
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2008, Vol. 44, No. 5, 915–945
DOI: 10.1214/07-AIHP129
© Association des Publications de l’Institut Henri Poincaré, 2008

Limit shapes of Gibbs distributions on the set of integer
partitions: The expansive case

Michael M. Erlihson and Boris L. Granovsky

Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
E-mail: maerlich@tx.technion.ac.il; mar18aa@techunix.technion.ac.il

Received 20 September 2006; revised 19 April 2007; accepted 28 May 2007

Abstract. We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating
functions with expansive parameters, ak ∼ Ckp−1, k → ∞, p > 0, where C is a positive constant. The measures considered
are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation
processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled
partition chosen randomly according to the above measure, from its limit shape. We demonstrate that when the component size
passes beyond the threshold value, the independence of numbers of components transforms into their conditional independence
(given their masses). Among other things, the paper also discusses, in a general setting, the interplay between limit shape, threshold
and gelation.

Résumé. Nous trouvons des formes limites pour une famille de mesures multiplicatives sur l’ensemble des partitions, induites par
des fonctions génératrices exponentielles avec des paramètres d’expansion ak ∼ Ckp−1, k → ∞, p > 0, où C est une constante
positive. Les mesures considérées sont associées aux modèles Maxwell–Boltzmann généralisés de la mécanique statistique, des pro-
cessus de coagulation–fragmentation réversibles et des structures combinatoires connues sous le nom d’assemblées. Nous prouvons
un théorème de limite centrale pour les fluctuations d’une partition qui est mise à l’echelle convenablement et choisie aléatoire-
ment selon la mesure ci-dessus. Nous démontrons que, quand la taille des composantes dépasse la valeur seuil, l’indépendance des
nombres de composants se transforme en leur indépendance conditionnelle. Entre autres, cet article traite, dans un cadre général,
des relations entre la forme limite, le seuil et la congélation.
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1. Introduction and summary

Given a sequence of probability measures {μN,N ≥ 1} on the sets of unordered partitions of integers N ≥ 1, the
limit shape, provided it exists, defines the limiting structure, as N → ∞ of properly scaled partitions chosen ran-
domly according to the above sequence of measures. The study of the asymptotic structure of random partitions
is stimulated by applications to combinatorics, statistical mechanics, stochastic processes, etc. Our paper focuses
on limit shapes for a class of measures associated with the generalized Maxwell–Boltzmann models in statisti-
cal mechanics, reversible coagulation–fragmentation processes and combinatorial structures called assemblies. In
the course of the asymptotic analysis of the above class of measures μN , we reveal some interesting phenom-
enon that, as we expect, will be also seen in models related to other multiplicative measures on the set of parti-
tions.
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We describe now the context of the present paper. In Section 2, we deal with an arbitrary probability measure
on the set of partitions. We study here the linkage between the following three important concepts in statistical
mechanics and combinatorics: threshold, gelation and limit shape. As a by-product of this study, we establish the
nonexistence of limit shapes for some known models. Section 3 gives a definition of a multiplicative measure and
outlines the four main fields of applications of these measures. Section 4 contains the statements of our main re-
sults that are related to multiplicative measures induced by exponential generating functions with expansive para-
meters, ak ∼ Ckp−1, k → ∞, p > 0, where C is a positive constant. Namely, Theorems 4.1 and 4.3 determine the
asymptotics of component counts of sizes that are of order N1/(p+1) (=the threshold value), while Theorem 4.6 ac-
complishes the same for components of small sizes (=o(N1/(p+1))). In particular, in Theorem 4.3 we obtain limit
shapes of Young diagrams under the measures considered. As a corollary of the above three theorems, we reveal
that when the component size passes beyond the above threshold value, the asymptotic independence of the com-
ponent counts transforms into their conditional independence, specified in Theorem 4.1. Section 5 provides proofs
that are based on a far reaching generalization of Khitchine’s probabilistic method. In the last Section 6, we discuss
the limit shapes for our models versus the ones obtained by Vershik for the generalized models of Bose–Einstein and
Fermi–Dirac. The two latter models correspond to a class of multiplicative measures induced by Euler type generating
functions.

2. The interplay between limit shape, threshold and gelation

We shall work with the set ΩN = {η} of all unordered partitions η = (n1, . . . , nN):
∑N

k=1 knk = N , of an integer N .
Here nk = nk(η) is the number of summands (=components) equal to k in a partition η ∈ ΩN . Each η ∈ ΩN can be
depicted by its Young diagram (see, e.g. [1]). The boundary of a Young diagram (shortly, Young diagram) of η ∈ ΩN

is a nonincreasing step function ν = ν(•;η) which is given by

ν(u) = ν(u;η) =
N∑

k=u

nk(η), u ≥ 0, η ∈ ΩN, (2.1)

where we set n0(η) ≡ 0, η ∈ ΩN . By the above definition (2.1), for any integer u, the decrement ν(u − 0) − ν(u + 0)

equals the number (possibly 0) of components of size u, ν(0) gives the total number of components, whereas the
largest u with ν(u) > 0 equals the size of the largest component. Obviously,

∫∞
0 ν(u)du = N , η ∈ ΩN . Let now

rN > 0 and for a given partition η ∈ ΩN define the scaled Young diagram ν̃ = ν̃(•;η) with the scaling (scaling
factor) rN :

ν̃(u) = rN

N
ν(rNu), u ≥ 0, η ∈ ΩN. (2.2)

When a partition η ∈ ΩN is chosen randomly according to a given probability measure on ΩN , it is natural to
ask if there exists a scaling rN = o(N), such that the random curve ν̃(u) converges, as N → ∞, to some nonrandom
curve. Such a curve, if it exists, is called the limit shape (of a random Young diagram). To give a formal definition, we
will need some more notations. Let L = {l(·)} be the space of nonnegative nonincreasing functions l on [0,∞) with∫∞

0 l(u)du = 1. Clearly, ν̃ ∈ L, for all η ∈ ΩN . We supply L with the topology of uniform convergence on compact
sets in [0,∞). For a given rN denote by ρrN the mapping η → ν̃ of ΩN onto L. Given a probability measure μN on
ΩN , the mapping ρrN induces the measure ρrN μN on L, (ρrN μN)(l) := μN(ρ−1

rN
l), l ∈ L.

In this section, we refer to μN as an arbitrary probability measure on ΩN . The definition of a limit shape given
below follows the one by Vershik in [44].

Definition 2.1. A continuous curve l ∈ L is called the limit shape of a random Young diagram w.r.t. a sequence
of measures {μN,N ≥ 1} on {ΩN,N ≥ 1} (the limit shape of μN ) under the scaling rN : rN = o(N),N → ∞ if the
sequence of measures {ρrN μN,N ≥ 1} on L weakly converges, as N → ∞, to the delta measure which is concentrated
on the curve l.
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Clearly, the weak convergence of the sequence of measures {ρrN μN,N ≥ 1} in Definition 2.1 is equivalent to
convergence in probability of ν̃(u), u ≥ 0 w.r.t. the sequence {μN,N ≥ 1}. Namely, the continuous function l(·) ∈ L
is the limit shape of the measure μN under a scaling rN if for any 0 < a < b < ∞ and ε > 0,

lim
N→∞μN

{
η ∈ ΩN : sup

u∈[a,b]
∣∣̃ν(u) − l(u)

∣∣< ε
}

= 1. (2.3)

Equation (2.3) expresses the law of large numbers for the random process ν̃(u), u ≥ 0.
Note, that if a measure μN has a limit shape l ∈ L under a scaling rN , then for any c > 0 the function cl(cu),

u ≥ 0, is a limit shape of the same measure μN under the scaling crN .
We will say that a measure has no limit shape if there is no scaling rN = o(N), that provides (2.3) for some l ∈ L.

A sketch of the history of limit shapes

The evolution of shapes of random ensembles of particles, as the number of particles goes to infinity, was studied for
a long time in a variety of applied fields: statistical mechanics (the Wulf construction for the formation of crystals,
see [38,39]), stochastic processes on lattices (the Richardson model, see [10]), biology (growth of colonies), etc.
A special study was concentrated on limit shapes for random structures on the set of partitions, in view of applications
to statistical mechanics, combinatorics, representation theory, and additive number systems. In 1977, two independent
teams of researchers, Vershik and Kerov [42] and Shepp and Logan [29], derived the limit shape of a Young diagram
w.r.t. the Plancherel measure. Following this seminal result, Pittel [35] found the limit shape of Young tableaux
w.r.t. a uniform measure. Since the number of Young tableaux corresponding to a given partition (Young diagram)
is known to be equal to the degree of the irreducible representation associated with the partition, the above uniform
measure, as well as the Plancherel measure, is related to the hook formula. It should be mentioned that the research
in this direction revealed also a deep linkage to the random matrix theory, which is now a rapidly growing subject
(see [32]). Parallel to this line of research, Vershik [44] developed a general theory of limit shapes for a class of
measures he called multiplicative and which are discussed in Section 3. These measures encompass a wide scope
of models from statistical mechanics and combinatorics, but do not include the measures associated with the hook
formula. The results on limit shapes of multiplicative measures obtained by Vershik and Yakubovich [43–45,48,50]
during the last decade concern measures induced by Euler type generating functions. (We refer to some details of this
research in the course of the present paper.) Extending these results, Romik [36] derived limit shapes for multiplicative
measures corresponding to some restricted integer partitions. Note that the limit shape of the uniform measure on the
set of partitions (which is a multiplicative measure) was firstly obtained via a heuristic argument, by Temperley [41].
A comprehensive study of this case was done by Pittel in [34].

In contrast, the multiplicative measures μN considered in our paper are associated with exponential generating
function.

This being said, it should be stressed that the results on limit shapes of multiplicative measures were stimulated
by the remarkable papers of Erdös, Turan and Szalay as well as by other researchers, on statistics related to integer
partitions (for more details see [16,34,35,44]). In the course of research on limit shapes of multiplicative measures,
links of the subject to various fields of mathematics were revealed. In particular, recently the application of probabilis-
tic methods to the study of logical limit laws was implemented in [19] and [40]. This link is based on fundamental
theorems of Compton that were extended and deepen by Burris and Bell [6,7]. The place of limit shapes in this latter
field is not yet understood.

It turns out that the existence of a limit shape is closely related to two other phenomena known in statistical
mechanics, which are gelation and threshold. We recall

Definition 2.2. Let qN(η) be the size of the largest component in a partition η = (n1, . . . , nN) ∈ ΩN , i.e. qN(η) =
max{i: ni > 0}.
(i) We say that a measure μN exhibits gelation if for some 0 < α < 1,

lim sup
N→∞

μN

{
η ∈ ΩN : qN(η) > αN

}
> 0. (2.4)
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(ii) A sequence q̄N = o(N), N → ∞, is called a threshold for the size of the largest component, under a measure μN

(shortly, threshold of a measure μN ), if

lim
N→∞μN

{
η ∈ ΩN : qN(η) ≤ q̄N

}= 1, (2.5)

while for any sequence vN , s.t. vN = o(q̄N ), N → ∞,

lim sup
N→∞

μN

{
η ∈ ΩN : qN(η) ≤ vN

}
< 1. (2.6)

Remark 2.3. (i) In physics and chemistry, gelation is viewed as a formation of a gel which is a two-phase system
consisting of a solid and a liquid in more solid form than a solution. In combinatorics, equivalent names for gelation
are connectedness of components and appearance of a giant component. We notice that in [24], in contrast to our
definition (2.4), the definition of gelation (=formation a giant component) requires that

lim
N→∞μN

{
η ∈ ΩN : qN(η) > αN

}= 1, (2.7)

for some α > 0. In [24], some sufficient conditions for the absence of gelation (in the above sense) are given for
combinatorial models encompassed into Kolchin’s generalized allocation scheme (see [28]).

