . . . , qn
�0

) ∈ {0,1,2}n satisfying
∑n

m=1 qm
�0

= n and q1
�0

= 0. That is, we will only need to consider the
contribution of σm in the �0th direction.

So far we have obtained all the ingredients for bounding the integral in (3.43) and the rest of the proof is quite
similar to the proof of Lemma 3.7. It follows from (3.48) and (3.51) that

∫
T n

M(k, t, γ )dt ≤ cn
3,19

(n!)γ
∫

T n

τ∏
�=1

1

[detCov(Y�(t1), . . . , Y�(tn))]d/(2p�)

×
n∏

m=1

1

(t
π�0 (m)

�0
− t

π�0 (m−1)

�0
)
qm
�0

H�0γ
dt . (3.52)
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To evaluate the above integral, we will first integrate [dt1
� · · ·dtn� ] for every � = 1, . . . , τ . Let us first consider � = �0.

By using Lemma 2.1, (3.33), (3.22) and, thanks to (3.47) and the nature of qm
�0

, we see that

∫
[a�0 ,a�0 +r�0 ]n

1

[detCov(Y�0(t
1), . . . , Y�0(t

n))]d/(2p�0 )
×

n∏
m=1

1

(t
π�0 (m)

�0
− t

π�0 (m−1)

�0
)
qm
�0

H�0γ
dt1

�0
· · ·dtn�0

(3.53)

≤
∑
π�0

cn
3,20

∫
a�0 ≤t

π�0
(1)

�0
≤···≤t

π�0
(n)

�0
≤a�0 +r�0

×
n∏

m=1

(
t
π�0 (m)

�0
− t

π�0 (m−1)

�0

)−(H�0 d/p�0+qm
�0

H�0 γ )
dt1

�0
· · ·dtn�0

≤ cn
3,21

(n!)H�0 d/p�0 +H�0 γ r
n[1−(1−1/n)H�0 d/p�0 −H�0 γ ]
�0

. (3.54)

In the above, t
π�0 (0)

�0
= ε as in the proof of Lemma 3.7 and the last inequality follows from (3.22).

Meanwhile, recall that, for every � �= �0 (� ∈ {1, . . . , τ }), we have shown in (3.36) that∫
[a�,a�+r�]n

[
detCov

(
Y�

(
t1), . . . , Y�

(
tn

))]−d/(2p�) dt1
� · · ·dtn�

≤ cn
3,7

(n!)H�d/p�r
n(1−(1−1/n)H�d/p�)

� . (3.55)

Finally, we proceed to integrate [dt1
� · · ·dtn� ] for � = τ + 1, . . . ,N . It follows from the above that∫

T n

M(k, t, γ )dt ≤ cn
3,22

(n!)
∑τ

�=1 H�d/p�+H�0 γ+γ

× r
n[1−(1−1/n)H�0 d/p�0−H�0 γ ]
�0

×
τ∏

��=�0

r
n[1−(1−1/n)H�d/p�]
�

N∏
�=τ+1

rn
� . (3.56)

In particular, if r1 = · · · = rN = r ≤ 1, we combine (3.43) and (3.56) to obtain

E
[(

L(x,T ) − L(y,T )
)n]

≤ cn
3,23

|x − y|nγ (n!)
∑τ

�=1 H�d/p�+H�0 γ+γ · rn(N−(1−1/n)
∑τ

�=1 H�d/p�−H�0γ )

≤ cn
3,24

(n!)N−βτ +(1+Hτ )γ |x − y|nγ rn(βτ −Hτ γ ). (3.57)

The last inequality follows from the fact that H�0 ≤ Hτ and Lemma 3.4. This finishes the proof of Lemma 3.10. �

Now we are ready to prove Theorem 3.1. It is similar to the proof of Theorem 4.1 in [33] and we include it for the
sake of completeness.

Proof of Theorem 3.1. Let I ∈ A be fixed. For simplicity, we will assume I = [η,1]N for some η > 0, say, η = 2ε

(cf. (2.6)). It follows from Lemma 3.10 and the multiparameter version of Kolmogorov’s continuity theorem (cf. [17])
that, for every T ∈ A such that T ⊂ I , BH has almost surely a local time L(x,T ) that is continuous for all x ∈ R

d .
To prove the joint continuity, observe that for all x, y ∈ R

d and s, t ∈ I , we have

E
[(

L
(
x, [η, s]) − L

(
y, [η, t]))n] ≤ 2n−1{

E
[(

L
(
x, [η, s]) − L

(
x, [η, t]))n]

