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Abstract. We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an
application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal
processes with Bernoulli noise.

Résumé. Nous montrons que toute chaîne de Markov sans cycles sur un espace discret peut être vue comme un processus ponctuel
determinantal. Comme application, nous démontrons des théorèmes limites centrales pour le nombre de particules dans une fenêtre
pour des processus de renouvellement et des processus de renouvellement markoviens avec un bruit de Bernoulli.
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Introduction

Let X be a discrete space. A (simple) random point process P on X is a probability measure on the set 2X of all subsets
of X. P is called determinantal if there exists a |X| × |X| matrix K with rows and columns marked by elements of X,
such that for any finite Y = (y1, . . . , yn) ⊂ X one has

P
{
X ∈ 2X|Y ⊂ X

} = det[Kyiyj
]ni,j=1.

The matrix K is called a correlation kernel for P .
A similar definition can be given for X being any reasonable space; then the measure lives on locally finite subsets

of X.
Determinantal point processes (with X = R) have been used in random matrix theory since the early 60s. As a

separate class, determinantal processes were first singled out in the mid-70s in [9] where the term fermion point
processes was used. The term “determinantal” was introduced at the end of the 90s in [2], and it is now widely
accepted. We refer the reader to surveys [1,8,12,15] for further references and details.

Determinantal point processes have been enormously effective for studying scaling limits of interacting parti-
cle systems arising in a variety of domains of mathematics and mathematical physics including random matrices,
representation theory, combinatorics, random growth models, etc. However, these processes are still considered as
“exotic” – the common belief is that one needs a very special probabilistic model to observe a determinantal process.

The main goal of this note is to show that determinantal point processes are much more common. More exactly,
we show that for any loop-free Markov chain the induced measure on trajectories is a determinantal point process.
(Note that the absence of loops is essential – otherwise trajectories cannot be viewed as subsets of the phase space.)
We work in a discrete state space in order to avoid technical difficulties like trajectories that may have almost closed
loops, but our construction easily extends to suitable classes of loop-free Markov chains on continuous spaces as well.
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Surprisingly, very little is known about arbitrary determinantal point processes. However, in the case when the
correlation kernel is self-adjoint, several general results are available, and even more is known when the kernel is both
self-adjoint and translation invariant (with X = Z

d or R
d ). See [1,8,12] and [15] for details.

In our situation, the kernel is usually not self-adjoint,1 and self-adjoint examples should be viewed as “exotic.” One
such example goes back to [9], see also [12], Section 2.4: It is a 2-parameter family of renewal processes – processes
on Z or R with positive i.i.d. increments. Our result implies that if we do not insist on self-adjointness then any process
with positive i.i.d. increments is determinantal.

As an application, we prove a central limit theorem for the number of points in a growing window for renewal
processes with Bernoulli noise and for Markov renewal processes (also known as semi-Markov processes) with
Bernoulli noise. The proof is a version of the argument from [5,13] adapted to non-self-adjoint kernels.

The key property that allows us to prove the central limit theorem is the boundedness of the operator defined by
the correlation kernel in �2(X). This boundedness is a corollary of what is known as a “renewal theorem” with a
controlled rate of convergence.

1. Markov chains and determinantal point processes

Let X be a discrete space, and let P = [Pxy]x,y∈X be the matrix of transition probabilities for a discrete time Markov
chain on X. That is, Pxy ≥ 0 for all x, y ∈ X and

∑
y∈X

Pxy = 1 for any x ∈ X.

Let us assume that our Markov chain is loop-free, i.e., the trajectories of the Markov chain do not pass through the
same point twice almost surely. In other words, we assume that(

P k
)
xx

= 0 for any k > 0 and x ∈ X.

This condition guarantees the finiteness of the matrix elements of the matrix

Q = P + P 2 + P 3 + · · · .
Indeed, (P k)xy is the probability that the trajectory started at x is at y after kth step. Hence, Qxy is the probability
that the trajectory started at x passes through y �= x, and since there are no loops, we have Qxy ≤ 1. Clearly, Qxx ≡ 0.