(ii) It is common (see e.g., [14]) to seek a threshold q̄N , if it exists, in the form q̄N = Nβ̄ , where the exponent
β̄ := inf{β: μN(η ∈ ΩN : qN(η) ≤ Nβ) = 1}.

We write (L), (G), (T ) to abbreviate the statements: “There exists a limit shape/there exists gelation/there exists
threshold,” respectively, and write (•̄) to denote the negations of the above statements.

Proposition 2.4. Let μN be a measure on ΩN . Then

(Ḡ) ⇐⇒ (T ) and (L) �⇒ (Ḡ). (2.8)

Moreover, if μN has a limit shape under a scaling rN , then μN has a threshold q̄N ≥ O(rN), N → ∞.

Proof. By the definition of gelation,

(Ḡ) ⇐⇒ lim
N→∞μN

{
η ∈ ΩN : qN(η) > εN

}= 0, (2.9)

for any ε > 0. Therefore,

(Ḡ) ⇐⇒ lim
N→∞μN

{
η ∈ ΩN : qN(η) ≤ εNN

}= 1, (2.10)

for some sequence εN → 0, N → ∞. This proves the existence of a threshold when there is no gelation. For the
proof of the second implication in (2.8), our strategy will be to show that (L) implies that for large N the major part
of the total mass N is partitioned among component sizes of order O(rN). For this purpose, we employ the following
argument. For given d ≥ 1, u1 > 0, let u0 = 0, ui = iu1, i = 1, . . . , d , be d + 1 equidistant nodes, and assume that
l ∈ L is a limit shape of μN . Then

1

N

udrN−1∑
k=u1rN

knk(η) = 1

N

d−1∑
i=1

ui+1rN−1∑
k=uirN

knk(η) ≥
d−1∑
i=1

ui

(
rN

N

ui+1rN−1∑
k=uirN

nk(η)

)
, η ∈ ΩN. (2.11)

Next, (2.3) gives for all 1 ≤ i ≤ d − 1

lim
N→∞μN

{
η ∈ ΩN : ui

rN

N

ui+1rN−1∑
k=uirN

nk(η) > ui

(
l(ui) − l(ui+1) − εi

)}= 1, (2.12)
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for arbitrary εi > 0, 1 ≤ i ≤ d − 1. Consequently, substituting ui = iu1, 1 ≤ i ≤ d , gives

lim
N→∞μN

{
η ∈ ΩN :

1

N

udrN−1∑
k=u1rN

knk(η) >

d−1∑
i=1

(
l(ui) − l(ui+1)

)
ui − u1

d−1∑
i=1

iεi

}
= 1. (2.13)

Now we write

d−1∑
i=1

(
l(ui) − l(ui+1)

)
ui =

d−1∑
i=1

(ui − ui−1)l(ui) − l(ud)ud−1

=
d−1∑
i=1

(ui+1 − ui)l(ui) − l(ud)ud−1 >

∫ ud

u1

l(t)dt − l(ud)ud−1, (2.14)

where the last equation is due to the fact that the points ui , i = 0, . . . , d , are equidistant. Since
∫∞

0 l(t)dt = 1 and the
function l is nonincreasing and continuous on [0,∞), we have that for a sufficiently large d and a sufficiently small
u1 > 0,∫ ud

u1

l(t)dt > 1 − ε

3
, l(ud)ud−1 <

ε

3
, (2.15)

for any ε > 0. Now it is left to couple u1 with the above εi , 1 ≤ i ≤ d − 1, and ε, by setting, say, εi = i−3 and
0 < u1 < ε

3 (
∑∞

i=1 i−2)−1, to conclude from (2.13) that for any ε > 0

lim
N→∞μN

{
η ∈ ΩN :

1

N

udrN−1∑
k=u1rN

knk(η) > 1 − ε

}
= 1. (2.16)

Since rN = o(N), N → ∞, this immediately implies Ḡ and, therefore, T . We also derive from (2.16),

lim
N→∞μN

{
η ∈ ΩN : qN(η) < u1rN

}= 0, (2.17)

which completes the proof. �

The expression (2.16) exposes the following meaning of the scaling factor rN , that is not immediately seen from
the law of large numbers (2.3). When N is large, almost all mass N is partitioned into component sizes in the range
[u1rN ,udrN ], for a sufficiently small u1 > 0 and a sufficiently large ud < ∞. Consequently, the boundary of the major
part of the random Young diagram scaled by rN acquires, as N → ∞, the shape of a nonrandom curve l.

Proposition 2.4 is applied in Corollary 3.1, in the next section to prove the nonexistence of limit shapes for certain
classes of measures on the set ΩN .

3. Gibbs distributions and multiplicative measures

3.1. Mathematical setting

The subject of the present paper will be the following class of measures μN on the set ΩN of integer partitions of N :

μN(η) = (cN)−1 a
n1
1 a

n2
2 · · ·anN

N

n1!n2! · · ·nN ! , η = (n1, . . . , nN) ∈ ΩN. (3.1)

Here a = {ak} is a positive function on the set of integers, called a parameter function, and cN = cN(a1, . . . , aN) is
the partition function of the measure μN :

c0 = 1, cN =
∑

η∈ΩN

a
n1
1 a

n2
2 · · ·anN

N

n1!n2! · · ·nN ! , N ≥ 1. (3.2)
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Following Pitman (see [8,33]), we call the measures of the form (3.1), (3.2) Gibbs distributions. Gibbs distributions are
incorporated into the following general construction formulated by Vershik [44] who was motivated by applications
to statistical mechanics. Let Ω =⋃

N≥1 ΩN be the set of all integer partitions η = (n1, . . . , nk, . . .) and let s = {sk}∞1
be a sequence of positive functions on the set of integers. We associate with a partition η ∈ ΩN the function FN(η) =∏N

k=1 sk(nk) and define the measure μN on ΩN by μN(η) = (cN)−1FN(η), where cN =∑
η∈ΩN

FN(η) is the partition

function of μN . Next, the family of probability measures μ(x) on Ω , depending on a parameter x > 0 is constructed
in such a way that for each N ≥ 1 the conditional probability of μ(x) given ΩN , is the aforementioned measure μN ,
for all x > 0 from the domain of definition of the function F(x) =∑

N≥1 cNxN . Explicitly, μ(x) is given by

μ(x)(η) = xN(η)
(
F(x)

)−1
FN(η)(η), η ∈ Ω,0 < x: F(x) < ∞,

where N(η) =∑
k≥1 knk denotes the number N which is partitioned by an η ∈ Ω and F(x) is the partition function

of μ(x), or equivalently F is the generating function for the sequence {cN }∞1 . It is not hard to verify that the measure
μ(x) possesses the required conditioning property which formally reads as follows:

μN(η) := (
μ(x)|ΩN

)
(η) = μ(x)(η)

μ(x)(ΩN)
, η ∈ ΩN, (3.3)

for all x in the domain of definition of the function F . Moreover, it follows from the above definitions that the
generating function F is expressed as the Cauchy product of the generating functions Fk(x) =∑

r≥0 sk(r)x
r , k ≥ 1,

for the sequences {sk(r)}r≥0, k ≥ 1:

F(x) =
∏
k≥1

Fk

(
xk
)
. (3.4)

Consequently,

μ(x)(η) = xN(η)

∏N(η)

k=1 sk(nk)∏
k≥1 Fk(xk)

, η ∈ Ω,0 < x: F(x) < ∞, (3.5)

and

μN(η) = (cN)−1
N∏

k=1

sk(nk), η ∈ ΩN. (3.6)

In view of the representation (3.5), Vershik calls the family (with respect to x) of measures μ(x) multiplicative.
Following [45], we will preserve the same name for measures μN induced by multiplicative families of measures
μ(x), via (3.3). The representation (3.5) tells us the important fact that the random counts nk , k ≥ 1, are independent
with respect to the probability product measures μ(x).

From the above formulae, the following relation between the two families of measures μ(x) and μN holds:

μ(x) =
∑
N≥1

xN
(
F(x)

)−1
cNμN, 0 < x: F(x) < ∞. (3.7)

This says that measures μ(x) can be viewed as a Poissonization of measures μN , which is a standard way to deduce
the equivalence, as N → ∞, of canonical and microcanonical ensembles in statistical mechanics (see [9,47] and
references therein).

In the above setting, the following three particular forms of the functions sk , k ≥ 1, and corresponding to them
generating functions F are of great interest:

Case 1.

sk(r) = ar
k

r! , r ≥ 0, ak > 0, k ≥ 1, F(x) = exp

(∑
k≥1

akx
k

)
, 0 < x:

∑
k≥1

akx
k < ∞. (3.8)
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By (3.5),

μ(x)(η) =
∏
k≥1

(
(akx

k)nk

nk! exp
(−akx

k
))

, η = (n1, . . . , nk, . . .) ∈ Ω, (3.9)

i.e. μ(x) is the probability product measure induced by the sequence of Poisson (akx
k , k ≥ 1) random variables. It

follows from (3.6) that in this case the measures μN , N ≥ 1, are the Gibbs distributions defined by (3.1), (3.2). The
associated generating function F is called exponential.

Case 2.

sk(r) =
(

mk + r − 1
r

)
, r ≥ 0,mk ≥ 1, k ≥ 1,

(3.10)

F(x) =
∏
k≥1

1

(1 − xk)mk
, 0 < x:

∑
k≥1

mkx
k < ∞.

Consequently, (3.5), (3.6) give

μ(x)(η) = xN(η)
∏
k≥1

(
1 − xk

)mk , η ∈ Ω,

(3.11)

μN(η) = (cN)−1
N∏

k=1

(
mk + nk − 1

nk

)
, η ∈ ΩN,

which says that μ(x) is the probability product measure induced by the negative binomial random variables
NB(mk, x

k), k ≥ 1, with a free parameter 0 < x < 1. The function F is called the Euler type generating function,
because in the case mk ≡ 1, k ≥ 1, it conforms to the standard Euler generating function for integer partitions. Note
that in the latter case μN is the uniform measure on ΩN .

Case 3.

sk(r) =
(

mk

r

)
, 0 ≤ r ≤ mk,mk ≥ 1, k ≥ 1,

(3.12)
F(x) =

∏
k≥1

(
1 + xk

)mk , 0 < x:
∑
k≥1

mkx
k < ∞.

In view of (3.12), the following notation for the sets of restricted partitions is needed:

Ω(m1, . . . ,mk, . . .) = {
η = (n1, . . . , nk, . . .) ∈ Ω: 0 ≤ nk ≤ mk, k ≥ 1

}
,

(3.13)
ΩN(m1, . . . ,mN) = {

η = (n1, . . . , nN) ∈ ΩN : 0 ≤ nk ≤ mk,1 ≤ k ≤ N
}
.

We have from (3.5), (3.6)

μ(x)(η) = xN(η)

∏N(η)
k=1

(
mk

nk

)∏
k≥1(1 + xk)mk

, η ∈ Ω(m1, . . . ,mk, . . .),

(3.14)

μN(η) = (cN)−1
N∏

k=1

(
mk

nk

)
, η ∈ ΩN(m1, . . . ,mN).