+ E
[(

L
(
x, [η, t]) − L

(
y, [η, t]))n]}

. (3.58)

Since the difference L(x, [η, s]) − L(x, [η, t]) can be written as a sum of a finite number (only depends on N ) of
terms of the form L(x,Tj ), where each Tj ∈A is a closed subinterval of I with at least one edge length ≤ |s − t |, we
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can use Lemma 3.7 and Remark 3.9, to bound the first term in (3.58). On the other hand, the second term in (3.58)
can be dealt with using Lemma 3.10 as above. Consequently, for some γ ∈ (0,1) small, the right-hand side of (3.58)
is bounded by cn

3,25
(|x − y| + |s − t |)nγ , where n ≥ 2 is an arbitrary even integer. Therefore the joint continuity of

the local times follows again from the multiparameter version of Kolmogorov’s continuity theorem. This finishes the
proof of Theorem 3.1. �

We end this section with the following two technical lemmas, which will be useful in the next section.

Lemma 3.11. Under the conditions of Lemma 3.7, there exist positive and finite constants c3,26 and c3,27 , depending
on N,d , H and I only, such that the following hold:

(i) For all a ∈ I and hypercubes T = [a, a + 〈r〉] ⊆ I with edge length r ∈ (0,1), x ∈ R
d and all integers n ≥ 1,

E
[
L

(
x + BH (a), T

)n] ≤ cn
3,26

(n!)N−βτ rnβτ , (3.59)

where βτ = N − τ − Hτd + ∑τ
�=1 Hτ/H�.

(ii) For all a ∈ I and hypercubes T = [a, a + 〈r〉] ⊆ I , x, y ∈ R
d with |x − y| ≤ 1, all even integers n ≥ 1 and all

γ ∈ (0,1 ∧ ατ

2τ
),

E
[(

L
(
x + BH (a), T

) − L
(
y + BH (a), T

))n] ≤ cn
3,27

(n!)N−βτ +(1+Hτ )γ |x − y|nγ rn(βτ −Hτ γ ). (3.60)

Proof. For each fixed a ∈ I , we define the Gaussian random field Y = {Y(t), t ∈ R
N+} with values in R

d by Y(t) =
BH (t) − BH (a). It follows from (3.1) that if BH has a local time L(x,S) on any Borel set S, then Y also has a local
time L̃(x, S) on S and, moreover, L(x + BH (a), S) = L̃(x, S). With little modification, the proofs of Lemmas 3.7
and 3.10 go through for the Gaussian field Y . Hence we derive that both (3.59) and (3.60) hold. �

The following lemma is a consequence of Lemma 3.11 and Chebyshev’s inequality. The proof is standard, hence
omitted.

Lemma 3.12. Under the conditions of Lemma 3.7, there exist positive constants c3,28 , c3,29 , b1 and b2 > 0 (depending
on N , d , I and H only), such that for all a ∈ I , T = [a, a + 〈r〉] with r ∈ (0,1), x ∈ R

d and u > 1 large enough, we
have

P
{
L

(
x + BH (a), T

) ≥ c3,28r
βτ uN−βτ

} ≤ exp(−b1u) (3.61)

and for x, y ∈ R
d with |x − y| ≤ 1 and γ ∈ (0,1 ∧ ατ

2τ
),

P
{∣∣L(

x + BH (a), T
) − L

(
y + BH (a), T

)∣∣
≥ c3,29 |x − y|γ rβτ −Hτ γ uN−βτ +(1+Hτ )γ

} ≤ exp(−b2u). (3.62)

4. Hölder conditions for the local times

In this section we investigate the local and uniform asymptotic behavior of the local time L(x,T ) at x and the
maximum local time L∗(T ) = maxx∈Rd L(x,T ) as diam(T ) → 0. The results are then applied to study the sample
path properties of BH .

4.1. Hölder conditions for L(x,•)

By applying Lemma 3.12 (more precisely, (3.61) with a = 0) and the Borel–Cantelli lemma, one can easily derive the
following law of the iterated logarithm for the local time L(x, ·): If (3.26) holds for some τ ∈ {1, . . . ,N}, then there
exists a positive constant c4,1 such that for every x ∈ R

d and t ∈ (0,∞)N ,

lim sup
r→0

L(x,U(t, r))

ϕ1(r)
≤ c4,1 , (4.1)
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where U(t, r) is the open ball centered at t with radius r and ϕ1(r) = rβτ (log log(1/r))N−βτ . It would be interesting
to prove the lower bound in (4.1). For such a result for the local times of a one-parameter fractional Brownian motion,
see [23].