Theorem 1.1. For any probability measure π = [πx]x∈X on X, consider the Markov chain with initial distribution π

and transition matrix P as a probability measure on trajectories viewed as subsets of X. Then this measure on 2X is
a determinantal point process on X with correlation kernel

Kxy = πx + (πQ)x − Qyx.

Before proceeding to the proof, let us point out that for any Markov chain {X(n)} on a discrete state space X̂, its
graph {(n,X(n)), n = 1,2, . . .} is a loop-free Markov chain on X = Z>0 ×X̂. Hence, the graph defines a determinantal
point process.

Also, there exists a class of Markov chains {X(n)} such that for each n, X(n) is a random point configuration
in some space X̂0, and the graph {(n,X(n))} defines a determinantal point process on Z>0 × X̂0, see e.g. [3,7,16].
(Here X̂ is a suitable space of point configurations in X̂0.) In such a case, the graph carries two types of determinantal
structures, the second one on Z>0 × X̂ is afforded by Theorem 1.1.

The author is grateful to one of the referees for these remarks.
The proof of Theorem 1.1 is based on the following simple lemma, cf. [12], proof of Theorem 6.

1In fact, it can be written as a sum of a nilpotent matrix and a matrix of rank 1.
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Lemma 1.2. For any a1, . . . , an, b1, . . . , bn, c1, . . . , cn−1 ∈ C

det

⎡
⎢⎢⎢⎢⎢⎣

a1b1 a1b2 a1b3 a1b4 . . . a1bn−1 a1bn

c1 a2b2 a2b3 a2b4 . . . a2bn−1 a2bn

∗ c2 a3b3 a3b4 . . . a3bn−1 a3bn

∗ ∗ c3 a4b4 . . . a4bn−1 a4bn

· · · · · · · · · · · · · · · · · · · · ·
∗ ∗ ∗ ∗ . . . cn−1 anbn

⎤
⎥⎥⎥⎥⎥⎦ = a1(a2b1 − c1)(a3b2 − c2) · · · (anbn−1 − cn−1)bn.

Proof. The determinant in question is an nth degree polynomial in ai ’s with the highest coefficient a1 · · ·anb1 · · ·bn,
which vanishes at a1 = 0, a2 = c1/b1, . . . , an = cn−1/bn−1. This implies the statement for b1 · · ·bn �= 0, and thus, by
continuity for all values of the parameters. �

Proof of Theorem 1.1. Let us evaluate the correlation function ρn(x1, . . . , xn) using the Markov chain. First, let us
reorder the points x1, . . . , xn in such a way that Qxixj

= 0 for i > j . This is always possible because if Qxy > 0 then
Qyx = 0, and if Qxy > 0 and Qyz > 0 then Qxz > 0, so we are simply listing the elements of a finite partially ordered
set in a nondecreasing order. (For example, we can first list all minimal elements, then all elements that are minimal
in the remaining set, etc.)

Once the points are ordered as described, using the Markov property we immediately compute

ρn(x1, . . . , xn) = (
πx1 + (πQ)x1

)
Qx1x2 · · ·Qxn−1xn .

Lemma 1.2 (used with bi ≡ 1) shows that this is exactly det[Kxixj
]ni,j=1. �

Denote by Y a finite subset of X such that if a trajectory of our Markov chain leaves Y then it does not return to Y

almost surely. In other words, if Qyz > 0 for some y ∈ Y and z ∈ X \ Y, then Qzy′ = 0 for any y′ ∈ Y.
In order to consider the behavior of our Markov chain restricted to Y, it is convenient to contract the complement

X \ Y into one “final” state F . Then the transition matrix for the new Markov chain on Y ∪ {F} coincides with P on
Y × Y, and for any y ∈ Y

PyF = 1 −
∑
y′∈Y

Pyy′ =
∑

z∈X\Y
Pyz, PFy = 0, PFF = 1.

Set

π̃y(Y) = Prob{Intersection of the random trajectory with Y starts at y},
π0(Y) = Prob{The random trajectory does not intersect Y}.