Thus, μ(x) is the product measure induced by the binomial random variables Bin(mk, x
k), k ≥ 1, with a free parameter

0 < x < 1. In particular, if mk ≡ 1, k ≥ 1, then Ω(1, . . . ,1, . . .), ΩN(1, . . . ,1) are the sets of integer partitions with
distinct components, i.e. each nk is either 0 or 1, and μN is the uniform measure on ΩN(1, . . . ,1).
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We see that in all the aforementioned three cases the sequence {μN,N ≥ 1} of multiplicative measures is given by
a single parameter function, which is a = {ak} in the first case and m = {mk} in the two other cases. It is known that
for a great scope (but not all) of applied models, the asymptotics of a parameter function can be described by a power
law with the exponent (p − 1) ∈ R, by which we mean that the parameter function behaves asymptotically as Ckp−1,
C > 0, k → ∞. From the point of view of the asymptotics of the corresponding models, the following three ranges
of p should be distinguished (see [4]): the logarithmic case, p = 0, the expansive case, p > 0, and the convergent
case, p < 0. It was found (see [3] and [4], respectively) that in the logarithmic and the convergent cases, the measures
μN exhibit gelation. In view of this, Proposition 2.4 leads to the following:

Corollary 3.1. In the logarithmic and the convergent cases, multiplicative measures have not limit shapes.

Therefore, multiplicative measures may have limit shapes in the expansive case only.

3.2. Applications

We outline the four main fields of applications of multiplicative measures.

• Coagulation–fragmentation processes (CFP’s). Given an integer N , a CFP is a continuous-time Markov chain on
the set ΩN = {η} of all partitions of N . Here N codes the total population of indistinguishable particles partitioned
into nj groups of size j , j = 1, . . . ,N . The possible infinitesimal (in time) transitions are coagulation of two groups
(=clusters) of sizes i and j into one group of size i +j and fragmentation of one group of size i +j into two groups
of sizes i and j . If the ratio of these rates is of the form

ai+j

aiaj

, 2 ≤ i + j ≤ N, (3.15)

where a = {aj } is a positive function on the set of integers, called a parameter function of a CFP, then the process
conforms to the classic mean-field reversible model of clustering formulated in the 1970s by Kelly and Whittle.
(For more details and history see [11,12,14,18,25,49].) It is known (see [11,25]) that given a parameter function a,
the invariant measure μN of the corresponding CFP is exactly the Gibbs distribution (3.1). In particular, under the
parameter function ak = kp−1, k ≥ 1, among the possible rates of coagulation and fragmentation are the ones given
by the kernels K(i, j) = (ij)p−1 and F(i, j) = (i + j)p−1, respectively. The cases p = 1, constant rates, and p = 2
are common in chemical applications (see [11,22]).

• Decomposable random combinatorial structures. A decomposable structure of size N is a union of indecomposable
components, so that the counts n1, . . . , nN of components of sizes 1, . . . ,N, respectively, form an integer partition
of N . Given a sequence of integers m = {mk}, it is assumed that each component of size k belongs to one of the
mk types. Three classes of decomposable structures: assemblies, multisets and selections, encompass the whole
universe of classical combinatorial objects. Assemblies are structures composed of labeled elements, so that ak =
mk

k! , k ≥ 1, multisets are formed from unlabeled elements and selections are multisets with distinct components.
Supposing that a structure is chosen randomly from the finite set of a certain class of structures with size N , the
random partition K(N) of an integer N , called component spectrum is induced:

K(N) = (
K

(N)
1 , . . . ,K

(N)
N

)
:

N∑
k=1

kK
(N)
k = N, N ≥ 1,

where the random variable K
(N)
k represents the number of components of size k in the random structure. The

distribution of K(N) is described by a probability measure on the set ΩN of integer partitions of N . A remarkable
fact is (see [3]) that the distributions of K(N) corresponding to assemblies, multisets and selections are just the
multiplicative measures μN induced by Poisson, negative binomial and binomial distributions, respectively. Based
on the combinatorial context, it is also common to treat distributions μN of K(N) as the ones generated by the
conditioning relation (see [3,18]), a frame which is close (but not identical) to Vershik’s formalism.
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• Statistical mechanics. In this context, the multiplicative measures μ(x) and μN are referred to as macrocanonical and
microcanonical ensembles (of particles), respectively. For more details on this topic, see [18,44]. The multiplicative
measures induced by Poisson, negative binomial and binomial distributions, with constant parameter functions,
provide a mathematical setting for the three classical models of ideal gas, called Maxwell–Boltzmann (MB), Bose–
Einstein (BE) and Fermi–Dirac (FD) statistics, respectively. In [44], the multiplicative measures with parameter
functions Ckp−1, C > 0, p ≥ 1, k ≥ 1, are called generalized classical statistics.

• CFP’s on set partitions (see [8,33]). This comparatively new setting is based on Pitman’s study of combinatorial
models of random set partitions, which developed from the Ewens sampling formula and Kingman’s coalescence
processes. We assume here that in the preceding setup for CFPs, particles are labeled by 1, . . . ,N , so that the state
space of a CFP is the set Ω[N ] = {π[N ]} of all partitions π[N ] of the set [N ] = {1, . . . ,N}. Denoting |Aj | the size
of a cluster (block) Aj � [N ] of π[N ], we assign to each Aj , a weight m|Aj | which depicts the number of possible
inner states of Aj , the states can be, for example, shapes (in the plane or in space), colors, energy levels, and so
forth. This says that to a set partition π[n],k with k given clusters A1, . . . ,Ak correspond

∏k
j=1 m|Aj | different states

of the CFP considered, so that the total number of states formed by all partitions of the set [N ] into k clusters is
equal to

∑
π[N],k∈Ω[N],k

k∏
j=1

m|Aj | := BN,k, (3.16)

where Ω[N ],k is the set of all partitions of the set [N ] into k blocks and the number BN,k is known as a Bell
polynomial in weights m1, . . . ,mN−k+1. Next, for a given k ≥ 1 the uniform measure p[N ],k on the set Ω[N ],k =
{π[N ],k} is defined:

p[N ],k(π[N ],k) =
∏k

j=1 m|Aj |
BN,k

, π[N ],k ∈ Ω[N ],k. (3.17)

In a more general setting which encompasses a variety of models (see [8,33]), the weights mj in (3.17) are allowed
to be arbitrary nonnegative numbers. By the known combinatorial relation, the distribution p[N ],k on Ω[N ],k induces
the distribution pN,k of cluster sizes |Aj |, j = 1, . . . , k, on the set ΩN,k of integer partitions of N into k positive
summands:

pN,k(η) = (BN,k)
−1

N∏
j=1

(
mj

j !
)nj 1

(nj )! , η = (n1, . . . , nN) ∈ ΩN,k, (3.18)

where the partition function BN,k defined as in (3.16) can be rewritten in the following form:

BN,k =
∑

η∈ΩN,k

k∏
j=1

(
mj

j !
)kj 1

(kj )! . (3.19)

Pitman calls the measures pN,k, p[N ],k microcanonical Gibbs distributions on the sets ΩN,k and Ω[N ],k respec-
tively. The linkage of pN,k to the Gibbs distributions μN in (3.1) is expressed via the conditioning relation:

pN,k = μN |ΩN,k,

where μN is the Gibbs distribution given by (4.1) with aj = mj

j ! , j ≥ 1.
However, the generic model associated with set partitions of [N ] involves a wealth of specific problems (see [8])

arising from treating p[N ],k , k = 1, . . . ,N , as marginal distributions at any time t , of irreversible time continuous
Markov processes of pure fragmentation (or pure coagulation) on the state space Ω[N ].

Finally note that Gnedin and Pitman [17] and Kerov [26] studied exchangeable Gibbs distributions related to the
Ewens sampling formula (the case p = 0).
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4. Statement of main results

Our forthcoming asymptotic analysis is devoted exclusively to Gibbs distributions in the expansive case, that is, when
the parameter function a of the measure μN in (3.1) is of the form:

ak ∼ Ckp−1, C > 0,p > 0, k → ∞. (4.1)

We already mentioned in the previous section that this case conforms to the generalized MB statistics and to reversible
CFPs with certain transition rates. To explain the relevance of the case considered to random combinatorial structures,
recall that in the combinatorial context, Gibbs distributions with the parameter function (4.1) describe assemblies with
the number of indecomposable components of size k, equal mk = akk! ∼ Ckp−1k!, C > 0, k → ∞. Examples of such
structures with p = 1,2 were given in [12]. Generally speaking, we can think that in an initial assembly having, say,
m̃k indecomposable components on k labeled items, each one of the m̃k components is distinguished by one of bk

types. For example, in permutations, each of (k − 1)! cycles on k labelled items is colored by one of bk colors; in
forests, each of kk−2 trees on k labeled vertices belongs to one of bk species, etc. In this setting, the resulting assembly
is composed of mk = bkm̃k components of size k. Thus, under bk = kα , where α > 0 in the first example and α > 3/2
in the second example, the resulting assembly satisfies (4.1).

Throughout the rest of the paper, we assume that all random variables considered are induced by the Gibbs distri-
butions μN with the parameter function (4.1).

We note that Vershik’s approach [44–46] to asymptotic analysis of the generalized BE and FD models is based on
the expression (3.3), which allows to replace the measure μN by the product measure μ(x), with a properly chosen
x → 1. In contrast to it, our strategy is the straightforward study of the asymptotics of μN , as N → ∞, using stratifi-
cations of the integer N and the total number of components. However, both approaches are based on common ideas
rooted in statistical mechanics and the saddle point method.

We first introduce some more notations. Consider two sets of random variables νj and Kj , j = 0, . . . , q ≥ 1, that
determine for a given η ∈ ΩN stratifications of the total number of components ν = ν(η) = ∑N

k=1 nk(η) and of the
total mass N = ∑N

k=1 knk(η), respectively. Namely, for given integers q ≥ 1 and 0 = M0 < M1 < · · · < Mq < N <

Mq+1 = N + 1 and a given η ∈ ΩN , we set

ν0 = ν0(M1, η) :=
M1−1∑
k=M0

nk(η), νj = νj (Mj ,η) :=
N∑

k=Mj

nk(η),

(4.2)

K0 = K0(M1, η) :=
M1−1∑
k=M0

knk(η) = N − K1, Kj = Kj(Mj ,η) :=
N∑

k=Mj

knk(η), j = 1, . . . , q,

and denote

−→ν = (ν0, . . . , νq),
−→
K = (K1, . . . ,Kq). (4.3)

We will refer to Mj , j = 1, . . . , q , as stratification points. The random vectors −→ν ,
−→
K induce the decompositions −→ν 


and
−→
K



of the random variables ν and N − K0 respectively, into sums of q + 1 and q disjoint parts:

−→ν 
 = (
ν


0, . . . , ν

q

) := (ν0, ν1 − ν2, . . . , νq−1 − νq, νq),
(4.4)−→

K

 = (

K

1 , . . . ,K


q

) := (K1 − K2, . . . ,Kq−1 − Kq,Kq).

We also set K

0 = K0. Clearly,

ν

j =

Mj+1−1∑
k=Mj

nk, K

j =

Mj+1−1∑
k=Mj

knk, j = 0, . . . , q,

q∑
j=0

K

j = N. (4.5)
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Formally, −→ν 
 and
−→
K



can be viewed as the 1–1 linear transformations B : Rq+1 → R

q+1 and B1 : Rq → R
q of the

random vectors −→ν and
−→
K, respectively:

−→ν 
 = B−→ν ,
−→
K


 = B1
−→
K . (4.6)

It is known from [14] that in the expansive case (4.1), the measure μN has a threshold N1/(p+1), p > 0, and that the
major part of the total mass N , when N is large, is concentrated on components of sizes of order N1/(p+1). Therefore,
in view of the note after Proposition 2.4, we take throughout the rest of the paper

rN = h−1N1/(p+1), h = (
C�(p + 1)

)1/(p+1) (4.7)

as the scaling factor for the limit shape in question. Here the constant h is chosen in order to simplify the expression
for the limit shape.

To establish the desired limit theorems, it is required to define proper scalings of the two pairs of random vectors
in (4.3) and (4.4). We denote by •̂ the corresponding scaled quantities. The explicit expressions for •̂ will be chosen
in accordance with the asymptotic problem considered.