It follows from Fubini’s theorem that, with probability one, (4.1) holds for λN -almost all t ∈ (0,∞)N . Now we
prove a stronger version of this result, which is useful in determining the exact Hausdorff measure of the level set.

Theorem 4.1. Assume that d <
∑N

�=1
1

H�
. Let τ ∈ {1, . . . ,N} be the integer such that (3.26) holds and let I ∈ A

be a fixed interval. For any fixed x ∈ R
d , let L(x, ·) be the local time of BH (t) at x which is a random measure

supported on the level set (BH )−1(x). Then there exists a positive and finite constant c4,2 independent of x such that
with probability 1,

lim sup
r→0

L(x,U(t, r))

ϕ1(r)
≤ c4,2 (4.2)

holds for L(x, ·)-almost all t ∈ I , where ϕ1(r) = rβτ (log log(1/r))N−βτ .

Proof. The method of our proof is similar to that of Proposition 4.1 in [30]. For every integer k > 0, we consider the
random measure Lk(x,•) on the Borel subsets C of I defined by

Lk(x,C) =
∫

C

(2πk)d/2 exp

(
−k|BH (t) − x|2

2

)
dt

=
∫

C

∫
Rd

exp

(
−|ξ |2

2k
+ i

〈
ξ,BH (t) − x

〉)
dξ dt. (4.3)

Then, by the occupation density formula (3.1) and the continuity of the function y �→ L(y,C), one can verify that
almost surely Lk(x,C) → L(x,C) as k → ∞ for every Borel set C ⊂ I .

For every integer m ≥ 1, denote fm(t) = L(x,U(t,2−m)). From the proof of Theorem 3.1 we can see that almost
surely the functions fm(t) are continuous and bounded. Hence we have almost surely, for all integers m,n ≥ 1,∫

I

[
fm(t)

]n
L(x,dt) = lim

k→∞

∫
I

[
fm(t)

]n
Lk(x,dt). (4.4)

It follows from (4.3), (4.4) and the proof of Proposition 3.1 of [25] that for every positive integer n ≥ 1,

E

∫
I

[
fm(t)

]n
L(x,dt) =

(
1

2π

)(n+1)d ∫
I

∫
U(t,2−m)n

∫
R(n+1)d

exp

(
−i

n+1∑
j=1

〈
x,uj

〉)

× E exp

(
i
n+1∑
j=1

〈
uj ,BH

(
sj

)〉)
duds, (4.5)

where u = (u1, . . . , un+1) ∈ R
(n+1)d and s = (t, s1, . . . , sn). Similar to the proof of (3.27) we have that the right-hand

side of Eq. (4.5) is at most

cn
4,3

∫
I

∫
U(t,2−m)n

ds

[detCov(BH
0 (t),BH

0 (s1), . . . ,BH
0 (sn))]d/2

≤ cn
4,4

(n!)N−βτ 2−mnβτ , (4.6)

where c4,4 is a positive finite constant depending on N,d,H, and I only.
Let γ > 0 be a constant whose value will be determined later. We consider the random set

Im(ω) = {
t ∈ I : fm(t) ≥ γ ϕ1

(
2−m

)}
.
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Denote by μω the restriction of the random measure L(x, ·) on I , that is, μω(E) = L(x,E ∩ I ) for every Borel set
E ⊂ R

N+ . Now we take n = �logm�, where �y� denotes the integer part of y. Then by applying (4.6) and Stirling’s
formula, we have

Eμω(Im) ≤ E
∫
I
[fm(t)]nL(x,dt)

[γ ϕ1(2−m)]n

≤ cn
4,4

(n!)N−βτ 2−mnβτ

γ n2−mnβτ (logm)n(N−βτ )
≤ m−2, (4.7)

provided γ > 0 is chosen large enough, say, γ ≥ c4,4e2 := c4,2 . This implies that

E

( ∞∑
m=1

μω(Im)

)
< ∞.

Therefore, with probability 1 for μω almost all t ∈ I , we have

lim sup
m→∞

L(x,U(t,2−m))

ϕ1(2−m)
≤ c4,2 . (4.8)

Finally, for any r > 0 small enough, there exists an integer m such that 2−m ≤ r < 2−m+1 and (4.8) is applicable.
Since ϕ1(r) is increasing near r = 0, (4.2) follows from (4.8) and a monotonicity argument. �

Theorem 4.2. Assume that
∑N

�=1
1

H�
> d and I ∈ A. Then there exists a positive constant c4,5 such that for every

x ∈ R
d ,

ϕ1-m
((

BH
)−1

(x) ∩ I
) ≥ c4,5L(x, I ) a.s., (4.9)

where ϕ1-m denotes the ϕ1-Hausdorff measure.