Thus, π0(Y) = 1 − ∑
y∈Y π̃y(Y). In what follows, we will use the notation π̃y and π0 instead of π̃y(Y) and π0(Y)

for the sake of brevity.
Let KY denote the restriction of the matrix K of Theorem 1.1 to Y × Y.

Theorem 1.3. In the above notation, we have det(1 − KY) = π0. If π0 �= 0 then the matrix LY := KY(1 − KY)−1

has the form

(LY)xy = π̃xPyF
π0

− Pyx, x, y ∈ Y.

Proof. The first statement is a well-known corollary of Theorem 1.1 which can also be easily proved using the
inclusion–exclusion principle.

Assume that π0 �= 0. For any subset Y of Y choose the ordering (y1, . . . , ym) of its points in the same way as we
did in the proof of Theorem 1.1: Qyiyj

= 0 for i > j . Then Lemma 1.2 yields

det(LY|
Y×Y

) = π−1
0 · π̃y1Py1y2 · · ·Pym−1ymPymF

= π−1
0 · Prob{Intersection of the random trajectory with Y is Y }.
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Hence,

det(1 + LY) =
∑
Y⊂Y

det(LY|
Y×Y

) = π−1
0 ,

and the matrix (1 + LY) is invertible.
Using the identity

LY

1 + LY

=
( −PY

1 − PY

)t

+ 1

1 − P t
Y

(
LY + P t

Y

) 1

1 + LY

,

where by PY we mean the restriction of P to Y × Y; and noting the fact that PY(1 − PY)−1 gives the restriction
QY of Q to Y × Y (here we use the assumption that the trajectories that leave Y do not come back), we reduce the
statement of the theorem to the following two relations:

∑
y′∈Y

(
1

1 − PY

)
y′y

π̃y′ = πy + (πQ)y,
∑
y′∈Y

(
1

1 + LY

)
y′y

Py′F ≡ π0.

The two sides of the first relation represent two ways of computing the probability that y ∈ Y lies on the random
trajectory of our Markov chain, and the second relation is easily verified once both sides are multiplied by (1+Lt

Y
). �

2. Random point processes with Bernoulli noise

Let X be a discrete set and let P be a random point process on X (that is, P is a probability measure on 2X). Given
two sequences of numbers

0 ≤ px ≤ 1, 0 ≤ qx ≤ 1, x ∈ X,

we define a new random point process P(p,q) on X as follows. The random point configuration X ⊂ X is being
transformed by the following rules:

• Each particle x ∈ X is removed with probability px , and it remains in place with probability 1 − px ;
• At each empty location y ∈ X \ X a new particle appears with probability qy , and the location remains empty with

probability 1 − qy ;
• The above operations at different locations are independent.

We say that P(p,q) is the process P with Bernoulli noise.
Note that replacing the random point configuration X with its complement on the whole space X or on its part (the

so-called particle–hole involution) can be viewed as a special case of the Bernoulli noise.
We will use the notation D = diag(dx) for the diagonal matrix with matrix elements

Dxy =
{

dx, x = y,

0, x �= y,
x, y ∈ X.

Theorem 2.1. For a determinantal point process P on X with correlation kernel K , the process with Bernoulli noise
P(p,q) is also determinantal, and its correlation kernel is given by

K(p,q) = diag(qx) + diag(1 − px − qx) · K.

Comments. 1. The theorem implies that if px + qx ≡ 1 then the noisy process P(p,q) is independent of the initial
process P , and it coincides with the product of Bernoulli random variables located at the points x ∈ X with probability
of finding a particle at x equal to qx . This fact is easy to see independently. Indeed, 1 − px and qx are conditional
probabilities of finding a particle at x given that the initial process has or does not have a particle there, and px +
qx = 1 implies that these probabilities are equal.
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2. The particle–hole involution on X or its part corresponds to taking both px and qx equal to 1 on the corre-
sponding part of the space.