First, in the forthcoming Theorems 4.1, 4.3 and Corollary 4.5, we will study the asymptotics of the random quan-
tities in (4.2), (4.5) in the vicinity of the rN . In this case, we consider the stratifications induced by the points
Mj = [uj rN ], j = 0, . . . , q , Mq+1 = N + 1, where 0 = u0 < uq < uq+1 = ∞ do not depend on N , and take the
scalings •̂ in the form

ν̂

j =√

f0(p − 1)
ν

j − S


j√
S0

,

(4.8)

K̂

j =√

f0(p + 1)
K


j − E

j√

V0
, j = 0, . . . , q,

and

ν̂j =√
f0(p − 1)

νj − Sj√
S0

,

(4.9)

K̂j =√
f0(p + 1)

Kj − Ej√
V0

, j = 0, . . . , q.

Here

fj (s) = C

∫ uj+1

uj

xse−x dx, j = 0, . . . , q, s ≥ 0, (4.10)

whereas the quantities Sj ,Ej ,Vj depend on the parameter δ = δN = (rN )−1:

S0 =
M1−1∑
k=M0

ake−δk, E0 =
M1−1∑
k=M0

kake−δk, V0 =
M1−1∑
k=M0

k2ake−δk,

(4.11)

Sj =
N∑

k=Mj

ake−δk, Ej =
N∑

k=Mj

kake−δk, Vj =
N∑

k=Mj

k2ake−δk, j = 1, . . . , q.

Finally, the starred quantities S

j , E


j in the RHS’s of (4.8) are defined respectively as the transformations B and B1
of the corresponding nonstarred quantities Sj , Ej . Also, we will use the following abbreviation for the conditional
probabilities

ρ
(
ν̂

j

∣∣K̂

j

) := P
(
ν̂

j = •1,j

∣∣K̂

j = •2,j

)
,



926 M. M. Erlihson and B. L. Granovsky

when the particular values •1,j ,•2,j are not important.
The theorem below that deals with the asymptotic behavior of the scaled quantities defined by (4.8), will be a

source of our subsequent results on limit shapes.

Theorem 4.1. Under N → ∞ and a given q ≥ 1,

(i) The random variables ν̂

j , j = 0, . . . , q , are conditionally independent given K̂


j , j = 0, . . . , q , s.t.∑q

j=0 K

j = N . Moreover,

ρ
(−→̂
ν

∣∣−→̂K


)=
q∏

j=0

ρ
(
ν̂

j

∣∣K̂

j

)
. (4.12)

(ii) The (2q + 1)-dimensional random vector (
−→̂
ν
 ,

−→̂
K
) = (ν̂


0, . . . , ν̂

q , K̂


1 , . . . , K̂

q) converges weakly to the

(2q +1)-dimensional Gaussian random vector with zero mean and the covariance matrix {ϑ

mk(q), m,q = 0, . . . ,2q}

given by

ϑ

mk(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fm(p − 1)1m=k − fm(p)fk(p)
�(p+2)

if 0 ≤ m, k ≤ q,

fm(p)1m=k−q − fm(p)fk−q (p+1)

�(p+2)
if 0 ≤ m ≤ q, q + 1 ≤ k ≤ 2q,

fk(p)1k=m−q − fk(p)fm−q (p+1)

�(p+2)
if 0 ≤ k ≤ q, q + 1 ≤ m ≤ 2q,

fm−q(p + 1)1m=k − fm−q (p+1)fk−q (p+1)

�(p+2)
if q + 1 ≤ m, k ≤ 2q,

(4.13)

where 1i=j is the Kroneker symbol.

(iii) Moreover, moments of the random vector (
−→̂
ν
 ,

−→̂
K
) converge to the corresponding moments of the Gaussian

random vector in (ii). In particular,

ϑ

mk(q) = lim

N→∞

⎧⎪⎨⎪⎩
Cov

(
ν̂

m, ν̂


k

)
if 0 ≤ m, k ≤ q,

Cov
(
ν̂

m, K̂


k−q

)
if 0 ≤ m ≤ q, q + 1 ≤ k ≤ 2q,

Cov
(
K̂


m−q, K̂

k−q

)
if q + 1 ≤ k, m ≤ 2q.

(4.14)

(iv) Let the stratifications be induced by the equidistant points uj , j = 0, . . . , q , and let k = m + s, s > 0, 0 ≤ m,
k ≤ 2q . Then the absolute value of the covariance, |ϑ


mk(q)|, monotonically decreases in s. In particular, if q → ∞,
s → ∞, while m is fixed, then

∣∣ϑ

mk(q)

∣∣= {
O
(
u

p
k exp (−uk)

)
if 0 ≤ m < k ≤ q,

O
(
u

p+1
k−q exp (−uk−q)

)
if q < k ≤ 2q, s − q → ∞.

(4.15)

Remark 4.2. The first part of (4.15) expresses the exponential decay of correlations between the scaled counts of
components of different sizes, as the “distance” s between the sizes goes to infinity. Phenomena of such kind are
widely known in equilibrium statistical mechanics (see e.g., [20,21] and references therein).

Let l ∈ L be a limit shape of a measure μN and let ν̃(u) be defined as in (2.2). We call

�(u) := ν̃(u) − l(u), u ≥ 0, (4.16)

the random fluctuation of μN from its limit shape at a point u. To state the next theorem, denote

br(u) = C�(r + 1, u), u ≥ 0, r > −1, (4.17)

where �(r + 1, u) = ∫∞
u

e−xxr dx, u ≥ 0, r > −1, is the incomplete Gamma function.
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Theorem 4.3 (Limit shape of μN and the cental limit theorem for scaled fluctuations from the limit shape).
Under N → ∞ and a given q ≥ 1,

(i) The random vector (ν̂1, . . . , ν̂q) defined by (4.9) weakly converges to the q-dimensional Gaussian random
vector with zero mean and the covariance matrix {emk}q1 given by

emk = bp−1(us) − bp(um)bp(uk)

�(p + 2)
, m, k = 1, . . . , q, (4.18)

where s = max(k,m).
(ii) Setting l(u) = �(p,u)

�(p+1)
, u ≥ 0, in (4.16), the relation between the scaled quantities ν̂1, . . . , ν̂q and the random

fluctuations �(uj ) is given by

ν̂j ∼ (
C�(p + 1)Nr−1

N

)1/2
�(uj ), j = 1, . . . , q,N → ∞, (4.19)

for all η ∈ ΩN .
(iii) The measure μN has the limit shape

lp−1(u) = �(p,u)

�(p + 1)
, u ≥ 0,p > 0,

under the scaling rN given by (4.7).

Remark 4.4. (a) Recall that the measure μN considered has the threshold N1/(p+1). By (ii) of the above theorem
and (4.7), the threshold turns out to be of the same order as the scaling rN for the limit shape. In view of this, we
believe that the following stronger form of the second part of (2.8) in Proposition 2.4 is valid: For a wide class
of multiplicative measures, the existence of a threshold q̄N implies the existence of a limit shape under a scaling
rN = O(q̄N ), N → ∞.

(b) In [45], an analog of our cental limit theorem for fluctuations was established for the uniform measure on the
set of unordered partitions with distinct summands (=classical FD statistics). Recall that this multiplicative measure
is associated with the generating function

∏
k≥1(1 + xk)−1. The structure of the covariance matrix in [45] is similar

to the one in (4.18). In particular, the exponential decay of covariances is also seen there.

Corollary 4.5 (The functional central limit theorem for the scaled number of components). Let in the above
stratification scheme, q = 1, u1 = u and denote ν̂(u) = ν̂1. Then, for all u ≥ 0, the scaled random variable ν̂(u)

weakly converges to N(0, e11), where e11 = e11(u), u ≥ 0, is as in (4.18).

Recalling that ν(0) is equal to the total number of components in a random partition, the particular case u = 0 of
the above corollary recovers the central limit theorem for ν(0) established in [12].

We now turn to the asymptotic behavior of the counts of components of sizes o(q̄N ) (=small sizes in comparison
to the threshold), s.t. o(q̄N ) → ∞, N → ∞, where q̄N = N1/(p+1). For this problem, we make use of the stratification
points Mj = Mj(N), s.t.

Mj = o
(
N1/(p+1)

)→ ∞, N → ∞, lim
N→∞

Mj

Mj+1
:= ρj < 1, j = 1, . . . , q,

(4.20)
M0 = 0, Mq+1 = N + 1,

while the scaled quantities ν̂

j , K̂


j are taken in the form slightly different from the one in (4.8):

ν̂

j = ν


j − S

j√

S

j

, j = 0, . . . , q,

(4.21)

K̂

j = K


j − E

j√

V 

j

, j = 0, . . . , q − 1.
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Theorem 4.6 (Asymptotic independence and the central limit theorem for the counts of components of small

sizes). Let the stratification points satisfy (4.20) and
−→̂
ν
 = (ν̂


0, . . . , ν̂

q),

−→̂
K
 = (K̂


1 , . . . , K̂

q) be given by (4.21). Then,

as N → ∞,

(i) The coordinates of each one of the two random vectors
−→̂
ν
 and

−→̂
K
 are independent random variables.

(ii) The random vector −→χ = (ν̂

0, K̂


0 , ν̂

1, K̂


1 , . . . , ν̂

q−1, K̂



q−1, ν̂



q) weakly converges to the (2q + 1)-dimensional

Gaussian vector with zero mean and the covariance matrix having a diagonal block structure, with q blocks

B−1
j :=

(
1 αj

αj 1

)
, j = 0, . . . , q − 1, B−1

q = 1 − α2
q, (4.22)

where

αj =
√

p(p + 2)

p + 1

1 − ρ
p+1
j√

(1 − ρ
p+2
j )(1 − ρ

p
j )

= lim
N→∞ Cov

(
ν̂

j , K̂



j

)
, j = 0, . . . , q − 1,

(4.23)

α2
q = 1 − lim

N→∞ Var
(
ν̂

q

)= �2(p + 1)

�(p)�(p + 2)
= p

p + 1
.

Remark 4.7. It was proven in [14] that in the model considered, the counts of components of fixed sizes (=the random
variables nk1, . . . , nkl

, 0 ≤ k1 < · · · < kl < ∞, l > 1) are asymptotically independent. Combining this result with our
Theorems 4.1 and 4.6 says that when the component size passes beyond the threshold value N1/(p+1), the asymptotic
independence of component counts transforms into their conditional independence (given masses). In this respect,
the threshold value can be also viewed as the critical value for the independence of component counts in the model
considered.

5. Proofs

5.1. Khintchine-type representation formula

As in [12–14] and [19], our tool for the asymptotic problems considered will be the probabilistic method by Khint-
chine, that was introduced in the 1950s in his book [27]. The idea of the method is to construct the representation of
the quantity of interest via the probability function of a sum of independent integer valued random variables depend-
ing on a free parameter, and then to implement a local limit theorem. In the course of time, this method, sometimes
without mentioning Khintchine’s name, was applied to investigation of a large scope of asymptotic problems arising
in statistical mechanics and in enumeration combinatorics (see e.g., [2,12–15,19,28,30,31] and references therein).
The first three subsections of the present section contain preparatory asymptotic analysis toward the proof of our main
results.

Clearly, the distributions of the random vectors −→ν and
−→
K are completely determined by the measure μN . Explic-

itly, for any given vectors
−→
L = (L0, . . . ,Lq) and

−→
N = (N1, . . . ,Nq),

P(−→ν = −→
L ) =

∑
−→
N

P(−→ν = −→
L ,

−→
K = −→

N ) =
∑
−→
N


P
(−→
ν
 = −→

L
,
−→
K
 = −→

N

) :=

∑
−→
N


R
(−→
L
,

−→
N


)
, (5.1)

where, in accordance with (4.4), (4.6), we denoted

−→
L
 = (

L

0, . . . ,L



q

)= B−→
L ,

(5.2)−→
N
 = (

N

1 , . . . ,N


q

)= B1
−→
N .