Proof. As in the proof of Theorem 4.1 in [30], (4.9) follows from Theorem 4.1 and the upper density theorem of [26].
We omit the details. �

4.2. Hölder conditions for L∗(•)

The following theorem establishes sharp Hölder conditions for the maximum local times L∗(T ) = supx∈Rd L(x,T )

of fractional Brownian sheets as diam(T ) → 0. Similar results for Brownian motion and some other random fields
have been obtained by several authors. See, for example, [12,16,20,30].

Theorem 4.3. Let BH = {BH (t), t ∈ R
N+} be a fractional Brownian sheet in R

d with index H = (H1, . . . ,HN). We
assume that there exists τ ∈ {1, . . . ,N} such that H1 = · · · = Hτ and H1d < τ . Then, there exist positive constants
c4,6 and c4,7 such that for every s ∈ I ,

lim sup
r→0

L∗([s − 〈r〉, s + 〈r〉])
rN−H1d(log log r−1)H1d

≤ c4,6 a.s. (4.10)

and

lim sup
r→0

sup
s∈I

L∗([s − 〈r〉, s + 〈r〉])
rN−H1d(log r−1)H1d

≤ c4,7 a.s. (4.11)

For proving Theorem 4.3, we will make use of the following lemma, which is a consequence of Lemma 2.1 in [28]
and Lemma 8 in [3].
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Lemma 4.4. Let BH = {BH (t), t ∈ R
N+} be a fractional Brownian sheet in R

d with index H = (H1, . . . ,HN) and let
I ∈ A be fixed. Then there exist positive constants c4,8 and c4,9 such that for all s ∈ I , T = [s, s + 〈h〉] with h ∈ (0,1)

and all u > c4,8h
H1 , we have

P

{
sup
t∈T

∣∣BH (t) − BH (s)
∣∣ ≥ u

}
≤ exp

(
− u2

c4,9h
2H1

)
. (4.12)

Proof of Theorem 4.3. As in [12,20,30], the proof of Theorem 4.3 is based on Lemma 3.12 and a chaining argument.
Hence we will only sketch a proof of (4.10), indicating the necessary modifications.

Let g(r) = rN−H1d(log log r−1)H1d for r > 0 small enough. In order to prove (4.10) it is sufficient to show that for
every s ∈ I ,

lim sup
n→∞

L∗(Cn)

g(2−n)
≤ c4,10 a.s., (4.13)

where Cn = [s, s + 〈2−n〉] for n ≥ 1.
We divide the proof of (4.13) into four steps.
(a) Pick u = 2−nH1

√
2c4,9 logn in Lemma 4.4, we have

P

{
sup
t∈Cn

∣∣BH (t) − BH (s)
∣∣ ≥ 2−nH1

√
2c4,9 logn

}
≤ exp(−2 logn) = n−2. (4.14)

Hence the Borel–Cantelli lemma implies that a.s. ∃n1 = n1(ω) such that

sup
t∈Cn

∣∣BH (t) − BH (s)
∣∣ ≤ 2−nH1

√
2c4,9 logn, for all n ≥ n1. (4.15)

(b) Let θn = 2−nH1(log log 2n)−(1+H1) for all n ≥ 1, and define

Gn = {
x ∈ R

d : |x| ≤ 2−nH1
√

2c4,9 logn with x = θnp for some p ∈ Z
d
}
.

Then, at least when n is large enough, the cardinality of Gn satisfies

�Gn ≤ c4,11(logn)(2+H1)d . (4.16)

It follows from (3.61) that for any constant c > 0 and integer n large enough,

P

{
max
x∈Gn

L
(
x + BH (s),Cn

) ≥ cH1dg
(
2−n

)} ≤ c4,12(logn)(2+H1)dn−cb1 . (4.17)

(Note that βτ = N − H1d under the assumptions of Theorem 4.3.) By choosing c = 2b−1
1 in (4.17) we see that the

right-hand side of (4.17) is summable. Hence, the Borel–Cantelli lemma implies that almost surely ∃n2 = n2(ω) such
that

max
x∈Gn

L
(
x + BH (s),Cn

) ≤ (
2b−1

1

)H1dg
(
2−n

)
, for all n ≥ n2. (4.18)

(c) Given integers n, k ≥ 1 and x ∈ Gn, we define

F(n, k, x) =
{

y ∈ R
d : y = x + θn

k∑
j=1

εj 2−j , εj ∈ {0,1}d for 1 ≤ j ≤ k

}
.