3. The class of random point processes obtained as measures on trajectories of loop-free Markov chains is not
stable under the application of Bernoulli noise.

4. Theorem 2.1 can be viewed as a special case of [4], Theorem 4.2.

Proof of Theorem 2.1. We will consider the case when px and qx are not equal to zero for just one x = x0 ∈ X. The
general case is clearly obtained by composition of such transformations.

From the definition of Bernoulli noise, we obtain

P(p,q)(X) = (1 − px0)P(X) + qx0P
(
X \ {x0}

)
if x0 ∈ X.

Summing over all X ∈ X that contain a fixed finite set Y (which contains x0) we obtain

ρ(p,q)(Y ) = (1 − px0) · ρ(Y ) + qx0 · (ρ(
Y \ {x0}

) − ρ(Y )
) = (1 − px0 − qx0) · ρ(Y ) + qx0 · ρ(

Y \ {x0}
)

with

ρ(Y ) =P
{
X ∈ 2X|Y ⊂ X

}
, ρ(p,q)(Y ) =P(p,q)

{
X ∈ 2X|Y ⊂ X

}
.

One readily sees that the above relation is exactly the relation between the symmetric minors of the matrices K(p,q)

and K if the corresponding sets of rows and columns contain those marked by x0. On the other hand, the correlation
functions ρ(p,q) and ρ of P(p,q) and P away from x0 are clearly identical, and same is true about the symmetric
minors of K(p,q) and K not containing the row and the column marked by x0. �

3. CLT for number of points in a window of a determinantal process

Let X be a discrete set and P be a determinantal process on X with correlation kernel K . For any finite subset Y of
X, let us denote by NY the number of points of the random point configuration that lie in Y. Using the definition of
the correlation kernel, it is straightforward to verify that

ENY = TrKY, VarNY := E(NY − ENY)2 = Tr
(
KY − K2

Y

)
,

where E denotes the expectation with respect to P and KY is the restriction of K to Y × Y.
The following statement can be essentially extracted from [5,13] and [14]. An important difference though is that

here we consider correlation kernels which are not necessarily self-adjoint.

Theorem 3.1. Assume that the correlation kernel K defines a bounded operator in �2(X). Then for any sequence
{Ym} of finite subsets of X such that

lim
m→∞|Ym| = ∞, VarNYm

≥ c1 · |Ym|c2 , m ≥ 1,

for some strictly positive constants c1 and c2, the following central limit theorem for NYm
holds:

lim
m→∞ Prob

{
NYm

− ENYm√
VarNYm

≤ x

}
= 1√

2π

∫ x

−∞
e−t2/2 dt

for any x ∈ R.

Proof. As is shown in [13], Lemma 1, for k ≥ 2 the lth cumulant of the random variable NY is a linear combination
of expressions of the form Tr(KY − Km

Y
) with m ranging from 2 to l. Using the idea from [13], Lemma 2, we
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obtain

∣∣Tr
(
KY − Km

Y

)∣∣ ≤
m−1∑
k=1

∣∣Tr
(
Kk

Y − Kk+1
Y

)∣∣ ≤
m−1∑
k=1

∥∥Kk
Y − Kk+1

Y

∥∥
1

≤ ‖1 − KY‖1

m−1∑
k=1

‖KY‖k ≤ ‖1 − KY‖1

m−1∑
k=1

‖K‖k,

where we used the inequalities |TrA| ≤ ‖A‖1 and ‖AB‖1 ≤ ‖A‖ · ‖B‖1. Since the trace norm of a matrix does not
exceed the sum of the absolute values of its entries (and matrix elements of an operator are bounded by its norm), we
see that

‖1 − KY‖1 ≤ (
1 + ‖K‖) · |Y|2.

Thus, the absolute value of any cumulant of NYm
starting from the second one grows not faster than a fixed

constant times |Ym|2. Hence, the absolute value of the lth cumulant of the normalized random variable (NYm
−

ENYm
)/

√
VarNYm

is bounded by a constant times

|Ym|2
(VarNYm

)l/2
≤ c−1

1 · |Ym|2−c2l/2.