(4.4) implies that for any vectors
−→
L
 and

−→
N
,

R
(−→
L
,

−→
N


)= P(−→ν = −→
L ,

−→
K = −→

N ). (5.3)
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Consequently, it follows from (3.1), (3.2) that

R
(−→
L
,

−→
N


)= c−1
N

∑
η∈ΩN

(
N∏

k=1

a
nk

k

nk! 1A

)
, (5.4)

where

A = A
(−→
L
,

−→
N


)= {
η ∈ ΩN :

−→
ν
 (η) = −→

L
,
−→
K
(η) = −→

N

}
. (5.5)

Our first goal will be to derive the Khintchine type representation for the probability R(
−→
L
,

−→
N
). Setting a0 = 0, we

construct the array of discrete random variables β
(j)
l defined by

P
(
β

(j)
l = k

)= ake−δj k

S

j (δj )

, k = Mj, . . . ,Mj+1 − 1, j = 0, . . . , q, l ≥ 1, (5.6)

where the stratification points M0, . . . ,Mq+1 are as in (4.2), δ0 > 0, . . . , δq > 0 are free parameters and

S

j = S


j (δj ) =
Mj+1−1∑
k=Mj

ake−δj k, j = 0, . . . , q, (5.7)

in accordance with (4.11). We assume that for a given 0 ≤ j ≤ q , the random variables β
(j)
l , l ≥ 1, are i.i.d. and for a

given l ≥ 1, the random variables β
(j)
l , 0 ≤ j ≤ q , are independent.

Distributions of the type (5.6) are widely used in the asymptotic analysis related to combinatorial structures, [3,
28,30]. These distributions firstly appeared in the papers of Goncharov (1944) (for references see [28]) and in the
monograph [27] by Khintchine (1950).

Lemma 5.1 (Khintchine’s type representation for the probabilities R(
−→
L�,

−→
N�)). Denote

Y (j) =
L


j∑
l=1

β
(j)
l , j = 0, . . . , q, (5.8)

where β
(j)
l , l ≥ 1, are i.i.d. random variables given by (5.6), (5.7). Then

R
(−→
L
,

−→
N


) = c−1
N

q∏
j=0

(S

j )

L

j

(L

j )!

exp
(
δjN



j

)
P
(
Y (j) = N


j

)
, (5.9)

where

N

0 := N −

q∑
j=1

N

j . (5.10)

Proof. It follows from (5.6)–(5.8) and the multinomial enumeration formula for the number of ways to distribute L

j

numbered balls over L

j numbered urns, that

q∏
j=0

P
(
Y (j) = N


j

)=
(

q∏
j=0

(L

j )!

(S

j )

L

j

exp
(−δjN



j

)) ∑
η∈ΩN

(
N∏

k=1

a
nk

k

nk! 1A

)
. (5.11)

By (5.4), (5.5) this gives (5.9). �
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Note that in contrast to the standard one parameter scheme of Khintchine’s method, the representation (5.9) is based
on (q + 1) free parameters δ0, . . . , δq .

Remark 5.2. One can see that (5.9) is a generalization of the representation formula for the total number of compo-
nents which was obtained in [12].

5.2. The choice of free parameters

Firstly, we set in (5.9) δ0 = δ1 = · · · = δq := δ and apply the stratifications

−→
S = (S0, . . . , Sq),

−→
E = (E0, . . . ,Eq),

−→
V = (V0, . . . , Vq),

as defined in (4.11), of the quantities S :=∑N
k=1 ake−δk , E :=∑N

k=1 kake−δk and V :=∑N
k=1 k2ake−δk respectively.

Next, we take in (5.1) the vectors
−→
L = (L0, . . . ,Lq) and

−→
N = (N1, . . . ,Nq) in the form

Lj = Sj + xj

√
S0, j = 0, . . . , q,

(5.12)
Nj = Ej + xj+q

√
V0, j = 1, . . . , q,

where xj , j = 0, . . . ,2q , are arbitrary reals. We also set N0 = N − N1 and adopt the following notation:

x◦
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xj if j ∈ {0, q},
xj − xj+1 if 1 ≤ j ≤ q − 1,
−xq+1 if j = q + 1,
xj−1 − xj if q + 2 ≤ j ≤ 2q,
x2q if j = 2q + 1.

(5.13)

It follows from (5.13) that
∑2q+1

j=q+1 x◦
j = 0. By (5.2) and (5.12) we then have

L

j = S


j + x◦
j

√
S0, j = 0, . . . , q, (5.14)

and

N

j = E


j + x◦
j+q+1

√
V0, j = 1, . . . , q. (5.15)

Note that (5.10), (5.15) together with (4.11) imply that

N

0 = N −

q∑
j=1

(
E


j + x◦
q+j+1

√
V0
)= N − E1 + x◦

q+1

√
V0. (5.16)

We start by investigating the asymptotic behavior of the probability R(
−→
L
,

−→
N
) given by (5.9), when N → ∞ and δ is

fixed. We adopt from [13] the following representation (5.17) of the partition function cN defined in (3.2). Consider
independent random variables ξk , s.t. k−1ξk ∼ Po(ake−σk), k ≥ 1, where σ > 0 is a free parameter, and let ZN =∑N

k=1 ξk . Then

cN = P(ZN = N) exp
(
Nσ + S(σ )

)
, N ≥ 1, (5.17)

where S = S(σ ) = ∑N
k=1 ake−σk = ∑q

j=0 S

j (σ ). We set σ = δ. The forthcoming asymptotic analysis relies on the

following fact that features the expansive case (4.1) considered. Let δ = δN → 0, as N → ∞ and let the stratification
points be as in Theorem 4.1, that is, Mj = uj rN , j = 0, . . . , q , 0 = u0 < u1 < · · · < uq . Then

lim
N→∞S


j = ∞, S

j = O(S0), N → ∞, j = 0, . . . , q. (5.18)

This is proved with the help of the integral test, as it is detailed in (5.33) below. We will see from the proof of
Theorem 4.6 that (5.18) fails for the asymptotics of component counts of small sizes.
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Lemma 5.3. Suppose (5.18) holds. Then for L

0, . . . ,L



q given by (5.14) and for any N


0 , . . . ,N

q ∈ N:

∑q

j=0 N

j = N ,

R
(−→
L
,

−→
N


)∼ W

(2π)(q+1)/2

(
q∏

j=0

1√
S


j

)
exp

(
−1

2

q∑
j=0

(
x◦
j

)2 S0

S

j

)
, N → ∞, (5.19)

where

W =
∏q

j=0 P(Y (j) = N

j )

P(ZN = N)
. (5.20)

Proof. We have from (5.9) and (5.17)

R
(−→
L
,

−→
N


) = W ·
(

q∏
j=0

(S

j )

L

j

(L

j )!

)
exp(δN) exp

(−(δN + S)
)= W exp (−S)

q∏
j=0

(S

j )

L

j

(L

j )!

. (5.21)

Next, we apply Stirling’s asymptotic formula to estimate (L

j )! under (5.14) and the condition (5.18):

(
L


j

)! ∼
√

2πL

j

(
L


j

)L

j exp

(−L

j

)∼
√

2πS

j

(
S


j

)L

j

(
1 + x◦

j

√
S0

S

j

)L

j

exp
(−L


j

)
=
√

2πS

j

(
S


j

)L

j exp

(
L


j log

(
1 + x◦

j

√
S0

S

j

))
exp

(−L

j

)
∼
√

2πS

j

(
S


j

)L

j e−S


j exp

(
1

2

(
x◦
j

)2 S0

S

j

)
, N → ∞, j = 0, . . . , q. (5.22)

Substituting in (5.21), the preceding asymptotic expansions yields (5.19). �

We will follow the principle of Khintchine’s method that the free parameter δ should be coupled with N so that to
make the probabilities in the RHS of (5.20) large. Namely (see also [13,14]) we choose δ = δN as the solution of the
equation:

EZN =
N∑

k=1

kake−δk = N. (5.23)

We see from (4.11) that (5.23) implies E

0 = E0 = N − E1. So, we obtain from (5.16) and (5.13) that

N

0 = N − N1 = E


0 + x◦
q+1

√
V0, (5.24)

which enables us to rewrite (5.15) in a unified way:

N

j = E


j + x◦
j+q+1

√
V0, j = 0, . . . , q. (5.25)

It is easy to see that if ak , k ≥ 1, are positive, Eq. (5.23) has a unique solution for any N ≥ 1.
Our next goal will be the establishment of local limit theorems needed for the proof of Theorem 4.1.
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5.3. The local limit theorems for Y (j), j = 0, . . . , q

Lemma 5.4 (The local limit theorems for Y (j), j = 0, . . . , q). Let (4.1) hold and let Mj = [uj rN ], j = 0, . . . , q ,

where 0 = u0 < u1 < · · · < uq , Mq+1 = N + 1 and [•] is the integer part of a number. Then for
−→
L
,

−→
N
 as in (5.14),

(5.15) and for δ given by (5.23),

P
(
Y (j) = N


j

)∼ 1√
2πVarY (j)

exp

(
−κ2

j

2

)
, N → ∞, j = 0, . . . , q, (5.26)

where

κj = lim
N→∞

EY (j) − N

j√

VarY (j)
, j = 0, . . . , q,

are positive constants calculated in (5.48) below.

Proof. We denote by ϕ(j) the characteristic functions of the random variable Y (j), to obtain

P
(
Y (j) = N


j

)= (2π)−1
∫ π

−π

ϕ(j)(t)e−iN

j t dt := (2π)−1I (j), j = 0, . . . , q. (5.27)

We will focus now on the asymptotics, as N → ∞, of the integrals I (j), j = 0, . . . , q . For any 0 < |t0,j | < π the
integral I (j) can be written in the form:

I (j) = I
(j)

1 + I
(j)

2 , j = 0, . . . , q, (5.28)

where I
(j)

1 = I
(j)

1 (t0,j ) and I
(j)

2 = I
(j)

2 (t0,j ) are integrals of the integrand of I (j), taken over the sets [−t0,j , t0,j ] and
[−π,−t0,j ] ∪ [t0,j ,π], respectively. Using the technique of [13,14], we will show that for an appropriate choice of

0 < t0,j = t0(N, j) → 0, N → ∞, j = 0, . . . , q , the main contribution to I (j), as N → ∞, comes from I
(j)

1 , i.e. from
a specially constructed neighborhood of t = 0. First, observe that

ϕ(j)(t) = (
ϕ

(j)

1 (t)
)L


j
, t ∈ R, j = 0, . . . , q, (5.29)

where ϕ
(j)

1 is the characteristic function of the random variable βj := β
(j)

1 defined by (5.6), (5.7). To derive the

asymptotics of the integral I
(j)

1 , under the above choice of t0,j , we will look for the approximation of ϕ(j)(t), as
t → 0 and N → ∞. For this purpose, we need the asymptotic expressions, as N → ∞, for Eβj , Eβ2

j and Eβ3
j . We

have

Eβj = E

j

S

j

, Eβ2
j = V 


j

S

j

, Eβ3
j = H


j

S

j

, j = 0, . . . , q, (5.30)

where H

j = H


j (δ,Mj ,Mj+1) =∑Mj+1−1
k=Mj

k3ake−δk , j = 0, . . . , q . It follows from the definitions of S

j ,E



j ,V



j and

H

j that in the case considered the problem reduces to estimation of sums of the form