A pair of points y1, y2 ∈ F(n, k, x) is said to be linked if y2 − y1 = θnε2−k for some ε ∈ {0,1}d . We choose γ > 0
small such that (3.62) in Lemma 3.12 holds, and then choose δ > 0 such that δ(H1d + (1 + H1)γ ) < γ . Consider the
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event Bn defined by

Bn =
⋃

x∈Gn

∞⋃
k=1

⋃
y1,y2

{∣∣L(
y1 + BH (s),Cn

) − L
(
y2 + BH (s),Cn

)∣∣
≥ 2−n(N−H1d−H1γ )|y1 − y2|γ

(
c2δk logn

)H1d+(1+H1)γ
}
, (4.19)

where
⋃

y1,y2
signifies the union over all the linked pairs y1, y2, and where c > 0 is a constant whose value will be

chosen later.
Note that Hτ = H1, by (3.62) we derive that for n large enough,

P{Bn} ≤ c4,13(logn)(2+H1)d
∞∑

k=1

2(d+1)k exp
(−cb22δk logn

)

≤ c4,14(logn)(2+H1)dn−cb2 . (4.20)

In the above the last inequality follows from the fact

∞∑
k=1

2(d+1)k exp
(−x2δk

) ≤ e−x, ∀x > 0 large enough.

Hence, by choosing c = 2b−1
2 in (4.19), the Borel–Cantelli lemma implies that almost surely, Bn occurs only finitely

many times.
(d) Fix an integer n together with some y ∈ R

d that satisfies |y| ≤ 2−nH1
√

2c4,9 logn, we can represent y in the
form y = limk→∞ yk with

yk = x + θn

k∑
j=1

εj 2−j , (4.21)

where y0 = x ∈ Gn and εj ∈ {0,1}d for j = 1, . . . , k.
Since the local time L is jointly continuous, by expansion (4.21) and the triangular inequality, we see that on the

event Bc
n,∣∣L(

y + BH (s),Cn

) − L
(
x + BH (s),Cn

)∣∣
≤

∞∑
k=1

∣∣L(
yk + BH (s),Cn

) − L
(
yk−1 + BH (s),Cn

)∣∣

≤
∞∑

k=1

2−n(N−H1d−H1γ )|yk − yk−1|γ
(
2b−1

2 2δk logn
)H1d+(1+H1)γ

≤ c4,15g
(
2−n

)
. (4.22)

We combine (4.18) and (4.22) to get that for n large enough,

sup
|x|≤2−nH1

√
2c4,9 logn

L
(
x + BH (s),Cn

) ≤ c4,16g
(
2−n

)
. (4.23)

That is

sup
|x−BH (s)|≤2−nH1

√
2c4,9 logn

L(x,Cn) ≤ c4,16g
(
2−n

)
. (4.24)
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Since L∗(Cn) = sup{L(x,Cn): x ∈ BH (Cn)}, (4.13) follows from (4.24). This proves Theorem 4.3. �

The Hölder conditions for the local times of fractional Brownian sheets are closely related to the irregularity of the
sample path of BH (t). To end this paper, we apply Theorem 4.3 to derive results about the degree of oscillation of the
sample paths of BH (t), which greatly improves Theorem 3 of [3].

Theorem 4.5. Let BH = {BH (t), t ∈ R
N+} be an (N,d)-fractional Brownian sheet and let I ∈ A be a fixed interval.

Then there exists a constant c4,17 > 0 such that for every s ∈ I ,

lim inf
r→0

sup
t∈U(s,r)

|BH (t) − BH (s)|
rH1(log log r−1)−H1

≥ c4,17 a.s. (4.25)

and

lim inf
r→0

inf
t∈I

sup
t∈U(s,r)

|BH (t) − BH (s)|
rH1(log r−1)−H1

≥ c4,17 a.s. (4.26)

In particular, the sample function BH (t) is almost surely nowhere differentiable in (0,∞)N .

Proof. It is sufficient to prove the results for d = 1. Note that H1 < 1, Theorem 4.3 is always applicable for d = 1
with τ = 1. For any interval Q ∈ A, we have

λN(Q) =
∫

BH
0 (Q)

L(x,Q)dx ≤ L∗(Q) × sup
u,v∈Q

∣∣BH
0 (u) − BH

0 (v)
∣∣. (4.27)

By taking Q = U(s, r) we see that (4.25) follows immediately from (4.27) and (4.10). Similarly, (4.26) follows from
(4.27) and (4.11). �
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