In particular, for large enough l it converges to zero as |Ym| → ∞. [14], Lemma 3, completes the proof. �

4. (Delayed) Renewal processes

In this section, we will apply our previous results to one of the simplest examples of loop-free Markov chains – renewal
processes. For the sake of simplicity, we will consider only the discrete case. A large portion of our statements can be
easily carried over to the continuous setting.

Let ξ0, ξ1, ξ2, . . . be a sequence of mutually independent random variables with values in Z>0, such that ξ1, ξ2, . . .

(but not ξ0) have a common distribution. By definition, the sequence

S0 = ξ0, S1 = ξ0 + ξ1, S2 = ξ0 + ξ1 + ξ2, . . .

of partial sums forms a delayed renewal process, see, e.g., [6], Volume II, Section VI.6. The word “delayed” refers to
a differently distributed ξ0.

Clearly, {Si}∞i=0 is a trajectory of the loop-free Markov chain on Z>0 with the initial distribution and transition
probabilities given by

πi = Prob{ξ0 = i}, Pij = Prob{ξ1 = j − i}, i, j ∈ Z>0.

Thus, by Theorem 1.1, the sequence {Si}∞i=0 forms a determinantal point process on Z>0.
Let us now restrict our attention to the case when the distributions of random variables ξi have exponentially de-

caying tails. It is very plausible that the results proved below can be extended to more general classes of distributions.

Definition. We say that a random variable ξ with values in Z>0 belongs to class E if there exists a constant r ∈ (0,1)

such that Prob{ξ = n} ≤ rn for large enough n.

Definition. An integral valued random variable ξ is called aperiodic if

Prob{ξ ∈ NZ} < 1 for any N ≥ 2,

that is, the distribution of ξ is not fully supported by NZ.
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The main result of this section is the following statement.

Theorem 4.1. The delayed renewal process with aperiodic ξ1 and ξ0, ξ1 ∈ E , and with arbitrary Bernoulli noise
defines a determinantal point process on Z>0 whose correlation kernel may be chosen so that it represents a bounded
operator in �2(Z>0).

The proof is based on the following lemma.

Lemma 4.2. Consider a random variable ξ with values in Z>0 which belongs to E and is aperiodic. Set

f (z) =
∞∑

m=1

(
Ezξ

)m =
∞∑

n=1

fnz
n.

Then there exist positive constants c1 and c2 such that∣∣fn − (Eξ)−1
∣∣ ≤ c1e−c2n for all n ≥ 1.

Comments. The limit relation limn→∞ fn = (Eξ)−1 holds without the assumption that ξ ∈ E and is commonly called
the “Renewal theorem,” see, e.g., [6], Volume I, Chapter XIII.

Proof of Lemma 4.2. Denote g(z) = Ezξ . We have |g(z)| < 1 for |z| < 1, hence for |z| < 1

f (z) =
∞∑

m=1

gm(z) = g(z)

1 − g(z)
.

Using the notation g1 = g′(1) = Eξ , we obtain

f (z) = 1

g1(1 − z)
+ (1 + g1(1 − z))g(z) − 1

g1(1 − z)(1 − g(z))
, |z| < 1.

Since ξ ∈ E , the function g(z) is holomorphic in a disc of radius greater than 1, in particular, it is holomorphic in a
neighborhood of 1. Hence, using the notation g2 = 1

2g′′(1) = 1
2E(ξ(ξ − 1)), we obtain

(1 + g1(1 − z))g(z) − 1

g1(1 − z)(1 − g(z))
= − (1 + g1(1 − z))(1 + g1(z − 1) + g2(z − 1)2 + O((z − 1)3)) − 1

g1(1 − z)2(g1 + O(z − 1))

= g2
1 − g2 + O(z − 1)

g2
1(1 + O(z − 1))

as z → 1. Thus, f (z) − 1/(g1(1 − z)) is holomorphic in a neighborhood of z = 1. In addition to that, the fact that ξ

is aperiodic implies that g(z) is not equal to 1 at any point z �= 1 of the unit circle. Therefore, the function f (z) −
1/(g1(1 − z)) can be analytically continued to a disc of radius greater than 1. This implies the needed estimate. �

Proof of Theorem 4.1. By Theorem 2.1, it suffices to prove the statement without Bernoulli noise. Lemma 4.2 applied
to ξ = ξ1 implies that there exist positive constants c1 and c2 such that∣∣Qij − (Eξ1)

−1
∣∣ ≤ c1ec2(i−j), i < j.