Mj+1−1∑
k=Mj

akk
re−δk, ak ∼ Ckp−1, k → ∞,p > 0,C > 0, r ≥ 0, (5.31)

when N → ∞, δ is given as the solution of (5.23) and Mj, j = 0, . . . , q + 1, are as in the statement of the lemma.
The asymptotic solution of (5.23) was obtained in [14]:

δ = δN ∼ hN−1/(p+1) = (rN )−1, N → ∞, (5.32)
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where h, rN are as in (4.7). Thus, Mjδ → uj , N → ∞, j = 0, . . . , q . In view of (4.1), it is convenient to write
ak = Ckp−1G(k), where the function G is s.t. limk→∞ G(k) = 1. Then, applying the integral test (=Euler summation
formula), we get from (5.32)

Mj+1−1∑
k=Mj

akk
re−δk ∼ C

∫ Mj+1−1

Mj

xp+r−1G(x)e−δx dx

= Cδ−p−r

∫ (Mj+1−1)δ

Mj δ

xp+r−1G

(
x

δ

)
e−x dx

∼ Cδ−p−r

∫ uj+1

uj

xp+r−1G

(
x

δ

)
e−x dx ∼ δ−p−rC

∫ uj+1

uj

xp+r−1e−x dx

:= δ−p−rfj (p + r − 1), N → ∞, j = 0, . . . , q, r ≥ 0, p > 0, (5.33)

where we set uq+1 = ∞. Note that by our notation (4.17),

fj (s) = bs(uj ) − bs(uj+1), s > −1, j = 0, . . . , q. (5.34)

We also obtain from (5.33) and (5.30),

Eβr
j = O

(
δ−r

)
, N → ∞, r > 0, j = 0, . . . , q, (5.35)

and observe that

fj (p + 1)fj (p − 1) − (
fj (p)

)2
> 0,

(5.36)
fj (p + 2)fj (p − 1) − fj (p + 1)fj (p) > 0, j = 0, . . . , q.

The first of these inequalities follows immediately from the Cauchy–Schwarz inequality, while the second can be
derived by substituting fj (p − 1) from the first one and then applying again the Cauchy–Schwarz inequality.

To arrive at the required asymptotic formula for ϕ(j), we first write for a fixed N ,

ϕ
(j)

1 (t) = 1 + iEβj t − 1

2
Eβ2

j t2 + O
(
Eβ3

j t3), t → 0, j = 0, . . . , q, (5.37)

and then couple t with N by setting

t0,j = δ
(
L


j

)−1/2 log2 δ = O
(
δ1+p/2 log2 δ

)
, j = 0, . . . , q,N → ∞, (5.38)

where the last equality follows from (5.33) and (5.14). Consequently,(
Eβr

j

)
t r0,j = O

(
δrp/2 log2r δ

)→ 0, N → ∞, j = 0, . . . , q, r > 0. (5.39)

Now (5.29) and (5.37) together with (5.14), (5.15) give

ϕ(j)(t)e−iN

j t =

(
1 + iEβj t − 1

2
Eβ2

j t2 + O
(
Eβ3

j t3))L

j

e−iN

j t

∼ exp

(
it
(
L


j Eβj − N

j

)− 1

2
L


j Eβ2
j t2 + 1

2
L


j t
2(Eβj )

2 + L

j O

(
Eβ3

j t3))
(5.40)

= exp

(
it
(
EY (j) − N


j

)− 1

2
t2 VarY (j) + L


j O
(
Eβ3

j t3)),

|t | ≤ t0,j ,N → ∞, j = 0, . . . , q.
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In view of (5.35) and (5.36), the choice (5.38) of t0,j provides

lim
N→∞ t2

0,j VarY (j) = ∞, j = 0, . . . , q, (5.41)

and

lim
N→∞L


j t
3
0,j Eβ3

j = 0, j = 0, . . . , q. (5.42)

Remark 5.5. By (5.35) and (5.36),

VarY (j) = L

j

(
Eβ2

j − (Eβj )
2)= O

(
δ−2L


j

)
, N → ∞, j = 0, . . . , q (5.43)

and

E
(
Y (j) − EY (j)

)3 = L

j E(βj − Eβj )

3

= L

j

(
Eβ3

j − 3Eβ2
j Eβj + 2(Eβj )

3)= O
(
δ−3L


j

)
, N → ∞, j = 0, . . . , q. (5.44)

Hence, the following weaker (=the third moment is not absolute) form of Lyapunov’s sufficient condition for the
convergence to the normal law holds for the sums Y (j), j = 0, . . . , q:

lim
N→∞

E(Y (j) − EY (j))
3

(VarY (j))
3/2

= 0, j = 0, . . . , q. (5.45)

This explains the existence of t0,j that provides (5.41) and (5.42). The phenomenon described above is typical in
applications of Khintchine’s method (see [14,15,19]).

To continue the asymptotic expansion (5.40), we obtain from (5.30), (5.33) and (5.36)

E

j ∼ fj (p)δ−p−1, V 


j ∼ fj (p + 1)δ−p−2, VarY (j) ∼ wjδ
−p−2, S


j ∼ fj (p − 1)δ−p,
(5.46)

N → ∞, j = 0, . . . , q,

where

wj = fj (p + 1) − f 2
j (p)

fj (p − 1)
> 0, j = 0, . . . , q. (5.47)

The asymptotic relations below are the consequence of (5.14), (5.15) and (5.46):

EY (j) − N

j√

VarY (j)
= (E


j /S


j )L



j − N


j√
VarY (j)

= x◦
j

E

j

√
S0

S

j

√
VarY (j)

− x◦
j+q+1

√
V0√

VarY (j)

∼ x◦
j

fj (p)

fj (p − 1)

√
f0(p − 1)

wj

− x◦
j+q+1

√
f0(p + 1)

wj

:= κj

(
x◦
j , x◦

j+q+1

)= κj , N → ∞, j = 0, . . . , q. (5.48)

Now we are in a position to evaluate the integrals I
(j)

1 , j = 0, . . . , q . By virtue of (5.40)–(5.42) and (5.48),

I
(j)

1 =
∫ t0,j

−t0,j

ϕ(j)(t)e−iN

j t dt ∼

∫ t0,j

−t0,j

exp

(
it
(
EY (j) − N


j

)− 1

2
t2 VarY (j)

)
dt (5.49)
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= exp

(
− (EY (j) − N


j )
2

2 VarY (j)

)∫ t0,j

−t0,j

exp

[
−1

2

(
t
√

VarY (j) − i
EY (j) − N


j√
VarY (j)

)2]
dt

∼ 1√
VarY (j)

exp

(
− (EY (j) − N


j )
2

2 VarY (j)

)∫ √
VarY (j)t0,j

−√
VarY (j)t0,j

exp

[
−1

2
(t − iκj )

2
]

dt

∼ 1√
VarY (j)

exp

(
− (EY (j) − N


j )
2

2 VarY (j)

)∫ ∞

−∞
exp

[
−1

2
(t − iκj )

2
]

dt

∼
√

2π√
VarY (j)

exp

(
−κ2

j

2

)
, N → ∞, j = 0, . . . , q.

Next we turn to the estimation, as N → ∞, of the integrals I
(j)

2 , j = 0, . . . , q . We start with

∣∣I (j)

2

∣∣ := 2

∣∣∣∣∫ π

t0,j

ϕ(j)(t)e−iN

j t dt

∣∣∣∣≤ 2
∫ π

t0,j

∣∣ϕ(j)(t)
∣∣dt = 4π

∫ 1/2

t1,j

∣∣ϕ(j)(2πt)
∣∣dt

= 4π

∫ 1/2

t1,j

∣∣∣∣∣
Mj+1−1∑
k=Mj

ake(2πit−δ)k

∣∣∣∣∣
L


j (
Sj



)−L


j dt, j = 0, . . . , q, (5.50)

where we set t1,j = t0,j

2π
> 0, j = 0, . . . , q . Denote

g(j)(t) = ∣∣ϕ(j)

1 (2πt)
∣∣, t ∈

[
t1,j ,

1

2

]
, j = 0, . . . , q. (5.51)

It is easy to see from the definition of the random variables βj that g(j)(1/2) < 1, j = 0, . . . , q . Since the βj , j =
0, . . . , q , have lattice distributions with span 1, this implies (see [10], p. 131, [37], p. 286) that for a fixed N , we have
g(j)(t) < 1, t ∈ [t1,j ,1/2], j = 0, . . . , q . Moreover, g(j)(t1,j ) → 1, N → ∞, because t1,j → 0, N → ∞. We then
conclude that for sufficiently large N and any 0 < t ≤ 1/2,

g(j)(t1,j ) ≥ g(j)(t), j = 0, . . . , q. (5.52)

By the same argument,

ϕ
(j)

1 (2πt1,j ) − 1 = (
S


j

)−1
Mj+1−1∑
k=Mj

ake−δk
(
e2πikt1,j − 1

)→ 0, N → ∞, j = 0, . . . , q. (5.53)

This and (5.12) enable us to write

(
g(j)(t1,j )

)L

j =

∣∣∣∣∣1 + (
S


j

)−1
Mj+1−1∑
k=Mj

ake−δk
(
e2πikt1,j − 1

)∣∣∣∣∣
L


j

∼ exp

(
−2

(
1 + O

(
δp/2))Mj+1−1∑

k=Mj

ake−δk sin2 (πkt1,j )

)
, N → ∞, j = 0, . . . , q. (5.54)

Denote

Dj = 2

Mj+1−1∑
k=Mj

ake−δk sin2 (πkt1,j ), j = 0, . . . , q, (5.55)
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and let ũj ∈ (uj , uj+1), j = 0, . . . , q . Then we have

Dj ≥ 2

ũj N1/(p+1)∑
k=uj N1/(p+1)

ake−δk sin2 (πkt1,j )

≥ 2
(

min
k∈[uj N1/(p+1),ũj N1/(p+1)]

(
ake−δk

)) ũj N1/(p+1)∑
k=uj N1/(p+1)

sin2 (πkt1,j )

= O
(
δ−p+1) ũj N1/(p+1)∑

k=uj N1/(p+1)

sin2 (πkt1,j ), N → ∞, j = 0, . . . , q. (5.56)

Denote εj = ũj − uj > 0, j = 0, . . . , q . To estimate the last sum in (5.56), we employ the following inequality from
[15]:

2
l+m−1∑

k=l

sin2 (πtk) ≥ m

2
min

{
1, (tm)2}, |t | ≤ 1

2
,m ≥ 2, l ≥ 1. (5.57)

We apply (5.57) with l = ujN
1/(p+1) and m = εjN

1/(p+1) + 1 to get from (5.38) and (5.32),

2

ũj N1/(p+1)∑
k=uj N1/(p+1)

sin2(πkt1,j ) ≥ 1

2
εjN

1/(p+1) min
{
1,
(
εjN

1/(p+1)t1,j

)2}
= O

(
δp−1) log4 δ, N → ∞, j = 0, . . . , q. (5.58)

Now we deduce from (5.50), (5.52), (5.56) and (5.58) that∣∣I (j)

2

∣∣≤ O
(
exp

(− log4 δ
))

, N → ∞. (5.59)

Comparing this with (5.49) gives

I
(j)

2 = o
(
I

(j)

1

)
, N → ∞, j = 0, . . . , q, (5.60)

which together with (5.48), (5.49) proves the lemma. �

5.4. Completion of the proofs of Theorems 4.1, 4.3 and 4.6

To complete the asymptotic analysis of the probability R(
−→
L
,

−→
N
) in the vicinity of rN , it remains to derive the

asymptotics of P(ZN = N), as N → ∞. It was found in [13] that

P(ZN = N) ∼ 1√
2πVarZN

, N → ∞, (5.61)

where

VarZN =
N∑

k=1

k2ake−δk ∼ �(p + 2)δ−(p+2), N → ∞. (5.62)
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Substituting in (5.19) the asymptotic expressions (5.26), (5.46), (5.61) and (5.62) we obtain

R
(−→
L
,

−→
N


)∼
√

VarZN

(2π)q+1/2

(
q∏

j=0

1√
S


j VarY (j)

)
exp

[
−1

2

(
q∑

j=0

(
x◦
j

)2 f0(p − 1)

fj (p − 1)
+ κ2

j

)]

∼ δ(q(p+1)+p/2)

√
�(p + 2)

(2π)q+1/2

(
q∏

j=0

1√
wjfj (p − 1)

)
exp

[
−1

2

(
q∑

j=0

(
x◦
j

)2 f0(p − 1)

fj (p − 1)
+ κ2

j

)]
,

N → ∞. (5.63)

Next we employ the scaled quantities ν̂

j , K̂


j constructed in (4.8) and denote

−→̂
ν
 = (

ν̂

0, . . . , ν̂


q

)
,

−→̂
K
 = (

K̂

1 , . . . , K̂


q

)
,

(5.64)−→
x◦ = (

x◦
0 , . . . , x◦

q

)
,

−→
y◦ = (

x◦
q+2, . . . , x

◦
2q+1

)
.