(Here we use the same notation as before: Q = P +P 2 +P 3 +· · ·.) We know that πi ’s decay exponentially as i → ∞
because ξ0 ∈ E . Furthermore,

∣∣(πQ)j − (Eξ)−1
∣∣ =

∣∣∣∣∣
j−1∑
i=1

πiQij − (Eξ)−1

∣∣∣∣∣ ≤ (Eξ)−1
∞∑

i=j

πi + c1

j−1∑
i=1

πie
c2(i−j),

which is easily seen to be exponentially decaying in j → ∞.



26 A. Borodin

Thus, the matrix

Kij = πi + (πQ)i − Qji, i, j = 1,2, . . . ,

afforded by Theorem 1.1 has the following properties:

|Kij | ≤ const1, i ≤ j,

|Kij | ≤ const2 e− const3(i−j) + const4 e− const5 i , i > j.

for certain positive constants. This implies that if we consider the matrix K̃ with matrix elements K̃ij = eα(i−j)Kij

with positive α < min{const3, const5} then the corresponding operator in �2(Z>0) will be bounded. On the other hand,
the symmetric minors of K and K̃ are clearly the same. Thus, K̃ is the needed correlation kernel. �

Corollary 4.3. The central limit theorem for the number of particles in a window as described in Theorem 3.1 holds
for the delayed renewal processes with Bernoulli noise which satisfy the assumptions of Theorem 4.1.

Comments. 1. In the absence of Bernoulli noise, the central limit theorem for N[0,T ] is an easy corollary of the
classical central limit theorem for sums of i.i.d. random variables, see, e.g., [6], Volume II, Section XI.5. However,
with the presence of Bernoulli noise the statement does not look as obvious.

2. In concrete examples (including the one mentioned in the previous comment), the asymptotic behavior of the
expectation and variance of NY can often be computed explicitly using the formulas

ENY = TrKY, VarNY = Tr
(
KY − K2

Y

)
.

5. Markov renewal processes

Markov renewal process (or semi-Markov processes) are hybrids of Markov chains and renewal processes introduced
by Lévy and Smith in 1954. An excellent introduction to Markov renewal processes can be found in [10] and [11].

We will use one of the simplest possible settings.
Consider a Markov chain on X = S × Z>0 with transition probabilities

P
(
(s1, t1) → (s2, t2)

) = Ps1s2(t2 − t1),

where for any s1, s2 ∈ S the function Ps1s2(t) is supported by Z>0,

∞∑
t=1

Ps1s2(t) =: Ps1s2 ∈ [0,1], s1, s2 ∈ S,

and [Ps1s2]s1,s2∈S is the matrix of transition probabilities for a Markov chain on S.
The projection of thus defined Markov chain on X to the first coordinate is the Markov chain on S sometimes called

the “driving” Markov chain. The Markov chain on X is a Markov renewal process. It can be viewed as the driving
Markov chain with randomly transformed time scale – the passage time from s1 to s2 is a random variable depending
on s1 and s2.

Theorem 5.1. Assume that S is finite and the driving Markov chain on S is irreducible. Assume further that whenever
Pss′ �= 0, the passage time between s and s′ (which is equal to t with probability Pss′(t)/Pss′ ) is aperiodic and is in
E , and that the initial distribution for the Markov renewal process conditioned on the first coordinate being fixed (and
arbitrary) is also in E .

Then the point process on X formed by trajectories of the Markov renewal process, with any Bernoulli noise, is
a determinantal point process, and the correlation kernel may be chosen so that it represents a bounded operator in
�2(X).
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Comments. 1. The assumptions of S being finite, the driving chain being irreducible and passage times being ape-
riodic and in E can probably be relaxed. For example, instead of requiring that all passage times are aperiodic, one
can impose the weaker condition of the first return time from any state to itself being aperiodic.

2. Theorem 4.1 is a special case of Theorem 5.1 obtained by considering the set S with a single element.

Proof of Theorem 5.1. If we start the Markov renewal process at any state s then the times of its arrivals to any state
s′ form a delayed renewal process (see the previous section) with the initial delay ξ0 being the first passage time from
s to s′ and the common distribution of ξ1, ξ2, . . . being the first return time from s′ to s′.

Both ξ0 and ξ1 are in E ; see Lemma 5.3. Furthermore, the aperiodicity of ξ1 immediately follows from the assump-
tion of all passage times being aperiodic. Since the initial distribution of our Markov renewal process conditioned on
fixing the first coordinate is also in E , when we start from this initial distribution the arrival times to any state also
form a delayed renewal process with same renewal time ξ1, but generally speaking, different initial delay time ξ0,
which however is still in E .

Thus, we can apply the arguments used in the proof of Theorem 4.1 to produce an exponential bound on the
difference of Q((s, t1) → (s′, t2)) and a known constant (equal to the inverse of the expectation of the first return time
from s′ to s′).

The remainder of the proof is just the same as in Theorem 4.1: We conjugate the kernel afforded by Theorem 1.1
by a suitable diagonal matrix whose nonzero matrix elements form a geometric progression, and thus get the desired
correlation kernel which defines a bounded operator in �2(X). �

Corollary 5.2. The central limit theorem for the number of particles in a window as described in Theorem 3.1 holds
for the Markov renewal processes with Bernoulli noise which satisfy the assumptions of Theorem 5.1.

It remains to prove the following lemma.

Lemma 5.3. Under the assumptions of Theorem 5.1, for any s, s ′ ∈ S the first passage time from s to s′ is a random
variable of class E .

Proof. For any s1, s2 ∈ S such that Ps1s2 �= 0 set

fs1s2(z) = 1

Ps1s2

∞∑
t=1

Ps1s2(t) zt .

By the hypothesis, all such functions have analytic continuation to a disc of radius larger than some constant R > 1.
Denote

M = max|z|=R, s1,s2∈S

∣∣fs1s2(z)
∣∣.

Observe that M ≥ 1 by the maximum principle because fs1s2(1) ≡ 1.
The probability of the Markov renewal process started at s1 to walk the path s1 → s2 → ·· · → sm and spend time

T on this path can be estimated as follows:

∑
t1+···+tm−1=T

Ps1s2(t1)Ps2s3(t2) · · ·Psm−1sm(tm−1) = Ps1s2 · · ·Psm−1sm · 1

2πi

∫
|z|=R

fs1s2(z) · · ·fsm−1sm(z)dz

zT +1

≤ Ps1s2 · · ·Psm−1sm · Mm−1/RT .

Note that Ps1s2 · · ·Psm−1sm is exactly the probability of the driving Markov chain started at s1 to walk the path s1 →
·· · → sm.

Let p be the minimum of all Ps1s2 �= 0. Since the driving chain is irreducible, for any initial distribution its proba-
bility of hitting any given state in the first |S| steps is at least p|S|. Hence, the number of steps in the first passage of
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the driving chain from any s1 ∈ S to any s2 ∈ S is a random variable from E . (Indeed, the probability of this number
of steps being at least n is ≤ (1 − p|S|)[n/|S|].)

Take any a > 0 such that Ma < R. For a first passage of the Markov renewal process from s1 to s2 that takes
time T , either the number of steps of the driving Markov chain is at least [aT ] or it is < [aT ]. The probability of the
former event decays exponentially in T by the previous paragraph, while the probability of the latter event, by the
estimate above, does not exceed M [aT ]/RT , which also decays exponentially in T by the choice of a. �
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