Note that K̂

0 = −∑q

j=1 K̂

j , by (5.23). We get from (5.63)

P
(−→̂
ν
 = −→

x◦ ,
−→̂
K
 = −→y ◦) ∼

√
�(p + 2)

(2π)(2q+1)/2

(
f0(p − 1)

S0

)(1/2)(q+1)(
f0(p + 1)

V0

)(1/2)q

×
(

q∏
j=0

1√
wjfj (p − 1)

)
exp

[
−1

2

q∑
j=0

(x◦
j )2

fj (p − 1)

]

× exp

[
−1

2

q∑
j=0

(
x◦
j

fj (p)

fj (p − 1)
√

wj

− x◦
q+j+1

1√
wj

)2
]
, N → ∞, (5.65)

where x◦
q+1 = −∑q

j=1 x◦
q+j+1.

Each term of the sum in the second exponent depends on the two variables x◦
j and x◦

q+j+1 only. Hence, under a

fixed vector
−→
y◦ , the exponents in the RHS of (5.65) factorize into a product of q + 1 terms, each one depending on

only one of the x◦
j , j = 0, . . . , q . This proves the claim (i) of Theorem 4.1.

For the proof the claim (ii) of Theorem 4.1, we first need to deduce from (5.65) the central limit theorem for

the (2q + 1)-dimensional random vector (
−→̂
ν
 ,

−→̂
K
). We see that the expression (5.48) of κj , j = 0, . . . , q , that the

expression in the product of the two exponents in (5.65) is a quadratic form of the coordinates of the vector (
−→
x◦ ,

−→
y◦).

For a given q ≥ 1, we denote by Θ
(q) the (2q + 1) × (2q + 1) matrix of this quadratic form. Let now cj < dj ,
j = 0, . . . ,2q and

(−→c ,
−→
d ) = (c0, d0) × (c1, d1) × · · · × (c2q, d2q). (5.66)

We also define the sets of discrete points

G
(j)
N =

⎧⎨⎩
{
z ∈ (cj , dj ): S


j + z

√
S0

f0(p−1)
∈ N

}
if 0 ≤ j ≤ q,{

z ∈ (cj , dj ): E

j + z

√
V0

f0(p+1)
∈ N

}
if q + 1 ≤ j ≤ 2q,

(5.67)

and
−→
GN = G

(0)
N × · · · × G

(2q)
N .

Lemma 5.6 (The central limit theorem for the vector (
−→̂
ν�,

−→̂
K�)). As N → ∞, and q ≥ 1 is fixed,

P
((−→̂

ν
 ,
−→̂
K


) ∈ (−→c ,
−→
d )

)∼ (2π)−(2q+1)/2
√

Tq

∫
(−→c ,

−→
d )

exp

(
−1

2
−→z T

Θ
(q)−→z
)

d−→z , (5.68)
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where the matrix Θ
(q) is defined as above, and

Tq = �(p + 2)

(
q∏

j=0

1

wjfj (p − 1)

)
. (5.69)

Proof. We follow the known technique for passing from a local limit theorem to an integral one, that is exposed in
detail in [37], p. 60 (see also [10], p. 80 and [12]). Summing (5.65) over (

−→
x◦ ,

−→
y◦) ∈ −→

GN , we obtain

P
((−→̂

ν
 ,
−→̂
K


) ∈ (−→c ,
−→
d )

) = (2π)−(2q+1)/2
√

Tq

(
f0(p − 1)

S0

)(1/2)(q+1)(
f0(p + 1)

V0

)(1/2)q

×
∑

−→z ∈−→
GN

[
exp

(
−1

2
−→z T

Θ
(q)−→z
)(

1 + ε(−→z ,N)
)]

, N → ∞. (5.70)

From the preceding asymptotic formulae we derive the crucial fact that in (5.70),

sup
−→z ∈(−→c ,

−→
d )

ε(−→z ,N) → 0, N → ∞. (5.71)

Based on this property of uniform convergence, we treat the RHS of (5.70) as a Riemann sum with the asymptot-
ically equidistant spacings (|G(j)

N |)−1 ∼ √
f0(p − 1)/S0 ∼ δp/2, j = 0, . . . , q , and (|G(j)

N |)−1 ∼ √
f0(p + 1)/V0 ∼

δ(p+2)/2, j = q + 1, . . . ,2q , as N → ∞. �

Next, we have to show that the main term in the RHS of (5.70) is indeed the Gaussian distribution. This is equivalent
to proving that

detΘ
(q) = Tq, q ≥ 1, (5.72)

where Tq is as in (5.69). By the definition (5.47) of wj ,

1

fj (p − 1)
+ f 2

j (p)

f 2
j (p − 1)wj

= fj (p + 1)

fj (p − 1)wj

, j = 0, . . . , q. (5.73)

We first prove (5.72) for q = 1. Using (5.73) we have from (5.65)

Θ
(1) =
⎛⎜⎝

f0(p+1)
f0(p−1)w0

0 f0(p)
f0(p−1)w0

0 f1(p+1)
f1(p−1)w1

− f1(p)
f1(p−1)w1

f0(p)
f0(p−1)w0

− f1(p)
f1(p−1)w1

1
w0

+ 1
w1

⎞⎟⎠ . (5.74)

Now the claim for q = 1 follows from the identity f0(p + 1) + f1(p + 1) = C�(p + 2), p > 0, and some algebra.
This shows that the random vector (ν̂


0, ν̂

1, K̂


1) weakly converges to the Gaussian random vector with zero mean
and the covariance matrix (Θ
(1))−1. This implies (see [10], p. 89, Theorem 2.6) that for q = 1 the sequence of the
distribution functions of the random vector (ν̂


0, ν̂

1, K̂


1) is tight under each u1 > 0. Consequently, by the definition
of tightness and the form of the stratifications considered, we deduce the tightness of the distribution functions of the

random vector (
−→̂
ν
 ,

−→̂
K
), for all q > 1. Finally, by Prohorov’s theorem, the limiting distribution of the above vector is

the one of a probability measure. This proves (5.72) for q ≥ 1.
Now we derive the explicit form of the covariance matrix in Theorem 4.1. For a given q ≥ 1, let (Θ
(q))−1 =

{ϑ

mk(q)}2q

m,k=0 be the covariance matrix of the limiting Gaussian distribution in (5.68).
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Lemma 5.7.

ϑ

mk(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fm(p − 1)1m=k − fm(p)fk(p)
�(p+2)

if 0 ≤ m, k ≤ q,

fm(p)1m=k−q − fm(p)fk−q (p+1)

�(p+2)
if 0 ≤ m ≤ q, q + 1 ≤ k ≤ 2q,

fk(p)1k=m−q − fk(p)fm−q (p+1)

�(p+2)
if 0 ≤ k ≤ q, q + 1 ≤ m ≤ 2q,

fm−q(p + 1)1m=k − fm−q (p+1)fk−q (p+1)

�(p+2)
if q + 1 ≤ m, k ≤ 2q.

(5.75)

Proof. To understand the technique behind the inversion of the matrix Θ
(q), it is convenient to verify (5.75) first
for q = 2. This is easy to do with the help of the identity

∑q

j=0 fj (p + 1) = C�(p + 2), which holds for any q ≥ 1.
Taking into account the structure of the matrix Θ
(q), the verification for q > 2 can be done in the same way. �

This completes the proof of the statement (ii) of Theorem 4.1. We note that by (5.75), all covariances ϑ

mk(q)

between the scaled component counts ν̂

j , as well as between masses K̂


j are negative.
The convergence of moments, as stated in (iii) of Theorem 4.1 results from (5.71). For the proof, it is needed only

to replace probabilities with moments in the argument given in [37], p. 61 (see also [23], p. 67). We see from (5.75)
that for the proof of the claim (iv) of Theorem 4.1 one has to examine the behavior in k → ∞ of the integrals fk(p),
fk−q(p + 1) in the case when uj , j = 0, . . . , q , are equidistant points and q → ∞. Now Theorem 4.1 is completely
proved.

We proceed to the proof of Theorem 4.3. First, we recall the scaled quantities ν̂j , K̂j in (4.9) and denote

−→̂
ν = (ν̂0, . . . , ν̂q),

−→̂
K = (K̂1, . . . , K̂q). (5.76)

It follows from the definition of νj and Kj , j = 0, . . . , q , that

ν0 = ν

0, νj =

q∑
i=j

ν

i , Kj =

q∑
i=j

K

i , j = 1, . . . , q. (5.77)

By Theorem 4.1, (5.77) and (5.75), the random vector (
−→̂
ν ,

−→̂
K ) converges weakly to the Gaussian vector with zero

mean and the covariance matrix Υ (q) = {emk}2q

m,k=0 given by:

emk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(p − 1) − f 2
0 (p−1)

�(p+2)
if m = k = 0,

−f0(p)bp(uk)

�(p+2)
if m = 0, 0 < k ≤ q,

−f0(p)bp+1(uk−q )

�(p+2)
if m = 0, q + 1 ≤ k ≤ 2q,

bp−1(umax(m,k)) − bp(um)bp(uk)

�(p+2)
if 0 < m, k ≤ q,

bp(umax(m,k−q)) − bp(um)bp+1(uk−q )

�(p+2)
if 0 < m ≤ q, q + 1 ≤ k ≤ 2q,

bp+1(umax(m,k)−q) − bp+1(um−q )bp+1(uk−q )

�(p+2)
if q + 1 ≤ m, k ≤ 2q.

(5.78)

Applying now (5.78) with 1 < m,k ≤ q gives the claim (i) of Theorem 4.3.
For the proof of the claim (ii) of the theorem, we first recall that in the notation (2.1), νj = ν(rNuj ), j = 1, . . . , q ,

with rN as in (4.7). Thus, letting q = 1 and u1 = u, we rewrite the first part of (4.9) as

ν̂1 =√
f0(p − 1)

ν(rNu) − S1√
S0

(5.79)

to get with the help of (5.33), (5.34), (4.7) and the notation (2.2), the desired relation (4.19) between ν̂j and the fluc-
tuations �(uj ) for j = 1, . . . , q . By virtue of the convergence stated in (i) of Theorem 4.3, the fact that Nr−1

N → ∞,
as N → ∞ and the continuity of Var ν̂1 in u, we derive that ν̂1 is stochastically equicontinuous (see e.g., [34], p. 471)
in u ∈ [c, d], where [c, d] is any finite interval. This implies the claim (iii) of the theorem.
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Now we turn to the proof of Theorem 4.6 which will be done in the manner similar to the proof of Theorem 4.1.
For a given q ≥ 1, we consider the stratification points Mj, j = 0, . . . , q + 1, as in (4.20), and define the quantities
S


j ,E


j ,V



j , j = 0, . . . , q , as in (5.7) and (4.11). Clearly, Lemma 5.1 remains valid with the above points Mj . In

accordance with the problem considered, the vectors
−→
L



and

−→
N



are taken now in a slightly different form:

L

j = S


j + x2j

√
S


j , j = 0, . . . , q, (5.80)

and

N

j = E


j + x2j+1

√
V 


j , j = 0, . . . , q − 1, N

q = N −

q−1∑
j=0

N

j , (5.81)

where x0, . . . , x2q are arbitrary reals not depending on N . Under δ = δN chosen as in (5.32), the following analog of
Lemma 5.3 is then valid:

R
(−→
L
,

−→
N


)∼ W

(2π)(q+1)/2

(
q∏

j=0

1√
S


j

)
exp

(
−1

2

q∑
j=0

x2
2j

)
, N → ∞, (5.82)

where W is defined by (5.20). It is important to note that here, in contrast to the previous setting,

lim
N→∞ δMj = 0, j = 0, . . . , q, (5.83)

by (5.32) and (4.20). Next we will intend to show that the local limit theorems (5.26) are valid with κj replaced with
τj given by (5.90), (5.91) below. First, by the definition (4.20) of Mj and by (5.83), the integral test gives for r ≥ 0
and N → ∞,

Mj+1−1∑
k=Mj

akk
re−δk ∼

{
M

p+r
j+1 −M

p+r
j

p+r
if j = 0, . . . , q − 1,

�(p + r)δ−p−r if j = q.
(5.84)

From this and (5.6), we derive that, under N → ∞ and r > 0,

Eβr
j =

{
O
(
Mr

j+1

)
if j = 0, . . . , q − 1,

O
(
δ−r

)
if j = q.

(5.85)

In the case considered the analog of (5.38) will be

t0,j =
{(

L

j

)−1/2
M−1

j+1 log2 L

j if j = 0, . . . , q − 1,

δ
(
L


q

)−1/2 log2 L

q if j = q.

(5.86)

Thus, we obtain that for any r ≥ 0 and N → ∞,

(
Eβr

j

)
t r0,j =

{
O
(
M

−pr/2
j+1 log2r Mj+1

)
if j = 0, . . . , q − 1,

O
(
δpr/2 log2r δ

)
if j = q.

(5.87)

It is easy to see that (5.87) guarantees the conditions (5.41) and (5.42). Next, we have from (5.84)

lim
N→∞

E

j√

V 

j S


j

=

⎧⎪⎨⎪⎩
limN→∞

(√
p(p+2)
p+1

) M
p+1
j+1 −M

p+1
j√

(M
p+2
j+1 −M

p+2
j )(M

p
j+1−M

p
j )

:= αj if j = 0, . . . , q − 1,

�(p+1)√
�(p)�(p+2)

:= αq if j = q,
(5.88)
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where the limits 0 < αj < 1, j = 0, . . . , q , by (4.20) and some algebra. It follows from (5.81) that

N

q = E


q −
q−1∑
j=0

x2j+1

√
V 


j . (5.89)

We obtain from (5.84), (4.20), (5.81) and (5.80)

N

j − EY (j)

√
VarY (j)

= N

j − (E


j /S


j )L



j√

VarY (j)
= x2j+1

√
V 


j√
VarY (j)

− x2j

E

j√

S

j VarY (j)

∼
x2j+1

√
V 


j − x2j (E


j /
√

S

j )√

V 

j − (E


j )
2/S


j

→ x2j+1 − αjx2j√
1 − α2

j

:= τj , N → ∞, j = 0, . . . , q − 1, (5.90)

while for j = q we have

N

q − EY (q)

√
VarY (q)

= −
∑q−1

j=0 x2j+1

√
V 


j√
VarY (q)

− x2q

E

q√

S

q VarY (q)

∼ −x2q

E

q√

S

q VarY (q)

→ − αqx2q√
1 − α2

q

:= τq, N → ∞. (5.91)

We observe that |τj | < ∞, j = 0, . . . , q . Proceeding further along the same lines as in the proof of Lemma 5.4 leads
to the desired analog of (5.26). Consequently, (5.63) takes the form

R
(−→
L
,

−→
N


)∼
√

VarZN

(2π)(2q+1)/2

(
q∏

j=0

1√
S


j VarY (j)

)
exp

(
−1

2

[
q∑

j=0

x2
2j + τ 2

j

])
, N → ∞. (5.92)

Now we define the scaled quantities for the problem considered

ν̂

j = ν


j − S

j√

S

j

, j = 0, . . . , q,

K̂

j = K


j − E

j√

V 

j

, j = 0, . . . , q − 1,

and denote

−→̂
ν
 = (

ν̂

0, . . . , ν̂


q

)
,

−→̂
K
 = (

K̂

0 , . . . , K̂


q−1

)
. (5.93)

(5.88) and (5.62) imply that

VarZN ∼ V 

q

and

V 

j

VarY (j)
→ 1

1 − α2
j

< ∞, N → ∞, j = 0, . . . , q. (5.94)
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Substituting (5.94) into (5.92) gives

P
(−→̂
ν
 = −→x ,

−→̂
K
 = −→y ) ∼ (2π)−(2q+1)/2

(
q−1∏
j=0

1√
S


jV


j

)
1√
S


q

(
q∏

j=0

1√
1 − α2

j

)

× exp

(
−1

2

[
q−1∑
j=0

(
x2

2j + (x2j+1 − αjx2j )
2

1 − α2
j

)
+ x2

2q

1 − α2
q

])
, N → ∞, (5.95)

where we set −→x = (x0, x2, . . . , x2q) and −→y = (x1, x3, . . . , x2q−1).

Remark 5.8. At the first glance, the expression (5.95) and its analog (5.65) for Theorem 4.1 look very much alike.
A crucial difference between them is that in (5.65) the variables x◦

j are linked via the relation
∑2q+1

j=q+1 x◦
j = 0, while

in (5.95) the variables xj are free. Formally, this is implied by the fact that the value κq in (5.48) depends on x◦
q and

x◦
2q+1, whereas the value τq in (5.91) depends on x2q only. As a result of the aforementioned difference, conditional

independence in Theorem 4.1 transforms to independence in Theorem 4.3.

From (5.95), the claim (i) of Theorem 4.6 follows immediately. It is left to find explicitly the covariance matrix of
the corresponding limiting Gaussian distribution. For the sake of convenience, we write �z = (x0, . . . , x2q). Then the
matrix, say B , of the quadratic form in the exponent of (5.95) has a diagonal block structure with the blocks Bj of the
form

Bj =
( 1

1−α2
j

− αj

1−α2
j

− αj

1−α2
j

1
1−α2

j

)
, j = 0, . . . , q − 1, (5.96)

and

Bq = 1

1 − α2
q

. (5.97)

Thus,

detB =
q∏

j=0

detBj =
q∏

j=0

1

1 − α2
j

(5.98)

and

B−1
j =

(
1 αj

αj 1

)
, j = 0, . . . , q − 1, B−1

q = 1 − α2
q . (5.99)

In accordance with the above notation for �z, we set
−→̂
χ = (ν̂


0, K̂

0 , ν̂


1, K̂

1 , . . . , ν̂


q−1,K


q−1, ν̂



q) which enables to

rewrite (5.95) as

P
(−→̂
χ = −→z )∼ 1

(2π)(2q+1)/2
√

detB

(
q−1∏
j=0

1√
S


jV


j

)
1√
S


q

exp

(
−1

2
−→z B−→z T

)
, N → ∞. (5.100)

Hence, the covariance matrix B−1 of the Gaussian distribution can be written as the Kronecker product of blocks B−1
j

as in (5.99):

B−1 = B−1
0 ⊗ B−1

1 ⊗ · · · ⊗ B−1
q . (5.101)

Finally, by the same argument as before, we derive the weak convergence as stated in (ii) of Theorem 4.6.
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6. Comparison with limit shapes for the generalized Bose–Einstein and Fermi–Dirac models of ideal gas

Recall (see Section 3) that the generalized BE and the FD models in the title are associated with the generating
functions F (BE),F (FD) respectively:

F (BE)(x) =
∏
k≥1

1

(1 − xk)mk
, F (FD)(x) =

∏
k≥1

(
1 + xk

)mk , |x| < 1,mk = Ckp−1,p ≥ 1,C > 0. (6.1)

Limit shapes for these models, say C
(BE)
p−1 , C

(FD)
p−1 respectively, were obtained by Vershik in [43,44]:

C
(BE)
p−1 (u) =

∫ ∞

u

xp−1 e−c1x

1 − e−c1x
dx, C

(FD)
p−1 (u) =

∫ ∞

u

xp−1 e−c2x

1 + e−c2x
dx, u ≥ 0,p ≥ 1, (6.2)

where c1 = c1(p) > 0, c2 = c2(p) > 0 are normalizing constants.
It is interesting to compare these limit shapes with the ones, denoted lp−1, in our Theorem 4.3:

lp−1(u) =
∫∞
u

e−xxp−1 dx

�(p + 1)
, u ≥ 0,p > 0. (6.3)

First, note that the limit shapes for both models are derived under the scalings rN of the same order N1/(p+1). In
view of Proposition 2.4, the immediate explanation of this striking coincidence is that by the result of Vershik and
Yakubovich ([47], Section 5), the models (6.1) of ideal gas have the same threshold N1/(p+1) as the models considered
in the paper. In a broader context, we point that the generalized BE models and the models (2.9) studied in our paper,
are linked with each other via the exponentiation of the generating function F (BE) (see [5]). Moreover, the Bell–Burris
Lemma 5.1 in [7] states that if the parameter function m = {mk} for the generalized BE model (multiset) is such that
limk→∞ mk−1

mk
= y with y < 1, then the corresponding multiplicative measure for the BE model is asymptotically

equivalent to the measure μN (assembly) given by (2.9) with ak ∼ mk , k → ∞. However, for the generalized BE
models (6.1), limk→∞ mk−1

mk
= 1, which explains the following basic difference in the form of the limit curves C

(BE)
p−1

and lp−1. From (6.3), (6.2) we see that

lp−1(0) = p−1 < ∞, p > 0, (6.4)

while

C
(BE)
0 (0) = lim

u→0+ −
√

6

π
log

(
1 − exp

(
− πu√

6

))
= ∞, Cp−1(0) < ∞,p > 1. (6.5)

By (2.1)–(2.3), the value of a limit shape at u = 0 “approximates” the random variable ν̃(0) = the total number of
components in a random partition, multiplied by the factor rN

N
. In [43,44] the phenomenon (6.5) is linked with the

Bose–Einstein condensation of energy. According to this interpretation, the finiteness of the limit shape at u = 0 indi-
cates the appearance of condensation of energy (around the value N

rN
), and in view of this the value p = 1 (=uniform

distribution on the set ΩN ) was distinguished as the phase transition point for the generalized BE models (6.1). We
now give an analytic explanation of the fact that C

(BE)
0 (0) = ∞ in contrast to l0(0) < ∞. By the seminal result of

Erdös and Lehner (1941) (for references see [47]), the number of components in a random partition of N is asymp-
totically 2π√

6

√
N logN � √

N = N
rN

. On the other hand, it was proven in [12] that the number of components in our

model with p = 1 is asymptotically
√

N = h N
rN

, where the constant h is as in (4.7).
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